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In the coding theory the description of linear cyclic codes in terms of commutative
algebra is well known. Since linear codes have the structure of linear subspaces
of F n, the description of linear cyclic codes in terms of linear algebra is natural.
We observe that the cyclic shift map is a linear operator in F n. Our approach is
to consider cyclic codes as invariant subspaces of F n with respect to this operator
and thus obtain a description of cyclic codes.
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1. INTRODUCTION

In the theory of cyclic codes it is a common practice to require that (n, q) = 1,
where n is the world length and F = GF(q) is the alphabet. We will keep to
this practice too. The linear cyclic codes are traditionally described using the
methods of commutative algebra (see [2] and [3]). Since the linear codes have
the structure of linear subspaces of Fn, the description of linear cyclic codes in
terms of linear algebra is natural.

The main purpose of this paper is to study some properties of cyclic codes
as invariant linear subspaces. Some generalizations for consta-cyclic codes are
considered.

2. SOME LINEAR ALGEBRA

Let F = GF(q) and let Fn be the n-dimensional vector space over F with
the standard basis e1 = (1, 0, . . . , 0), e2 = (0, 1, . . . , 0), . . . , en = (0, 0, . . . , 1).



Let

ϕ :
{

Fn → Fn

(x1, x2, . . . , xn) 7→ (xn, x1, . . . , xn−1)
.

Then ϕ ∈ Hom Fn and has the following matrix

A =




0 0 0 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




in the basis e1, e2, . . . , en. Note that At = A−1 and An = E. The characteristic
polynomial of A is

fA(x) =

∣∣∣∣∣∣∣∣∣∣

−x 0 0 . . . 1
1 −x 0 . . . 0
0 1 −x . . . 0
...

...
...

. . .
...

0 0 0 . . . −x

∣∣∣∣∣∣∣∣∣∣

= (−1)n(xn − 1).

Let us denote it by f(x).
For our purposes we need the following well known fact.

Proposition 1. Let U be a ϕ-invariant subspace of V and dim F V = n. Then
fϕ|U (x) divides fϕ(x). In particular, if V = U ⊕ W and W is ϕ-invariant
subspace of Fn then fϕ(x) = fϕ|U (x)fϕ|W (x).

Let f(x) = (−1)nf1(x) . . . ft(x) be the factorization of f(x) into irreducible
factors. We will assume that (n, q) = 1. In that case f(x) has distinct factors
fi(x), i = 1, . . . , t, which are monic.

Let denote by Ui the space of the solutions of the homogeneous system with
matrix fi(A) for i = 1, . . . , t, i.e. Ui = Ker fi(ϕ).

Theorem 1. The subspaces Ui of Fn satisfy the following conditions:
1) Ui is a ϕ-invariant subspace of Fn;

2) Fn = U1 ⊕ · · · ⊕ Ut;

3) dim Ui = deg fi = ki;

4) fϕ|Ui
(x) = (−1)kifi(x);

5) Ui is a minimal ϕ-invariant subspace of Fn.

Proof:
1) Let u ∈ Ui, i.e. fi(A)u = 0. Then fi(A)ϕ(u) = fi(A)Au = Afi(A)u = 0,

so that ϕ(u) ∈ Ui.
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2) Let f̂i(x) = f(x)
fi(x) for i = 1, . . . , t. Since (f̂1(x), . . . , f̂t(x)) = 1, by the

Euclidean algorithm there are polynomials a1(x), . . . , at(x) ∈ F [x] so that

a1(x)f̂1(x) + · · ·+ at(x)f̂t(x) = 1.

Then for every vector v ∈ V the condition v = a1(A)f̂1(A)v + · · ·+at(A)f̂t(A)v
holds. Let vi = ai(A)f̂i(A)v. Then fi(A)vi = ai(A)f(A)v = 0, so that vi ∈ Ui.
Hence

Fn = U1 + · · ·+ Ut.

Assume that v ∈ Ui ∩
∑

j 6=i Uj , then fi(A)v = 0, f̂i(A)v = 0. Since (fi, f̂i) = 1,

there are polynomials a(x), b(x) ∈ F [x], such that a(x)fi(x) + b(x)f̂i(x) = 1.
Hence a(A)fi(A)v + b(A)f̂i(A)v = v = 0, so that Ui ∩

∑
j 6=i Uj = {0}. Thus

Fn = U1 ⊕ · · · ⊕ Ut.

