AN INEQUALITY FOR GENERALIZED CHROMATIC

 GRAPHS*Asen Bojilov, Nedyalko Nenov

Let G be a simple n-vertex graph with degree sequence $d_{1}, d_{2}, \ldots, d_{n}$ and vertex set $\mathrm{V}(G)$. The degree of $v \in \mathrm{~V}(G)$ is denoted by $d(v)$. The smallest integer r for which $\mathrm{V}(G)$ has an r-partition

$$
\mathrm{V}(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{r}, \quad V_{i} \cap V_{j}=\emptyset, \quad, i \neq j
$$

such that $d(v) \leq n-\left|V_{i}\right|, \forall v \in V_{i}, i=1,2, \ldots, r$ is denoted by $\varphi(G)$. In this note we prove the inequality

$$
\varphi(G) \geq \frac{n}{n-\overline{\bar{d}}}
$$

where $\overline{\bar{d}}=\sqrt{\frac{d_{1}^{2}+d_{2}^{2}+\cdots+d_{n}^{2}}{n}}$.

1. Introduction. We consider only finite, non-oriented graphs without loops and multiple edges. We use the following notations:
$\mathrm{V}(G)$ - the vertex set of G;
$e(G)$ - the number of edges of G;
$\operatorname{cl}(G)$ - the clique number of G;
$\chi(G)$ - the chromatic number of G;
$\mathrm{N}(v), v \in \mathrm{~V}(G)$ - the set of neighbours of a vertex v;
$\mathrm{N}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=\bigcap_{i=1}^{k} \mathrm{~N}\left(v_{i}\right) ;$
$d(v)$ - the degree of a vertex v;
$\mathrm{G}[V], V \subseteq \mathrm{~V}(G)$ - induced subgraph by V.
Definition 1. Let G be a graph, $|\mathrm{V}(G)|=n$ and $V \subseteq \mathrm{~V}(G)$. Then, the set V is called $a \delta$-set in G, if

$$
d(v) \leq n-|V| \text { for all } v \in V
$$

Clearly, any independent set V of vertices of a graph G is a δ-set in G since $\mathrm{N}(v) \subseteq$ $\mathrm{V}(G) \backslash V$ for all $v \in V$. It is obvious that if $V \subseteq \mathrm{~V}(G)$ and $|V| \geq \max \{d(v) \mid v \in \mathrm{~V}(G)\}$ then $\mathrm{V}(G) \backslash V$ is a δ-set in G (it is possible that $\mathrm{V}(G) \backslash V$ is not independent).

[^0]Definition 2. A graph G is called a generalized r-partite graph if there is a r-partition

$$
\mathrm{V}(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{r}, \quad V_{i} \cap V_{j}=\emptyset, \quad, i \neq j
$$

where the sets $V_{1}, V_{2}, \ldots, V_{r}$ are δ-sets in G. The smallest integer r such that G is a generalized r-partite is denoted by $\varphi(G)$.

As any independent vertex set of G is a δ-set in G, we have $\varphi(G) \leq \chi(G)$. In fact, the following stronger inequality [10]

$$
\begin{equation*}
\varphi(G) \leq \operatorname{cl}(G) \tag{1}
\end{equation*}
$$

holds.
Let $\mathrm{V}(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\operatorname{cl}(G)=r$. Define

$$
\bar{d}=\frac{d\left(v_{1}\right)+d\left(v_{2}\right)+\cdots+d\left(v_{n}\right)}{n}, \quad \overline{\bar{d}}=\sqrt{\frac{d^{2}\left(v_{1}\right)+d^{2}\left(v_{2}\right)+\cdots+d^{2}\left(v_{n}\right)}{n}}
$$

By the classical Turan Theorem, [11] (see also [5]) we have

$$
\begin{equation*}
e(G) \leq \frac{n^{2}(r-1)}{2 r} \tag{2}
\end{equation*}
$$

The equality in (2) holds if and only if $n \equiv 0(\bmod r)$ and G is complete r-chromatic and regular.

It is proved in [6] that

$$
\begin{equation*}
e(G) \leq \frac{n^{2}(\varphi(G)-1)}{2 \varphi(G)} \tag{3}
\end{equation*}
$$

According to (1) the inequality (3) is stronger than the inequality (2). But in case of equality in (3) the graph G is not unique as it is in the Turan theorem.

