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Abstract. A general type of linear cyclic codes is introduced as a straightforward
generalization of quadratic residue codes, e-residue codes, generalized quadratic
residue codes and polyadic codes. A generalized version of the well-known square-
root bound for odd-weight words is derived.

1 Introduction

Quadratic residue codes or QR-codes form a special type of linear cyclic codes
of prime length p (odd) over a finite field (cf. [7] or other textbooks). Binary
QR-codes with q = 2 or q = 2l are the best studied quadratic residue codes
by far. Also ternary QR-codes are studied occasionally. These are sometimes
called Pless symmetry codes (cf. [8]). For q > 3 quadratic residue codes are not
studied very closely. Pless in [9] introduced so-called Q-codes which contain
as a subclass quadratic residue codes over GF(4). Van Lint and MacWilliams
in [13] generalize the concept of quadratic residue codes to codes with prime
power length n = pm over arbitrary fields GF(q), (p, q) = 1. These codes
are called generalized quadratic residue codes or GQR-codes. Berlekamp in [1,
Section 15.2] defines e-residue codes, which for e = 2 are identical to quadratic
residue codes. In an e-residue code, the role played by the quadratics in GF(q)
is now adopted by the e-powers in this field. Like in the case of QR-codes, the
code length of e-codes is always an odd prime.

A different kind of generalization of QR-codes form the duadic codes which
are introduced by Leon, Masley and Pless in [5]. Instead of quadratics and
nonquadratics, one considers two arbitrary disjunct subfamilies S1 and S2 of
the family S of cyclotomic cosets mod n, such that S1 ∪ S2 = S. The length

of the codes in [5] is equal to n = pk11 pk22 . . . pkll , where each pi is prime and
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congruent to ±1 mod 8. The codes in [5] are further generalized for other
splittings of S, giving rise to triadic codes in [11] and to m-adic or polyadic
codes in [2] and [12]. The codes in [2] are of prime length and those in [11]
and in [12] of prime power length. In Sections 2 and 3 we shall introduce a
new family of linear cyclic codes Ci

n,q,t, which we call generalized residue codes
(GR-codes). These are codes over an arbitrary field GF(q) having an arbitrary
length n, (n, q) = 1. A third parameter t is a divisor of ϕ(n) and is related to
the number of subfamilies into which S is split. In this sense the codes Ci

n,q,t
generalize all codes mentioned earlier in this text. The index i runs from 1
until t, and labels t equivalent versions of a GR-code with fixed values of the
parameters n, q and t. In Section 4, we derive a generalization of a well-known
theorem on minimal distances in quadratic and in generalized quadratic codes.

The contents of this contribution is based on a paper of the third author
in [3]. For more properties and examples of GR-codes,we refer to [4].

2 Preliminaries

Let n = pk11 pk22 . . . pkll and let q be a prime power such that (n, q) = 1. Let
furthermore r = ordn(q) be the multiplicative order of q mod n, i. e. r is
the least integer satisfying qr ≡ 1 (mod n). Let Φn(x) be the nth cyclotomic
polynomial over the field of rationals Q. Then Φn(x) divides x

n−1 and we can
write

xn − 1 = (x− 1)P (x)Φn(x). (1)

Since this equality holds in Z[x], it also holds in Zp[x], and hence we may
consider Φn(x) as a polynomial over GF(q). More in particular, we shall
consider polynomials over GF(q) as elements of the polynomial ring Rn =
GF(q)[x]/(xn − 1) For the degree of Φn(x) we can write (cf. [6, Theorem 2.47])

degΦn(x) = ϕ(n) = rk (2)

for some integer k, and we have the following factorization in GF(q)[x]

Φ(x) = P1(x)P2(x) . . . Pk(x), (3)

where all polynomials Pi(x) have degree r and are irreducible over GF(q). We
also introduce the multiplicative group of the ring Zn = {0̄, 1̄, . . . , n− 1}, rep-
resented by

G = Un = {ā ∈ Zn | (a, n) = 1}. (4)

The minimal subgroup H ≤ G containing q is the cyclic group generated by q,
i. e.

H = 〈q〉 = {1, q, q2, . . . , qr−1}. (5)

Since the factorgroup G/H has order k, we can write

G = H1 ∪H2 ∪ · · · ∪Hk, (6)
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where the cosets Hi are non-intersecting cyclotomic classes defined by Hi =
xiH, with representative elements x1 = 1, x2,. . . ,xk. If ζ is a primitive nth

root of unity in some appropriate extension field of GF(q), we may define the
irreducible (over GF(q)) polynomials Pi(x), 1 ≤ i ≤ k, as

Pi(x) =
∏

l∈Hi

(x− ζ l). (7)

Finally, we choose a subgroup K of G of index t , such that

H ≤ K ≤ G. (8)

It follows that k = st for some integer s, and furthermore that

|G| = ϕ(n) = rk = rst, |K| = rs, |H| = r, (9)

and by relabeling the H-cosets

K = H1 ∪H2 ∪ · · · ∪Hs. (10)

Here, H1 is the same coset as H1 in (6). The cosets of K in G are K1 (= K),
K2,. . . , Kt.

3 Definition of generalized residue codes

With respect to the chosen subgroup K we now define polynomials

g(i)(x) =
∏

l∈Ki

(x− ζ l) =
s∏

k=1

Pjk(x), 1 ≤ i ≤ t, (11)

where the indices j1, j2, . . . js form a subset of {1, 2, . . . , k}. It will be obvious
that the polynomials in (11) are of degree rs, that they have their coefficients
in GF(q) and that

t∏

i=1

g(i)(x) = Φn(x). (12)

Definition 1. The generalized residue code Ci
n,q,t of length n over GF(q) and

based on the subgroup K of Un of index t, is the cyclic code generated by the
polynomial g(i)(x), for any i ∈ {1, 2, . . . , t}. If the group K is identical to a
subgroup Um

n 5 Un, where m is minimal with respect to this property, we shall
alternatively speak of an m-residue code.

