Minimal Distances in Generalized Residue Codes

A. Bojllov a.t.bozhilov@uvt.nl,bojilov@fmi.uni-sofia.bg Department of Communication and Informatics, University of Tilburg, The Netherlands (sabbatical from Faculty of Mathematics and Informatics, University of Sofia, Bulgaria)

A.J. van Zanten
A.J.vanZanten@uvt.nl
Department of Communication and Informatics, University of Tilburg, The Netherlands

S.M. Dodunekov stedo@math.bas.bg

Institute Of Mathematics And Informatics, Bulgarian Academy of Sciences, Bulgaria.

Abstract

A general type of linear cyclic codes is introduced as a straightforward generalization of quadratic residue codes, e-residue codes, generalized quadratic residue codes and polyadic codes. A generalized version of the well-known squareroot bound for odd-weight words is derived.

1 Introduction

Quadratic residue codes or QR-codes form a special type of linear cyclic codes of prime length p (odd) over a finite field (cf. [7] or other textbooks). Binary QR-codes with $q=2$ or $q=2^{l}$ are the best studied quadratic residue codes by far. Also ternary QR-codes are studied occasionally. These are sometimes called Pless symmetry codes (cf. [8]). For $q>3$ quadratic residue codes are not studied very closely. Pless in [9] introduced so-called Q-codes which contain as a subclass quadratic residue codes over GF(4). Van Lint and MacWilliams in [13] generalize the concept of quadratic residue codes to codes with prime power length $n=p^{m}$ over arbitrary fields $\operatorname{GF}(q),(p, q)=1$. These codes are called generalized quadratic residue codes or GQR-codes. Berlekamp in [1, Section 15.2] defines e-residue codes, which for $e=2$ are identical to quadratic residue codes. In an e-residue code, the role played by the quadratics in $\operatorname{GF}(q)$ is now adopted by the e-powers in this field. Like in the case of QR -codes, the code length of e-codes is always an odd prime.

A different kind of generalization of QR-codes form the duadic codes which are introduced by Leon, Masley and Pless in [5]. Instead of quadratics and nonquadratics, one considers two arbitrary disjunct subfamilies S_{1} and S_{2} of the family S of cyclotomic cosets mod n, such that $S_{1} \cup S_{2}=S$. The length of the codes in [5] is equal to $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{l}^{k_{l}}$, where each p_{i} is prime and
congruent to $\pm 1 \bmod 8$. The codes in [5] are further generalized for other splittings of S, giving rise to triadic codes in [11] and to m-adic or polyadic codes in [2] and [12]. The codes in [2] are of prime length and those in [11] and in [12] of prime power length. In Sections 2 and 3 we shall introduce a new family of linear cyclic codes $C_{n, q, t}^{i}$, which we call generalized residue codes (GR-codes). These are codes over an arbitrary field GF (q) having an arbitrary length $n,(n, q)=1$. A third parameter t is a divisor of $\varphi(n)$ and is related to the number of subfamilies into which S is split. In this sense the codes $C_{n, q, t}^{i}$ generalize all codes mentioned earlier in this text. The index i runs from 1 until t, and labels t equivalent versions of a GR-code with fixed values of the parameters n, q and t. In Section 4, we derive a generalization of a well-known theorem on minimal distances in quadratic and in generalized quadratic codes.

The contents of this contribution is based on a paper of the third author in [3]. For more properties and examples of GR-codes,we refer to [4].

2 Preliminaries

Let $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \ldots p_{l}^{k_{l}}$ and let q be a prime power such that $(n, q)=1$. Let furthermore $r=\operatorname{ord}_{n}(q)$ be the multiplicative order of $q \bmod n$, i.e. r is the least integer satisfying $q^{r} \equiv 1(\bmod n)$. Let $\Phi_{n}(x)$ be the $n^{\text {th }}$ cyclotomic polynomial over the field of rationals \mathbb{Q}. Then $\Phi_{n}(x)$ divides $x^{n}-1$ and we can write

$$
\begin{equation*}
x^{n}-1=(x-1) P(x) \Phi_{n}(x) . \tag{1}
\end{equation*}
$$

Since this equality holds in $\mathbb{Z}[x]$, it also holds in $\mathbb{Z}_{p}[x]$, and hence we may consider $\Phi_{n}(x)$ as a polynomial over $\operatorname{GF}(q)$. More in particular, we shall consider polynomials over $\mathrm{GF}(q)$ as elements of the polynomial ring $R_{n}=$ $\mathrm{GF}(q)[x] /\left(x^{n}-1\right)$ For the degree of $\Phi_{n}(x)$ we can write (cf. [6, Theorem 2.47])