Since $\bar{d}(G)=\frac{2 e(G)}{n}$, it follows from (3) that

$$
\begin{equation*}
\varphi(G) \geq \frac{n}{n-\bar{d}(G)} \tag{4}
\end{equation*}
$$

In this note we give the following improvement of the inequality (4).
Theorem 1. Let G be a n-vertex graph. Then,

$$
\begin{equation*}
\varphi(G) \geq \frac{n}{n-\overline{\bar{d}}(G)} \tag{5}
\end{equation*}
$$

The equality in (5) holds if and only if $n \equiv 0(\bmod \varphi(G))$ and G is regular graph of degree $\frac{n(\varphi(G)-1)}{\varphi(G)}$.
2. Auxiliary results. We denote the elementary symmetric polynomial of degree s by $\sigma_{s}\left(x_{1}, x_{2}, \ldots, x_{n}\right), 1 \leq s \leq n$, i. e.

$$
\sigma_{s}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1} x_{2} \ldots x_{s}+\cdots
$$

Further, we use the following equalities:

$$
\begin{align*}
& x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=\sigma_{1}^{2}-2 \sigma_{2} \tag{6}\\
& x_{1}^{3}+x_{2}^{3}+\cdots+x_{n}^{3}=\sigma_{1}^{3}-3 \sigma_{1} \sigma_{2}+3 \sigma_{3} \tag{7}
\end{align*}
$$

where $\sigma_{i}=\sigma_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
In order to prove Theorem 1 we use the following well-known inequality (particular case of the Maclaurin inequality, see [2], [3]).

Theorem 2. Let $x_{1}, x_{2}, \ldots, x_{n}$ be non-negative reals and $\sigma_{s}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sigma_{s}$. Then,

$$
\begin{equation*}
\sqrt[s]{\frac{\sigma_{s}}{\binom{n}{s}}} \leq \frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=\frac{\sigma_{1}}{n}, \quad 1 \leq s \leq n \tag{8}
\end{equation*}
$$

If $s \geq 2$, then the equality in (8) holds if and only if $x_{1}=x_{2}=\cdots=x_{n}$.
A straight and very short prove of Theorem 2 is given in [4].
3. Proof of Theorem 1. Let $\varphi(G)=r, \mathrm{~V}(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and
(9) $\quad \mathrm{V}(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{r}, \quad V_{i} \cap V_{j}=\emptyset, \quad i \neq j$,
where $V_{1}, V_{2}, \ldots, V_{r}$ are δ-sets in G, i. e. if $n_{i}=\left|V_{i}\right|, i=1,2, \ldots, r$, then

$$
\begin{equation*}
d(v) \leq n-n_{i}, \quad \forall v \in V_{i} . \tag{10}
\end{equation*}
$$

It follows from (9) that

$$
d^{2}\left(v_{1}\right)+d^{2}\left(v_{2}\right)+\cdots+d^{2}\left(v_{n}\right)=\sum_{i=1}^{r} \sum_{v \in V_{i}} d^{2}(v)
$$

According to (10)

$$
\sum_{v \in V_{i}} d^{2}(v) \leq n_{i}\left(n-n_{i}\right)^{2}
$$

Thus we have

$$
d^{2}\left(v_{1}\right)+d^{2}\left(v_{2}\right)+\cdots+d^{2}\left(v_{n}\right) \leq \sum_{i=1}^{r} n_{i}\left(n-n_{i}\right)^{2}
$$

From (6) and (7) we see that

$$
\sum_{i=1}^{r} n_{i}\left(n-n_{i}\right)^{2}=n \sigma_{2}+3 \sigma_{3}
$$

where $\sigma_{2}=\sigma_{2}\left(n_{1}, n_{2}, \ldots, n_{r}\right), \sigma_{3}=\sigma_{3}\left(n_{1}, n_{2}, \ldots, n_{r}\right)$.
Thus we obtain the inequality

$$
\begin{equation*}
d^{2}\left(v_{1}\right)+d^{2}\left(v_{2}\right)+\cdots+d^{2}\left(v_{n}\right) \leq n \sigma_{2}+3 \sigma_{3} \tag{11}
\end{equation*}
$$