3) Let g ∈ Ui be an arbitrary nonzero vector and let k ≥ 1 be the smallest
natural number with the property that the vectors g, ϕ(g), . . . , ϕk(g) are linearly
dependent . Then there are elements c0, . . . , ck−1 ∈ F, at least one of which is
nonzero , such that

ϕk(g) = c0g + c1ϕ(g) + · · ·+ ck−1ϕ
k−1(g).

Consider the polynomial t(x) = xk−ck−1x
k−1−· · ·−c0 ∈ F [x]. Since (t(ϕ))(g) =

(fi(ϕ))(g) = 0, it follows that [(t(x), fi(x))(ϕ)](g) = 0. But (t(x), fi(x)) is 1 or
fi(x). Hence (t(x), fi(x)) = fi(x) and fi(x) divides t(x). Thus ki = deg fi(x) ≤
deg t(x) = k. On the other hand, the vectors g, ϕ(g), . . . , ϕki(g) are linearly
dependent, since (fi(ϕ))(g) = 0, and from the minimality of k we obtain k = ki.
Then dim Ui ≥ ki. Therefore

n = dim F Fn =
t∑

i=1

dim F Ui ≥
t∑

i=1

ki =
t∑

i=1

deg fi = deg f = n

and dim F Ui = ki.

4) Let g
(i)
1 , . . . , g

(i)
ki

be a basis of Ui over F, i = 1, . . . , t, and let Ai be the
matrix of ϕ|Ui in that basis. Let f̃i = fϕ|Ui

. Suppose that (f̃i, fi) = 1. Hence
there are polynomials a(x), b(x) ∈ F [x], such that a(x)f̃i(x) + b(x)fi(x) = 1.
Then a(Ai)f̃i(Ai) + b(Ai)fi(Ai) = E. Therefore b(Ai)fi(Ai) = E. We will show
that fi(Ai) = 0, which contradicts the last equation.

By property 2) we obtain that g
(1)
1 , . . . , g

(1)
k1

, . . . , g
(t)
1 , . . . , g

(t)
kt

is a basis of Fn

and the matrix of ϕ in that basis is

A′ =




A1

A2

. . .
At


 .
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Beside this A′ = T−1AT, where T is the change basis matrix from the standard
basis of Fn to that one. Then

fi(A′) =




fi(A1)
fi(A2)

. . .
fi(At)


 = fi(T−1AT ) = T−1fi(A)T.

Let g
(i)
j = λ

(i)
j1 e1 + · · ·+ λ

(i)
j nen, j = 1, . . . , ki. Since g

(i)
j ∈ Ui, we obtain that

fi(A′)




0
...
1
...
0


 = T−1fi(A)T




0
...
1
...
0


 = T−1fi(A)




λ
(i)
j1

...
λ

(i)
j n


 = 0,

where 1 is on the (k1+· · ·+ki−1+j)−th position. According to the last equation
fi(Ai) = 0. Therefore (fi, f̃i) 6= 1. Since fi and f̃i are polynomials of the same
degree ki and fi is monic and irreducible, we obtain that f̃i = (−1)kifi.

5) Let U be ϕ- invariant subspace of Fn and let {0} 6= U ⊆ Ui. Then
by Proposition 1 we obtain that fϕ|U divides fi. Since the polynomial fi is
irreducible, dim F U = dim F Ui and U = Ui.

¤

Proposition 2. Let U be a ϕ−invariant subspace of Fn. Then U is a direct
sum of some of the minimal ϕ−invariant subspaces Ui of Fn.

Proof: Let Ũi = U ∩Ui, i = 1, . . . , t. Then Ũi is {0} or Ui, since Ui are minimal.
Therefore

U = U ∩ Fn = U ∩ (U1 ⊕ · · · ⊕ Ut) = Ũ1 ⊕ · · · ⊕ Ũt =
⊕

Ui≤U

Ui.

