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Abstract

In coding theory the description of linear cyclic codes in terms of commutative
algebra is well known. Since linear codes have the structure of linear subspaces of
Fn, the description of linear cyclic codes in terms of linear algebra is natural. We
observe that the cyclic shift map is a linear operator in Fn. Our approach is to
consider cyclic codes as invariant subspaces of Fn with respect to this operator and
thus obtain a description of cyclic codes. A new algebraic approach to quasi-twisted
codes is also introduced.
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1. INTRODUCTION

In coding theory it is common practice to require that (n, q) = 1, where n is the
word length and F = GF(q) is the alphabet. We shall stick to this practice too.

The main purpose of this report is to regard quasi-twisted codes as invariant
linear subspaces of Fn with respect to an a−constacyclic shift map over k positions,
where k is a devisor of the length n and 0 6= a ∈ F. Some important classes of
codes are realized as special cases of quasi-twisted codes. The case k = 1 gives
constacyclic codes, while k = 1 and a = 1 yields cyclic codes. The linear cyclic
codes are traditionally described by using the methods of commutative algebra (see
[1]). Since linear codes have the structure of linear subspaces of Fn, the description
of linear cyclic codes in terms of linear algebra is natural.

2. LINEAR CYCLIC CODES AS INVARIANT SUBSPACES

Let F = GF(q) and let Fn be the n-dimensional vector space over F with the
standard basis e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

Let

ϕ :
{
Fn → Fn

(x1, x2, . . . , xn) 7→ (xn, x1, . . . , xn−1) . (2.1)

Then ϕ ∈ HomFn and it has the following matrix

A =


0 0 0 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 (2.2)

with respect to the basis e = (e1, e2, . . . , en). Note that At = A−1 and An = E.
The characteristic polynomial of A is

fA(x) =

∣∣∣∣∣∣∣∣∣∣

−x 0 0 . . . 1
1 −x 0 . . . 0
0 1 −x . . . 0
...

...
...

. . .
...

0 0 0 . . . −x

∣∣∣∣∣∣∣∣∣∣
= (−1)n(xn − 1). (2.3)

Let us denote it by f(x). For our purposes we need the following well known fact.

Proposition 1. Let U be a ϕ-invariant subspace of V and dim FV = n. Then
fϕ|U (x) divides fϕ(x). In particular, if V = U ⊕ W and W is a ϕ-invariant
subspace of Fn then fϕ(x) = fϕ|U (x)fϕ|W (x).
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Let f(x) = (−1)nf1(x) . . . ft(x) be the factorization of f(x) into irreducible
factors over F . We assume that (n, q) = 1. In that case f(x) has distinct factors
fi(x), i = 1, . . . , t, which are monic. Furthermore, we consider the homogeneous
set of equations

fi(A)x = 0, x ∈ Fn (2.4)

for i = 1, . . . , t. If Ui stands for the solution space of (2.4), then we may write
Ui = Ker fi(ϕ).

Theorem 1. The subspaces Ui of Fn satisfy the following conditions:
1) Ui is a ϕ-invariant subspace of Fn;
2) if W is a ϕ−invariant subspace of Fn and Wi = W ∩Ui for i = 1, . . . , t, then

Wi is ϕ−invariant and W = W1 ⊕ · · · ⊕Wt;
3) Fn = U1 ⊕ · · · ⊕ Ut;
4) dimUi = deg fi = ki;
5) fϕ|Ui

(x) = (−1)kifi(x);
6) Ui is a minimal ϕ-invariant subspace of Fn.

Proof:
1) Let u ∈ Ui, i.e. fi(A)u = 0. Then fi(A)ϕ(u) = fi(A)Au = Afi(A)u = 0, so

that ϕ(u) ∈ Ui.
2)Let f̂i(x) = f(x)

fi(x)
for i = 1, . . . , t. Since (f̂1(x), . . . , f̂t(x)) = 1, by the Eu-

clidean algorithm there are polynomials a1(x), . . . , at(x) ∈ F [x] such that

a1(x)f̂1(x) + · · ·+ at(x)f̂t(x) = 1.

Then for every vector w ∈W the equality w = a1(A)f̂1(A)w + · · ·+ at(A)f̂t(A)w
holds. Let wi = ai(A)f̂i(A)w ∈ W. Then fi(A)wi = ai(A)f(A)w = 0 because of
(2.4), and so wi ∈ Vi ∩W = Wi. Hence,

W = W1 + · · ·+Wt.

Assume that w ∈Wi∩
∑
j 6=iWj , then fi(A)w = 0, f̂i(A)w = 0. Since (fi(x), f̂i(x)) =

1, there are polynomials a(x), b(x) ∈ F [x], such that a(x)fi(x) + b(x)f̂i(x) = 1.
Hence a(A)fi(A)w + b(A)f̂i(A)w = w = 0, so that Wi ∩

∑
j 6=iWj = {0}. Thus

W = W1 ⊕ · · · ⊕Wt.

3) This follows from 2) with W = Fn.

4) Let g ∈ Ui be an arbitrary nonzero vector and let k ≥ 1 be the smallest
natural number with the property that the vectors g, ϕ(g), . . . , ϕk(g) are linearly
dependent. Then there are elements c0, . . . , ck−1 ∈ F, at least one of which is
nonzero, such that

ϕk(g) = c0g + c1ϕ(g) + · · ·+ ck−1ϕ
k−1(g).
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Consider the polynomial t(x) = xk − ck−1x
k−1 − · · · − c0 ∈ F [x]. Since (t(ϕ))(g) =

(fi(ϕ))(g) = 0, it follows that [(t(x), fi(x))(ϕ)](g) = 0. But (t(x), fi(x)) is equal
to 1 or to fi(x). Hence (t(x), fi(x)) = fi(x) and fi(x) divides t(x). Thus ki =
deg fi(x) ≤ deg t(x) = k. On the other hand, the vectors g, ϕ(g), . . . , ϕki(g) are
linearly dependent, since (fi(ϕ))(g) = 0, and from the minimality of k we obtain
k = ki. Then dimUi ≥ ki. Therefore

n = dim FF
n =

t∑
i=1

dim FUi ≥
t∑
i=1

ki =
t∑
i=1

deg fi = deg f = n

and dim FUi = ki.

