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Abstract. A general method is developed for the construction of idempotent gen-
erators of GR-codes over GF(q) of length n. For n € {p,2p, pk,ka}, explicit ex-
pressions for these generators can be derived.

1 Introduction

For the conventions, preliminaries, definition and general setting of the family
of generalized residue codes, we refer to Sections 1-3 of ref. [1]. We only repeat
the main aspects of their definition. The factorization of 2™ — 1 and of the n*®
cyclotomic polynomial in GF(g) can be written as

" —1=(z—1)P(z)Py(z) = (x — 1) P(z)P1(x) Ps(x) ... Py(x), (1)
where the Pj(x), 1 <1i < k, are irreducible polynomials over GF(q), with kr =
@(n), r = ord,(q). Let H C U, be the subgroup H = (¢) = {1,¢,¢%,...,¢" '}
with cosets Hy (= H), Hs,..., Hi, and let K be another subgroup of U, of
index ¢ and containing H. The cosets of K in U, are K; (= K), Ka,..., K,

k = st. Let furthermore, ¢ be a primitive n'® root of unity in some extension
field of GF(gq). Then we can write

P@ =J[@-¢), 1<i<h (2)
leH;

Finally, the ¢ equivalent GR-codes C?
codes generated by the polynomials

qt» L <@ < t, are defined as the cyclic

9@ = [[@- =], 1<i<t (3)
k=1

leK;
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2 Idempotent generators of cyclic codes

Let g(z) be the minimal polynomial of a cyclic code C of length n over GF(q),
and let h(x) be its check polynomial. Then we have in the ring R that

g(x)h(z) =2"—-1=0. (4)

Definition 1. Let C be a cyclic code. A polynomial e(x) € C, of degree less
than n, which is an identity of C is called the idempotent generator of C.

This idempotent generator is unique and has the idempotency property

¢*(z) = e(z). ()
It is also well-known, that e(z) can be obtained from the relation
a(z)g(z) + b(x)h(z) = 1, (6)

which holds for certain polynomials a(x) and b(x) in R}, since (g(z), h(z)) = 1.
It follows immediately that

e(r) = a(z)g(z). (7)

The polynomial a(z) can of course be obtained by Euclid’s algorithm. An
alternative method for determining e(z) is given by the rule

e(x) = n" b/ (x)g(), (8)

where h/(z) stands for the formal derivative of the polynomial h(z), and where
n~! is to be taken in GF(g). This expression can easily be proved by taking
the formal derivative of (6). Its binary version can be found in [3, Ch. 8,
Problem 17].

A third general approach for the computation of idempotent generators is
provided by the following theorem, which is based on the inversion formula used

in Lemma 7 of [3, Ch. 7].

Theorem 1. Let e(z) = e,_1(x)z" ' + e, 22" 2 + -+ + eg be the idempotent
generator of a cyclic code C generated by its minimal polynomial g(z). Then
the coefficients e;, 1 <i <n—1, can be obtained by e; =n~1 > (7%, where N
is the set of exponents of the nonzeros (7 of g(x). JeN

In the next section we shall present a method which provides us straightfor-
wardly with an expression for idempotent generators in terms of the coefficients
of the irreducible polynomials in (1). To this end, we also factorize the other
cyclotomic polynomials in (1)

" —1=][RP@), R@)=1 I>*k (9)



We assume that the n*® primitive root ¢, together with (4.. .. ,Cqmrl is a zero of
Py (z). In general, the irreducible polynomial Ps(x) has zeros (%, (*7,. .. ,qums_l,
where my is the size of the cyclotomic coset Cs = {s,sq,...,s¢™ "1}, s € S,

where S is the set of all indexes which indicate the cyclotomic cosets. So,
there is a one-to-one correspondence between the cyclotomic cosets Cs and the
irreducible polynomials

Ps(x) =™ +Ps,133m371 + -+ DPsms- (10)

We adopt the convention that the index s of Cs denotes the least integer of the
coset. On the other hand, there is also a one-to-one correspondence between
the cosets Cs and the polynomials cs(x) € R}, s € S, defined by

mg—1

cs(®) = 2" + 2% 4 + 2™

(11)

