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Abstract. A general type of linear cyclic codes is introduced as a straightforward
generalization of quadratic residue codes, e-residue codes, generalized quadratic
residue codes and polyadic codes. A generalized version of the well-known square-
root bound for odd-weight words is derived.

1 Introduction

Quadratic residue codes or QR-codes form a special type of linear cyclic codes
of prime length p (odd) over a finite field (cf. [7] or other textbooks). Binary
QR-codes with ¢ = 2 or ¢ = 2! are the best studied quadratic residue codes
by far. Also ternary QR-codes are studied occasionally. These are sometimes
called Pless symmetry codes (cf. [8]). For ¢ > 3 quadratic residue codes are not
studied very closely. Pless in [9] introduced so-called Q-codes which contain
as a subclass quadratic residue codes over GF(4). Van Lint and MacWilliams
in [13] generalize the concept of quadratic residue codes to codes with prime
power length n = p™ over arbitrary fields GF(q), (p,q) = 1. These codes
are called generalized quadratic residue codes or GQR-codes. Berlekamp in [1,
Section 15.2] defines e-residue codes, which for e = 2 are identical to quadratic
residue codes. In an e-residue code, the role played by the quadratics in GF(q)
is now adopted by the e-powers in this field. Like in the case of QR-codes, the
code length of e-codes is always an odd prime.

A different kind of generalization of QR-codes form the duadic codes which
are introduced by Leon, Masley and Pless in [5]. Instead of quadratics and
nonquadratics, one considers two arbitrary disjunct subfamilies S; and S of
the family S of cyclotomic cosets mod n, such that S;1 U Sy = S. The length
of the codes in [5] is equal to n = plflpé€2 .. .pfl, where each p; is prime and
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congruent to £1 mod 8. The codes in [5] are further generalized for other
splittings of S, giving rise to triadic codes in [11] and to m-adic or polyadic
codes in [2] and [12]. The codes in [2] are of prime length and those in [11]
and in [12] of prime power length. In Sections 2 and 3 we shall introduce a
new family of linear cyclic codes C’fl’q,t, which we call generalized residue codes
(GR-codes). These are codes over an arbitrary field GF(q) having an arbitrary
length n, (n,q) = 1. A third parameter ¢ is a divisor of ¢(n) and is related to
the number of subfamilies into which S is split. In this sense the codes Cj,
generalize all codes mentioned earlier in this text. The index ¢ runs from 1
until ¢, and labels ¢ equivalent versions of a GR-code with fixed values of the
parameters n, ¢ and ¢t. In Section 4, we derive a generalization of a well-known
theorem on minimal distances in quadratic and in generalized quadratic codes.

The contents of this contribution is based on a paper of the third author

in [3]. For more properties and examples of GR-codes,we refer to [4].

2 Preliminaries

Let n = p’flpg2 . .pfl and let ¢ be a prime power such that (n,q) = 1. Let
furthermore r = ord,(q) be the multiplicative order of ¢ mod n, i.e. r is
the least integer satisfying ¢" = 1 (mod n). Let ®,(x) be the n'" cyclotomic
polynomial over the field of rationals Q. Then ®,,(z) divides 2™ — 1 and we can
write

2" — 1= (z—1)P(2)®,(z). (1)

Since this equality holds in Z[z], it also holds in Zp[z], and hence we may
consider @, (z) as a polynomial over GF(q). More in particular, we shall
consider polynomials over GF(q) as elements of the polynomial ring R, =
GF(q)[z]/(z™ — 1) For the degree of ®,,(x) we can write (cf. [6, Theorem 2.47])

deg @, (z) = p(n) = rk (2)
for some integer k, and we have the following factorization in GF(q)[z]
O(x) = Pi(x)Pa(z) ... Pp(z), (3)

where all polynomials P;(x) have degree r and are irreducible over GF(q). We
also introduce the multiplicative group of the ring Z, = {0,1,...,n — 1}, rep-
resented by

G=U,={acZ,| (a,n) =1} (4)
The minimal subgroup H < G containing ¢ is the cyclic group generated by g,
i.e.

H=(q)={lq4¢, ...¢ "} (5)

Since the factorgroup G/H has order k, we can write

G=H UHyU---UHy, (6)



where the cosets H; are non-intersecting cyclotomic classes defined by H; =
z;H, with representative elements z; = 1, a,...,x5. If ¢ is a primitive n'™®
root of unity in some appropriate extension field of GF(gq), we may define the
irreducible (over GF(q)) polynomials P;(z), 1 <i <k, as

Pa) = [T @), (")

leH;
Finally, we choose a subgroup K of G of index t , such that
H<K<QG. (8)
It follows that k = st for some integer s, and furthermore that
|G| =p(n)=rk=rst, |K|=rs, |H|=r, (9)
and by relabeling the H-cosets
K=H UHyU---UH,. (10)
Here, H; is the same coset as H; in (6). The cosets of K in G are K; (= K),
Ks,..., K;.
3 Definition of generalized residue codes
With respect to the chosen subgroup K we now define polynomials
s
9@ = [[@-)=]]Pul0), 1<i<t, (11)
leK; k=1
where the indices ji, jo, ... Js form a subset of {1,2,...,k}. It will be obvious

that the polynomials in (11) are of degree rs, that they have their coefficients
in GF(q) and that

[16"@) = @) (12)

Definition 1. The generalized residue code Cf'l’q,t of length n over GF(q) and
based on the subgroup K of U, of index t, is the cyclic code generated by the
polynomial g (x), for any i € {1,2,...,t}. If the group K is identical to a
subgroup U < U,,, where m is minimal with respect to this property, we shall
alternatively speak of an m-residue code.

