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Abstract. A general method is developed for the construction of idempotent gen-
erators of GR-codes over GF(q) of length n. For n ∈ {p, 2p, pk, 2pk}, explicit ex-
pressions for these generators can be derived.

1 Introduction

For the conventions, preliminaries, definition and general setting of the family
of generalized residue codes, we refer to Sections 1–3 of ref. [1]. We only repeat
the main aspects of their definition. The factorization of xn − 1 and of the nth

cyclotomic polynomial in GF(q) can be written as

xn − 1 = (x− 1)P (x)Φn(x) = (x− 1)P (x)P1(x)P2(x) . . . Pk(x), (1)

where the Pi(x), 1 ≤ i ≤ k, are irreducible polynomials over GF(q), with kr =
ϕ(n), r = ordn(q). Let H ⊆ Un be the subgroup H = 〈q〉 = {1, q, q2, . . . , qr−1}
with cosets H1 (= H), H2,. . . , Hk, and let K be another subgroup of Un of
index t and containing H. The cosets of K in Un are K1 (= K), K2,. . . , Kt,
k = st. Let furthermore, ζ be a primitive nth root of unity in some extension
field of GF(q). Then we can write

Pi(x) =
∏

l∈Hi

(x− ζ l), 1 ≤ i ≤ k. (2)

Finally, the t equivalent GR-codes Ci
n,q,t, 1 ≤ i ≤ t, are defined as the cyclic

codes generated by the polynomials

g(i)(x) =
∏

l∈Ki

(x− ζ l) =

s∏

k=1

Pjk(x), 1 ≤ i ≤ t. (3)
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2 Idempotent generators of cyclic codes

Let g(x) be the minimal polynomial of a cyclic code C of length n over GF(q),
and let h(x) be its check polynomial. Then we have in the ring Rq

n that

g(x)h(x) = xn − 1 = 0. (4)

Definition 1. Let C be a cyclic code. A polynomial e(x) ∈ C, of degree less
than n, which is an identity of C is called the idempotent generator of C.

This idempotent generator is unique and has the idempotency property

e2(x) = e(x). (5)

It is also well-known, that e(x) can be obtained from the relation

a(x)g(x) + b(x)h(x) = 1, (6)

which holds for certain polynomials a(x) and b(x) in Rq
n, since

(
g(x), h(x)

)
= 1.

It follows immediately that

e(x) = a(x)g(x). (7)

The polynomial a(x) can of course be obtained by Euclid’s algorithm. An
alternative method for determining e(x) is given by the rule

e(x) = n−1xh′(x)g(x), (8)

where h′(x) stands for the formal derivative of the polynomial h(x), and where
n−1 is to be taken in GF(q). This expression can easily be proved by taking
the formal derivative of (6). Its binary version can be found in [3, Ch. 8,
Problem 17].

A third general approach for the computation of idempotent generators is
provided by the following theorem, which is based on the inversion formula used
in Lemma 7 of [3, Ch. 7].

Theorem 1. Let e(x) = en−1(x)x
n−1 + en−2x

n−2 + · · ·+ e0 be the idempotent
generator of a cyclic code C generated by its minimal polynomial g(x). Then
the coefficients ei, 1 ≤ i ≤ n− 1, can be obtained by ei = n−1

∑
j∈N

ζ−ij, where N
is the set of exponents of the nonzeros ζj of g(x).

In the next section we shall present a method which provides us straightfor-
wardly with an expression for idempotent generators in terms of the coefficients
of the irreducible polynomials in (1). To this end, we also factorize the other
cyclotomic polynomials in (1)

xn − 1 =
l∏

i=1

Pi(x), P0(x) = 1, l ≥ k. (9)
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We assume that the nth primitive root ζ, together with ζq,. . . ,ζq
m1−1

is a zero of

P1(x). In general, the irreducible polynomial Ps(x) has zeros ζ
s, ζsq,. . . ,ζsq

ms−1
,

where ms is the size of the cyclotomic coset Cs = {s, sq, . . . , sqms−1}, s ∈ S,
where S is the set of all indexes which indicate the cyclotomic cosets. So,
there is a one-to-one correspondence between the cyclotomic cosets Cs and the
irreducible polynomials

Ps(x) = xms + ps,1x
ms−1 + · · ·+ ps,ms . (10)

We adopt the convention that the index s of Cs denotes the least integer of the
coset. On the other hand, there is also a one-to-one correspondence between
the cosets Cs and the polynomials cs(x) ∈ Rq

n, s ∈ S, defined by

cs(x) = xs + xsq + · · ·+ xsq
ms−1

. (11)

Furthermore, we shall make use of the multiset C
(i)
s = {is, isq, . . . , isqms−1}.

