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1. Defining relations and Gröbner bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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INTRODUCTION

These lecture notes are based on several talks which I gave in Sofia at the Joint
Seminar on Ring Theory of the Institute of Mathematics and Informatics of the
Bulgarian Academy of Sciences and the Department of Mathematics and Informat-
ics of the University of Sofia and on the short graduate course on free associative
algebras which I was invite to give in June 1998 at the Department of Mathematics
of the University of Palermo, Italy. For most of the ring theorists a big part of the
theory of an algebra is the theory of its ideals. For most of the algebraists consid-
ering ring theory from combinatorial point of view the ideal theory of an algebra is
the theory of the generators of the ideals and different numerical invariants which
measure how big are the ideals.

The lecture notes are not a comprehensive survey on algebras with defining
relations. Their purpose is to present some main results and to illustrate them
by some important examples. The references are given in the end of the chapters.
They are restricted to several books and survey articles and the sources of the
results included in the text. I have tried to make the notes as selves-closed as
possible and I hope that they will be useful for introducing the reader in the topic
and will prepare him or her to read other books and papers on combinatorial ring
theory.

As a result, the notes are concentrated around several topics: Gröbner bases of
ideals of free algebras, graded algebras, growth of algebras and their applications.

In commutative algebra Gröbner bases have proved their efficiency and are ap-
plied as a powerful tool in the study of many related fields as invariant theory and
algebraic geometry. The noncommutative Gröbner bases are more recent objects
of investigations but nevertheless they also have a lot of applications.

From the point of view of generators and defining relations the class of graded
algebras is easier to study than the class of all algebras. Concerning the numerical
invariants of graded algebras, the most important one is the Hilbert series. The
consideration of formal power series has the advantage that one can involve usual
calculus and the theory of analytic functions.

The growth function of a finitely generated algebra shows “how big” is the alge-
bra. Studying the asymptotic behaviour of the growth function we can “measure”
the algebra even if it is infinite dimensional. We can obtain many important prop-
erties of the algebra knowing only this asymptotics.

The theory of symmetric functions and graph theory have proved their efficiency
in many branches of mathematics and are considered as one of the standard com-
binatorial tools in algebra.

Most part of the notes consists of applications of the results to concrete prob-
lems and concrete algebras. We have constructed examples of algebras with “bad”
properties: graded algebras with nonrational Hilbert series; the famous result of
Golod and Shafarevich which shows that the number of defining relations of given
degree is not too big then the algebra is infinite dimensional and, as a consequence,
an example of finitely generated nil algebra which is not nilpotent and a negative
solution of the Burnside problem from group theory; algebras with any prescribed
Gelfand-Kirillov dimension; algebras with intermediate growth. On the other hand
we give examples of algebras with “nice” properties: universal enveloping algebras
of Lie algebras, Clifford algebras, etc. These algebras are important not only in
combinatorial ring theory. They appear naturally in other branches of mathemat-
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ics. We have limited the number of general theorems on these algebras. Instead, we
have chosen several important algebras and have worked out their defining relations,
the corresponding Gröbner bases and the Hilbert series.

I am very grateful to the Department of Mathematics of the University of
Palermo and especially to Antonio Giambruno for the kind invitation to give the
course, for the financial support, the hospitality and the friendly and creative at-
mosphere. I am also very thankful to all students and colleagues who attended my
talks in Sofia and lectures in Palermo. I am very grateful to many of my colleagues
and friends for the useful discussions on combinatorial ring theory and especially to
Tatiana Gateva-Ivanova for the conversations on noncommutative Gröbner bases.
Finally I am very much obliged to my wife for the the permanent support and the
attention to my work while preparing these notes.
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1. DEFINING RELATIONS AND GRÖBNER BASES

During all the lecture notes we fix the notation K for an arbitrary field of any
characteristic. All considered vector spaces, algebras, modules, tensor products are
over K. As usual, we denote by C,R,Q,Z,N the sets of complex, real, rational,
integer and natural numbers; R+ is the set of positive real numbers and N0 =
N ∪ {0}.