5) Let g(i) = (g(i)
1 , . . . ,g(i)

ki
) be a basis of Ui over F, i = 1, . . . , t and let Ai be the

matrix of ϕ|Ui
with respect to that basis. Let f̃i = fϕ|Ui

. Suppose that (f̃i, fi) = 1.
Hence there are polynomials a(x), b(x) ∈ F [x], such that a(x)f̃i(x) + b(x)fi(x) = 1.
Then a(Ai)f̃i(Ai) + b(Ai)fi(Ai) = E. Therefore b(Ai)fi(Ai) = E. We will show
that fi(Ai) = O, which contradicts the last equation.

By property 3) we obtain that g = (g(1)
1 , . . . ,g(1)

k1
, . . . ,g(t)

1 , . . . ,g(t)
kt

) is a basis of
Fn and ϕ is represented by the following matrix

A′ =


A1

A2

. . .
At

 .

with respect to that basis. Beside this A′ = T−1AT, where T is the transformation
matrix from the standard basis of Fn to the basis g. Then

fi(A′) =


fi(A1)

fi(A2)
. . .

fi(At)

 = fi(T−1AT ) = T−1fi(A)T.

Let g(i)
j = λ

(i)
j1 e1 + · · ·+ λ

(i)
j nen, j = 1, . . . , ki. Since g(i)

j ∈ Ui, we obtain that

fi(A′)


0
...
1
...
0

 = T−1fi(A)T


0
...
1
...
0

 = T−1fi(A)


λ

(i)
j1

...
λ

(i)
j n

 = 0,

where 1 is on the (k1 + · · ·+ ki−1 + j)−th position. According to the last equation
fi(Ai) = O. Therefore (fi, f̃i) 6= 1. Since fi and f̃i are polynomials of the same
degree ki and fi is monic and irreducible, we obtain that f̃i = (−1)kifi.

6) Let U be ϕ-invariant subspace of Fn and let {0} 6= U ⊆ Ui. Then by
Proposition 1 we obtain that fϕ|U divides fi. Since the polynomial fi is irreducible,
dim FU = dim FUi and U = Ui.

�
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Proposition 2. Let U be a ϕ−invariant subspace of Fn. Then U is a direct sum
of some of the minimal ϕ−invariant subspaces Ui of Fn.

Proof: This follows immediately from property 2) of Theorem 1. �

Definition 1. A code C with length n over F is called cyclic, if whenever x =
(c1, c2, . . . , cn) is in C, so is its cyclic shift y = (cn, c1, . . . , cn−1).

The following statement is clear from the definitions.

Proposition 3. A linear code C with length n over F is cyclic iff C is a ϕ−invariant
subspace of Fn.

Theorem 2. Let C be a linear cyclic code with length n over F. Then the following
facts hold.

1) C = Ui1 ⊕ · · · ⊕Uis for some minimal ϕ−invariant subspaces Uir of Fn and
k := dim FC = ki1 + · · ·+ kis , where kr is the dimension of Uir ;

2) fϕ|C (x) = (−1)kfi1(x) . . . fis(x) = g(x);
3) c ∈ C iff g(A)c = 0;
4) the polynomial g(x) has the smallest degree with respect to property 3);
5) r (g(A)) = n− k, where r (g(A)) is the rank of the matrix g(A).

Proof:
1) This follows from Proposition 2.

2) Let (g(ir)
1 , . . . ,g(ir)

kir
) be a basis of Uir over F, r = 1, . . . , s. Then (g(i1)

1 , . . . ,

g(i1)
ki1

, . . . ,g(is)
1 , . . . ,g(is)

kis
) is a basis of C over F and ϕ|C is represented by the fol-

lowing matrix 
Ai1

Ai2
. . .

Ais


with respect to that basis. Hence,

fϕ|C (x) = f̃i1(x) . . . f̃is(x) = (−1)ki1+···+kis fi1(x) . . . fis(x).

Note that Air and f̃ir (x) are defined as in the proof of Theorem 1.
3) Let c ∈ C. Then c = ui1 + · · · + uis for some uir ∈ Uir , r = 1, . . . , s and

g(A)c = (−1)k[(fi1 . . . fis)(A)ui1 + · · ·+ (fi1 . . . fis)(A)uis ] = 0.
Conversely, suppose that g(A)c = 0 for some c ∈ Fn. According to Theorem 1

we have that c = u1 + · · · + ut, ui ∈ Ui. Then g(A)c = (−1)k[(fi1 . . . fis)(A)u1 +
· · · + (fi1 . . . fis)(A)ut] = 0, so that g(A)[uj1 + · · · + ujl ] = 0, where {j1, . . . jl} =
{1, . . . , t}\{i1, . . . , is}. Let v = uj1 + · · ·+ ujl and

h(x) =
(−1)n(xn − 1)

g(x)
=
f(x)
g(x)

.
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Since (h(x), g(x)) = 1, there are polynomials a(x), b(x) ∈ F [x] so that a(x)h(x) +
b(x)g(x) = 1. Hence v = a(A)h(A)v + b(A)g(A)v = 0 and c = ui1 + · · ·+ uis ∈ C.

