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Abstract

In coding theory the description of linear cyclic codes in terms of commutative
algebra is well known. Since linear codes have the structure of linear subspaces of
F™, the description of linear cyclic codes in terms of linear algebra is natural. We
observe that the cyclic shift map is a linear operator in F™. Our approach is to
consider cyclic codes as invariant subspaces of F™ with respect to this operator and
thus obtain a description of cyclic codes. A new algebraic approach to quasi-twisted
codes is also introduced.
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1. INTRODUCTION

In coding theory it is common practice to require that (n,q) = 1, where n is the
word length and F = GF(q) is the alphabet. We shall stick to this practice too.

The main purpose of this report is to regard quasi-twisted codes as invariant
linear subspaces of F™ with respect to an a—constacyclic shift map over k positions,
where k is a devisor of the length n and 0 # a € F. Some important classes of
codes are realized as special cases of quasi-twisted codes. The case k = 1 gives
constacyclic codes, while £k = 1 and a = 1 yields cyclic codes. The linear cyclic
codes are traditionally described by using the methods of commutative algebra (see
[1]). Since linear codes have the structure of linear subspaces of F™, the description
of linear cyclic codes in terms of linear algebra is natural.

2. LINEAR CYCLIC CODES AS INVARIANT SUBSPACES

Let FF = GF(q) and let F™ be the n-dimensional vector space over F' with the
standard basis e; = (1,0,...,0), e = (0,1,...,0),...,e, = (0,0,...,1).
Let

™ — F™
: . 2.1
14 {(Il,l’g,..-,l’n)H(xn,l'h.-.,zn_l) ( )
Then ¢ € Hom F™ and it has the following matrix
000...1
100...0
A=1010...0 (2.2)
000...0

with respect to the basis e = (ej,ea,...,e,). Note that A®* = A~ and A" = F.
The characteristic polynomial of A is

—x 0 0 ... 1
1 —x 0 ... 0
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Let us denote it by f(z). For our purposes we need the following well known fact.

Proposition 1. Let U be a w-invariant subspace of V and dim pV = n. Then
Jolo () divides fy(x). In particular, if V.= U & W and W is a p-invariant
subspace of F™ then f,(x) = fo, (%) fo)y, ().



Let f(z) = (=1)"fi1(x)... ft(z) be the factorization of f(x) into irreducible
factors over F. We assume that (n,q) = 1. In that case f(x) has distinct factors
fi(z), i = 1,...,t, which are monic. Furthermore, we consider the homogeneous

set of equations
fil(A)x=0,x€ F" (2.4)

for ¢ = 1,...,¢. If U; stands for the solution space of (2.4), then we may write
U; = Ker f;(¢).

Theorem 1. The subspaces U; of F™ satisfy the following conditions:

1) U; is a p-invariant subspace of F™;

2) if W is a p—invariant subspace of F™ and W; = WNU; fori=1,...,t, then
Wi is p—invariant and W =Wy @ -+ - & Wy;

3)F"=U,®- @ Uy

5) folu, () = (=1)" fi(x);

6) U; is a minimal p-invariant subspace of F™.

Proof:
1) Let u € Uy, ie. fi(A)u=0. Then f;(A)p(u) = fi(4A)Au = Af;(A)u=0, so
that p(u) € U;.

2)Let fi(x) = J{i((‘?) for i = 1,...,t. Since (fi(z),..., fi(z)) = 1, by the Eu-

clidean algorithm there are polynomials a1 (z),...,a:(z) € F[x] such that
a1 (2) fi(x) + - + ar(@) fy(z) = 1.

Then for every vector w € W the equality w = a1 (A) fL(A)w + -+ a(A) fi(A)w
holds. Let w; = a;(A)fi(A)w € W. Then f;(A)w; = a;(A)f(A)w = 0 because of
(2.4), and so w; € V; N W = W,. Hence,

W =W+ +W,.

Assume that w € W;N} ., Wj, then fi(A)w = 0, fi(A)w = 0. Since (fi(z), fi(z)) =

1, there are polynomials a(x),b(z) € F[z], such that a(z)f;(z) + b(z) fi(x) = 1.

Hence a(A)fi(A)w +b(A) fi(A)w = w = 0, so that W; N 3_,,, W; = {0}. Thus
W=w,@&---&W.

3) This follows from 2) with W = F".

4) Let g € U; be an arbitrary nonzero vector and let k& > 1 be the smallest
natural number with the property that the vectors g, o(g), ..., " (g) are linearly
dependent. Then there are elements cg,...,cx—1 € F, at least one of which is
nonzero, such that

0" (g) = cog + c1p(8) + -+ + cr_19" 7 (8).