Definition 1.1. A vector space A is called an (associative) algebra (or a K-
algebra) if A is an associative ring and for any a, b ∈ A and any α ∈ K

α(ab) = (αa)b = a(αb).

If not explicitly stated, we assume that the algebras are unitary (or with 1), finitely
generated and reserve the symbol A for an algebra. One defines the notions of
subalgebras, ideals, homomorphisms, isomorphisms, etc. in the same way as for
rings. ¤

Examples of algebras are the polynomial algebra K[x1, . . . , xm] in m commuting
variables and the n× n matrix algebra Mn(K) with entries from K.

Remark 1.2. If the algebra A has a basis as a vector space {ai | i ∈ I}, in order
to know the multiplication rule in A it is sufficient to know the multiplication table
of the basis elements

aiaj =
∑

k∈I

α
(k)
ij ak, α

(k)
ij ∈ K,

where for fixed i and j only a finite number of α
(k)
ij are different from 0. ¤

Definition 1.3. An algebra A without unit is called nil if for any a ∈ A there
exits an n = n(a) ∈ N such that an = 0. It is nilpotent of class n if a1 . . . an = 0
for all ai ∈ A and a1 . . . an−1 6= 0 for some a1, . . . , an−1 ∈ A. ¤

Definition 1.4. For every set X the free associative algebra K〈X〉 is the vector
space with basis the set of all words

xi1 . . . xin , xij ∈ X, n = 0, 1, 2, . . . ,

and multiplication defined by

(xi1 . . . xip)(xj1 . . . xjq ) = xi1 . . . xipxj1 . . . xjq , xik
, xjl

∈ X.

Sometimes K〈X〉 is called the algebra of polynomials in noncommuting variables.
Till the end of these notes we shall fix a positive integer m, the set X = {x1, . . . , xm}
and the notation F = K〈X〉. We shall also denote by F+ the free associative algebra
without unit, i.e. the basis of F+ consists of all words xi1 . . . xin of length ≥ 1.
Sometimes we shall use other symbols, e.g. x, y, zi, etc. for the elements of X. ¤

Proposition 1.5. The algebra K〈X〉 has the following universal property. For
any algebra A and any mapping φ : X → A there exists a unique homomorphism
(which we denote also by φ) φ : K〈X〉 → A which extends the given mapping
φ : X → A.

Proof. We define a vector space homomorphism φ : K〈X〉 → A by

φ
(∑

αixi1 . . . xin

)
=

∑
αiφ(xi1) . . . φ(xin), αi ∈ K.
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Using the multiplication rules of K〈X〉 and A and the definition of φ we obtain

φ
((∑

αixi1 . . . xip

) (∑
βjxj1 . . . xjq

))
= φ

(∑
αiβjxi1 . . . xip

xj1 . . . xjq

)
=

=
∑

αiβjφ(xi1) . . . φ(xip
)φ(xj1) . . . φ(xjq

) =

=
(∑

αiφ(xi1) . . . φ(xip
)
)(∑

βjφ(xj1) . . . φ(xjq
)
)

=

= φ
(∑

αixi1 . . . xip

)
φ

(∑
βjxj1 . . . xjq

)
. ¤

Corollary 1.6. Let the algebra A be generated by a1, . . . , am. Then A ∼=
K〈X〉/U for some ideal U of K〈X〉.

Proof. Let us define φ : K〈X〉 → A by φ(xi) = ai, i = 1, . . . ,m. Since
a1, . . . , am generate A, the homomorphism φ is onto A. The homomorphisms
theorem (which is the same as for rings) gives that A ∼= K〈X〉/U , where U = Kerφ
is the kernel of φ. ¤

Definition 1.7. Let A ∼= K〈X〉/U . Any generating set R of the ideal U is called
a set of defining relations of A. We say that A is presented by the generating set
X and the set of defining relations R and use the notation A = K〈X | R〉 for the
presentation of A or, allowing some freedom in the notation, A = K〈X | R = 0〉.
If both sets X and R are finite, we say that A is finitely presented. ¤

Example 1.8. The polynomial algebra in two variables has the presentation

K[x, y] = K〈x, y | xy = yx〉. ¤

We define the commutator (of length 2) by

[u1, u2] = u1u2 − u2u1

and inductively the left-normed commutator of length n by

[u1, . . . , un−1, un] = [[u1, . . . , un−1], un], n ≥ 3.