¤

3. LINEAR CYCLIC CODES

Definition 1. A code C with length n over F is called cyclic, if whenever
x = (c1, c2, . . . , cn) is in C, so is its cycle shift y = (cn, c1, . . . , cn−1).

The following statement is clear from the definitions.

Proposition 3. A linear code C with length n over F is cyclic iff C is a
ϕ−invariant subspace of Fn.
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Theorem 2. Let C be a linear cyclic code with length n over F. Then the
following facts hold.

1) C = Ui1 ⊕ · · · ⊕ Uis
for some of the minimal ϕ−invariant subspaces Uir

of Fn and dim F C = ki1 + · · ·+ kis
= k;

2) fϕ|C (x) = (−1)kfi1(x) . . . fis
(x) = g(x);

3) c ∈ C iff g(A)c = 0;

4) the polynomial g(x) has the smallest degree with the property 3);

5) r (g(A)) = n− k.

Proof:
1) This follows from Proposition 2.

2) Let g
(ir)
1 , . . . , g

(ir)
kir

be a basis of Uir
over F, r = 1, . . . , s. Then g

(i1)
1 , . . . ,

g
(i1)
ki1

, . . . , g
(is)
1 , . . . , g

(is)
kis

is a basis of C over F and ϕ|C has a matrix




Ai1

Ai2

. . .
Ais




in that basis. Hence

fϕ|C (x) = f̃i1(x) . . . f̃is(x) = (−1)ki1+···+kis fi1(x) . . . fis(x).

Note that Air and f̃ir (x) are defined as in Theorem 1.

3) Let c ∈ C. Then c = ui1 + · · · + uis for some uir ∈ Uir , r = 1, . . . , s and
g(A)c = (−1)k[(fi1 . . . fis)(A)ui1 + · · ·+ (fi1 . . . fis)(A)uis ] = 0.

Conversely suppose that g(A)c = 0 for some c ∈ Fn and let c = u1 + · · · +
ut, ui ∈ Ui. Then g(A)c = (−1)k[(fi1 . . . fis)(A)u1 + · · ·+(fi1 . . . fis)(A)ut] = 0,
so that g(A)[uj1 + · · ·+ ujl

] = 0, where {j1, . . . jl} = {1, . . . , t}\{i1, . . . , is}. Let
v = uj1 + · · ·+ ujl

and

h(x) =
(−1)n(xn − 1)

g(x)
=

f(x)
g(x)

.

Since (h(x), g(x)) = 1, there are polynomials a(x), b(x) ∈ F [x] so that a(x)h(x)+
b(x)g(x) = 1. Hence a(A)h(A)v+b(A)g(A)v = v = 0 and c = ui1 +· · ·+uis ∈ C.

4) Suppose that b(x) ∈ F [x] is a nonzero polynomial of smallest degree
such that b(A)c = 0 for all c ∈ C. By the division algorithm in F [x] there
are polynomials q(x), r(x) such that g(x) = b(x)q(x) + r(x), where deg r(x) <
deg b(x). Then for each vector c ∈ C we have g(A)c = q(A)b(A)c + r(A)c and
hence r(A)c = 0. But this contradicts the choice of b(x) unless r(x) is identically
zero. Thus, b(x) divides g(x). If deg b(x) < deg g(x), then b(x) is a product of
some of the irreducible factors of g(x) and without loss of generality we can
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suppose that b(x) = (−1)ki1+···+kim fi1 . . . fim and m < s. Let us consider the
code C ′ = Ui1⊕· · ·⊕Uim ⊂ C. Then b(x) = fϕ|C′ and by the equation g(A)c = 0
for all c ∈ C we obtain that C ⊆ C ′. This contradiction proves the statement.

5) By property 3) C is the space of the solutions of the homogeneous system
with matrix g(A). Then dim F C = k = n−r (g(A)), which proves the statement.

¤

Definition 2. Let x = (x1, . . . , xn) and y = (y1 . . . , yn) be two vectors in Fn.
We define an inner product over F by 〈x, y〉 = x1y1 + · · ·+ xnyn. If 〈x, y〉 = 0,
we say that x and y are orthogonal to each other.