Consider the polynomial t(x) = 2% — 128"t — ... — ¢y € Flx]. Since (t(¢))(g) =
(fi(#))(g) = 0, it follows that [(¢(x), fi(x))(#))(g) = 0. But (t(x), fi(x)) is equal
to 1 or to f;(z). Hence (t(z), fi(x)) = fi(x) and f;(x) divides t(x). Thus k; =
deg f;(z) < degt(z) = k. On the other hand, the vectors g, ¢(g),...,¢" (g) are
linearly dependent, since (f;(¢))(g) = 0, and from the minimality of k we obtain
k = k;. Then dim U; > k;. Therefore

t t t
n:dimpF”:ZdimFUi szi :Zdegfi:degf:n
i=1 i=1 i=1

and dim pU; = k;.

5) Let g() = (ggi), . ,g,(ji)) be a basis of U; over F, i = 1,...,t and let A; be the
matrix of |y, with respect to that basis. Let f; = folu, - Suppose that (fi, fi) = 1.
Hence there are polynomials a(z), b(z) € F[xz], such that a(x) fi(z) + b(z) fi(z) = 1.
Then a(A;)fi(A;) + b(A;) fi(A;) = E. Therefore b(A;)fi(A;) = E. We will show

that f;(A;) = O, which contradicts the last equation.
(1) (1) () (t)

By property 3) we obtain that g = (gy,...,8;, ,---,81 ,---,8, ) is a basis of
F™ and ¢ is represented by the following matrix
Ay
ao| P
Ay

with respect to that basis. Beside this A’ = T~ AT, where T is the transformation
matrix from the standard basis of F” to the basis g. Then

fi(A1)
, Ji(A2) . B
fi(A) = - = fi(T7YAT) = T~ fi(A)T.
fi(At)
Let gji) = )‘;il)el oot /\g'i’r)te”’ J=1,...,k;. Since g;i) € U;, we obtain that

0 0 i
: : )‘51)

FAY | L =T AT | 1| =T fi(A) | | =0,
: : ()

where 1 is on the (k1 + -+ 4 k;—1 + j)—th position. According to the last equation
fi(A;) = O. Therefore (fi, fi) # 1. Since f; and f; are polynomials of the same
degree k; and f; is monic and irreducible, we obtain that f; = (—1)%i f;.

6) Let U be g-invariant subspace of F™ and let {0} # U C U;. Then by
Proposition 1 we obtain that f,, divides f;. Since the polynomial f; is irreducible,
dim pU = dim pU; and U = U;.

U



Proposition 2. Let U be a p—invariant subspace of F™. Then U is a direct sum
of some of the minimal p—invariant subspaces U; of F™.

Proof: This follows immediately from property 2) of Theorem 1. O

Definition 1. A code C' with length n over F is called cyclic, if whenever x =
(c1,¢2,...,¢n) is in C, so is its cyclic shift y = (¢cn,c1,...,Cno1)-

The following statement is clear from the definitions.

Proposition 3. A linear code C with lengthn over F is cyclic iff C' is a p—invariant
subspace of F™.

Theorem 2. Let C be a linear cyclic code with length n over F. Then the following
facts hold.

1)C=U;, @ - ®U, for some minimal o—invariant subspaces U;_. of F™ and
k:=dimpC =k; +---+ k;,, where k, is the dimension of U;_;

2) folo(x) = (=1)*fi,(2) ... fi,(x) = g();

3) ceC iff g(A)c = 0;

4) the polynomial g(x) has the smallest degree with respect to property 3);

5)r(g(A)) =n —k, where r(g(A)) is the rank of the matriz g(A).
Proof:

1) This follows from Proposition 2.

2) Let (gﬁir),...,ggi)) be a basis of U, over F,r =1,...,s. Then (ggil),...,
g,(fill), e ,ggis), cee g,(;)) is a basis of C over F and ¢|¢ is represented by the fol-
lowing matrix ‘

A,

A;

with respect to that basis. Hence,
fole(@) = fi (@) ... fi,(x) = ()Rt R g (@) f ().

Note that A; and f;, (z) are defined as in the proof of Theorem 1.

3) Let c € C. Then ¢ = u;, +--- 4+ u;, for some uw;, € U, ,r =1,...,s and
g(A)e = (=D*[(fi, .- fi ) (A, + -+ (fiy - fi.)(A)ui ] = 0.