Examples 1.9. (i) The matrix algebra Mn(K) has the presentation

Mn(K) = K〈xij , i, j = 1, . . . , n | xijxpq = δjpxiq〉,

where δjp is the Kronecker symbol defined by δjp = 1 if j = p and δjp = 0 if j 6= p.
(ii) If dim A = m and {a1, . . . , am} is a basis of A and the multiplication is given

by

aiaj =
m∑

k=1

α
(k)
ij ak,

then A has a presentation

A = K〈x1, . . . , xm | xixj =
m∑

k=1

α
(k)
ij xk〉. ¤

If A is given with its presentation A = K〈X | R〉 and we want to do calculations
in A we face the following problems:
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(i) How to express in some “canonical” way the elements of A?
(ii) How to multiply the elements of A?
The solution of these problems is obvious for finite dimensional algebras provided

that we know the basis and the multiplication table of the algebra (as in Example
1.9 (ii)). It is also clear how to work with the polynomial algebra in m variables
presented as

K[X] = K〈X | [xi, xj ] = 0, i, j = 1, . . . , m〉.
In the general case the problem cannot be solved algorithmically (see Kharlampov-
ich and Sapir [KS] for detailed survey on algorithmic problems of algebras, rings,
groups and semigroups). One of the simplest examples is due to Tsejtin [T]. Let
m = 5 and let A be defined by the relations

[x1, x3] = [x1, x4] = [x2, x4] = 0,

x5x3x1 = x3x5, x5x4x2 = x4x5, x3x3x1x5 = x3x3x1.

Then there exists no algorithm which determines whether an element of A is equal
to 0. In other words A has unsolvable word problem.

We introduce the homogeneous lexicographic (or deg-lex) ordering on

〈X〉 = {xi1 . . . xin | n = 0, 1, 2, . . . }

assuming that
xi1 . . . xip < xj1 . . . xjq

if
(1) p < q;
(2) If p = q, then there exists k such that i1 = j1, . . . , ik = jk and ik+1 < jk+1.
The introduced ordering has the very important property that the set 〈X〉 is

well ordered. This means that any two elements are comparable and any subset
of 〈X〉 has a minimal element. This allows to apply inductive arguments in our
considerations.

Definition 1.10. Let (i) f ∈ K〈X〉,

f = αu +
∑
v<u

βvv, u, v ∈ 〈X〉, α, βv ∈ K, α 6= 0.

The word f̂ = u is called the leading word of f .
(ii) If B ⊂ K〈X〉 we denote by B̂ = {f̂ | 0 6= f ∈ B} the set of leading words of

B.
(iii) The word w ∈ 〈X〉 is called normal with respect to B ⊂ K〈X〉 if w does not

contain as a subword a word of B̂. ¤
Obviously f̂g = f̂ ĝ for any f, g ∈ K〈X〉, f, g 6= 0.
Example 1.11. Let X = {x, y} and x < y.
(i) The set of normal words with respect to B = {y2 − xy} is

{xk1yxk2y . . . xkn−1yxkn | k1, kn ≥ 0, k2, . . . , kn−1 > 0, n = 1, 2, . . . }.

(ii) The set of normal words with respect to B = {yx− x2} is

{xkyl | k, l ≥ 0}. ¤
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For any ideal U of K〈X〉 we denote

N = N(U) = span{w ∈ 〈X〉 | w is normal with respect to U}

the vector space spanned on the set of normal words.
Theorem 1.12. If U / K〈X〉, then