One can easily prove that C
(i)
s = ni

sCis for some positive integer ni
s =

ms

mi
, and

that
cs(ζ

i) = −ni
spis,1. (12)

Next, we consider ni
s as an element of GF(q) and we introduce an |S| × |S|-

matrix M with elements

µi,s = cs(ζ
i) = −ni

spis,1, i, s ∈ S. (13)

In particular, we have µ0,s = ms and µi,0 = 1. It is well known and it can
easily be shown that every idempotent generator e(x) is a linear combination
over GF(q) of the polynomials cs(x). We write for the idempotent generator of
the code

(
Pu(x)

)
, u ∈ S

eu(x) =
∑

s∈S
ξu,scs(x). (14)

It is also well known that the idempotency property implies that e(x) is the
idempotent generator of a code C, if and only if e(x) is equal to 0 for the zeros
of the code and equal to 1 for the nonzeros. Therefore, the coefficients ξu,s in

(14) are uniquely determined by the set of linear equations
∑
s∈S

µi,sξu,s = eu(ζ
i),

with eu(ζ
i) = 0 for i = u and eu(ζ

i) = 1 for i 6= u. We now can write this
set of equations, applying the equality (14), in matrix form as Mξu = δu with
column vectors ξu and δu of length |S| and δu having a zero on position u and
ones everywhere else. Generalizing this approach yields the following theorem.

Theorem 2. Let Pi1, Pi2,. . . ,Pil with i1, i2, . . . , il ∈ S, be irreducible polynomi-
als defined by (10), and let C be the cyclic code generated by the product of these
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polynomials. Then the idempotent generator e(x) =
∑
s∈S

ξscs(x) is determined

by the set of linear equations Mξ = δ, where δ is the column vector of length
|S| with zeros on the positions i1, i2, . . . , il, and ones elsewhere.

Theorem 3. If MP is the matrix obtained from M by interchanging the columns
indexed by s and −s, for all s, then M−1 = n−1MP .

Corollary 1. The primitive idempotent generator corresponding to the cyclo-

tomic coset Cu, u ∈ S is given by θu(x) =
1

n

∑

s∈S
ξu,scs(x) where ξu is equal to

µ−u, the column vector of M with index −u.

For the proofs, we refer to [2]. The matrix M possesses a number of symme-
try and orthogonality properties, the proofs of which can also be found in [2].

Theorem 4. For all i, j ∈ S, the matrix elements µi,j satisfy the following
relations in GF(q):

(i) miµi,j = mjµj,i; (ii)
∑
k

µi,kµk,j = nδi,−j;

(iii)
∑
k

mkµk,iµk,j = nmiδi,−j; (iv)
∑
k

m−1
k µi,kµj,k = nm−1

i δi,−j.

3 Idempotent generators of GR-codes

It will be clear that in case of GR-codes, the cyclotomic coset C1 is equal to
H = 〈q〉, while the cosets Hi of H are equal to those cyclotomic cosets Ci

with i ∈ S ∩ Un. So, for these i-values, we have mi = r (= ordq(n)). For the

time being, we take K = H for the construction of t =
ϕ(n)

r
equivalent codes

Ci
n,q,t =

(
Pi(x)

)
. In Section 1 the upper index i runs from 1 until t. Because of

our relabeling in Section 2, we now assume that i runs through the set of the t
different elements of S ∩ Un. For the matrix elements of the ith column of M
we now have

µj,i = −r
pij,1
mij

, i ∈ S ∩ Un. (15)

In the special case that also j ∈ S ∩ Un, we may replace mij by mi = r in the
rhs.

Theorem 5. The idempotent generator of the GR-code Ci
n,q,t, i ∈ S ∩ Un, is

given by ϑi(x) = 1− θi(x), with θi(x) = −n−1
∑
j∈S

rpij,1m
−1
ij cj(x).

In order to determine all idempotent generators of the t equivalent codes
Ci
n,q,t, it is sufficient to compute ϑ1(x) = 1 − θ1(x), which corresponds to the

column vector µ−1 with components µj,−1 = −rm−1
j p−j,1. Due to the group
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property of Un, one can easily verify that the components of any column vector
µi, with i ∈ S ∩ Un, form a permutation of those of µ−1. We omit the details.
We discuss briefly a few special subfamilies.