Conversely, suppose that g(A)c = 0 for some ¢ € F™. According to Theorem 1
we have that ¢ = u; + -+ +u;, w; € U;. Then g(A)e = (=1)F[(f;, ... fi.)(A)u +
ot (fiy - fi)(Aw] = 0, so that g(A)[uy, + - +uy,] =0, where {j1,...5} =
{1,...,t}\{é1,...,43s}. Let v=u;, +--- +u,, and

R | CA VI C)

g9(x) g9(x)



Since (h(z), g(z)) = 1, there are polynomials a(z), b(z) € Flx] so that a(x)h(z) +
b(x)g(z) = 1. Hence v = a(A)h(A)v +b(A)g(A)v=0and c =u;, +--+u;, € C.
4) Suppose that b(z) € F[z] is a nonzero polynomial of smallest degree such
that b(A)c = 0 for all ¢ € C. By the division algorithm in F[z] there are poly-
nomials ¢(z),r(x) such that g(x) = b(z)q(x) + r(z), where degr(z) < degb(x).
Then for each vector ¢ € C we have g(A)c = ¢(A)b(A)c + r(A)c and hence
r(A)c = 0. But this contradicts the choice of b(x) unless r(x) is identically zero.
Thus, b(z) divides g(z). If degb(z) < degg(x), then b(x) is a product of some
of the irreducible factors of g(z) and without loss of generality we can suppose
that b(x) = (=1)FatFkin £, f, and m < s. Let us consider the code C’ =
Uy, ®---®U;, CC. Then b(z) = f, ., and by the equation g(A)c = 0 for all
c € C we obtain that C' C C’. This contradiction proves the statement.
5) By property 3) C is the solution space of the homogeneous set of equations
g(A)x = 0. Then dim pC =k =n —1r(g(A)), which proves the statement.
O

Definition 2. Let x = (z1,...,2,) andy = (y1...,Yn) be two vectors in F". We
define an inner product over F by (x,y) = x1y1 + - + Zpyn. If (x,y) = 0, we say
that x and y are orthogonal to each other.

Definition 3. Let C be a linear code over F. We define the dual of C (which is
denoted by C+) to be the set of all vectors which are orthogonal to all codewords in
C, i.e.,

Ct={veF"|(v,c)=0, VceC}

It is well known that if C' is k—dimensional, then C is (n — k)—dimensional.
Proposition 4. The dual of a linear cyclic code is also cyclic.

Proof: Let h = (hy,...,hy) € CL and ¢ = (c1,...,¢,) € C. We show that
o) = (hp,h1,..., hn1) € C+. We have

(p(h),c) = c1hy + -+ cphn_1 = (h, ‘/771((3» = (h, ‘Pnil(c» =0,

which proves the statement.

Proposition 5. The matriz H, the rows of which are an arbitrary set of n — k
linearly independent rows of g(A), is a parity check matriz of C.

Proof: The proof follows from the equation g(A)c = 0 for every vector ¢ € C and
the fact that r (g(4)) =n — k.
O
Let g;,,...,g1,_, be a basis of C*, where g;_ is a [, —th vector row of g(A). By
the equation g(A)h(A) = O we obtain that (g; ,h;) =0 foreachi=1,...,n,r =
1,...,n— k. The last equation gives us that the columns h; of h(A) are codewords
in C.



We show that r (h(A)) = k. By the inequality of Sylvester we obtain that r (O)
0 > r(g(A4) +r(h(A)) —n. Since r(h(A)) < n—-r(g(4) =n—(n—k) =
On the other hand the inequality of Sylvester, applied to the product h(A)
()" % £, (A) ... f;,(A), gives us that r (R(A)) > rj, + -+ 1), — (l —1)=mnl
iy gy =l 1 = 1 (k- k) = e (=i, — ks ) = n—(n—k) =
Therefore r (h(A)) = k. Thus we have proved the following proposmon.

=

Proposition 6. The matriz G, the rows of which are an arbitrary set of k linearly
independent rows of (h(A))", is a generator matriz of the code C.

Lemma 1. If g(z) € F[z], then g(A™") = g(A") = (g(A))". In particular, if n
divides deg g(x), then g*(A) = (g(A))t, where g*(x) is the reciprocal polynomial of
g(x).

Proof: Let g(x) = gox* + 12" ' 4 -+ gp_12 + gx, then g(A) = goA* + g1 AF~1 +
-+ gk—1A + g E. Transposing both sides of the last equation, we obtain that
(9(A))" = go(AF) + g1 (AF ) -+ gu 1 A+ g B = go(AD* + g1 (4D -+
gr—1A" + g E = g(A").
In particular, if degg(z) = ns for some s € N, then g*(A) = A"g(A~!) =
Arg(At) = g(A%) = (g(A)).
U
Let f, ., (z) = h. By Theorem 2 it follows that i is the polynomial of the
smallest degree such that h(A)u = 0 for every u € Ct. Let h*(z) = h(z)q(z) +
r(z), where degr(z) < degh(x). Then by Lemma 1 h*(A) = A" *(h(A))" =
h(A)q(A) + r(A), hence for every vector u € CL the assertion A"*(h(A))'u =
q(A)h(A)u + r(A)u holds, so that r(z) = 0. Thus h(z) divides h*(z). Since both
are polynomials of the same degree , h*(z) = ah(z), where o € F is the leading
coefficient of the product f7, (z)... f; (z). Thus

l
-1, Wil 1 e
e g = 0t g g =TTt = 0 o

(67

where «;, is the leading coefficient of f; (z). Note that the polynomials fs (x) =
ﬁfﬁ () are monic irreducible and divide f(z) = (=1)"(2™ — 1).