K〈X〉 = N(U)⊕ U

as a direct sum of vector spaces.
Proof. The intersection N ∩ U = 0 is obvious because if 0 6= f ∈ N ∩ U then

f̂ ∈ Û and f̂ is not normal with respect to U . In order to show the equality
K〈X〉 = N + U it is sufficient to present any word w ∈ 〈X〉 as w = w̄ + u, w̄ ∈ N ,
u ∈ U . We apply induction on the ordering. If w is normal, then w ∈ N and
w = w + 0 (and 0 ∈ U). If w is not normal, then there exist u ∈ U , a, b ∈ 〈X〉,
such that w = aûb. Using the trivial presentation w = (w − aub) + aub we apply
inductive arguments because aub ∈ U and w−aub is a linear combination of words
which are below w in the ordering. ¤

Definition 1.13. If U / K〈X〉, we call

N = N(U) = span{w ∈ 〈X〉 | w is normal with respect to U}

the normal complement to U and if f = f̄ + u ∈ K〈X〉, f̄ ∈ N , u ∈ U , then f̄ is
the normal form of f . ¤

In particular, f̄ = 0 if and only if f ∈ U .
Corollary 1.14. Let U / K〈X〉 and let N be the normal complement to U . We

define on N the multiplication f̄ ∗ ḡ = fg, f̄ , ḡ ∈ N . Then N is isomorphic as an
algebra to A ∼= K〈X〉/U .

Proof. Let f = f̄ + uf , g = ḡ + ug for some uf , ug ∈ U . Then

fg = f̄ .ḡ + (f̄ug + uf ḡ + ufug) = fg + ufg, fg ∈ N, fg ∈ U,

and modulo U (i.e. in A), f̄ .ḡ = fg. ¤
Definition 1.15. Let U / K〈X〉. The set G ⊂ U is called a Gröbner basis of U

(or a complete system of defining relations of the algebra A = K〈X〉/U) if the sets
of normal words with respect to G and U coincide. ¤

A trivial example of a Gröbner basis of U is U itself.
Proposition 1.16. For any U / K〈X〉 there exists a minimal (with respect to

the inclusion) Gröbner basis.
Proof. Let Û = {û | u ∈ U}. We fix one u for each û and denote by G1 = {ui |

i ∈ I} the obtained set. Now, starting with the words of minimal length in Ĝ1,
by induction we construct a subset Ĝ2 of Ĝ1 such that no word of Ĝ2 is a proper
subword of another word of Ĝ2 and the sets of normal words with respect to Ĝ1

and Ĝ2 are the same. Let G2 = {ui | ûi ∈ Ĝ2}. Since the set of normal words with
respect to G2 is the same as the set of normal words with respect to Ĝ2 and G2 is
a Gröbner basis of U which is minimal by construction. ¤

Definition 1.17. If G is a Gröbner basis of U / K〈X〉 and every element of G
has the form

g = u +
∑
v<u

βvv, u, v ∈ 〈X〉, βv ∈ K,
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where all words v are normal with respect to G, then G is called a reduced Gröbner
basis of U . ¤

Theorem 1.18. The reduced Gröbner basis of U / K〈X〉 always exists and is
unique.

Proof. Let G be a minimal Gröbner basis of U . If g ∈ G and

g = αu +
∑
v<u

βvv, u, v ∈ 〈X〉, α, βv ∈ K, α 6= 0,

then we replace g with 1
αg, i.e. we may assume that g = u+

∑
v<u βvv. If some v is

not normal with respect to G, then v = aûvb for some a, b ∈ 〈X〉 and ûv ∈ Ĝ. Let
uv ∈ G be the polynomial corresponding to ûv. In the expression of u we replace
v with v − aûvb (which is also in U) and apply induction on the homogeneous
lexicographic ordering. In this way we obtain that the reduced Gröbner basis
always exits. In order to prove the uniqueness we assume that G1 and G2 are two
reduced Gröbner bases and again use induction. If ĝ is the minimal element of
Ĝ1 ∪ Ĝ2 and ĝ ∈ Ĝ1, then g ∈ G1 ⊂ U . Hence there exists an h ∈ G2 such that
ĥ ≤ ĝ and the minimality of ĝ gives that ĥ = ĝ. Let g − h 6= 0. Since g − h ∈ U

and ĝ − h < ĝ we obtain a contradiction. In this way g − h = 0 and g = h. Now,
let g be any element of G1. We define

Bi = {g0 ∈ Gi | ĝ0 < ĝ}, i = 1, 2.

