An upper bound on the covering radius of a class of cyclic codes ${ }^{1}$

Evgeniya Velikova
velikova@fmi.uni-sofia.bg
Asen Bojilov bojilov@fmi.uni-sofia.bg

Faculty of Mathematics and Informatics, Sofia University,
5 James Baucher blvd, Sofia, BULGARIA

Abstract. In this paper we consider a class of cyclic $\left[p^{m}-1, p^{m}-2 m-1\right]$-codes over \mathbb{Z}_{p}, where $p \neq 2$ is a prime number, and we show that these codes have covering radius at most 3 .

1 On the number of solutions of some equations

Let F be the Galois field $\operatorname{GF}(q)$ where $q=p^{m}$ and $p=\operatorname{char} F$ is prime. We assume that $p \neq 2$ and that β is a generator of the multiplicative group F^{*} of the field F. Let us define the following sets

$$
Q=\left\langle\beta^{2}\right\rangle \cup\{0\}=\left\{a \in F \mid \exists b \in F: a=b^{2}\right\}
$$

of the perfect squares in F and

$$
N=\beta\left\langle\beta^{2}\right\rangle=F \backslash Q=\left\{a \in F \mid \exists b \in F: a=\beta b^{2}\right\}
$$

of nonsquares in F.
We shall prove the next lemma following [5].
Lemma 1.1 Let M be the set of the solutions (x, y) of the equation $A x^{2}+$ $B y^{2}=C$ in the finite field F with q elements and let $D=A B \neq 0$. Then the following fact holds

$$
|M|= \begin{cases}q-\left(\frac{-D}{q}\right), & \text { if } C \neq 0 \\ q+\left(\frac{-D}{q}\right)(q-1), & \text { if } C=0\end{cases}
$$

[^0]Proof. Let us denote

$$
\begin{aligned}
& M_{x_{0}}=\left\{y \in F \mid A x_{0}^{2}+B y^{2}=C\right\}= \\
& \left\{y \in F \left\lvert\, y^{2}=-D\left(x_{0}^{2}-\frac{C}{A}\right) \in Q\right.\right\} .
\end{aligned}
$$

Therefore,

$$
\left|M_{x_{0}}\right|=\left\{\begin{array}{l}
0, \text { if }-D\left(x_{0}^{2}-\frac{C}{A}\right) \in N, \\
1, \text { if }\left(x_{0}^{2}-\frac{C}{A}\right)=0, \\
2, \text { if } \quad D\left(x_{0}^{2}-\frac{C}{A}\right) \neq 0 \text { and }\left(x_{0}^{2}-\frac{C}{A}\right) \in Q
\end{array}\right.
$$

and

$$
\left|M_{x_{0}}\right|=\left(\frac{-D\left(x_{0}^{2}-\frac{C}{A}\right)}{q}\right)+1=\left(\frac{-D}{q}\right)\left(\frac{x_{0}^{2}-\frac{C}{A}}{q}\right)+1,
$$

where

$$
\left(\frac{a}{q}\right)= \begin{cases}0, & \text { if } a=0 \\ 1, & \text { if } \\ -1, & \text { if } a \in N\end{cases}
$$

is the generalized symbol of Legendre in the finite field F with q elements.
Therefore,

$$
|M|=\sum_{x \in F}\left|M_{x}\right|=\sum_{x \in F}\left(\left(\frac{-D}{q}\right)\left(\frac{x^{2}-\frac{C}{A}}{q}\right)+1\right)=q+\left(\frac{-D}{q}\right) \sum_{x \in F}\left(\frac{x^{2}-\frac{C}{A}}{q}\right) .
$$

First, let us consider the case $A=1$ and $B=-1$. It is clear that

$$
|M|=\left\{\begin{array}{l}
q-1, \text { if } C \neq 0, \\
2 q-1, \text { if } C=0
\end{array}\right.
$$

In this case $D=-1$

$$
\sum_{x \in F}\left(\frac{x^{2}-\frac{C}{A}}{q}\right)=\left\{\begin{array}{lll}
-1, & \text { if } C \neq 0 \\
q-1, & \text { if } & C=0
\end{array}\right.
$$

