MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2012 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2012

Proceedings of the Forty First Spring Conference of the Union of Bulgarian Mathematicians Borovetz, April 9–12, 2012

AN INEQUALITY FOR GENERALIZED CHROMATIC GRAPHS *

Asen Bojilov, Nedyalko Nenov

Let G be a simple n-vertex graph with degree sequence d_1, d_2, \ldots, d_n and vertex set V(G). The degree of $v \in V(G)$ is denoted by d(v). The smallest integer r for which V(G) has an r-partition

$$V(G) = V_1 \cup V_2 \cup \cdots \cup V_r, \quad V_i \cap V_j = \emptyset, \quad , i \neq j$$

such that $d(v) \leq n - |V_i|$, $\forall v \in V_i$, i = 1, 2, ..., r is denoted by $\varphi(G)$. In this note we prove the inequality

$$\varphi(G) \ge \frac{n}{n - \bar{d}},$$

where
$$\bar{d} = \sqrt{\frac{d_1^2 + d_2^2 + \dots + d_n^2}{n}}$$
.

1. Introduction. We consider only finite, non-oriented graphs without loops and multiple edges. We use the following notations:

V(G) – the vertex set of G;

e(G) – the number of edges of G;

cl(G) – the clique number of G;

 $\chi(G)$ – the chromatic number of G;

 $N(v), v \in V(G)$ — the set of neighbours of a vertex v;

 $N(v_1, v_2, \dots, v_k) = \bigcap_{i=1}^k N(v_i);$

d(v) – the degree of a vertex v;

 $G[V], V \subseteq V(G)$ – induced subgraph by V.

Definition 1. Let G be a graph, |V(G)| = n and $V \subseteq V(G)$. Then, the set V is called a δ -set in G, if

$$d(v) \leq n - |V|$$
 for all $v \in V$.

Clearly, any independent set V of vertices of a graph G is a δ -set in G since $N(v) \subseteq V(G) \setminus V$ for all $v \in V$. It is obvious that if $V \subseteq V(G)$ and $|V| \ge \max\{d(v) \mid v \in V(G)\}$ then $V(G) \setminus V$ is a δ -set in G (it is possible that $V(G) \setminus V$ is not independent).

Key words: clique number, degree sequence.

^{*2000} Mathematics Subject Classification: Primary 05C35.

This work was supported by the Scientific Research Fund of the St. Kliment Ohridski University of Sofia under contract No 187, 2011.

Definition 2. A graph G is called a generalized r-partite graph if there is a r-partition

$$V(G) = V_1 \cup V_2 \cup \cdots \cup V_r, \quad V_i \cap V_j = \emptyset, \quad , i \neq j$$

where the sets V_1, V_2, \ldots, V_r are δ -sets in G. The smallest integer r such that G is a generalized r-partite is denoted by $\varphi(G)$.

As any independent vertex set of G is a δ -set in G, we have $\varphi(G) \leq \chi(G)$. In fact, the following stronger inequality [10]

$$\varphi(G) \le \operatorname{cl}(G)$$

holds.

Let $V(G) = \{v_1, v_2, \dots, v_n\}$ and cl(G) = r. Define

$$\bar{d} = \frac{d(v_1) + d(v_2) + \dots + d(v_n)}{n}, \quad \bar{d} = \sqrt{\frac{d^2(v_1) + d^2(v_2) + \dots + d^2(v_n)}{n}}.$$

By the classical Turan Theorem, [11] (see also [5]) we have

(2)
$$e(G) \le \frac{n^2(r-1)}{2r}.$$

The equality in (2) holds if and only if $n \equiv 0 \pmod{r}$ and G is complete r-chromatic and regular.

It is proved in [6] that

(3)
$$e(G) \le \frac{n^2(\varphi(G) - 1)}{2\,\varphi(G)}.$$

According to (1) the inequality (3) is stronger than the inequality (2). But in case of equality in (3) the graph G is not unique as it is in the Turan theorem.

Since
$$\bar{d}(G) = \frac{2e(G)}{n}$$
, it follows from (3) that

(4)
$$\varphi(G) \ge \frac{n}{n - \bar{d}(G)}$$

In this note we give the following improvement of the inequality (4).

Theorem 1. Let G be a n-vertex graph. Then,

(5)
$$\varphi(G) \ge \frac{n}{n - \bar{\bar{d}}(G)}.$$

The equality in (5) holds if and only if $n \equiv 0 \pmod{\varphi(G)}$ and G is regular graph of degree $\frac{n(\varphi(G)-1)}{\varphi(G)}$.

2. Auxiliary results. We denote the elementary symmetric polynomial of degree s by $\sigma_s(x_1, x_2, \ldots, x_n)$, $1 \le s \le n$, i. e.

$$\sigma_s(x_1, x_2, \dots, x_n) = x_1 x_2 \dots x_s + \dots$$

Further, we use the following equalities:

(6)
$$x_1^2 + x_2^2 + \dots + x_n^2 = \sigma_1^2 - 2\sigma_2,$$

(7)
$$x_1^3 + x_2^3 + \dots + x_n^3 = \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3,$$

where $\sigma_i = \sigma_i(x_1, x_2, \dots, x_n)$.