By induction, B1 = B2. Similar arguments show that there exists an h ∈ G2 such
that ĥ ≤ ĝ. Since G1 is a reduced Gröbner basis, we obtain that ĥ 6∈ B1 = B2 and
ĥ = ĝ. Again, g − h ∈ U and g − h is a linear combination of normal words with
respect to B1 and this gives that g − h = 0. ¤

Recall that an oriented graph is a pair of sets Γ = (V, E), where V is the set of
vertices and the set E of the (oriented) edges of Γ is a subset of {(v1, v2) | v1, v2 ∈
V }. If e = (v1, v2) ∈ E is an edge of Γ we say that v1 is the beginning and v2

is the end of e. The vertex v is minimal if it is not a beginning of an edge. We
allow infinite sets of vertices in the considered graphs. An oriented path in Γ is a
sequence of edges

e1 = (v1, v2), e2 = (v2, v3), . . . , ek = (vk, vk+1)

such that the end of each vertex ei is the beginning of the next edge ei+1. Similarly,
deleting the arrows of the edges (i.e. considering Γ as a unoriented graph) we define
unoriented paths. The subgraph Γ1 = (V1, E1) is called a connected component of Γ
if the set of edges of Γ1 consists of all vertices (v1, v2) ∈ E such that v1, v2 ∈ V1 ⊂ V
and V1 is a maximal subset of V with the property that any two vertices v′, v′′ ∈ V1

are connected with a unoriented path.
The following lemma is known as the Diamond lemma (see [N, Sect. 3]).
Lemma 1.19. (The Diamond Lemma) Let Γ = (V, E) be an oriented graph

such that:
(i) It satisfies the descending chain condition, i.e. every oriented path terminates.
(ii) If two edges e1 and e2 begin from one vertex u and end respectively in v1 and

v2, then there exist oriented paths p1 and p2 in Γ beginning respectively from v1

and v2 and ending to a common vertex w (the “diamond” condition). Then every
connected component of Γ has a unique minimal vertex.
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Proof. Let Γ1 = (V1, E1) be a connected component of Γ with two different
minimal vertices v1, v2 and let p be a nonoriented path connecting them. Let
v1 = w1, w2, . . . , wk−1, wk = v2 be the sequence of vertices of the path p. Hence for
each j = 1, . . . , k − 1 one of (wj , wj+1) and (wj+1, wj) belongs to E1. We present
p as a disjoint union of subpaths p = p1 ∪ . . . ∪ ps, where each component pi is
either positive or negative oriented, i.e. going in positive direction, pi has one of
the forms

pi = (wki
, wki+1), (wki+1, wki+2), . . . , (wki+1−1, wki+1),

pi = (wki+1 , wki+1−1), . . . , (wki+2, wki+1), (wki+1, wki
)

and the orientation of p1, p2, . . . , ps changes alternatively. Since v1, v2 are minimal
vertices, the first p1 is negative oriented and the last path ps is positive oriented.
Using the diamond condition, it is easy to prove by induction that all oriented paths
starting from the same vertex v and leading to minimal vertices end in the same
minimal vertex. (The obvious base of the induction is for v being minimal.) Since
p1 starts in wk2 and finishes in v1, going from wk2 through wk3 and continuing to
some minimal vertex, we have the only possibility to reach wk1 = v1. Continuing in
this way, we see that all paths from wks lead to the same minimal vertex v1. Since
there is a path from wks to the minimal vertex v2, we conclude that v1 = v2 which
contradicts with the assumption v1 6= v2. ¤

Definition 1.20. Let the elements of G ⊂ K〈X〉 have the form

g = u +
∑
v<u

βvv, u = ĝ, v ∈ 〈X〉, βv ∈ K.