Furthermore, we shall make use of the multiset C’éi) = {is,isq,..., isq™s "1},
One can easily prove that C{gz) = n'C;s for some positive integer n’, = —‘?, and
(2
that . .
¢s(C') = —ngpis,1- (12)

Next, we consider n’ as an element of GF(q) and we introduce an |S| x |S|-
matrix M with elements

His = CS(Ci) = —nipis,l, 1,8 € S. (13)

In particular, we have pos = ms and p;0 = 1. It is well known and it can
easily be shown that every idempotent generator e(x) is a linear combination
over GF(q) of the polynomials c¢s(z). We write for the idempotent generator of
the code (Py(z)), u € S

eu(@) = 3 €, 0s(a). (14)

ses

It is also well known that the idempotency property implies that e(z) is the
idempotent generator of a code C, if and only if e(z) is equal to 0 for the zeros
of the code and equal to 1 for the nonzeros. Therefore, the coefficients &, ¢ in
(14) are uniquely determined by the set of linear equations Y p; s, o = eu(C"),
seS
with e,(¢") = 0 for i = u and e,(¢*) = 1 for i # u. We now can write this
set of equations, applying the equality (14), in matrix form as M¢§,, = §,, with
column vectors &, and §, of length |S| and §, having a zero on position u and
ones everywhere else. Generalizing this approach yields the following theorem.

Theorem 2. Let P, P,,,...,P;, withiy,ia,...,14 € 5, be irreducible polynomi-
als defined by (10), and let C be the cyclic code generated by the product of these
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polynomials. Then the idempotent generator e(z) = > &€,cs(x) is determined
s€S

by the set of linear equations M& = &, where & is the column vector of length
|S| with zeros on the positions i1,ia,...,1;, and ones elsewhere.

Theorem 3. If M ¥ is the matriz obtained from M by interchanging the columns

indezed by s and —s, for all s, then M~ =n=1MT.

Corollary 1. The primitive idempotent generator corresponding to the cyclo-
1

tomic coset Cy,, u € S is given by 0,(z) = *Z &, sCs(x) where &, is equal to
n b

B_,, the column vector of M with index —u.5€S

For the proofs, we refer to [2]. The matrix M possesses a number of symme-
try and orthogonality properties, the proofs of which can also be found in [2].

Theorem 4. For all i,5 € S, the matriz elements p;; satisfy the following
relations in GF(q):
(1) mipi g = mjpgi; (i) 22 piktik, = ndi—j;
k

(448) D2 Mok iftre,j = MM ; (i) Yo my gy p = nm; 8.
k k

3 Idempotent generators of GR-codes

It will be clear that in case of GR-codes, the cyclotomic coset C; is equal to
H = (q), while the cosets H; of H are equal to those cyclotomic cosets C;
with i € SNU,. So, for these i-values, we have m; = r (= ord,(n)). For the

p(n)

time being, we take K = H for the construction of ¢ = equivalent codes

. r
! ot = (Pi(x)). In Section 1 the upper index i runs from 1 until ¢. Because of
our relabeling in Section 2, we now assume that ¢ runs through the set of the t
different elements of S NU,,. For the matrix elements of the i column of M

we now have Dii1
Wii = —p s s 1€ SNU,. (15)
mi;
In the special case that also j € SN U,, we may replace m;; by m; = r in the
rhs.

Theorem 5. The idempotent generator of the GR-code sz,q,t: 1€ SNnU,, is
given by ¥;(z) = 1 — 0;(x), with O;(x) = —n~1 Y Tpijylm;jlcj(:c).
JES
In order to determine all idempotent generators of the ¢ equivalent codes

C? .4, it is sufficient to compute 91 (x) = 1 — 61(x), which corresponds to the

n,q,t?
column vector p_; with components p; 1 = —rmj_lp_ﬂ. Due to the group



property of U,,, one can easily verify that the components of any column vector
w;, with ¢ € SNU,, form a permutation of those of p_;. We omit the details.
We discuss briefly a few special subfamilies.