Now in the general case we have that

$$
|M|=q+\left(\frac{-D}{q}\right) \sum_{x \in F}\left(\frac{x^{2}-\frac{C}{A}}{q}\right)= \begin{cases}q+\left(\frac{-D}{q}\right)(-1)=q-\left(\frac{-D}{q}\right), & \text { if } C \neq 0 \\ q+\left(\frac{-D}{q}\right)(q-1), & \text { if } C=0\end{cases}
$$

Lemma 1.2 Let $f(x)=A x^{2}+B x+C \in F[x], A \neq 0, B \neq 0$, and let

$$
M=\left\{x^{2} \mid x \in F, f\left(x^{2}\right)=f\left(\gamma x^{2}\right) \text { for some } \gamma \in N\right\} .
$$

Then $|M|=\frac{q+1}{2}$.
Proof. Let x be a solution of the equation $f\left(x^{2}\right)=f\left(\gamma x^{2}\right)$ for some $\gamma \in N$. Obviously $x=0$ is a solution of that equation. For the next considerations we shall assume that $x \neq 0$. Then

$$
\begin{gathered}
A x^{4}+B x^{2}+C=A \gamma^{2} x^{4}+B \gamma x^{2}+C \\
A x^{2}+B=A \gamma^{2} x^{2}+B \gamma \\
A\left(1-\gamma^{2}\right) x^{2}=B(\gamma-1)
\end{gathered}
$$

and

$$
-A(1+\gamma) x^{2}=B
$$

since $\gamma \neq 1(1 \in Q)$.
Note that $\gamma \in N$ iff there exists $u \in F, b \neq 0$ such that $\gamma=\beta u^{2}$.
We are looking for γ in such form and $u \neq 0$.
It is clear that $\gamma \neq-1(B \neq 0)$. Then

$$
x^{2}=-\frac{B}{A} \cdot \frac{1}{1+\gamma} .
$$

If $A B \in N$ then $1+\gamma \in N$ and we must find $v \in F$ such that $1+\beta u^{2}=\beta v^{2}$. From Lemma 1.1 we know that there exist $q-1$ pairs (u, v) which are the solutions of the last equation. Note that $u=0$ is not a solution and therefore we have $\frac{q-1}{2}$ different elements γ such that $1+\gamma \in N$ and $|M|=\frac{q-1}{2}+1=$ $\frac{q+1}{2}$.

Analogously, the case $A B \in Q$ give us again that $|M|=\frac{q+1}{2}$. Indeed, $1+\gamma \in Q$ and we must find $v \in F$ such that $1+\beta u^{2}=v^{2}$. By Lemma 1.1 it follows that there exist $q+1$ pairs (u, v) which are the solutions of the last equation. Note that $u=0$ is a solution and therefore we have $\frac{q-1}{2}(\gamma \neq 0)$ different elements γ such that $1+\gamma \in N$ and $|M|=\frac{q-1}{2}+1=\frac{q+1}{2}$.

2 On covering radius of some cyclic codes

Let us denote by $f_{a}(x) \in \mathbb{Z}_{p}[x]$ the minimal polynomial of $a \in F,|F|=q=$ p^{m}. Clearly, f_{a} is an irreducible polynomial and $\operatorname{deg} f_{\beta}=\operatorname{deg} f_{\beta^{-1}}=m$. We consider the cyclic code C of length $q-1$ over the field F generated by $g(x)=f_{\beta}(x) . f_{\beta^{-1}}(x)$. Hence, C is a $[q-1, q-1-2 m]$-code.

Following the techniques of [1], [3] and [4], we obtain the next theorem.
Theorem 2.1 The $\left[p^{m}-1, p^{m}-1-2 m\right]$-code C defined above has covering radius at most 3 for $p \neq 2$ and $q>36$.