We call a reduction (with respect to G) a transformation of K〈X〉 of the following
kind. Let f = γ1w1 + . . . γkwk ∈ K〈X〉, where wj ∈ 〈X〉, 0 6= γj ∈ K, j = 1, . . . , k,
and some of the words wi, wj may be equal. If wi contains as a subword some
u = ĝ, g ∈ G, e.g. wi = aub, a, b ∈ 〈X〉, then we are allowed to replace f with
f1 = f − αiagb. We denote this graphically as f → f1. ¤

Clearly, every nontrivial reduction f → f1 replaces one of the summands γjwj

with a sum of monomials −∑
v<u γjβvavb and all avb are below wj in the homo-

geneous lexicographic ordering. For example, let

G = {g1 = x3x2 − x2
2, g2 = x2

2 − x2x1}, f = x1x3x2 + 2x1x
2
2 + x2

1x3.

We denote by capitals the symbols which we replace with a reduction. Applying
the reduction corresponding to g1 we obtain

f = x1X3X2 + 2x1x
2
2 + x2

1x3 → f1 = x1x
2
2 + 2x1x

2
2 + x2

1x3.

Now we are allowed for example to apply the reduction based on g2 to the second
summand:

f1 = x1x
2
2 + 2x1X

2
2 + x2

1x3 → f2 = x1x
2
2 + 2x1x2x1 + x2

1x3

or to present f1 as f ′1 = 3x1X
2
2 + x2

1x3 and to bring it to f ′2 = 3x1x2x1 + x2
1x3.
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We associate to every polynomial f = γ1w1 + . . . γkwk ∈ K〈X〉, w1 ≥ . . . ≥
wk, a k-tuple f̃ = (w1, . . . , wk) (where k depends on f) and order the k-tuples
lexicographically, i.e.

f̃ = (w1, . . . , wk) > f̃ ′ = (w′1, . . . , w′k′)

if w1 = w′1, . . . , ws = w′s and ws+1 > w′s+1 for some s. In our example

f̃ = (x1x3x2, x1x
2
2, x

2
1x3), f̃1 = (x1x

2
2, x1x

2
2, x

2
1x3), f̃ ′1 = (x1x

2
2, x

2
1x3).

Theorem 1.21. Let U / K〈X〉 and let the subset G of U have the following
property. If g1, g2 are two different elements of G such that ĝ1 = ab, ĝ2 = bc for
some a, b, c ∈ 〈X〉, respectively ĝ1 = aĝ2b, a, b ∈ 〈X〉, then there exists a sequence
of reductions which brings the elements f = g1c − ag2, respectively f = g1 − ag2b
to 0. Then G is a Gröbner basis of U .

Proof. Let Γ = (V,E) be the oriented graph obtained in the following way. The
set of vertices V consists of all expressions f = γ1w1 + . . . γkwk ∈ K〈X〉. Two
vertices f, f1 ∈ K〈X〉 are connected with an oriented edge (f, f1) if there exists
a nontrivial reduction f → f1. Since f1 is obtained from f by replacing one of
the monomials participating in f with a sum of smaller monomials, every oriented
path terminates. Clearly, the minimal vertices of Γ are the polynomials which are
in their normal form with respect to G. Now we shall establish that Γ satisfies the
diamond condition. Let

f = γ1w1 + . . . + γkwk ∈ K〈X〉, 0 6= γj ∈ K, wj ∈ 〈X〉, w1 ≥ . . . ≥ wk.

We apply induction on the lexicographical ordering on f̃ = (w1, . . . , wk) assuming
that for any f ′ ∈ V such that f̃ ′ < f̃ all sequences of reductions bringing f to
a minimal vertex terminate in the same minimal vertex. We also assume that if
f ′ and f ′′ are two vertices corresponding to the same polynomial of K〈X〉 and
both f̃ ′ and f̃ ′′ are below f̃ , then the normal forms of f ′ and f ′′ obtained as a
result of reductions are the same. The base of the induction is for the minimal
vertices of Γ and is obvious. If some reduction brings f to f1 related to a k1-tuple
f̃1 = (w′1, . . . , w′k1

), then f̃1 is below in the ordering. Let f be a beginning of two
edges e1 = (f, f1) and e2 = (f, f2). Hence there exist two polynomials g1, g2 ∈ G
such that

g1 = u1 +
∑

v1<u1

β′v1
v1, g2 = u2 +

∑
v2<u2

β′′v2
v2,

ui = ĝi, vi ∈ 〈X〉, i = 1, 2, β′v1
, β′′v2

∈ K, and words ai, bi ∈ 〈X〉, i = 1, 2, such that
wp = a1u1b1, wq = a2u2b2. The result of the reductions are the polynomials

f1 = f − γpa1g1b1, f2 = f − γqa2g2b2.