In order to prove Theorem 1 we use the following well-known inequality (particular case of the Maclaurin inequality, see [2], [3]).

Theorem 2. Let x_1, x_2, \ldots, x_n be non-negative reals and $\sigma_s(x_1, x_2, \ldots, x_n) = \sigma_s$. Then,

(8)
$$\sqrt[s]{\frac{\sigma_s}{\binom{n}{s}}} \le \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sigma_1}{n}, \quad 1 \le s \le n.$$

If $s \ge 2$, then the equality in (8) holds if and only if $x_1 = x_2 = \cdots = x_n$. A straight and very short prove of Theorem 2 is given in [4].

3. Proof of Theorem 1. Let $\varphi(G) = r$, $V(G) = \{v_1, v_2, \dots, v_n\}$ and

(9)
$$V(G) = V_1 \cup V_2 \cup \cdots \cup V_r, \quad V_i \cap V_j = \emptyset, \quad i \neq j,$$

where V_1, V_2, \ldots, V_r are δ -sets in G, i. e. if $n_i = |V_i|, i = 1, 2, \ldots, r$, then (10) $d(v) \leq n - n_i, \quad \forall v \in V_i.$

It follows from (9) that

$$d^{2}(v_{1}) + d^{2}(v_{2}) + \dots + d^{2}(v_{n}) = \sum_{i=1}^{r} \sum_{v \in V_{i}} d^{2}(v).$$

According to (10)

$$\sum_{v \in V_i} d^2(v) \le n_i (n - n_i)^2.$$

Thus we have

$$d^{2}(v_{1}) + d^{2}(v_{2}) + \dots + d^{2}(v_{n}) \leq \sum_{i=1}^{r} n_{i}(n - n_{i})^{2}.$$

From (6) and (7) we see that

$$\sum_{i=1}^{r} n_i (n - n_i)^2 = n\sigma_2 + 3\sigma_3,$$

where $\sigma_2 = \sigma_2(n_1, n_2, \dots, n_r), \ \sigma_3 = \sigma_3(n_1, n_2, \dots, n_r).$

Thus we obtain the inequality

(11)
$$d^2(v_1) + d^2(v_2) + \dots + d^2(v_n) \le n\sigma_2 + 3\sigma_3.$$

Since $\sigma_1 = n$, Theorem 2 yields

(12)
$$\sigma_2 \le \frac{n^2(r-1)}{2r} \text{ and } \sigma_3 \le \frac{n^3(r-1)(r-2)}{6r^2}.$$

Now, the inequality (5) follows from (11) and (12).

Obviously, if $n \equiv 0 \pmod{r}$ and $d(v_1) = d(v_2) = \cdots = d(v_r) = \frac{n(r-1)}{r}$, then we have equality in (5). Now, let us suppose that we have equality in inequality (5). Then, we have equality in (12) and (10) too. From $r = \varphi(G) = \frac{n}{n-\bar{d}}$ it is clear that r divides n. By Theorem 2, we have

$$n_1 = n_2 = \dots = n_r = \frac{n}{r}.$$

Because of the equality in (10), i.e. $d(v) = n - n_i, v \in V_i$, we have

$$d(v_1) = d(v_2) = \dots = d(v_r) = \frac{n(r-1)}{r}$$
.

Theorem 1 is proved.

4. Some corollaries.

Definition 3 ([5]). Let G be a graph and $v_1, v_2, \ldots, v_r \in V(G)$. Then, the sequence v_1, v_2, \ldots, v_r is called an α -sequence in G if the following conditions are satisfied:

- (i) $d(v_1) = \max \{d(v) \mid v \in |V(G)\};$
- (ii) $v_i \in N[v_1, v_2, \dots, v_{i-1}]$ and v_i has maximal degree in the induced subgraph $G[N(v_1, v_2, \dots, v_{i-1}], 2 \le i \le r$.

Definition 4. Let G be a graph and $v_1, v_2, \ldots, v_r \in V(G)$. Then, the sequence v_1, v_2, \ldots, v_r is called a β -sequence in G if the following conditions are satisfied:

- (i) $d(v_1) = \max\{d(v) \mid v \in |V(G)\};$
- (ii) $v_i \in N(v_1, v_2, \dots, v_{i-1})$ and $d(v_i) = \max\{d(v) \mid v \in N(v_1, v_2, \dots, v_{i-1})\}, 2 \le i \le r$.