(i) In the special case n = p, p odd, one has that degΦp(x) = p − 1. So,

all cyclotomic cosets 6= C0 have the same size r = ordp(q) and all k =
p− 1

r
irreducible polynomials Pi(x), i 6= 0, have degree r. It follows that µi,j =

−mjm
−1
ij pij,1 = −pij,1, for i, j ∈ S/{0}.

Example 1. For n = 13 and q = 3, we find r = 3. The cyclotomic cosets
are C0 = {0}, C1 = {1, 3, 9}, C2 = {2, 5, 6}, C4 = {4, 10, 12}, C7 = {7, 8, 11}
and the corresponding irreducible polynomials P0(x) = x1, P1(x) = x3 − x− 1,
P2(x) = x3 + x2 + x + 1, P4(x) = x3 + x2 − 1, P7(x) = x3 − x2 − x − 1. By
applying eq. (13) we find the following matrix

M =




1 0 0 0 0
1 0 −1 −1 1
1 −1 −1 1 0
1 −1 1 0 −1
1 1 0 −1 −1




The primitive idempotent generator which corresponds to C1 is equal to θ1(x) =∑
s∈S

µs,−1cs(x) =
∑
s∈S

µs,4cs(x) = −c1(x) + c2(x) − c7(x). Finally, by applying

Corollary 1 and substituting the expressions for cs(x), we obtain for C1
13,3,4 the

idempotent generator ϑ1(x) = x11 + x9 + x8 + x7 − x6 − x5 + x3 − x2 + x+ 1.

(ii) For n = 2p and q an odd prime power, we have degΦ2p(x) = degΦp(x) =
p− 1, and the factorization x2p − 1 = (x− 1)Φ2(x)Φp(x)Φ2p(x), with Φ2(x) =
x+ 1. One can also easily prove that ord2p(q) = ordp(q) = r. Therefore, both

Φ2p(x) and Φp(x) are the product of
p− 1

2r
polynomials of degree r which are

irreducible over GF(q). Let ζ be a primitive 2pth root of unity in some extension
field of GF(q) defined as a zero of one of the irreducible factors of Φ2p(x). Then
ζp = −1 and hence it is the only zero of Φ2(x). Furthermore, all other odd
powers of ζ are zeros of Φ2p(x), while the positive even powers are zeros of
Φp(x) (ζ

2 is primitive pth root). Similarly as in (i), it follows that µi,j = −pij,1,
i 6∈ {0, p}, µ0,j = r, µp,j = −r for all j ∈ S ∩ Un.

Example 2. Take n = 10 and q = 3. The cyclotomic cosets are C0 = {0},
C1 = {1, 3, 7, 9}, C2 = {2, 4, 6, 8}, C5 = {5}, and the corresponding irreducible
polynomials P0(x) = x − 1, P1(x) = x4 − x3 + x2 − x + 1, P2(x) = x4 + x3 +
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x2 + x+ 1, P5(x) = x+ 1. The matrix M equals

M =




1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1


 .

Since C−1 = C1 and 10−1 = 1 in GF(3), the primitive idempotent θ1(x) is equal
to c0(x) + c1(x)− c2(x)− c5(x). So, ϑ1(x) = 1− θ1(x) = −x9 + x8 − x7 + x6 +
x5 + x4 − x3 + x2 − x.

(iii) The cases n = pk and n = 2pk can be dealt within in a similar way,
since one can determine the integers mi, i ∈ S, for all odd primes p (cf. [2]).
We only give an example in this place.

Example 3. Take n = 9 and q = 7. The cyclotomic classes are C0 = {0},
C1 = {1, 4, 7}, C2 = {2, 5, 8}, C3 = {3} and C6 = {6}. The corresponding
irreducible polynomials in GF(7)[x] are respectively P0(x) = x − 1, P1(x) =
x3 − 2, P2(x) = x3 − 4, P3(x) = x − 2 and P6(x) = x − 4. For the matrix M
we find

M =




1 3 3 1 1
1 0 0 2 4
1 0 0 4 2
1 −1 −2 1 1
1 −2 −1 1 1




,

where rows and columns are indexed by 0, 1, 2, 3 and 6. The primitive idempo-
tent generator θ1(x) is determined by the column vector µ−1 = µ2 and hence,
is equal to

θ1(x) = 9−1
(
3c0(x)− 2c3(x)− c6(x)

)
= 3x6 − x3 − 2,

and the idempotent generator of C1
9,7,2 is

ϑ1(x) = 1− θ1(x) = 4x6 + x3 + 3.
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