4) Suppose that b(x) ∈ F [x] is a nonzero polynomial of smallest degree such
that b(A)c = 0 for all c ∈ C. By the division algorithm in F [x] there are poly-
nomials q(x), r(x) such that g(x) = b(x)q(x) + r(x), where deg r(x) < deg b(x).
Then for each vector c ∈ C we have g(A)c = q(A)b(A)c + r(A)c and hence
r(A)c = 0. But this contradicts the choice of b(x) unless r(x) is identically zero.
Thus, b(x) divides g(x). If deg b(x) < deg g(x), then b(x) is a product of some
of the irreducible factors of g(x) and without loss of generality we can suppose
that b(x) = (−1)ki1+···+kim fi1 . . . fim and m < s. Let us consider the code C ′ =
Ui1 ⊕ · · · ⊕ Uim ⊂ C. Then b(x) = fϕ|C′ and by the equation g(A)c = 0 for all
c ∈ C we obtain that C ⊆ C ′. This contradiction proves the statement.

5) By property 3) C is the solution space of the homogeneous set of equations
g(A)x = 0. Then dim FC = k = n− r (g(A)), which proves the statement.

�

Definition 2. Let x = (x1, . . . , xn) and y = (y1 . . . , yn) be two vectors in Fn. We
define an inner product over F by 〈x,y〉 = x1y1 + · · ·+ xnyn. If 〈x,y〉 = 0, we say
that x and y are orthogonal to each other.

Definition 3. Let C be a linear code over F. We define the dual of C (which is
denoted by C⊥) to be the set of all vectors which are orthogonal to all codewords in
C, i.e.,

C⊥ = {v ∈ Fn | 〈v, c〉 = 0, ∀c ∈ C}.

It is well known that if C is k−dimensional, then C⊥ is (n− k)−dimensional.

Proposition 4. The dual of a linear cyclic code is also cyclic.

Proof: Let h = (h1, . . . , hn) ∈ C⊥ and c = (c1, . . . , cn) ∈ C. We show that
ϕ(h) = (hn, h1, . . . , hn−1) ∈ C⊥. We have

〈ϕ(h), c〉 = c1hn + · · ·+ cnhn−1 = 〈h, ϕ−1(c)〉 = 〈h, ϕn−1(c)〉 = 0,

which proves the statement.
�

Proposition 5. The matrix H, the rows of which are an arbitrary set of n − k
linearly independent rows of g(A), is a parity check matrix of C.

Proof: The proof follows from the equation g(A)c = 0 for every vector c ∈ C and
the fact that r (g(A)) = n− k.

�
Let gl1 , . . . ,gln−k

be a basis of C⊥, where glr is a lr−th vector row of g(A). By
the equation g(A)h(A) = O we obtain that 〈glr ,hi〉 = 0 for each i = 1, . . . , n, r =
1, . . . , n− k. The last equation gives us that the columns hi of h(A) are codewords
in C.
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We show that r (h(A)) = k. By the inequality of Sylvester we obtain that r (O) =
0 ≥ r (g(A)) + r (h(A)) − n. Since r (h(A)) ≤ n − r (g(A)) = n − (n − k) = k.
On the other hand the inequality of Sylvester, applied to the product h(A) =
(−1)n−kfj1(A) . . . fjl(A), gives us that r (h(A)) ≥ rj1 + · · ·+ rjl − n(l − 1) = nl −
kj1−· · ·−kjl−nl+n = n−(kj1 +· · ·+kjl) = n−(n−ki1−· · ·−kis) = n−(n−k) = k.
Therefore r (h(A)) = k. Thus we have proved the following proposition.

Proposition 6. The matrix G, the rows of which are an arbitrary set of k linearly
independent rows of (h(A))t, is a generator matrix of the code C.

Lemma 1. If g(x) ∈ F [x], then g(A−1) = g(At) = (g(A))t. In particular, if n
divides deg g(x), then g∗(A) = (g(A))t, where g∗(x) is the reciprocal polynomial of
g(x).

Proof: Let g(x) = g0x
k + g1x

k−1 + · · ·+ gk−1x+ gk, then g(A) = g0A
k + g1A

k−1 +
· · · + gk−1A + gkE. Transposing both sides of the last equation, we obtain that
(g(A))t = g0(Ak)t + g1(Ak−1)t + · · ·+ gk−1A

t + gkE = g0(At)k + g1(At)k−1 + · · ·+
gk−1A

t + gkE = g(At).
In particular, if deg g(x) = ns for some s ∈ N, then g∗(A) = Ansg(A−1) =

Ansg(At) = g(At) = (g(A))t.
�

Let fϕ|
C⊥

(x) = h̃. By Theorem 2 it follows that h̃ is the polynomial of the
smallest degree such that h̃(A)u = 0 for every u ∈ C⊥. Let h∗(x) = h̃(x)q(x) +
r(x), where deg r(x) < deg h̃(x). Then by Lemma 1 h∗(A) = An−k(h(A))t =
h̃(A)q(A) + r(A), hence for every vector u ∈ C⊥ the assertion An−k(h(A))tu =
q(A)h̃(A)u + r(A)u holds, so that r(x) = 0. Thus h̃(x) divides h∗(x). Since both
are polynomials of the same degree , h∗(x) = αh̃(x), where α ∈ F is the leading
coefficient of the product f∗j1(x) . . . f∗jl(x). Thus

h̃ =
1
α
h∗ = (−1)n−k

1
α
f∗j1 . . . f

∗
jl

=
l∏

r=1

1
αjr

f∗jr = (−1)n−kfs1 . . . fsl
,

where αjr is the leading coefficient of f∗jr (x). Note that the polynomials fsr
(x) =

1
αjr

f∗jr (x) are monic irreducible and divide f(x) = (−1)n(xn − 1).
Now we show that C⊥ = Us1 ⊕ · · · ⊕ Usl

. By Theorem 2 C⊥ is the solution
space of the homogeneous system with matrix h̃(A). Let u ∈ U = Us1 ⊕ · · · ⊕ Usl

and let u = us1 + · · ·+ usl
for usr ∈ Usr , r = 1, . . . , l. Then

h̃(A)u = (−1)n−k[(fs1 . . . fsl
)(A)us1 + · · ·+ (fs1 . . . fsl

)(A)usl
] = 0.