$$
\begin{equation*}
\operatorname{deg} \Phi_{n}(x)=\varphi(n)=r k \tag{2}
\end{equation*}
$$

for some integer k, and we have the following factorization in $\operatorname{GF}(q)[x]$

$$
\begin{equation*}
\Phi(x)=P_{1}(x) P_{2}(x) \ldots P_{k}(x) \tag{3}
\end{equation*}
$$

where all polynomials $P_{i}(x)$ have degree r and are irreducible over GF (q). We also introduce the multiplicative group of the ring $\mathbb{Z}_{n}=\{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}$, represented by

$$
\begin{equation*}
G=\mathbb{U}_{n}=\left\{\bar{a} \in \mathbb{Z}_{n} \mid(a, n)=1\right\} . \tag{4}
\end{equation*}
$$

The minimal subgroup $H \leq G$ containing q is the cyclic group generated by q, i.e.

$$
\begin{equation*}
H=\langle q\rangle=\left\{1, q, q^{2}, \ldots, q^{r-1}\right\} . \tag{5}
\end{equation*}
$$

Since the factorgroup G / H has order k, we can write

$$
\begin{equation*}
G=H_{1} \cup H_{2} \cup \cdots \cup H_{k} \tag{6}
\end{equation*}
$$

where the cosets H_{i} are non-intersecting cyclotomic classes defined by $H_{i}=$ $x_{i} H$, with representative elements $x_{1}=1, x_{2}, \ldots, x_{k}$. If ζ is a primitive $n^{\text {th }}$ root of unity in some appropriate extension field of $\operatorname{GF}(q)$, we may define the irreducible (over $\mathrm{GF}(q)$) polynomials $P_{i}(x), 1 \leq i \leq k$, as

$$
\begin{equation*}
P_{i}(x)=\prod_{l \in H_{i}}\left(x-\zeta^{l}\right) . \tag{7}
\end{equation*}
$$

Finally, we choose a subgroup K of G of index t, such that

$$
\begin{equation*}
H \leq K \leq G . \tag{8}
\end{equation*}
$$

It follows that $k=s t$ for some integer s, and furthermore that

$$
\begin{equation*}
|G|=\varphi(n)=r k=r s t, \quad|K|=r s, \quad|H|=r, \tag{9}
\end{equation*}
$$

and by relabeling the H-cosets

$$
\begin{equation*}
K=H_{1} \cup H_{2} \cup \cdots \cup H_{s} . \tag{10}
\end{equation*}
$$

Here, H_{1} is the same coset as H_{1} in (6). The cosets of K in G are $K_{1}(=K)$, K_{2}, \ldots, K_{t}.

3 Definition of generalized residue codes

With respect to the chosen subgroup K we now define polynomials

$$
\begin{equation*}
g^{(i)}(x)=\prod_{l \in K_{i}}\left(x-\zeta^{l}\right)=\prod_{k=1}^{s} P_{j_{k}}(x), \quad 1 \leq i \leq t \tag{11}
\end{equation*}
$$

where the indices $j_{1}, j_{2}, \ldots j_{s}$ form a subset of $\{1,2, \ldots, k\}$. It will be obvious that the polynomials in (11) are of degree $r s$, that they have their coefficients in $\mathrm{GF}(q)$ and that

$$
\begin{equation*}
\prod_{i=1}^{t} g^{(i)}(x)=\Phi_{n}(x) \tag{12}
\end{equation*}
$$

Definition 1. The generalized residue code $C_{n, q, t}^{i}$ of length n over $\mathrm{GF}(q)$ and based on the subgroup K of \mathbb{U}_{n} of index t, is the cyclic code generated by the polynomial $g^{(i)}(x)$, for any $i \in\{1,2, \ldots, t\}$. If the group K is identical to a subgroup $\mathbb{U}_{n}^{m} \leqq \mathbb{U}_{n}$, where m is minimal with respect to this property, we shall alternatively speak of an m-residue code.

The following properties of generalized residue codes can easily be proved.