(i) In the special case n = p, p odd, one has that deg ®,(z) = p — 1. So,

-1

all cyclotomic cosets # Cj have the same size r = ord,(¢q) and all k = p==
,

irreducible polynomials P;(x), ¢ # 0, have degree r. It follows that p;; =

—mjmi_jlpijg = —pij, for 4,5 € S/{0}.

Example 1. For n = 13 and q = 3, we find r = 3. The cyclotomic cosets
are Co = {0}, C1 = {1,3,9}, Co = {2,5,6}, Oy = {4,10,12}, Cr = {7,8,11}
and the corresponding irreducible polynomials Py(x) = x1, Pi(z) = 2° — 2 — 1,
Pyz) =23+ 2> +ax+1, Po(z) =2 + 22 -1, Pr(z) =2 — 22 — 2 — 1. By
applying eq. (13) we find the following matriz

10 0 0 O
1 0 -1 -1 1
M=]1 -1 -1 1 0
1 -1 1 0 -1
11 0 -1 -1

The primitive idempotent generator which corresponds to Cy is equal to 61 () =

Do ops—16s(z) = Y psacs(x) = —ci(z) + co(z) — cr(x). Finally, by applying
seS seS

Corollary 1 and substituting the expressions for cs(x), we obtain for 01137374 the
idempotent generator ¥1(x) = vt + 2% + a8 + 27 — 2% — 2% + 23 — 22 + 2 + 1.

(ii) For n = 2p and ¢ an odd prime power, we have deg ®2, () = deg ®,(x) =
p — 1, and the factorization 2% — 1 = (z — 1)@ (2) P, (x)Pap(z), with ®o(z) =
x + 1. One can also easily prove that ords,(¢) = ord,(q) = r. Therefore, both
p—1

P9y (2) and @, (z) are the product of polynomials of degree r which are

irreducible over GF(q). Let ¢ be a primitive 2p'" root of unity in some extension
field of GF(q) defined as a zero of one of the irreducible factors of ®o,(x). Then
(P = —1 and hence it is the only zero of ®9(z). Furthermore, all other odd
powers of ¢ are zeros of ®op(x), while the positive even powers are zeros of
®,(z) (¢? is primitive p'" root). Similarly as in (i), it follows that ; j = —pij1,
i ¢ {0,p}, poj =1, pp; = —r forall j € SNU,.

Example 2. Take n = 10 and ¢ = 3. The cyclotomic cosets are Cy = {0},
Cy ={1,3,7,9}, Cy = {2,4,6,8}, C5 = {5}, and the corresponding irreducible
polynomials Po(x) =2 — 1, Pi(x) =2 —2® + 22 — 2+ 1, Py(x) = 2 + 2% +
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22+ 2 +1, Ps(x) =+ 1. The matriz M equals

1 1 1 1
11 -1 -1
M= 1 -1 -1 1
1 -1 1 -1

Since C_1 = C1 and 107! =1 in GF(3), the primitive idempotent 01(x) is equal
to co(w) + c1(x) — c2(x) — es5(w). So, V1 (x) =1—01(z) = —2° + 28 — 27 + 25 +
oo+t — a3+ 2 — .

(iii) The cases n = pF and n = 2p* can be dealt within in a similar way,
since one can determine the integers m;, i € S, for all odd primes p (cf. [2]).
We only give an example in this place.

Example 3. Take n =9 and ¢ = 7. The cyclotomic classes are Cy = {0},
Cy = {1,4,7}, Cy = {2,5,8}, C3 = {3} and Cs = {6}. The corresponding
irreducible polynomials in GF(7)[x] are respectively Py(x) = = — 1, Pi(x) =
23— 2, Py(z) =23 — 4, P3y(z) = 2 — 2 and Ps(x) = = — 4. For the matriz M
we find

1 3 3 11
1 0 0 2 4
M=|1 0 o0 4 2/,
1 -1 -2 1 1
1 -2 -1 11

where rows and columns are indexed by 0, 1, 2, 3 and 6. The primitive idempo-
tent generator 01(x) is determined by the column vector p_y = py and hence,
s equal to

01(z) = 971 (3co(x) — 2¢3(z) — c6()) = 32° — 2® — 2,
and the idempotent generator of 05,7,2 is

V1(x) =1 —01(x) = 428 + 23 + 3.
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