Hence U ≤ C⊥. Since dim FU = dim FC
⊥, then

C⊥ = Us1 ⊕ · · · ⊕ Usl
.

Thus we have proved the following theorem.
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Theorem 3. Let C = Ui1⊕· · ·⊕Uis be a linear cyclic code over F , and {j1, . . . , jl} =
{1, . . . , t}\{i1, . . . , is}. Then the dual code of C is given by C⊥ = Us1 ⊕ · · · ⊕ Usl

and f̃sr
(x) = (−1)ksr fsr

(x) = (−1)ksr 1
αjr

f∗jr (x), where f∗jr (x) is the reciprocal poly-
nomial of fjr (x) with leading coefficient equal to αjr , r = 1, . . . , l.

Example 1. Consider the matrix A of (2.2) for n = 7 and q = 2. Then we have

f(x) := fA(x) = x7 + 1.

Factorizing f(x) into irreducible factors over GF (2) yields

f(x) = f1(x)f2(x)f3(x) = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1).

The factors fi(x) define minimal ϕ−invariant spaces Ui, for i = 1, 2, 3. We define
the cyclic linear code C

C := U1 ⊕ U3.

According to Theorem 2, we have dimC = 4 and

g(x) := fϕ|C (x) = (x+ 1)(x3 + x2 + 1) = x4 + x2 + x+ 1.

It follows that

g(A) =



1 0 0 1 0 1 1
1 1 0 0 1 0 1
1 1 1 0 0 1 0
0 1 1 1 0 0 1
1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1


The rank of this matrix is r (g(A)) = 7− 4 = 3. Taking 3 independent rows yields
by Proposition 5 a parity check matrix for the code C, i.e.,

Hc =

(1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

)
c = 0

Notice that the columns of H represent integers 1, 2, . . . , 7 in binary. So the code
C is equivalent to the Hamming code H3 .

Furthermore, the polynomial h(x) = f(x)
g(x) is equal to x3 + x + 1, and therefore

we have

h(A) =



1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
1 0 1 1 0 0 0
0 1 0 1 1 0 0
0 0 1 0 1 1 0
0 0 0 1 0 1 1


.
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We can immediately verify that g(A)ht(A) = O and also that r (h(A)) = 4. Taking
4 independent columns of h(A) yields a generator matrix for C, e. g.1 0 0 0 1 1 0

0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 .

Example 2. Consider the matrix A of (2.2) for n = 8 and q = 3 ( so (n, q) = 1
again). Then

f(x) := fA(x) = x8 − 1.

Factorizing f(x) into irreducible factors over GF (3) yields

f(x) = f1(x)f2(x)f3(x)f4(x)f5(x) = (x+ 1)(x− 1)(x2 + 1)(x2 + x− 1)(x2− x− 1).

Next, we define
C := U2 ⊕ U3 ⊕ U4 ⊕ U5,

corresponding to the function

g(x) := fϕ|C (x) = f2(x)f3(x)f4(x)f5(x) =
f(x)
f1(x)

= x7−x6+x5−x4+x3−x2+x−1.

It follows immediately that

g(A) = (−1 1 −1 1 −1 1 −1 1)c ,

where the matrix g(A) is represented by its first row. The other rows can be
obtained by cyclic permutations of the first row, as is indicated by the subindex c.
It will be obvious that r (g(A)) = 1, and hence that dimC = 8 − 1 = 7 (cf. also
Proposition 5). The parity check matrix H for C is a (1, 8)−matrix which consists
of the first row of g(A). A generator matrix for C is obtained from h(x) = x + 1,
which provides us with

h(A) = (1 0 0 0 0 0 0 1)c .

Any (7, 8)−submatrix of ht(A) is a generator matrix for C.
Another possible choice for a liner cyclic code would be

C ′ := U2 ⊕ U4,

with
g(x) = (x− 1)(x2 + x− 1) = x3 + x+ 1,

and
h(x) = (x+ 1)(x2 + 1)(x2 − x− 1) = x5 − x3 − x2 + x− 1.
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Consequently, we have dimC ′ = 3. A parity check matrix for C ′ can be obtained
by taking 5 independent rows from the matrix

g(A) = (1 0 0 0 0 1 0 1)c ,

e. g.

H =


1 0 1 1 0 0 0 0
0 1 0 1 1 0 0 0
0 0 1 0 1 1 0 0
0 0 0 1 0 1 1 0
0 0 0 0 1 0 1 1

 .

A generator matrix can be obtained by taking 3 independent columns from

h(A) = (1 0 −1 −1 1 −1 0 0)c ,

e. g.

G =

(1 0 0 −1 1 −1 −1 0
0 1 0 0 −1 1 −1 −1
0 0 −1 1 −1 −1 0 1

)
.

Let C ⊂ Fn be an arbitrary, not necessary linear, cyclic code. Let us consider
the action of the group G = 〈ϕ〉 = {id, ϕ, . . . , ϕn−1} ∼= Cn over Fn. Then the
following theorem holds.