Corollary 1. Let $v_1, v_2, \ldots, v_r, r \geq 2$ be an α - or a β -sequence in an n-vertex graph G such that $N(v_1, v_2, \ldots, v_r)$ is a δ -set. Then,

$$(13) r \ge \frac{n}{n - \bar{d}}.$$

Proof. Since $N(v_1, v_2, ..., v_p)$ is a δ -set, G is a generalized r-partite graph, [9]. Thus, $r \geq \varphi(G)$ and (13) follows from Theorem 1.

Corollary 2. Let $v_1, v_2, \ldots, v_r, r \geq 2$, be a β -sequence in n-vertex graph G such that (14) $d(v_1) + d(v_2) + \cdots + d(v_r) \leq (r-1)n.$

Then, the inequality (13) holds.

Proof. From (14) it follows that G is a generalized r-partite graph ([7], [8]). \square The next corollary follows from (1) and Theorem 1.

Corollary 3 ([1]). Let G be an n-vertex graph. Then,

$$\operatorname{cl}(G) \ge \frac{n}{n - \bar{d}}.$$

Remark 1. The prove of the inequality (15) given in [1] is incorrect, since the arguments on p. 53, rows 8 and 9 from the top, is not valid.

Corollary 4. Let G be an n-vertex graph such that

(16)
$$\operatorname{cl}(G) = \frac{n}{n - \bar{d}}.$$

Then, G is regular and complete cl(G)-chromatic graph.

Proof. Let $\varphi(G) = r$. Then, by (16), (1) and Theorem 1 we have

$$\operatorname{cl}(G) = \varphi(G) = r = \frac{n}{n - \bar{d}}.$$

By Theorem 1, $n \equiv 0 \pmod{r}$ and G is a regular graph of degree $\frac{n(r-1)}{r}$. Thus

$$e(G) = \frac{n^2(r-1)}{2r} = \frac{n^2(\mathrm{cl}(G)-1)}{2\,\mathrm{cl}(G)}.$$

According to Turan's Theorem, G is complete r-chromatic and regular.

REFERENCES

- [1] C. EDWARDS, C. ELPHICK. Lower bounds for the clique and the chromatic number of a graph. *Discrete Appl. Math.*, **5** (1983), 51–64.
- [2] G. H. HARDY, J. F. LITELEWOOD, G. POLYA. Inequalities, 1934.
- [3] N. KHADZHIIVANOV. Extremal theory of graphs, Sofia University, Sofia, 1990 (in Bulgarian).
- [4] N. KHADZHIIVANOV, N. NENOV. An equalities for elementary symetric functions. *Matematica*, 4 (1977), 28–31 (in Bulgarian).
- [5] N. Khadzhiivanov, N. Nenov. Extremal problems for s-graphs and a theorem of Turan. Serdica Math. J., 3 (1977), 117–125 (in Russian).
- [6] N. KHADZHIIVANOV, N. NENOV. Generalized r-partite graphs and Turan's theorem. Compt. rend. Acad. bulg. Sci., 57 (2004) No 2, 19–24.
- [7] N. KHADZHIIVANOV, N. NENOV. Saturated β-sequences in graphs. Compt. rend. Acad. bulg. Sci., 57 (2004) No 6, 49–54.
- [8] N. KHADZHIIVANOV, N. NENOV. Sequence of maximal degree verteces in graphs. Serdica Math. J., 30 (2004), 95–102.
- [9] N. KHADZHIIVANOV, N. NENOV. Balanced vertex sets in graphs. Ann. Univ. Sofia, Fac. Math. Inf., 97 (2005), 50-64.
- [10] N. NENOV. Improvement of graph theory Wei's inequlity. Mathematics and education in mathematics, 35 (2006), 191–194.
- [11] P. Turan. Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok, 48 (1941), 436–452.

Asen Bojilov

Nedyalko Nenov

Faculty of Mathematics and Informatics

University of Sofia

5, J. Bourchier Blvd

1164 Sofia, Bulgaria

e-mail: bojilov@fmi.uni-sofia.bg nenov@fmi.uni-sofia.bg

ЕДНО НЕРАВЕНСТВО ЗА ОБОБЩЕНИ ХРОМАТИЧНИ ГРАФИ

Асен Божилов, Недялко Ненов

Нека G е n-върхов граф и редицата от степените на върховете му е d_1, d_2, \ldots, d_n , а V(G) е множеството от върховете на G. Степента на върха v бележим с d(v). Най-малкото естествено число r, за което V(G) има r-разлагане

$$V(G) = V_1 \cup V_2 \cup \cdots \cup V_r, \quad V_i \cap V_j = \emptyset, \quad , i \neq j$$

такова, че $d(v) \leq n - |V_i|, \, \forall v \in V_i, \, i=1,2,\ldots,r$ е означено с $\varphi(G)$. В тази работа доказваме неравенството

$$\varphi(G) \ge \frac{n}{n - \bar{d}},$$

където
$$\bar{\bar{d}}=\sqrt{\dfrac{d_1^2+d_2^2+\cdots+d_n^2}{n}}.$$