Proof.
Let

$$
H=\left(\begin{array}{lllll}
1 & \beta & \beta^{2} & \ldots & \beta^{q-1} \\
1 & \gamma & \gamma^{2} & \ldots & \gamma^{q-1}
\end{array}\right)
$$

be a parity check matrix of the code C.
Let $s=(a, b) \in F^{2},(a, b) \neq(0,0)$. We shall prove that there exists a vector $e \in F^{q-1}$ with syndrome s. For that purpose we must prove that the system

$$
\left\lvert\, \begin{align*}
& a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{l} x_{l}=a \tag{1}\\
& a_{1} \frac{1}{x_{1}}+a_{2} \frac{1}{x_{2}}+\cdots+a_{l} \frac{1}{x_{l}}=b
\end{align*}\right.
$$

has a solution with $a_{1}, a_{2}, \ldots, a_{l} \in \mathbb{Z}_{p}$ and $x_{1}, x_{2}, \ldots, x_{l} \in F$ for some natural number $l \leq 3$.

For $l=1$ it is clear that the system (1) has a solution iff $a b$ is a nonzero perfect square in \mathbb{Z}_{p}.

Let us consider the following system

$$
\left\lvert\, \begin{align*}
& x_{1}+x_{2}+x_{3}=a \tag{2}\\
& \frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}=b
\end{align*}\right.
$$

where $(a, b) \neq(0,0)$ and $a b \neq 1$.
Set $y_{i}=\frac{1}{x_{i}}$. Then we obtain an analogous system as (2) in which a and b are changed. Hence, we may assume that $b \neq 0$.

Let us consider the function $D_{1}(y)=4 b y^{2}+\left(-a^{2} b^{2}+6 a b+3\right) y+4 a$.
In the case $-a^{2} b^{2}+6 a b+3 \neq 0$ by Lemma1.2 it follows that there are $c \in F$ and $\gamma \in N$ such that $D_{1}\left(c^{2}\right)=D_{1}\left(\gamma c^{2}\right)$ and c^{2} takes $\frac{q+1}{2}$ different values. We choose $y=c^{2}$ or $y=\gamma c^{2}$ in such a way that $D=-y D_{1}(y)$ is a perfect square.

If $q>35$, it is clear that there exists y such that $y \neq 0, y \neq \frac{-1}{b}, y \neq-a$ and the system (2) has a solution

$$
x_{1}=\frac{a+y}{1+y b}, \quad x_{2}=\frac{(a b-1) y+\sqrt{D}}{2 b(1+y b)}, \quad x_{3}=\frac{(a b-1) y-\sqrt{D}}{2 b(1+y b)}
$$

In the case $-a^{2} b^{2}+6 a b+3=0$ we consider the system

$$
\left\lvert\, \begin{aligned}
& x_{1}+x_{2}+x_{3}=\frac{a}{2} \\
& \frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{3}}=\frac{b}{2}
\end{aligned}\right.
$$

It is clear that $-\frac{a^{2} b^{2}}{16}+3 \frac{a b}{2}+3 \neq 0$ and this system has a solution x_{1}, x_{2}, x_{3} which is a solution of the system (1) with $a_{1}=a_{2}=a_{3}=2$.

Therefore, the covering radius of code C is at most 3 .

References

[1] T. Helleseth, On the covering radius of cyclic linear codes and arithmetic codes, Discr. Appl. Math. 11, 1985, 157-173.
[2] J. A. van der Horst, T. Berger, Complete decoding of triple-error-correcting binary BCH Codes, IEEE Trans. Inform. Theory 22, 1976, 138-147.
[3] D. Danev, S. Dodunekov, A family of ternary quasi-perfect BCH codes, to appear in Des., Codes Crypt., 2008.
[4] O. Moreno, F. N. Castro, On the covering radius of certain cyclic codes, Springer-Verlag, Berlin-Heidelberg, 2003, 129-138.
[5] S. A. Stepanov, Arithmetic of algebraic curves, Moskva Nauka, 1991.

[^0]: ${ }^{1}$ This work was partially supported by the SF of Sofia University under Contract 171/05.2008.