Theorem 1. For any set of fixed values for n, q and t, the following relations hold:
(i) the $G R$-codes $C_{n, q, t}^{i}, 1 \leq i \leq t$, all have dimension $n-\frac{\varphi(n)}{t}$; moreover, they are equivalent, and hence they have the same minimum distance;
(ii) $\bigcap_{i=1}^{t} C_{n, q, t}^{i}=\left(\Phi_{n}(x)\right)$;
(iii) if $t \geq 2$, then $\sum_{i=1}^{t} C_{n, q, t}^{i}=R_{n}$.

In the theory of the group \mathbb{U}_{n} it is proved that this group is cyclic if and only if n equals $2,4, p^{k}$ or $2 p^{k}$ for any odd prime p. Based on this property the next theorem can be proved.

Theorem 2. If n is equal to 2, 4, p^{k} or $2 p^{k}$, with p an odd prime, the group K of (8) with index t with respect to \mathbb{U}_{n}, is identical to the subgroup \mathbb{U}_{n}^{t} consisting of all t-powers in G.

We conclude that, if we restrict ourselves to n-values >4, the GR-codes $C_{p^{k}, q, t}^{i}$ and $C_{2 p^{k}, q, t}^{i}$ are t-residue codes for all $i, 1 \leq i \leq t$. However, for other n-values there can also exist m-residue codes for certain values of m.

4 Minimal distances in GR-codes

In this section we consider polynomials $c^{(i)}(x) \in C_{n, q, t}^{i}$ of weight d (not necessarily the minimum weight of the code), and such that $x-1$ is not a divisor of this polynomial.

The following theorem can be considered as a generalization of a well-known result for QR-codes, GQR-codes and other generalizations of quadratic codes.
Theorem 3. Let d be the weight of a polynomial $c^{(i)}(x) \in C_{n, q, t}^{i}$ such that $c^{(i)}(1) \neq 0$. If d_{P} is the weight of the polynomial $P(x)$ in (1), then $d_{P} d^{t} \geq n$.

Proof. Let $c^{(1)}(x) \in C_{n, q, t}^{1}$ be a polynomial as described in the theorem. By suitable permutations of its coefficients, one can transform $c^{(1)}(x)$ into polynomials $c^{(2)}(x), \ldots, c^{(t)}(x)$ which also meet that description. As a consequence of Theorem 1, the product $P(x) \prod_{i=1}^{t} c^{(i)}(x)$ is a nonzero multiple of $x^{n-1}+x^{n-2}+\cdots+1$.

Let $P(1) \prod_{i=1}^{t} c^{(i)}(1)=\alpha$, i. e. $P(x) \prod_{i=1}^{t} c^{(i)}(x) \equiv \alpha(\bmod x-1)$. Using Chi-
nese Reminder Theorem we conclude that

$$
P(x) \prod_{i=1}^{t} c^{(i)}(x) \equiv \frac{\alpha}{n}\left(x^{n-1}+x^{n-2}+\cdots+1\right) \quad\left(\bmod x^{n}-1\right) .
$$

Since $P(x) \prod_{i=1}^{t} c^{(i)}(x)$ is a word with weight $n(\alpha \neq 0)$ and since $\prod_{i=1}^{t} c^{(i)}(x)$ has at most d^{t} nonzero coefficients, the inequality follows immediately.

We can even derive a stronger result in case that -1 is not an element of K, which can be seen as a generalization of a result of Assmus and Mattson (cf. ref. [10]).

Theorem 4. Let d be the weight of a polynomial $c^{(i)}(x) \in C_{n, q, t}^{i}$ with $c^{(i)}(1) \neq 0$. If $-1 \notin K$, then $d_{P}\left(d^{2}-d+1\right)^{\frac{t}{2}} \geq n$.

Proof. Since $-1 \notin K$, the integer -1 belongs to a coset different from $K_{1}(=K)$. We shall denote this coset by K_{-1}. If $a \in G$ is neither in K_{1} nor in K_{-1}, then a defines a coset K_{a}. Now $-a \notin K_{a}$, since this would imply $-1 \in K$. So, K_{a} and $K_{-a}=-a K$ are cosets different from K_{1} and K_{-1}. Continuing in this way shows that the group G / K consists of cosets K_{i} and K_{-i} for $\frac{t}{2}$ different values i. In the context of this proof we label these cosets as $K_{i},{ }^{2} K_{-i}$ with $i \in\left\{1,2, \ldots, \frac{t}{2}\right\}$. Similarly, the corresponding polynomials (11) are denoted by $g^{(i)}(x), g^{(-i)}(x)$ with again $i \in\left\{1,2, \ldots, \frac{t}{2}\right\}$. For each fixed value i we write

$$
\begin{aligned}
g^{(i)}(x) & =\prod_{l \in K_{i}}\left(x-\zeta^{l}\right)=\prod_{m \in K}\left(x-\zeta^{i m}\right)=x^{r s} \prod_{m \in K}\left(1-\zeta^{i m} x^{-1}\right) \\
& =x^{r s}(-\zeta)^{i \sum_{m \in K} m} \prod_{m \in K}\left(x^{-1}-\zeta^{-i m}\right) .
\end{aligned}
$$