Definition 3. Let C be a linear code over F. We define the dual of C (which is
denoted by C⊥) to be the set of all vectors which are orthogonal to all codewords
in C, i.e.,

C⊥ = {v ∈ Fn | 〈v, c〉 = 0 for all c ∈ C}.
It is well known that if C is k−dimensional, then C⊥ is (n−k)−dimensional.

Proposition 4. The dual of a linear cyclic code is also cyclic.

Proof: Let h = (h1, . . . , hn) ∈ C⊥ and c = (c1, . . . , cn) ∈ C. We show that
ϕ(h) = (hn, h1, . . . , hn−1) ∈ C⊥. We have

〈ϕ(h), c〉 = c1hn + · · ·+ cnhn−1 = 〈h, ϕ−1(c)〉 = 〈h, ϕn−1(c)〉 = 0,

which proves the statement.
¤

Proposition 5. The matrix H, which rows are arbitrary n − k linearly inde-
pendent rows of g(A), is a parity check matrix of C.

Proof: The proof follows from the equation g(A)c = 0 for every vector c ∈ C
and the fact that r (g(A)) = n− k.

¤
Let gl1 , . . . , gln−k

be a basis of C⊥, where glr is a lr−th vector row of g(A). By
the equation g(A)h(A) = 0 we obtain that 〈glr , hi〉 = 0 for each i = 1, . . . , n, r =
1, . . . , n−k. The last equation gives us that the columns hi of h(A) are codewords
in C.

We show that r (h(A)) = k. By the inequality of Sylvester we obtain that
r (0) = 0 ≥ r (g(A))+r (h(A))−n. Since r (h(A)) ≤ n−r (g(A)) = n−(n−k) = k.
On the other hand the inequality of Sylvester, applied to the product h(A) =
(−1)n−kfj1(A) . . . fjl

(A), gives us that r (h(A)) ≥ rj1 + · · · + rjl
− n(l − 1) =

nl− kj1 − · · · − kjl
− nl + n = n− (kj1 + · · ·+ kjl

) = n− (n− ki1 − · · · − kis) =
n − (n − k) = k. Therefore r (h(A)) = k. Thus we have proved the following
proposition.

Proposition 6. The matrix G, which rows are arbitrary k linearly independent
rows of (h(A))t

, is a generator matrix of the code C.
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Lemma 1. If g(x) ∈ F [x], then g(A−1) = g(At) = (g(A))t
. In particular, if n

divides deg g(x), then g∗(A) = (g(A))t
, where g∗(x) is the reciprocal polynomial

of g(x).

Proof: Let g(x) = g0x
k + g1x

k−1 + · · · + gk−1x + gk, then g(A) = g0A
k +

g1A
k−1 + · · · + gk−1A + gkE. Transposing both sides of the last equation, we

obtain that (g(A))t = g0(Ak)t + g1(Ak−1)t + · · · + gk−1A
t + gkE = g0(At)k +

g1(At)k−1 + · · ·+ gk−1A
t + gkE = g(At).

In particular, if deg g(x) = ns for some s ∈ N, then g∗(A) = Ansg(A−1)
= Ansg(At) = g(At) = (g(A))t

.
¤

Let fϕ|
C⊥

(x) = h̃. By Theorem 2 it follows that h̃ is the polynomial of the
smallest degree such that h̃(A)u = 0 for every u ∈ C⊥. Let h∗(x) = h̃(x)q(x) +
r(x), where deg r(x) < deg h̃(x). Then by Lemma 1 h∗(A) = An−k(h(A))t =
h̃(A)q(A) + r(A), hence for every vector u ∈ C⊥ the assertion An−k(h(A))t

u =
q(A)h̃(A)u+r(A)u holds, so that r(x) = 0. Thus h̃(x) divides h∗(x). Since both
are polynomials of the same degree , h∗(x) = ah̃(x), where a ∈ F is the leading
coefficient of the product f∗j1(x) . . . f∗jl

(x). Thus

h̃ =
1
a
h∗ = (−1)n−k 1

a
f∗j1 . . . f∗jl

=
l∏

r=1

1
ajr

f∗jr
= (−1)n−kfs1 . . . fsl

,

where ajr is the leading coefficient of f∗jr
(x). Note that the polynomials fsr (x) =

1
ajr

f∗jr
(x) are monic irreducible and divide f(x) = (−1)n(xn − 1).