Theorem 4. C = Ω1 ∪ . . . ∪ Ωs, where Ωi are G-orbits and ki = |Ωi| is a divisor

of |G| = n. In particular, |C| =
s∑
i=1

ki.

Now we give a generalization of the previous results for constacyclic codes, which
were first introduced in [2].

Definition 4. Let a be a nonzero element of F . A code C with length n over F is
called constacyclic with respect to a, if whenever x = (c1, c2, . . . , cn) is in C, so is
y = (acn, c1, . . . , cn−1).

Let a be a nonzero element of F and let

ψa :
{
Fn → Fn

(x1, x2, . . . , xn) 7→ (axn, x1, . . . , xn−1) . (2.5)

Then ψa ∈ HomFn and it has the following matrix

Bn(a) = Bn =


0 0 0 . . . a
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 (2.6)
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with respect to the basis e = (e1, e2, . . . , en). Note that the relations Bn(a)−1 =
Bn( 1

a )t and Bnn = aE hold. The characteristic polynomial of Bn is fBn(x) =
(−1)n(xn − a). We shall denote it by fa(x). We assume that (n, q) = 1. The
polynomial fa(x) has no multiple roots and splits to distinct irreducible monic
factors fa(x) = (−1)nf1(x) . . . ft(x). Let Ui = Ker fi(ψa). It’s easy to see that
Theorem 1 and Proposition 2 are true in this case too. The following statement is
clear from the definition.

Proposition 7. A linear code C with length n over F is constacyclic iff C is a
ψa−invariant subspace of Fn.

The next theorem is analogous to Theorem 2 and so we omit its proof.

Theorem 5. Let C be a linear constacyclic code with length n over F. Then the
following facts hold.

1) C = Ui1 ⊕· · ·⊕Uis for some minimal ψa−invariant subspaces Uir of Fn and
k := dim FC = ki1 + · · ·+ kis , where kir is the dimension of Uir ;

2) fψa|C (x) = (−1)kfi1(x) . . . fis(x) = g(x);

3) c ∈ C iff g(Bn)c = 0;

4) the polynomial g(x) has the smallest degree with respect to property 3);

5) r (g(Bn)) = n− k, where r (g(Bn)) = n− k is the rank of the matrix g(Bn).

Proposition 8. The dual of a linear constacyclic code with respect to a is consta-

cyclic with respect to
1
a

.

Proof: The proof follows from the equality

〈ψa(c),h〉 = 〈Bn(a)c,h〉 = 〈c, Bn(a)th〉 = 〈c, Bn( 1
a )−1h〉 = a〈c, ψn−1

1
a

(h)〉 = 0

for every c ∈ C and h ∈ C⊥.
�

Example 3. As an example of a linear constacyclic code we take n = 8, q = 3
and a = −1 in (2.6). We than have the following characteristic polynomial

f(x) = fB8(x) = x8 + 1.

When splitting this polynomial into irreducible polynomials over GF (3), we find

f(x) = f1(x)f2(x) = (x4 + x2 − 1)(x4 − x2 − 1),

where the factors f1(x) and f2(x) define minimal ψa−invariant subspaces U1 and
U2, respectively, both of dimension 4 according to Theorem 5. If we define

C = U1, C
′ = U2,

10



then we find, similarly as in Example 2, that a parity check matrix H for code C
is obtained from

g(B8) = f1(B8) =



−1 0 0 0 −1 0 −1 0
0 −1 0 0 0 −1 0 −1
1 0 −1 0 0 0 −1 0
0 1 0 −1 0 0 0 −1
1 0 1 0 −1 0 0 0
0 1 0 1 0 −1 0 0
0 0 1 0 1 0 −1 0
0 0 0 1 0 1 0 −1


by taking 4 independent rows, whereas a parity check matrix H ′ for C ′ is obtained
in the same way from

g′(B8) = f2(B8) =



−1 0 0 0 −1 0 1 0
0 −1 0 0 0 −1 0 1
−1 0 −1 0 0 0 −1 0
0 −1 0 −1 0 0 0 −1
1 0 −1 0 −1 0 0 0
0 1 0 −1 0 −1 0 0
0 0 1 0 −1 0 −1 0
0 0 0 1 0 −1 0 −1


.

Similarly to the case of cyclic matrices, we shall denote the above matrices by

g(B8) = f1(B8) = (−1 0 0 0 −1 0 −1 0)ac

and
g′(B8) = f2(B8)) = (−1 0 0 0 −1 0 1 0)ac ,

respectively. The index ac means that each next row can be obtained from its
predecessor by applying the operator ψa as defined in (2.5). Furthermore, we have
the matrices

h(B8) = f2(B8), h′(B8) = f1(B8).

It is an easy task to verify that the following relations hold

g(B8)h(B8) = O, g′(B8)h′(B8) = O.

Actually, both equalities are equivalent to the relation f1(B8)f2(B8) = O, and the
codes C and C ′ are each other’s dual.
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3. LINEAR QUASI-TWISTED CODES AS INVARIANT
SUBSPACES

Let F = GF(q) and let Fn be the n-dimensional vector space over F with the
standard basis e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).

Let a be a nonzero element of F and let

ψa :
{
Fn → Fn

(x1, x2, . . . , xn) 7→ (axn, x1, . . . , xn−1) . (3.1)

Then ψa ∈ HomFn and it has the following matrix

Bn(a) = Bn =


0 0 0 . . . a
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 (3.2)

with respect to the basis e = (e1, e2, . . . , en). The characteristic polynomial of Bn
is

fBn
(x) =

∣∣∣∣∣∣∣∣∣∣

−x 0 0 . . . a
1 −x 0 . . . 0
0 1 −x . . . 0
...

...
...