The following properties of generalized residue codes can easily be proved.
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Theorem 1. For any set of fixed values for n, q and t, the following relations
hold:

(i) the GR-codes Ci
n,q,t, 1 ≤ i ≤ t, all have dimension n − ϕ(n)

t
; moreover,

they are equivalent, and hence they have the same minimum distance;

(ii)
t⋂

i=1
Ci
n,q,t =

(
Φn(x)

)
;

(iii) if t ≥ 2, then
t∑

i=1
Ci
n,q,t = Rn.

In the theory of the group Un it is proved that this group is cyclic if and
only if n equals 2, 4, pk or 2pk for any odd prime p. Based on this property the
next theorem can be proved.

Theorem 2. If n is equal to 2, 4, pk or 2pk, with p an odd prime, the group K
of (8) with index t with respect to Un, is identical to the subgroup Ut

n consisting
of all t-powers in G.

We conclude that, if we restrict ourselves to n-values > 4, the GR-codes
Ci
pk,q,t

and Ci
2pk,q,t

are t-residue codes for all i, 1 ≤ i ≤ t. However, for other

n-values there can also exist m-residue codes for certain values of m.

4 Minimal distances in GR-codes

In this section we consider polynomials c(i)(x) ∈ Ci
n,q,t of weight d (not neces-

sarily the minimum weight of the code), and such that x− 1 is not a divisor of
this polynomial.

The following theorem can be considered as a generalization of a well-known
result for QR-codes, GQR-codes and other generalizations of quadratic codes.

Theorem 3. Let d be the weight of a polynomial c(i)(x) ∈ Ci
n,q,t such that

c(i)(1) 6= 0. If dP is the weight of the polynomial P (x) in (1), then dPd
t ≥ n.

Proof. Let c(1)(x) ∈ C1
n,q,t be a polynomial as described in the theorem. By suit-

able permutations of its coefficients, one can transform c(1)(x) into polynomials

c(2)(x),. . . , c(t)(x) which also meet that description. As a consequence of Theo-

rem 1, the product P (x)
t∏

i=1
c(i)(x) is a nonzero multiple of xn−1+xn−2+ · · ·+1.

Let P (1)
t∏

i=1
c(i)(1) = α, i. e. P (x)

t∏
i=1

c(i)(x) ≡ α (mod x − 1). Using Chi-
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nese Reminder Theorem we conclude that

P (x)

t∏

i=1

c(i)(x) ≡ α

n
(xn−1 + xn−2 + · · ·+ 1) (mod xn − 1).

Since P (x)
t∏

i=1
c(i)(x) is a word with weight n (α 6= 0) and since

t∏
i=1

c(i)(x) has

at most dt nonzero coefficients, the inequality follows immediately.

We can even derive a stronger result in case that −1 is not an element of
K, which can be seen as a generalization of a result of Assmus and Mattson
(cf. ref. [10]).

Theorem 4. Let d be the weight of a polynomial c(i)(x) ∈ Ci
n,q,t with c(i)(1) 6= 0.

If −1 6∈ K, then dP (d
2 − d+ 1)

t
2 ≥ n.

Proof. Since −1 6∈ K, the integer −1 belongs to a coset different fromK1(= K).
We shall denote this coset by K−1. If a ∈ G is neither in K1 nor in K−1, then
a defines a coset Ka. Now −a 6∈ Ka, since this would imply −1 ∈ K. So, Ka

and K−a = −aK are cosets different from K1 and K−1. Continuing in this
way shows that the group G/K consists of cosets Ki and K−i for

t
2 different

values i. In the context of this proof we label these cosets as Ki, K−i with
i ∈ {1, 2, . . . , t

2}. Similarly, the corresponding polynomials (11) are denoted by

g(i)(x), g(−i)(x) with again i ∈ {1, 2, . . . , t
2}. For each fixed value i we write

g(i)(x) =
∏

l∈Ki

(x− ζ l) =
∏

m∈K
(x− ζim) = xrs

∏

m∈K
(1− ζimx−1)

= xrs(−ζ)
i

∑
m∈K

m ∏

m∈K
(x−1 − ζ−im).

According to our notation, the rhs can be written as bxrsg(−i)(x−1) where b

must be an element of GF(q), since all coefficients of g(i)(x) and g(−i)(x) are in

GF(q). Comparing the coefficients of x0 in both polynomials gives b = g(i)(0).

Now, let c(i)(x) = ai(x)g
(i)(x) be a polynomial in Ci

n,q,t of weight d and de-

gree e. Then c(−i)(x) = xec(i)(x−1) = a−i(x)g
(−i)(x) with a−i(x) = xeai(x) is a

polynomial in C−i
n,q,t which has the same weight d. The polynomial c(i)(x)c(−i)(x)

is a polynomial in the intersection code Ci
n,q,t ∩C−i

n,q,t which cannot be the zero
polynomial, since it is not divisible by x− 1.

So, it has a positive weight which is at most equal to d2 − d + 1. We can
continue this process, since all codes Ci

n,q,t, 1 ≤ i ≤ t
2 , are equivalent and

therefore all have a codeword of weight d. So, we end up with a polynomial
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t
2∏

i=1
c(i)(x)c(−i)(x) which is in the intersection

t
2⋂

i=1
Ci
n,q,t ∩C−i

n,q,t and which has a

weight at most (d2 − d+1)
t
2 . The inequality now follows from Theorem 1.
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