Since $\sigma_{1}=n$, Theorem 2 yields

$$
\begin{equation*}
\sigma_{2} \leq \frac{n^{2}(r-1)}{2 r} \text { and } \sigma_{3} \leq \frac{n^{3}(r-1)(r-2)}{6 r^{2}} \tag{12}
\end{equation*}
$$

Now, the inequality (5) follows from (11) and (12).
Obviously, if $n \equiv 0(\bmod r)$ and $d\left(v_{1}\right)=d\left(v_{2}\right)=\cdots=d\left(v_{r}\right)=\frac{n(r-1)}{r}$, then we have equality in (5). Now, let us suppose that we have equality in inequality (5). Then, we have equality in (12) and (10) too. From $r=\varphi(G)=\frac{n}{n-\overline{\bar{d}}}$ it is clear that r divides n. By Theorem 2, we have

$$
n_{1}=n_{2}=\cdots=n_{r}=\frac{n}{r}
$$

Because of the equality in (10), i. e. $d(v)=n-n_{i}, v \in V_{i}$, we have

$$
d\left(v_{1}\right)=d\left(v_{2}\right)=\cdots=d\left(v_{r}\right)=\frac{n(r-1)}{r}
$$

Theorem 1 is proved.

4. Some corollaries.

Definition 3 ([5]). Let G be a graph and $v_{1}, v_{2}, \ldots, v_{r} \in \mathrm{~V}(G)$. Then, the sequence $v_{1}, v_{2}, \ldots, v_{r}$ is called an α-sequence in G if the following conditions are satisfied:
(i) $d\left(v_{1}\right)=\max \{d(v)|v \in| \mathrm{V}(G)\}$;
(ii) $v_{i} \in \mathrm{~N}\left[v_{1}, v_{2}, \ldots, v_{i-1}\right]$ and v_{i} has maximal degree in the induced subgraph $\mathrm{G}\left[\mathrm{N}\left(v_{1}, v_{2}, \ldots, v_{i-1}\right], 2 \leq i \leq r\right.$.

Definition 4. Let G be a graph and $v_{1}, v_{2}, \ldots, v_{r} \in \mathrm{~V}(G)$. Then, the sequence $v_{1}, v_{2}, \ldots, v_{r}$ is called a β-sequence in G if the following conditions are satisfied:
(i) $d\left(v_{1}\right)=\max \{d(v)|v \in| \mathrm{V}(G)\}$;
(ii) $v_{i} \in \mathrm{~N}\left(v_{1}, v_{2}, \ldots, v_{i-1}\right)$ and $d\left(v_{i}\right)=\max \left\{d(v) \mid v \in \mathrm{~N}\left(v_{1}, v_{2}, \ldots, v_{i-1}\right)\right\}, 2 \leq i \leq r$.

Corollary 1. Let $v_{1}, v_{2}, \ldots, v_{r}, r \geq 2$ be an α - or a β-sequence in an n-vertex graph G such that $\mathrm{N}\left(v_{1}, v_{2}, \ldots, v_{r}\right)$ is a δ-set. Then,

$$
\begin{equation*}
r \geq \frac{n}{n-\overline{\bar{d}}} . \tag{13}
\end{equation*}
$$

Proof. Since $\mathrm{N}\left(v_{1}, v_{2}, \ldots, v_{p}\right)$ is a δ-set, G is a generalized r-partite graph, [9]. Thus, $r \geq \varphi(G)$ and (13) follows from Theorem 1.

Corollary 2. Let $v_{1}, v_{2}, \ldots, v_{r}, r \geq 2$, be a β-sequence in n-vertex graph G such that

$$
\begin{equation*}
d\left(v_{1}\right)+d\left(v_{2}\right)+\cdots+d\left(v_{r}\right) \leq(r-1) n . \tag{14}
\end{equation*}
$$

Then, the inequality (13) holds.
Proof. From (14) it follows that G is a generalized r-partite graph ([7], [8]).
The next corollary follows from (1) and Theorem 1.
Corollary 3 ([1]). Let G be an n-vertex graph. Then,

$$
\begin{equation*}
\operatorname{cl}(G) \geq \frac{n}{n-\overline{\bar{d}}} \tag{15}
\end{equation*}
$$

Remark 1. The prove of the inequality (15) given in [1] is incorrect, since the arguments on p. 53 , rows 8 and 9 from the top, is not valid.