. . .
...

0 0 0 . . . −x

∣∣∣∣∣∣∣∣∣∣
= (−1)n(xn − a). (3.3)

Let k be a fixed divisor of n and let n = kl. Let us consider the operator ϕ = (ψa)k.
We define a new basis g = (g1,g2, . . . ,gn) of Fn as follows:

g1 = e1, g2 = e1+k, . . . , gl = e1+(l−1)k

gl+1 = e2, gl+2 = e2+k, . . . , g2l = e2+(l−1)k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
g(k−1)l+1 = ek, g(k−1)l+2 = e2k, . . . , gkl = ek+(l−1)k

.

Then ϕ is represented by the following matrix

B =


Bl

Bl
. . .

Bl

 (3.4)

with respect to g, where the k matrices Bl are defined as in (3.1) with n = l.
Therefore the characteristic polynomial of B is

fB(x) = (fBl
(x))k = (−1)n(xl − a)

k
.

Let us denote by f(x) the polynomial xl − a and let f(x) = f1(x)f2(x) . . . ft(x) be
the factorization of f(x) into irreducible factors over F. According to the Theorem
of Cayley-Hamilton the matrix B of (3.4) satisfies

f(B) = O. (3.5)
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We assume that (n, q) = 1. In that case f(x) has distinct factors fi(x), i = 1, . . . , t,
which are monic. Furthermore, we consider the homogeneous set of equations

fi(B)x = 0, x ∈ Fn (3.6)

for i = 1, . . . , t. If Ui stands for the solution space of (3.6), then we may write
Ui = Ker fi(ϕ). We also introduce the following linear subspaces of Fn :

V1 = `(g1,g2, . . . ,gl),
V2 = `(gl+1,gl+2, . . . ,g2l),
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Vk = `(g(k−1)l+1,g(k−1)l+2, . . . ,gkl)

.

Note that V1, . . . , Vk are ϕ−invariant subspaces of Fn.
The next proposition is analogous to Theorem 1 properties 1), 2) and so we

omit its proof.

Proposition 9. The subspaces U1, U2, . . . , Ut of Fn are ϕ−invariant. If W is
a ϕ−invariant subspace of Fn and Wi = W ∩ Ui for i = 1, . . . , t, then Wi is
ϕ−invariant and W = W1 ⊕ · · · ⊕Wt.

Corollary 1. Fn = U1 ⊕ · · · ⊕ Ut.

Proof: This follows from Proposition 9 with W = Fn.
�

Let us denote Uij = Ui ∩ Vj for all i = 1, . . . , t and j = 1, . . . , k. Then we have
the following result.

Corollary 2. Vj = U1j ⊕ · · · ⊕ Utj , j = 1, . . . , k.

Proof: This follows from Proposition 9 with W = Vj .
�

Theorem 6. The subspaces Uij of Fn satisfy the following properties:
1) Uij is a ϕ-invariant subspace of Fn;

2) if v is a nonzero vector of Uij , then the vectors v, ϕ(v), . . . , ϕdeg fi−1(v)
form a basis of Uij and in particular dimUij = deg fi;

3) Uij is a minimal ϕ-invariant subspace of Fn;

4) Ui1 ∼= Ui2 ∼= · · · ∼= Uik;

5) Ui = Ui1 ⊕ · · · ⊕ Uik;

6) Fn =
⊕
i,j

Uij.
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Proof:
1) This is clear from the definition of Uij .

2) Let 0 6= v ∈ Uij be an arbitrary nonzero vector and let m ≥ 1 be the smallest
natural number with the property that the vectors v, ϕ(v), . . . , ϕm(v) are linearly
dependent. Then there are elements a0, . . . , am−1 ∈ F, at least one of which is
nonzero, such that

ϕm(v) = a0v + a1ϕ(v) + · · ·+ am−1ϕ
m−1(v).

Consider the polynomial t(x) = xm−am−1x
m−1−· · ·−a0 ∈ F [x]. Since (t(ϕ))(v) =

(fi(ϕ))(v) = 0, it follows that [(t(x), fi(x))(ϕ)](v) = 0. But (t(x), fi(x)) is equal to
1 or to fi(x). If we assume that (t(x), fi(x)) = 1, then v = 0, which contradicts the
choice of v. Hence, (t(x), fi(x)) = fi(x) and fi(x) divides t(x). Thus deg fi(x) ≤
deg t(x) = m. On the other hand, the vectors v, ϕ(v), . . . , ϕdeg fi(v) are linearly
dependent, since (fi(ϕ))(v) = 0, and from the minimality of m we obtain m =
deg fi. Therefore dimUij ≥ deg fi, and so

l = dim FVj =
t∑
i=1

dim FUij ≥
t∑
i=1

deg fi = deg f = l

and dim FUij = deg fi.

3) Let V be a ϕ- invariant subspace of Fn and let {0} 6= V ⊆ Uij . If 0 6= v ∈ V,
then the vectors v, ϕ(v), . . . , ϕdeg fi−1(v) ∈ V are linearly independent. Therefore
dim FV ≥ dim FUij and V = Uij .

4) This follows from the fact that dim FUi1 = dim FUi2 = · · · = dim FUik =
deg fi.

5) Let v ∈ Ui. Since Fn = V1 ⊕ · · · ⊕ Vk, we have v = v1 + · · · + vk, where
vj ∈ Vj , j = 1, . . . , k. Then fi(ϕ)(v) = fi(ϕ)(v1) + · · · + fi(ϕ)(vk) = 0, so that
fi(ϕ)(vj) = 0, i.e., vj ∈ Ui. Hence, vj ∈ Uij and

Ui = Ui1 + · · ·+ Uik.