Now we show that C+ = U, @ - @ U,,. By Theorem 2 C* is the solution
space of the homogeneous system with matrix h(A). Let ue U =Uy, @ --- @ U,
andlet u=u,, +---+u, foru, €U, ,r=1,...,0. Then

iL(A)u = (‘Dnik[(fsl s fs)(A)ug, + oA (fsy - fs)(A)ug ] = 0.
Hence U < C+. Since dim pU = dim pC*, then
ct=U, & - -9U,.

Thus we have proved the following theorem.



Theorem 3. Let C = U;, - - -®U;, be a linear cyclic code over F, and {j1,...,ji} =
{1,...,tW\{i1,...,is}. Then the dual code of C is given by C*+ = U, @ -+ @ Uy,
and f, (z) = (—1)% f,, (z) = (fl)kﬁfi 7 (), where f7 (x) is the reciprocal poly-
nomial of f; (x) with leading coeﬁicieni‘requal tooy,,r=1,...,10

Example 1. Consider the matrix A of (2.2) for n = 7 and ¢ = 2. Then we have
f@) = fale) = o7 +1.
Factorizing f(z) into irreducible factors over GF(2) yields
f@) = fi(@) fo(2) f3(@) = (z + 1)(2* + 2 +1)(2” + 2* + 1),

The factors f;(x) define minimal p—invariant spaces U;, for i = 1,2,3. We define
the cyclic linear code C
C.=U,0Us.

According to Theorem 2, we have dim C' = 4 and
9(@) = foo(@) = @+ D@’ + 2 + 1) =a' + 2> o + L.
It follows that

1001011
1100101
1110010
g(A)=1[0111001
1011100
0101110
0010111
The rank of this matrix is r (g(A)) = 7 — 4 = 3. Taking 3 independent rows yields
by Proposition 5 a parity check matrix for the code C, i.e.,

1011100
HC:(OIOIllO)CZO
0010111

Notice that the columns of H represent integers 1,2,...,7 in binary. So the code
C is equivalent to the Hamming code H. 3.( :
_ f(=

Furthermore, the polynomial h(z) = o] is equal to 22 + = + 1, and therefore

we have
1000101
1100010
0110001
h(A)=11011000
0101100
0010110
0001011



We can immediately verify that g(A)h!(A) = O and also that r (h(A)) = 4. Taking
4 independent columns of h(A) yields a generator matrix for C, e. g.

1000110
0110100
0011010
0001101

Example 2. Consider the matrix A of (2.2) forn =8 and ¢ =3 (so (n,q) =1
again). Then

f(x) = fa(z) =2® - 1.
Factorizing f(z) into irreducible factors over GF(3) yields
f@) = fi@) fo(2) f3(2) fa(2) f5(2) = (2 + 1) (@ = D (@ + D(@” +2 - 1(@® -2 —1).

Next, we define
C:=U® U3z ® Uy @ Us,

corresponding to the function
f(@) 7

6,.5 .4,.3 2
=x' -z’ +x’ -+’ —x"4+r—1.
fi(@)

9(x) := folo(x) = fa(2) f3(2) fa(x) f5(x) =

It follows immediately that
g(A)=(-11-11-11-11),,

where the matrix g(A) is represented by its first row. The other rows can be
obtained by cyclic permutations of the first row, as is indicated by the subindex c.
It will be obvious that r(g(A)) = 1, and hence that dimC =8 —1 =7 (cf. also
Proposition 5). The parity check matrix H for C is a (1, 8)—matrix which consists
of the first row of g(A). A generator matrix for C' is obtained from h(z) = z + 1,
which provides us with

h(A)=(10000001),.

Any (7,8)—submatrix of h*(A) is a generator matrix for C.
Another possible choice for a liner cyclic code would be

C'=Uy ® Uy,

with
g@)=(—-1)@*+z—-1) =23 +2+1,

and
hr)=(@+ D)@+ )@ —e-1) =" —2® 2>+ -1



Consequently, we have dim C’ = 3. A parity check matrix for C’ can be obtained
by taking 5 independent rows from the matrix

g(A)=(10000101),,

10110000
01011000
H=100101100
00010110
00001011
A generator matrix can be obtained by taking 3 independent columns from

hA)=(10-1-11-100),,

100 -11 -1-10
G=<01 0 0 -11 —1—1).

00-11 -1-10 1

Let C C F™ be an arbitrary, not necessary linear, cyclic code. Let us consider
the action of the group G = (¢) = {id,¢,...,¢" '} = C, over F™. Then the
following theorem holds.

