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1 Introduction

Let C be a cyclic code of length n over the finite field F, = GF(q). Leader
of a coset a + C' is the vector with the smallest Hamming weight in that coset
and by wt(a + C) we denote the weight of the coset’s leader of a + C, i.e.
wt(a + C) = min{wt(z)|x € a + C}. Some applications of codes require the
knowledge of the spectrum of leaders of all cosets of a code. Let us denote by
we the number of cosets a + C' for which wt(a + C) = e. It is clear that wy =1
fwo+wi ..+ w, = q"_k and wy = 0, for every t > n — k. The spectrum of
the of coset leaders of the code C' is w(C) = (wo, w1, ., Wp—k)-

Let us consider the standard correspondence between vectors from the n - di-
mensional vector space F," and polynomials from the factor ring of the poly-
nomials Fy[z]/(z™ — 1), defined by

v=(ag,a1,...,an_1) < v(x) =ag + a1z + -+ a,_12" L.
A generator polynomial g(x) of the code C is a nonzero polynomial of the
smallest degree such that ¢ € C' if and only if g(z)|c(x). If C is a cyclic [n, k]
code with the generator polynomial g(z), then the degree of g(z) is n — k and

the number of cosets a + C' of code C' is equal to ¢"*.

In all the known tables the cyclic codes are grouped by the code length and by



the roots of the generator polynomials. It is proved in this paper that there
is a connection between spectrum of coset leaders of cyclic codes over a finite
field GF(q) with equal generator polynomial and non equal lengths. We suggest
a method for efficient calculation of the complete coset weight distributions of
cyclic codes, based on the cyclic structure of codes.

2 Cosets of cyclic codes with equal generator poly-
nomial

Let C' be a cyclic [n, k] code over the finite field with ¢ elements F,. The
generator polynomial g(x) of C has degree deg(g(z)) = n—k, g(x)|(z" —1) and

h(zx) = z;(g)l is parity check polynomial of the code C.

Let ng = ord (g(x)) be the smallest integer such that g(x)|(z™ — 1) and Cj is
a cyclic code with length ng and generator polynomial g(z). If n = s.ng then

the parity check polynomial of the code C' is
=1 x5 —1
h(z) = = ho
glxz) — aro—1

and the dual of the code C is s times repeated the dual of Cj.




Theorem 1. Let a € Fy, a # 0, n = ngs and g(z) € Fy[z] be a polynomial
such that g | (" —a). Then the [n, k] a®-constacyclic code C' = (g(x)) and the
[no, k] a-constacyclic code Cy = (g(x)) have equal spectra of coset leaders, i.e.

w(C) = w(Cy).

Proof. Let ¢ € F;"* and c] be the extended vector ¢l = (c,0,...,0) from F7.
Let a correspondence ¢ : {co + Cp | co € F;"°} — {c+C | c € F,"} between
the cosets of code Cy and C be defined as p(co + Cp) = ¢l + C. It is clear
that cg + Co = ¢+ Cy < ¢yl + C = c] + C and therefore the map ¢ is defined
propriety and it is injective. The number of cosets of codes C and Cy are equal
then the correspondence ¢ is a bijection.

For z = (29,...,2n—1) € Fy", let us consider the vector z| = (yo,...,Yng—1) €
F,"°, where y; = zj+azjiny+-- ‘—i—as_le(s,l)nO foralli € {0,...,n9—1}. The
polynomial z| () is the remainder of the division of z(x) by 2™ — a. Therefore
(z])7 € z+ C. It is clear that if y; # 0 then wt(z;) + Wt(2iqn,) + -+ +
Wt(2i4(s—1)no) = 1. Hence wt(z]) < wt(z).

If z is the leader of ¢ + C' then z| € ¢ + Cy and
wt(c] + C) = wt(z) > wt(z]) > wt(c + Cp).
Let ¢ € F,"° be the leader of the coset ¢ 4+ Cy. Then

wt(cl 4+ C) < wt(cT) = wt(c) = wt(c + Cp).

Therefore wt(c 4+ Cp) = wt(p(c + Cp)) . O

3 The cyclic group action on the cosets of a cyclic
code

By V we will denote the n-dimensional vector space over Fy. Then the map
04 : V — V will be the constacyclic shift of the words of V/

Ua(607 C1,C2, ... 7Cn71) = (acnfh €0, C15 - - - 707172)-
The constacyclic shift o, is an automorphism of constacyclic [n, k] code C' and

generates the cyclic group G of order divided by n.

Lemma 2. Let C be a cyclic [n, k] code and a € V. Let B = {o(2)|z € a+ C}.
Then B is a coset of the code C and B = o(a) + C.