Assume that v ∈ Uij∩
∑
s6=j Uis, then v ∈ Vj and v ∈

∑
s6=j Vs. But Vj∩

∑
s 6=j Vs =

{0}, so we obtain that v = 0. Thus

Ui = Ui1 ⊕ · · · ⊕ Uik.

6) By property 5) we obtain that

Fn =
t⊕
i=1

Ui =
⊕
i,j

Uij .

�
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Proposition 10. Let W be a ϕ-invariant subspace of Ui. Then there exists a
natural number s ≤ k such that W ∼= Usi1, where Usi1 is isomorphic to the direct
sum of s copies of Ui1.

Proof: Let 0 6= w1 ∈W. Then the vectors w1, ϕ(w1), . . . , ϕdeg fi−1(w1) are linearly
independent. We define W1 := `(w1, ϕ(w1), . . . , ϕdeg fi−1(w1)). Let 0 6= w2 ∈ W
be a vector such that w2 /∈W1. Then the vectors w2, ϕ(w2), . . . , ϕdeg fi−1(w2) are
linearly independent. Define W2 := `(w2, ϕ(w2), . . . , ϕdeg fi−1(w2)). Note that
dimW1 = dimW2 = deg fi. We will prove that the vectors

w1, ϕ(w1), . . . , ϕdeg fi−1(w1), w2, ϕ(w2), . . . , ϕdeg fi−1(w2)

are also linearly independent. Assume the opposite. Then there exist nonzero
polynomials h1(x), h2(x) ∈ F [x], degh1,degh2 < deg fi, such that h1(B)w1 +
h2(B)w2 = 0. Since fi is irreducible, we have that (h2, fi) = 1, for i = 1, . . . , t, and
therefore by the Euclidean algorithm there are polynomials a(x), b(x) ∈ F [x], such
that a(x)h2(x) + b(x)fi(x) = 1. Hence, a(B)h2(B)w2 + b(B)fi(B)w2 = w2. Now
w2 ∈ Ui and therefore fi(B)w2 = 0. Thus we obtain that a(B)h2(B)w2 = w2.
From h2(B)(w2) = −h1(B)(w1) and the last equality we conclude that w2 ∈ W1.
This contradiction proves the statement. We proceed analogously until we obtain
that W = W1 ⊕ · · · ⊕Ws for some s ≤ k. Since dimWi = deg fi, i = 1, . . . , s, it
follows that W ∼= Usi1.

�

Theorem 7. Let W be a ϕ−invariant subspace of Fn. Then

W ∼= Us111 ⊕ · · · ⊕ U
st
t1

for integers si ≤ k, 1 ≤ i ≤ t. In particular,

dimW =
t∑
i=1

sideg fi.

Proof: This follows immediately from Proposition 9 and Proposition 10 .
�

Definition 5. A code C with length n over F is called a k-quasi-twisted code
with respect to a ∈ F ∗ iff any codeword in C is again a codeword in C after an
a-constacyclic shift over k positions.

The following statement is clear from the definition.

Proposition 11. A linear code C with length n over F is k-quasi-twisted iff C is
a ϕ−invariant subspace of Fn.
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Theorem 8. Let C be a linear k−quasi-twisted code with length n over F. Then

C ∼= Us111 ⊕ · · · ⊕ U
st
t1

for integers si ≤ k, 1 ≤ i ≤ t. In particular,

dimC =
t∑
i=1

sideg fi.

Proof: This follows from Theorem 7 and Proposition 11.
�

Example 4. Substituting n = 15, q = 2, k = 5, l = 3 and a = 1 in (3.2) and
(3.4) gives the representation matrix

B =


B3

B3

B3

B3

B3


for the operator ϕ with respect to the basis g, with

B3 =

(0 0 1
1 0 0
0 1 0

)
.

For the characteristic polynomial of B we have

fB(x) = (−1)(x3 − 1)
5

= −(f(x))5,

where f(x) can be factorized into irreducible polynomials over GF (2) as

f(x) = f1(x)f2(x) = (x+ 1)(x2 + x+ 1).

Let Ui = Ker fi(ϕ) for i = 1, 2. We define the following linear code

C = U2.

According to Theorem 6 we can write

U2 = U21 ⊕ · · · ⊕ U25,

where U2j = U2 ∩ Vj and U21
∼= · · · ∼= U25. If we introduce subcodes Ci := U2i

for i = 1, . . . 5, then dimCi = deg f2 = 2, again by Theorem 6. One can almost
immediately infer that

g(B3) = f2(B3) =

(1 1 1
1 1 1
1 1 1

)
.
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and

h(B3) = f1(B3) =

(1 0 1
1 1 0
0 1 1

)
.

So a parity check matrix for the subcode Ci, i = 1, . . . , 5, restricted to its support,
is the row matrix (1, 1, 1). For C itself we find the parity check matrix

H =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

where 1 stands for (1, 1, 1) and 0 for (0, 0, 0). Hence, dimC = 15 − 5 = 10, which
is in agreement with Theorem 8.

Taking two independent columns of h(B3) yields a generator matrix for Ci
(restricted to its support), e.g.

Gi =
(1 1 0

0 1 1

)
.

This gives rise to the following generator matrix for C itself

G =



a 0 0 0 0
b 0 0 0 0
0 a 0 0 0
0 b 0 0 0
0 0 a 0 0
0 0 b 0 0
0 0 0 a 0
0 0 0 b 0
0 0 0 0 a
0 0 0 0 b


,

with 0 = (0, 0, 0), a = (1, 1, 0) and b = (0, 1, 1). This generator matrix G has been
written with respect to the basis g. When writing the rows of G with respect to
the standard basis e, the matrix takes the following form

G =



1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 1 0



.
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Example 5. Now we take n = 18, q = 5, k = 3, l = 6 and a = 2, providing us
with matrices

B =

(B6

B6

B6

)
, B6 =


0 0 0 0 0 2
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 .