Corollary 4. Let G be an n-vertex graph such that

$$
\begin{equation*}
\operatorname{cl}(G)=\frac{n}{n-\overline{\bar{d}}} \tag{16}
\end{equation*}
$$

Then, G is regular and complete $\operatorname{cl}(G)$-chromatic graph.
Proof. Let $\varphi(G)=r$. Then, by (16), (1) and Theorem 1 we have

$$
\operatorname{cl}(G)=\varphi(G)=r=\frac{n}{n-\overline{\bar{d}}}
$$

By Theorem $1, n \equiv 0(\bmod r)$ and G is a regular graph of degree $\frac{n(r-1)}{r}$. Thus

$$
e(G)=\frac{n^{2}(r-1)}{2 r}=\frac{n^{2}(\operatorname{cl}(G)-1)}{2 \operatorname{cl}(G)}
$$

According to Turan's Theorem, G is complete r-chromatic and regular.

REFERENCES

[1] C. Edwards, C. Elphick. Lower bounds for the clique and the chromatic number of a graph. Discrete Appl. Math., 5 (1983), 51-64.
[2] G. H. Hardy, J. F. Litelewood, G. Polya. Inequalities, 1934.
[3] N. Khadzhiivanov. Extremal theory of graphs, Sofia University, Sofia, 1990 (in Bulgarian).
[4] N. Khadzhiivanov, N. Nenov. An equalities for elementary symetric functions. Matematica, 4 (1977), 28-31 (in Bulgarian).
[5] N. Khadzhiivanov, N. Nenov. Extremal problems for s-graphs and a theorem of Turan. Serdica Math. J., 3 (1977), 117-125 (in Russian).
[6] N. Khadzhiivanov, N. Nenov. Generalized r-partite graphs and Turan's theorem. Compt. rend. Acad. bulg. Sci., 57 (2004) No 2, 19-24.
[7] N. Khadzhiivanov, N. Nenov. Saturated β-sequences in graphs. Compt. rend. Acad. bulg. Sci., 57 (2004) No 6, 49-54.
[8] N. Khadzhifvanov, N. Nenov. Sequence of maximal degree verteces in graphs. Serdica Math. J., 30 (2004), 95-102.
[9] N. Khadzhiivanov, N. Nenov. Balanced vertex sets in graphs. Ann. Univ. Sofia, Fac. Math. Inf., 97 (2005), 50-64.
[10] N. Nenov. Improvement of graph theory Wei's inequlity. Mathematics and education in mathematics, 35 (2006), 191-194.
[11] P. Turan. Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok, 48 (1941), 436-452.

Asen Bojilov
Nedyalko Nenov
Faculty of Mathematics and Informatics
University of Sofia
5, J. Bourchier Blvd
1164 Sofia, Bulgaria
e-mail: bojilov@fmi.uni-sofia.bg
nenov@fmi.uni-sofia.bg

ЕДНО НЕРАВЕНСТВО ЗА ОБОБЩЕНИ ХРОМАТИЧНИ ГРАФИ

Асен Божилов, Недялко Ненов

Нека G е n-върхов граф и редицата от степените на върховете му е $d_{1}, d_{2}, \ldots, d_{n}$, а $\mathrm{V}(G)$ е множеството от върховете на G. Степента на върха v бележим с $d(v)$. Най-малкото естествено число r, за което $\mathrm{V}(G)$ има r-разлагане

$$
\mathrm{V}(G)=V_{1} \cup V_{2} \cup \cdots \cup V_{r}, \quad V_{i} \cap V_{j}=\emptyset, \quad, i \neq j
$$

такова, че $d(v) \leq n-\left|V_{i}\right|, \forall v \in V_{i}, i=1,2, \ldots, r$ е означено с $\varphi(G)$. В тази работа доказваме неравенството

$$
\varphi(G) \geq \frac{n}{n-\overline{\bar{d}}},
$$

където $\overline{\bar{d}}=\sqrt{\frac{d_{1}^{2}+d_{2}^{2}+\cdots+d_{n}^{2}}{n}}$.

[^0]: *2000 Mathematics Subject Classification: Primary 05C35.
 Key words: clique number, degree sequence.
 This work was supported by the Scientific Research Fund of the St. Kliment Ohridski University of Sofia under contract No 187, 2011.