Now we show that C⊥ = Us1 ⊕ · · · ⊕ Usl
. By Theorem 2 C⊥ is the space

of the solutions of the homogeneous system with matrix h̃(A). Let u ∈ U =
Us1 ⊕ · · · ⊕ Usl

and let u = us1 + · · ·+ usl
for usr ∈ Usr , r = 1, . . . , l. Then

h̃(A)u = (−1)n−k[(fs1 . . . fsl
)(A)us1 + · · ·+ (fs1 . . . fsl

)(A)usl
] = 0.

Hence U ≤ C⊥. Since dim F U = dim F C⊥, then

C⊥ = Us1 ⊕ · · · ⊕ Usl
.

Thus we have proved the following theorem.

Theorem 3. Let C = Ui1 ⊕ · · · ⊕ Uis be a linear cyclic code over F and
{j1, . . . , jl} = {1, . . . , t}\{i1, . . . , is}. Then the dual code of C is given by C⊥ =
Us1 ⊕ · · · ⊕ Usl

and f̃sr (x) = (−1)ksr fsr (x) = (−1)ksr 1
ajr

f∗jr
(x), where f∗jr

(x)
is the reciprocal polynomial of fjr (x) with leading coefficient equals to ajr , r =
1, . . . , l.

Let C ⊂ Fn be an arbitrary, not necessary linear, cyclic code. Let us consider
the action of the group G = 〈ϕ〉 = {id, ϕ, . . . , ϕn−1} ∼= Cn over Fn. Then the
following theorem holds.
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Theorem 4. C = Ω1∪ . . .∪Ωs, where Ωi are G-orbits and ki = |Ωi| is a divisor

of |G| = n. In particural, |C| =
s∑

i=1

ki.

4. CONSTA-CYCLIC CODES

In this section we give a generalization of the results obtained in the previous
sections.

Definition 4. Let a be a nonzero element of F . A code C with length n over
F is called consta-cyclic with respect to a, if whenever x = (c1, c2, . . . , cn) is in
C, so is y = (acn, c1, . . . , cn−1).

Let a ∈ F . We consider the linear operator ψa ∈ Hom Fn

ψa : (x1, x2, . . . , xn) 7→ (axn, x1, . . . , xn−1).

Its matrix in the standard basis e1, e2,. . . en of Fn is

Ba =




0 0 0 . . . a
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




.

The relations B−1
a = Bt

1
a

and Bn
a = aE hold. The characteristic polynomial

of Ba is fBa(x) = (−1)n(xn − a). Let denote it by fa(x). We assume that
(n, q) = 1. The polynomial fa(x) has no multiple roots and splits to distinct
irreducible monic factors fa(x) = (−1)nf1(x) . . . ft(x). Let Ui = Ker fi(ψa).
It’s easy to see that Theorem 1 and Proposition 2 are true in this case too.

The following statement is clear from the definition.

Proposition 7. A linear code C with length n over F is consta-cyclic iff C is
a ψa−invariant subspace of Fn.

The next theorem is analogous to Theorem 2 and we omit its proof.

Theorem 5. Let C be a linear consta-cyclic code with length n over F. Then
the following facts hold.

1) C = Ui1 ⊕ · · · ⊕Uis for some minimal ψa−invariant subspaces Uir of Fn

and dim F C = ki1 + · · ·+ kis = k;
2) fψa|C (x) = (−1)kfi1(x) . . . fis(x) = g(x);
3) c ∈ C iff g(Ba)c = 0;
4) the polynomial g(x) has the smallest degree with the property 3);
5) r (g(Ba)) = n− k.
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Proposition 8. The dual of a linear consta-cyclic code with respect to a is

consta-cyclic with respect to
1
a
.

Proof: The proof follows from the equality

〈ψa(c), h〉 = 〈Bac, h〉 = 〈c,Bt
ah〉 = 〈c,B−1

1
a

h〉 = a〈c, ψn−1
1
a

(h)〉 = 0

for every c ∈ C and h ∈ C⊥.
¤
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