The characteristic polynomial of B is

fB(x) = (x6 − 2)
3

= (f(x))3.

It turns out that we can write

f(x) = f1(x)f2(x)f3(x) = (x2 + 2)(x2 + x+ 2)(x2 + 4x+ 2),

where the fi are irreducible polynomials over GF (5).
Again we define Ui = Ker fi(ϕ) for i = 1, 2, 3, and we introduce the linear code

C = U1 ⊕ U2.

The defining polynomial of C is

g(x) = f1(x)f2(x) = x4 + x3 + 4x2 + 2x+ 4,

from which we obtain the matrix

g(B6) =


4 0 2 2 3 4
2 4 0 2 2 3
4 2 4 0 2 2
1 4 2 4 0 2
1 1 4 2 4 0
0 1 1 4 2 4

 .

The code of length 6 determined by g(x) is a constacyclic code C with respect to
2 ∈ GF (5) with dimension 4 (cf. Theorem 5). Hence, the matrix g(B6) has rank
6 − 4 = 2, as one can easy verify. By taking two independent rows, e. g. the first
two, one obtains a parity check matrix for C. A generator matrix for C can be
constructed from the polynomial h(x) = f3(x) = x2 + 4x+ 2 which determines the
matrix

h(B6) =


2 0 0 0 2 3
4 2 0 0 0 2
1 4 2 0 0 0
0 1 4 2 0 0
0 0 1 4 2 0
0 0 0 1 4 2

 .
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By taking the first four columns of h(B6) we obtain a generator matrix for C :

GC =

2 4 1 0 0 0
0 2 4 1 0 0
0 0 2 4 1 0
0 0 0 2 4 1

 .

That this matrix really generates a constacyclic code with respect to 2, can rather
easily be verified. It is sufficient to check that (2 0 0 0 2 4) -which is the constacyclic
permutation of the last word of the matrix- is a linear combination of the first three.

Just like in Example 4, it follows that the following matrix generates the com-
plete code C :

G =

GC O O
O GC O
O O GC

 ,

where O stands for the (4, 6)−zeromatrix. The rows in this matrix are codewords
of C with respect to the basis g. To obtain a generator with respect to the standard
basis e, one has to carry out the basis transformation, described on page 9.

Example 6. Like in Example 5 we take again n = 18, q = 5, k = 3, l = 6
and a = 2. Now we consider the codes C1 := U1 and C2 := U2.

The code C1 is defined by g1(x) = f1(x) = x2 + 2. Similarly as in all previous
examples we find the matrices

g1(B6) =


2 0 0 0 2 0
0 2 0 0 0 2
1 0 2 0 0 0
0 1 0 2 0 0
0 0 1 0 2 0
0 0 0 1 0 2


and

h1(B6) =


4 0 2 0 1 0
0 4 0 2 0 1
3 0 4 0 2 0
0 3 0 4 0 2
1 0 3 0 4 0
0 1 0 3 0 4

 .

Since dimC1 = 2, a generator matrix GC1
for C1 (the restriction of C1 with respect

to its support) is obtained by taking 2 independent columns of h1(B6).
The code C2 is defined by g2(x) = f2(x) = x2 +x+ 2. For this code we find the

matrices
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g2(B6) =


2 0 0 0 2 2
1 2 0 0 0 2
1 1 2 0 0 0
0 1 1 2 0 0
0 0 1 1 2 0
0 0 0 1 1 2


and

h2(B6) =


4 0 2 3 3 1
3 4 0 2 3 3
4 3 4 0 2 3
4 4 3 4 0 2
1 4 4 3 4 0
0 1 4 4 3 4

 .

A generator matrix GC2
for C2 can be obtained by taking 2 independent columns

of h2(B6).
Finally, the code C3 := U3 is defined by g3(x) = f3(x) = x2 + 4x+ 2. This code

is the dual of C = C1 ⊕ C2. So, the matrix g3(B6) is equal to the matrix h(B6)
presented in Example 5. Indeed, we find

g3(B6) =


2 0 0 0 2 3
4 2 0 0 0 2
1 4 2 0 0 0
0 1 4 2 0 0
0 0 1 4 2 0
0 0 0 1 4 2

 ,

while

h3(B6) =


4 0 2 2 3 4
2 4 0 2 2 3
4 2 4 0 2 2
1 4 2 4 0 2
1 1 4 2 4 0
0 1 1 4 2 4

 .

A generator matrix GC3
for C3 is obtained by taking 2 independent columns of

h3(B6).
It will be obvious that the matrix

Gi =

GCi
O O

O GCi
O

O O GCi


is a generator matrix for the complete code Ci, for i = 1, 2, 3.

One can easily check that the six rows of the matrices Gi, i = 1, 2, 3, are
independent. So, it follows that

Fn = U1 ⊕ U2 ⊕ U3
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(cf. Corollary 1). Furthermore, the minimal ϕ−invariant subspace Ui, is spanned
by the rows of the submatrix (GCi

O O). We shall denote this fact by

Ui1 = `(GCi
O O), i = 1, 2, 3.

Similarly, we can write

Ui2 = `(O GCi
O), i = 1, 2, 3,

and
Ui3 = `(O O GCi

), i = 1, 2, 3.

It follows immediately that

Ui = Ui1 ⊕ Ui2 ⊕ Ui3

and
Vj = U1j ⊕ U2j ⊕ U3j ,

which illustrates Theorem 6 (5) and Corollary 2, respectively.
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