Theorem 4. C = Qq U...UQ,, where Q; are G-orbits and k; = || is a divisor
S
of |G| = n. In particular, |C| = " k.
i=1
Now we give a generalization of the previous results for constacyclic codes, which
were first introduced in [2].

Definition 4. Let a be a nonzero element of F. A code C with length n over F is
called constacyclic with respect to a, if whenever x = (c1,¢a,...,¢,) s in C, so is

y = (acp,c1y. ..y Cno1).

Let a be a nonzero element of I’ and let

F*"— F7"
"/}a~ {(lEl,SUQ,...,l'n)'_)((L.’En7l'1,...,$n1) ' (25)
Then ¢, € Hom F™ and it has the following matrix
000...a
100...0
Bn(a)=B,=(010...0 (2.6)
000...0



with respect to the basis e = (e, es,...,e,). Note that the relations B, (a)~! =
B,(+)! and B = aF hold. The characteristic polynomial of B, is fg,(z) =
(=1)™(2™ — a). We shall denote it by f,(x). We assume that (n,q) = 1. The
polynomial f,(x) has no multiple roots and splits to distinct irreducible monic
factors fo(x) = (=1)"f1(x)... fi(x). Let U; = Ker f;(¢h,). It’s easy to see that
Theorem 1 and Proposition 2 are true in this case too. The following statement is
clear from the definition.

Proposition 7. A linear code C with length n over F is constacyclic iff C is a
o —invariant subspace of F™.

The next theorem is analogous to Theorem 2 and so we omit its proof.

Theorem 5. Let C be a linear constacyclic code with length n over F. Then the
following facts hold.

1)C=U;, ®---®U,, for some minimal 1,—invariant subspaces U; of F™ and
k:=dimpC =k;, +--- + ki, where k;,_ is the dimension of U, ;

2) fpale(@) = (1) fi, (x) ... fi,(x) = g();

3) ce C iff g(Bn)c = 0;

4) the polynomial g(x) has the smallest degree with respect to property 3);

5) 1 (9(Bn)) =n—k, where v (¢(B,)) = n — k is the rank of the matriz g(By,).

Proposition 8. The dual of a linear constacyclic code with respect to a is consta-

. . 1
cyclic with respect to —.
a

Proof: The proof follows from the equality

1

(a(e), h) = (Bn(a)e,h) = (¢, Bu(a)'h) = (¢, By(3) h) = ale, ¥ (h)) =0

for every ¢ € C' and h € C*.
O
Example 3. As an example of a linear constacyclic code we take n =8, ¢ =3
and @ = —1 in (2.6). We than have the following characteristic polynomial

f(x) = fp (@) =a® + 1.
When splitting this polynomial into irreducible polynomials over GF'(3), we find
f(@) = fi(@) fale) = (z* + 2? = 1) (a* —2® = 1),

where the factors fi(z) and fo(x) define minimal ), —invariant subspaces U; and
U,, respectively, both of dimension 4 according to Theorem 5. If we define

C:U17 C/:U27

10



then we find, similarly as in Example 2, that a parity check matrix H for code C
is obtained from

-10 0 0 -10-10

0-10 0 0 -10 -1
1 0-10 O 0 -10
01 0-10 0 0 —1
9(Bg) = f1(Bs) = 1010100 0
01 01 0 -10 0
0 01 01 0-10
0O 001 0 1 0 -1

by taking 4 independent rows, whereas a parity check matrix H’ for C’ is obtained
in the same way from

-10 0 0-10 1 0
0 -10 0 0-10 1
-10-10 0 0 -10
-10-10 0 0 -1
0 -10-10 0 O

0
g (Bs) = f2(Bs) = 1
01 0-10-10 0
0
0

01 0-10-10
0 01 0-10 -1

Similarly to the case of cyclic matrices, we shall denote the above matrices by
g(Bs) = f1(Bs) =(-1000-10-10),,

and
¢'(Bs) = f2(Bs)) =(-1000 —1010)

ac?

respectively. The index ac means that each next row can be obtained from its
predecessor by applying the operator 1, as defined in (2.5). Furthermore, we have
the matrices

h(Bg) = f2(Bs), h'(Bg) = f1(Bs).

It is an easy task to verify that the following relations hold
9(Bs)h(Bs) = O, ¢'(Bs)h'(Bs) = O.

Actually, both equalities are equivalent to the relation fi(Bsg)f2(Bsg) = O, and the
codes C' and C are each other’s dual.