Proof. o(a+c1) —o(a+c2) = o(a) + o(c1) —o(a) —o(c2) = o(c1 — ¢2) =
= U(Cg) eC. O



It follows from this lemma that we can consider the action of G on the set of all
cosets of the code C by o(a+C) = o(a)+ C. In this way the set of all cosets is
partitioned to non intersecting orbits O(a + C) = {ot(a) + C|t =0,...,n — 1}.
All cosets belonging to one and the same orbit have one and the same weight
distribution.

Theorem 3. Let C be a cyclic [n, k] code, a ¢ C and d(z) = ged(g(z), a(x)).

Then the length of the orbit O(a + C) is m, where m = ord <chEx§>

x
Proof. The length of each orbit is a divisor of ng where ng = ord (g(x)) is
the smallest integer such that g(z)|(z™ — 1).Let a ¢ C. To calculate the
length of the orbit O(a + C) we have to find the smallest integer m such that
o™(a) + C = a + C, which is equivalent to g(z)|(z™ — 1)a(x).
case 1. If ged(g(z),a(z)) = 1 then g(x)|(a™ — 1)a(z) iff g(z)|(z™ — 1). Then
m = ord (g(x)).
case 2. If ged(g(x),a(x)) = d(x) # 1 and t(z) = cglgg Let a;(x) = Zgg. It is
clear that ¢(z)|ai(z)(z™ — 1), hence t(z)|(™ — 1). Then m = ord (¢t(z)). O

The following has been proved in [2]:

Theorem 4. Let C be a cyclic [n, k] code with a generator polynomial g(x) =
2"k 4 g, k2P 4 g1z + go and let a = (ag, a1, ..., an_k_1,0,...,0)
be a vector from the space V. Then the following two cosets coincide

ola)+C=r+0C,

where 7 = (Oaa()aala ey 2,0, .. 70) - an—k—l(g0>gla oy Gn—k—1,0,. .. 70)

For a = (ag,a1,...,an—k-1,0,...,0) we define

qﬁ(a) = (0, apg,a1y...,0p_fk—92, 0, e ,0) — an,k,l(go,gl, cees9n—k—1, 0, e ,0).

We can obtain one representative from each coset of one and the same orbit
by taking the vectors a = (ag,a1,...,a,—x_1,0,...,0), ¢*(a),...,¢" *(a). If
the last k coordinates of the vectors a and b are zeroes then they belong to the
cosets from one and the same orbit iff there exists s such that b = ¢*(a).

Let the parity check matrix of the code C' be in the form H = [I,,_x|B]. If
a = (ap,ai,...,ap—k-1,0,...,0) is a vector from V then its syndrome is s(a) =
Ha! = (ag,a1,...,a,_x_1)'. According to Theorem 4 we have o(a)+C = r+C
and therefore

s(o(a)) = (0,a0,a1,...,0n—k—2) — Gn—k—1(90, 91, - - -, Gn—k—1)-



Therefore from the syndrome of a word of V' we are able to compute the syn-
dromes of all its cyclic shifts.

The covering radii of some ternary cyclic codes are determined in [1]. In [2]
and [3] are given the weight distributions of the leaders of the cosets of some
ternary cyclic codes.

As an illustration we present the table of ternary cyclic codes with generator
polynomials of degree 5. Every such code has 243 cosets and in the table
the number of orbits of the cosets for all codes is given. To calculate the coset
leaders weight spectrum of a code it is sufficient to take only one coset from each
orbit. The full table of all ternary codes with generator polynomials of degree
less than 6 is given in [3]. In the table bellow, the polynomials are represented
by their coefficients. Namely g(z) = go + g1z + ... + gma™ is presented as the

string gog1-.-gm-



TABLE 1. Coset leaders weight distributions of irreducible ternary cyclic codes with

generator polynomial of degree 5

. number
N | deg polynomial n k d of orbits Spectrum
irreducible ternary cyclic codes

1|5 221201; 201211 11s | 11s—5 |5 or 2 23 (1,22,220,0,0,0)
215 122201; 102221 22s | 225 —5 2 12 (1,22,220,0,0,0)

220001;211001;210101;

201101;221101;211201;

202201;200011;210011;
3| 5 [221011;212111;220211; |121s|121s—5|3 or 2 2 (1,242,0,0,0,0)

202211;220021;202021;

212021;210121;211121

222121;200221;201221;

120001;112001;110101;

102101;122101;112201;

120011;111011;121111;
| 5 ooy oo gy || 0000

100021;110021;111121;

112111;122021;