According to our notation, the rhs can be written as $b x^{r s} g^{(-i)}\left(x^{-1}\right)$ where b must be an element of $\mathrm{GF}(q)$, since all coefficients of $g^{(i)}(x)$ and $g^{(-i)}(x)$ are in $\mathrm{GF}(q)$. Comparing the coefficients of x^{0} in both polynomials gives $b=g^{(i)}(0)$.

Now, let $c^{(i)}(x)=a_{i}(x) g^{(i)}(x)$ be a polynomial in $C_{n, q, t}^{i}$ of weight d and degree e. Then $c^{(-i)}(x)=x^{e} c^{(i)}\left(x^{-1}\right)=a_{-i}(x) g^{(-i)}(x)$ with $a_{-i}(x)=x^{e} a_{i}(x)$ is a polynomial in $C_{n, q, t}^{-i}$ which has the same weight d. The polynomial $c^{(i)}(x) c^{(-i)}(x)$ is a polynomial in the intersection code $C_{n, q, t}^{i} \cap C_{n, q, t}^{-i}$ which cannot be the zero polynomial, since it is not divisible by $x-1$.

So, it has a positive weight which is at most equal to $d^{2}-d+1$. We can continue this process, since all codes $C_{n, q, t}^{i}, 1 \leq i \leq \frac{t}{2}$, are equivalent and therefore all have a codeword of weight d. So, we end up with a polynomial
$\prod_{i=1}^{\frac{t}{2}} c^{(i)}(x) c^{(-i)}(x)$ which is in the intersection $\bigcap_{i=1}^{\frac{t}{2}} C_{n, q, t}^{i} \cap C_{n, q, t}^{-i}$ and which has a weight at most $\left(d^{2}-d+1\right)^{\frac{t}{2}}$. The inequality now follows from Theorem 1 .

References

[1] E. R. Berlekamp, Algebraic Coding Theory, revised edition 1984, Aegean Park Press, Laguna Hills, Ca., 1984.
[2] Richard A. Brualdi and Vera S. Pless, Polyadic codes, Discrete Applied Mathematics, 25 (1-2), 3-17, 1989.
[3] S. M. Dodunekov, Residue codes, Pliska Studia Matematika, (2), 3-5, 1981.
[4] S.M. Dodunekov, A. Bojilov, and A.J. van Zanten, Generalized residue codes, TR 2010-001, TICC, Tilburg University, March 2010.
[5] Jeffrey S. Leon, John Myron Masley, and Vera Pless, Duadic codes, IEEE Transactions on Information Theory, 30 (5), 709-713, 1984.
[6] R. Lidl and H. Niederreiter, Introduction to Finite Fields, Cambridge University Press, Cambridge, 1986.
[7] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, volume 16 of North-Holland Mathematical Library, North-Holland, 1977.
[8] Vera Pless, Symmetry codes over GF(3) and new five-designs, Journal of Combinatorial Theory, Series A, 12 (1), 119-142, 1972.
[9] Vera Pless, Q-codes, Journal of Combinatorial Theory, Series A, 43 (2), 258-276, 1986.
[10] Vera Pless, Introduction to the Theory of Error-Correcting Codes, Discrete Mathematics and Optimization. Wiley-Interscience, New York, 3rd edition, July 1998.
[11] Vera Pless and Joseph J. Rushanan, Triadic codes, Linear Algebra and its Applications, 98, 415-433, 1988.
[12] Anuradha Sharma, Gurmeet K. Bakshi, and Madhu Raka, The weight distributions of irreducible cyclic codes of length 2^{m}, Finite Fields and Their Applications, 13 (4), 1086-1095, 2007.
[13] J. van Lint and F. MacWilliams, Generalized quadratic residue codes, IEEE Transactions on Information Theory, 24 (6), 730-737, Nov 1978.