11



3. LINEAR QUASI-TWISTED CODES AS INVARIANT
SUBSPACES

Let F' = GF(q) and let F™ be the n-dimensional vector space over F' with the
standard basis e; = (1,0,...,0), e2 =(0,1,...,0),...,e, = (0,0,...,1).
Let a be a nonzero element of F' and let

F"— "
"/}a~ {(mlaan"wxn)'—)(axnvxl,“';xn—l) ' (31)
Then ¢, € Hom F™ and it has the following matrix
000...a
100...0
Bu(a)=B,=(010...0 (3.2)
000...0
with respect to the basis e = (e, ea,...,€,). The characteristic polynomial of B,,
s -z 0 0 a
1 -z 0 0
f,(x)=]0 1 —z... 0|=(-1)"a" —a). (3.3)
0 0 0 ... -z

Let k be a fixed divisor of n and let n = kl. Let us consider the operator ¢ = (1,)".
We define a new basis ¢ = (g1,82,...,8n,) of F™ as follows:

g1 = €1, 82 = €14k, -, 8l = €14(-1)k
gi+1 = €2, 842 = €24k, ..., 820 = €24(1-1)k
gk-1i+1 = €k k—1)I+2 — ©€2ky .-+ Bkl = €p4(1-1)k
Then ¢ is represented by the following matrix
By
By
B= , (3.4)
B

with respect to g, where the k matrices B; are defined as in (3.1) with n = [.
Therefore the characteristic polynomial of B is

fo(@) = (fa,(@)* = (~)"(' - a)".

Let us denote by f(x) the polynomial ' — a and let f(x) = fi(x)f2(z) ... fi(z) be
the factorization of f(z) into irreducible factors over F. According to the Theorem
of Cayley-Hamilton the matrix B of (3.4) satisfies

f(B)=0. (3.5)

12



We assume that (n,¢) = 1. In that case f(z) has distinct factors f;(z), i =1,...,¢t,
which are monic. Furthermore, we consider the homogeneous set of equations

fi(B)x=0,x€ F" (3.6)

for i = 1,...,¢. If U; stands for the solution space of (3.6), then we may write
U; = Ker f;(¢). We also introduce the following linear subspaces of F™ :

Vl = f(gth, e 7gl)7
‘/2 = g(gl+17gl+27 e 7g21)7

Vie = U(8(k—1)14+1> 8(k—1)i+2> - - - » Bkl)

Note that Vi, ..., V) are p—invariant subspaces of F™.
The next proposition is analogous to Theorem 1 properties 1), 2) and so we
omit its proof.

Proposition 9. The subspaces Uy,Us, ..., U; of F™ are p—invariant. If W is
a p—invariant subspace of F™ and W; = W NU; fori = 1,...,t, then W; is
p—invariant and W =W, & --- @ W,.

Corollary 1. F"=U; & ---® U;.

Proof: This follows from Proposition 9 with W = F™.
O
Let us denote U;; =U; NV foralli=1,...,t and j =1,...,k. Then we have
the following result.

Corollary 2. V; =Uy; @--- @ Uy, j=1,...,k.

Proof: This follows from Proposition 9 with W = V.

O
Theorem 6. The subspaces U;; of F™ satisfy the following properties:
1) Ui; is a p-invariant subspace of F™;
2) if v is a nonzero vector of U;j;, then the vectors v, p(v), ..., <pdeg fi=l(v)

form a basis of U;; and in particular dim U;; = deg f;;
3) Usj is a minimal p-invariant subspace of F™;
4) Un =2 Ujpp =2 2 Up;
5)Ui=Un @ - @ Us;
6) F™" = @ Usij.
i,j

13



Proof:

1) This is clear from the definition of Uj;.

2)Let 0 #£v € U;; be an arbitrary nonzero vector and let m > 1 be the smallest
natural number with the property that the vectors v, p(v),...,¢©™(v) are linearly
dependent. Then there are elements ag,...,a,—1 € F, at least one of which is
nonzero, such that

P"(v) = ag + arp(v) + - + am1™ " (v).

Consider the polynomial t(z) = 2™ —ay,—12™ ' —- - -—ag € F[z]. Since (t(p))(v) =
(fi(@))(v) = 0, it follows that [(¢(x), f;(x))(¢)](v) = 0. But (t(z), fi(x)) is equal to
1 or to f;(z). If we assume that (¢(x), f;(x)) = 1, then v = 0, which contradicts the
choice of v. Hence, (t(z), fi(x)) = fi(x) and f;(z) divides ¢(x). Thus deg f;(z) <
degt(x) = m. On the other hand, the vectors v,¢(v),..., godeg fi(v) are linearly
dependent, since (f;(¢))(v) = 0, and from the minimality of m we obtain m =
deg f;. Therefore dim U;; > deg f;, and so

¢ ¢
I=dimpV; =) dimpUi; > deg fi =deg f =1
i=1 i=1
and dim FUij = ng fz
3) Let V be a ¢- invariant subspace of F" and let {0} # V C U;;. f 0 # v €V,

then the vectors v, o(v), ..., @deg fi=1(v) € V are linearly independent. Therefore
dim FV 2 dim FUij and V = U”

4) This follows from the fact that dim pU;; = dim pU;p = -+ = dim Uy, =
deg f;.