120221;101221

ternary cyclic codes without multiple roots

515 200001 55 | bs—5 2 51 (1,10, 40, 80, 80, 32)
6|5 111201; 102111 8 | 8 —5 |5 or2 36 (1,16,112,108,6,0)
715 212201;201121 8 | 8 —5 |[5or2 35 (1,16,112,108,6,0)
8|5 210021 8 | 8 —5 |4 or?2 33 (1,16,82,96,48,0)
9|5 110011 8 | 8 —5 |4 or?2 32 (1,16,82,96,48,0)
10| 5 100001 10s | 10s —5 2 26 (1,10, 40, 80, 80, 32)
11| 5 122221 10s | 10s —5 |4 or 2 34 (1,20,132,90,0,0)
12| 5 221211 10s | 10s —5 |4 or 2 28 (1,20,132,90,0,0)
13| 5 121221; 122121 16s | 16s—5 |3 or 2 18 (1,32,210,0,0,0)
14| 5 221111; 222211 16s | 16s —5 |3 or 2 17 (1,32,210,0,0,0)
15| 5 222201;201111 20s | 20s —5 |4 or 2 15 (1,40,202,0,0,0)
16| 5 102121; 121201 20s | 20s —5 |4 or 2 14 (1,40, 202,0,0,0)
5 | ORI T T e s | 46,00
18] 5 ggﬁgigﬁgﬁ’ 26s | 26s —5 |3 or 2 15 (1,52,184,6,0,0)
19 5 gég?gi;?;ﬁ’ 40s | 40s —5 |3 or 2 9 (1,80,162,0,0,0)
20| 5 ﬁf;ﬁ‘f%é} 40s | 40s—5 [3or2| 8 | (1,80,162,0,0,0)
21| 5 ggg?gtg;(;g;’ 52s | 52s —5 |3 or 2 9 (1,104,138,0,0,0)
22| 5 100121;110221; 52s | 52s —5 |3 or 2 8 (1,104,138,0,0,0)

121001;122011




120111;111021 ;102021;
23| 5 |120201;101001; 110211; | 80s | 80s — 5 |3 or 2 6 (1,160,82,0,0,0)
112011;100101
220201; 201011;212011;
24| 5 |220121; 210221;211021; | 80s | 80s — 5 |3 or 2 5 (1,160, 82,0,0,0)
200101; 202001
101111; 111101;121021;
120121; 112121;121211;
2% 5 ;ggg‘ﬁ ;ggfg}ggg}; 10451045 —5|30r 2| 6 | (1,208,34,0,0,0)
200201; 201001;222221;
211111
ternary cyclic codes with multiple roots
%] 5 212121 6s | 6s—5 |6or2] 49 |(1,12,60,140,30,0)
27| 5 111111 6s 6s—5 |6 or 2 46 (1,12, 60, 140, 30, 0)
28] 5 222111 9s | 9s—5 |3o0r2| 35 |(1,18,114,108,2,0)
29| 5 120021 12s | 12s—5 |3or 2| 40 (1,24,74, 96, 48, 0)
30| 5 220011 12s | 12s —5 |3 or 2 39 (1,24,74,96,48,0)
31| 5 112211 12s | 12s—5 [3or2| 26 |(1,24,134,72,12,0)
32| 5 211221 125 | 12s—5 [3or2| 27 |(1,24,134,72,12,0)
33| 5 101101 125 | 12s—5 [4or2| 28 (1,24,146,72,0,0)
34| 5 202101 125 | 125 —5 |4 or 2 33 (1,24,146,72,0,0)
350 5 121121 18s | 18s—5 | 2 18 | (1,18,114,108,2,0)
36| 5 102201 18s | 18s—5 [3or2| 34 | (1,36,134,72,0,0)
37| 5 201201 18s | 18s—5 [3or2| 27 | (1,36,134,72,0,0)
38] 5 122211; 112221 24s | 24s—5 |3or 2| 22 (1,48,122,72,0,0)
39| 5 211211; 221221 24s | 24s—5 |3or2| 17 | (1,48,122,72,0,0)
40| 5 221001; 200211 2s | 245 —5 |3or2| 25 (1,48,182,12,0,0)
41| 5 100221; 122001 24s | 24s —5 |3 or 2 24 (1,48,182,12,0,0)
42| 5 202011; 220101 24s | 24s —5 |3 or 2 15 (1,48,194,0,0,0)
43| 5 120101; 101021 2s | 245 —5 |3or2| 14 (1,48,194,0,0,0)
44| 5 211011; 220221 39s | 39s—5 |3 or 2 15 (1,78,158,6,0,0)
45| 5 201021; 210201 39s | 39s—5 |3 or 2 15 (1,78,158,6,0,0)
46| 5 112021; 120211 78s | 78s — 5 2 8 (1,78,158,6,0,0)
47| 5 110201; 102011 78s | 785 — 5 2 8 (1,78,158,6,0,0)
48| 5 200021; 210001 78s | 78 — 5 |3 or 2 9 (1,156,86,0,0,0)
49| 5 222101; 202111 78s | 78— 5 |3o0r2| 9 (1,156, 86,0,0,0)
50| 5 100011; 110001 78s | 78 —5 |3 or 2 10 (1,156,86,0,0,0)
51| 5 101121; 121101 78s | 785 —5 |3 or2| 10 (1,156,86,0,0,0)
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