The following properties of generalized residue codes can easily be proved.
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Theorem 1. For any set of fived values for n, q and t, the following relations
hold:

. _ n
1 <1 <t, all have dimension n — M; moreover,

(i) the GR-codes C., ,;,

they are equivalent, and hence they have the same minimum distance;
.. t y
(ii) ﬂl Chat = (@n());
1=

t )
(i4) if t > 2, then Y Cy, ., = Ry.
i=1

In the theory of the group U, it is proved that this group is cyclic if and
only if n equals 2, 4, p* or 2p* for any odd prime p. Based on this property the
next theorem can be proved.

Theorem 2. If n is equal to 2, 4, p* or 2p*, with p an odd prime, the group K
of (8) with index t with respect to U,, is identical to the subgroup Ul consisting
of all t-powers in G.

- We conclude that, if we restrict ourselves to n-values > 4, the GR-codes

C;k. ot and C’;pk o € t-residue codes for all 7, 1 < i < t. However, for other

n-values there can also exist m-residue codes for certain values of m.

4 Minimal distances in GR-codes

In this section we consider polynomials ¢ (z) € Cy, 4t Of weight d (not neces-
sarily the minimum weight of the code), and such that 2z — 1 is not a divisor of
this polynomial.

The following theorem can be considered as a generalization of a well-known
result for QR~codes, GQR~codes and other generalizations of quadratic codes.

Theorem 3. Let d be the weight of a polynomial ¢ (z) € Cl, gt such that
(1) #0. If dp is the weight of the polynomial P(x) in (1), then dpd* > n.

Proof. Let ¢ (x) € C’,ll’qi be a polynomial as described in the theorem. By suit-
able permutations of its coefficients, one can transform c® (x) into polynomials
@ (z),..., ¢ (x) which also meet that description. As a consequence of Theo-

t .
rem 1, the product P(z) [] ¢?(z) is a nonzero multiple of z"~ '+ 2" 2 4... 4+ 1.
i=1

(1) = a, i.e. P(z)

=1 i

D (z) = a (mod = — 1). Using Chi-

e~
e

Let P(1)
1



nese Reminder Theorem we conclude that
o, n—2 n

—(@" 42" 4~ +1) (modz" —1).
n

P(x) H Q) () =

t ) t .

Since P(z) [] ¢\?(x) is a word with weight n (a # 0) and since [] ¢ (z) has
i=1 =1

at most d' nonzero coefficients, the inequality follows immediately. O

We can even derive a stronger result in case that —1 is not an element of
K, which can be seen as a generalization of a result of Assmus and Mattson
(cf. ref. [10]).

Theorem 4. Let d be the weight of a polynomial ¢ (x) € C"

gt With (1) #0.
If —1¢ K, then dp(d? —d + 1)z > n.

Proof. Since —1 ¢ K, the integer —1 belongs to a coset different from K (= K).
We shall denote this coset by K_1. If a € G is neither in K nor in K_1, then
a defines a coset K,. Now —a &€ K, since this would imply —1 € K. So, K,
and K_, = —aK are cosets different from K; and K_;. Continuing in this
way shows that the group G/K consists of cosets K; and K_; for % different
values i. In the context of this proof we label these cosets as K;, K_; with
ie{l,2,..., %} Similarly, the corresponding polynomials (11) are denoted by

g9 (x), g9 (z) with again i € {1,2,..., £}. For each fixed value i we write

9@ = [[@-¢) =T @—-¢™ =a" [T -

leK; meK meK
— xTS(_C) meK H (:Eil _ szm).
mekK

According to our notation, the rhs can be written as bz g(*")(:ﬂfl) where b
must be an element of GF(q), since all coefficients of () (x) and g(~?)(z) are in
GF(q). Comparing the coefficients of 2% in both polynomials gives b = ¢ (0).

Now, let ¢ (z) = a;(z)g"¥? (x) be a polynomial in Cy, 4.t of weight d and de-
gree e. Then (=9 (z) = 2°c¢W (z71) = a_;(x)g~? (x) with a_;(z) = 2°a;(x) is a
polynomial in C; f]’t which has the same weight d. The polynomial ¢ (z)c(=9 (z)
is a polynomial in the intersection code thq,t ney, f]’t which cannot be the zero
polynomial, since it is not divisible by = — 1.

So, it has a positive weight which is at most equal to d’> —d+1. We can
continue this process, since all codes €7, ,;, 1 < i < %, are equivalent and
therefore all have a codeword of weight d. So, we end up with a polynomial
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¢ (z)e{=) (z) which is in the intersection N Ch gt N gy and which has a
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weight at most (d? — d + 1)%. The inequality now follows from Theorem 1. [
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