5) Let v € U;. Since F"* = V1 & --- @ Vi, we have v = vi + -+ + vy, where
v; € Vi, 5 =1,....k Then fi(¢)(v) = fi(p)(vi) + - -+ fi(¢)(vk) = 0, so that
filp)(v;) =0, ie., v; € U;. Hence, v; € U;; and

Ui=Uj+- +Us.

Assume that v € U;;NY_,,; Uis, thenv € Viandv e 3 - . Vi. But V;Ny_ . Vi =
{0}, so we obtain that v = 0. Thus

Ui=Un @ - @Us.

6) By property 5) we obtain that

t
F" = G?U = @Uij.
1= 2,7
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Proposition 10. Let W be a w-invariant subspace of U;. Then there exists a
natural number s < k such that W =2 US, where U} is isomorphic to the direct
sum of s copies of U;.

Proof: Let 0 # w1 € W. Then the vectors wi, (w1), .. ., ¢1¢8 fi=1(w) are linearly
independent. We define W, := £(w1, p(w1),. .., 098 /i=1(w)). Let 0 # wy € W
be a vector such that wo ¢ Wi. Then the vectors wa, ©(ws),. .., pdeg fim=1(wy) are
linearly independent. Define Wy := £(wa, (wa), ..., 98 fi=1(w,)). Note that

dim W7 = dim W5 = deg f;. We will prove that the vectors

7 (pdeg fi—1

w1, o(W1), ... (W1), Wa, (W), ..., U871 (w,)

are also linearly independent. Assume the opposite. Then there exist nonzero
polynomials hy(x), ho(z) € Flz], deghy,deghs < degf;, such that hy(B)w; +
ha(B)wsy = 0. Since f; is irreducible, we have that (hs, f;) =1, fori=1,...,t, and
therefore by the Euclidean algorithm there are polynomials a(x),b(z) € F[z], such
that a(x)ha(x) + b(x) fi(x) = 1. Hence, a(B)he(B)ws + b(B) f;(B)ws = wa. Now
wa € U; and therefore f;(B)ws = 0. Thus we obtain that a(B)ha(B)wy = wa.
From ho(B)(w2) = —h1(B)(w1) and the last equality we conclude that wy € W7.
This contradiction proves the statement. We proceed analogously until we obtain
that W = Wy @ --- @ W for some s < k. Since dimW; = deg f;, i =1,...,s, it
follows that W = Uj.

O
Theorem 7. Let W be a p—invariant subspace of F™. Then
WU e e U
for integers s; < k, 1 <1i <t. In particular,
t
dim W = Z sideg f;.
i=1
Proof: This follows immediately from Proposition 9 and Proposition 10 .
O

Definition 5. A code C with length n over F is called a k-quasi-twisted code
with respect to a € F* iff any codeword in C is again a codeword in C after an
a-constacyclic shift over k positions.

The following statement is clear from the definition.

Proposition 11. A linear code C with length n over F' is k-quasi-twisted iff C is
a p—invariant subspace of F™.
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Theorem 8. Let C be a linear k—quasi-twisted code with length n over F. Then

C=2Ul®---oUY
for integers s; < k, 1 <1i <t. In particular,

t
dimC =" s;deg f;.

i=1

Proof: This follows from Theorem 7 and Proposition 11.
U
Example 4. Substituting n =15, ¢ =2, k=5, =3 and a = 1 in (3.2) and
(3.4) gives the representation matrix

Bs

Bs

for the operator ¢ with respect to the basis g, with

001
B3 = <1 00 ) .
010
For the characteristic polynomial of B we have
5
fa(@) = (-1 — 1) = ~(f(2))",
where f(z) can be factorized into irreducible polynomials over GF(2) as
f(@) = filx) fao(z) = (x + 1) (2* + 2+ 1).
Let U; = Ker f;(p) for i = 1, 2. We define the following linear code
C =U,.
According to Theorem 6 we can write
Us=Uz & ® Uss,

where Us; = Uy NV and Uy = -+ = Uss. If we introduce subcodes C; := Uy;
for ¢ = 1,...5, then dim C; = deg f> = 2, again by Theorem 6. One can almost

immediately infer that
111
9(Bs) = fa(B3) = (1 11 > :

111

16



and

101
h(Bs) = f1(B3) = (1 10 ) .
011
So a parity check matrix for the subcode C;, i = 1,...,5, restricted to its support,
is the row matrix (1,1, 1). For C itself we find the parity check matrix

10000
01000
H=100100],
00010
00001

where 1 stands for (1,1,1) and 0 for (0,0,0). Hence, dimC' = 15 — 5 = 10, which
is in agreement with Theorem 8.
Taking two independent columns of h(Bs) yields a generator matrix for C;
(restricted to its support), e.g.
G, = (1 1 0) .

011
This gives rise to the following generator matrix for C' itself

a0000o0
b00O0O
0a000
0b0O0O
00a00
00booO|’
000ab0
000boO
0000a
0000D
with 0 = (0,0,0), a=(1,1,0) and b = (0,1, 1). This generator matrix G has been
written with respect to the basis g. When writing the rows of G with respect to
the standard basis e, the matrix takes the following form

100001000000000
000001000010000
010000100000000
000000100001000
001000010000000
000000010000100
000100001000000
000000001000010
000010000100000
000000000100001
000010000000001
000100000000010

17



Example 5. Now we take n =18, ¢ =5, k=3, | = 6 and a = 2, providing us
with matrices

000002

By 010000
B= Bg =

( B6B )’ 6 001000

6 000100

000010

The characteristic polynomial of B is
3
fa(@) = (@ =2)" = (f(2))°.
It turns out that we can write
f(@) = fi(z)fo(x) f3(z) = (x2 + 2)(x2 + x4+ 2)(;102 +4x 4+ 2),

where the f; are irreducible polynomials over GF'(5).
Again we define U; = Ker f;(p) for i = 1,2, 3, and we introduce the linear code

C= Ul S5 UQ.
The defining polynomial of C' is
g(z) = fi(z) fa(x) = 2* + 2 + da® + 22 + 4,

from which we obtain the matrix

402234
240223
424022
142402
114240
011424

The code of length 6 determined by g(z) is a constacyclic code C with respect to
2 € GF(5) with dimension 4 (cf. Theorem 5). Hence, the matrix g(Bg) has rank
6 — 4 = 2, as one can easy verify. By taking two independent rows, e. g. the first
two, one obtains a parity check matrix for C. A generator matrix for C' can be
constructed from the polynomial h(x) = f3(x) = 22 + 4z + 2 which determines the
matrix

200023
420002
142000
014200
001420
000142
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By taking the first four columns of h(Bs) we obtain a generator matrix for C :

241000

024100

002410

000241

That this matrix really generates a constacyclic code with respect to 2, can rather

easily be verified. It is sufficient to check that (200024) -which is the constacyclic

permutation of the last word of the matrix- is a linear combination of the first three.
Just like in Example 4, it follows that the following matrix generates the com-

plete code C':

Gy =

Ggz O O
G=|0 Gz O],
0 O Gg

where O stands for the (4, 6)—zeromatrix. The rows in this matrix are codewords
of C with respect to the basis g. To obtain a generator with respect to the standard
basis e, one has to carry out the basis transformation, described on page 9.

Example 6. Like in Example 5 we take again n =18, ¢ =5, k=3,1=6
and a = 2. Now we consider the codes Cy := U; and Cy := Us.

The code Cy is defined by g;(z) = fi(z) = 22 + 2. Similarly as in all previous
examples we find the matrices

200020
020002
102000
010200
001020
000102

91(Bs) =

and
402010

040201
304020
030402
103040
010304
Since dim €7 = 2, a generator matrix G for (7 (the restriction of C; with respect
to its support) is obtained by taking 2 independent columns of hi(Bsg).
The code Cy is defined by ga(z) = fa(z) = 2 + 2 + 2. For this code we find the
matrices

h1(Bg) =
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200022
120002
112000
011200
001120
000112

g2(Bs) =

and
402331

340233
434023
443402
144340
014434

A generator matrix Gg; for C, can be obtained by taking 2 independent columns
of hQ(BG)

Finally, the code C3 := Us is defined by g3(x) = f3(x) = 22 + 4z + 2. This code
is the dual of C' = Cy & Cs. So, the matrix g3(Bg) is equal to the matrix h(Bg)
presented in Example 5. Indeed, we find

200023
420002
142000
93(Bs) =1 014200
001420

000142

ha(Bg) =

while
402234

240223
424022
142402
114240
011424

A generator matrix Gg; for (5 is obtained by taking 2 independent columns of
hs(Bs).
It will be obvious that the matrix

h3(Bs) =

Gs O O
Gi=[ 0O Gg O
O O Gg
is a generator matrix for the complete code C;, for i = 1,2, 3.
One can easily check that the six rows of the matrices G;, i = 1,2,3, are
independent. So, it follows that

Fr"=U,0U;dUs
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(cf. Corollary 1). Furthermore, the minimal p—invariant subspace U;, is spanned
by the rows of the submatrix (G- O O). We shall denote this fact by

Un =Gz 00), i=1,2,3.
Similarly, we can write
Uip = (0 G 0), i=1,2,3,

and

Uis =0 0 Gg,), i=1,2,3.
It follows immediately that
Ui=Ujn ®Up ®Us3

and
Vi = Uy @ Uy @ Usy,

which illustrates Theorem 6 (5) and Corollary 2, respectively.
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