We shall consider several possible cases for wp, wq and u1, u2.
(i) p 6= q, e.g. p = 1, q = 2. Then

f = γ1a1u1b1 + γ2a2u2b2 +
k∑

j=3

γjwj ,
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f1 = f − γ1a1g1b1 = −γ1

∑
v1<u1

β′v1
a1v1b1 + γ2a2u2b2 +

k∑

j=3

γjwj ,

f2 = f − γ2a2g2b2 = γ1a1u1b1 − γ2

∑
v2<u2

β′′v2
a2v2b2 + +

k∑

j=3

γjwj .

Now we apply to f1 and f2 reductions acting respectively on the summands γ2a2u2b2

and γ1a1u1b1 and replacing f1 and f2 with

h1 = f1 − γ2a2g2b2, h2 = f2 − γ1a1g1b1.

Hence h1 = h2 = f − γ1a1g1b1 − γ2a2g2b2 which gives the diamond condition
and shows that the two edges (f, f1) and (f, f2) can be extended to a path with
beginning f and with end the same minimal vertex.

(ii) p = q, e.g. p = 1, w1 = au1bu2c and

f1 = f − γ1ag1bu2c, f2 = f − γ1au1bg2c,

i.e. the reductions f → f1 and f → f2 concern two subwords u1 and u2 of w1 which
have no overlap. Then

f1 = −γ1

∑
v1<u1

β′v1
av1bu2c +

k∑

j=2

γjwj ,

f2 = −γ1

∑
v2<u2

β′′v2
au1bv2c +

k∑

j=2

γjwj .

As in (i) we apply reductions f1 → h1 and f2 → h2 acting respectively on the words
av1bu2c of f1 and au1bv2c of f2. Since w̃1 ≤ f̃ and our reductions concern only w1

we may assume that f = w1,

f1 = −
∑

v1<u1

β′v1
av1bu2c, f2 = −

∑
v2<u2

β′′v2
au1bv2c.

Now we apply reductions replacing respectively u2 in f1 and u1 in f2:

h1 = f1 +
∑

v1<u1

β′v1
av1bg2c,
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h2 = f2 +
∑

v2<u2

β′′v2
ag1bv2c.

Hence the results of the reductions are

h1 = h2 =
∑

v1<u1

∑
v2<u2

β′v1
β′′v2

av1bv2c

and this is the diamond condition.
(iii) p = q, e.g. p = 1, w1 = az1z2z3b, u1 = z1z2, u2 = z2z3, z2 6= 1, and

f1 = f − γ1ag1z3b, f2 = f − γ1az1g2b,

i.e. the reductions f → f1 and f → f2 concern two subwords u1 and u2 of w1 which
have an overlap. As in (ii) we may assume that f = z1z2z3,

f1 = −
∑

v1<u1

βv1v1z3, f2 = −
∑

v2<u2

β′v2
z1v2.

Clearly, f̃1, f̃2 < f̃ and by inductive arguments any two sequences of reductions
which bring f1, respectively f2, to normal forms with respect to G give the same
result h1, respectively h2. By assumption (ii) of the theorem, there exists a sequence
of reductions which transfers g1z3 − z1g2 to 0. Let us write f1 − f2 in the form

f1 − f2 = −
∑

v1<u1

βv1v1z3 +
∑

v2<u2

β′v2
z1v2,

without any adduction of similar monomials. Again f̃1 − f2 < f̃ and the induction
gives that the normal form of f1 − f2 obtained as a result of any sequence of
reductions is the same polynomial h. Now, applying to the f1-part of f1 − f2 first
a sequence of reductions which leads f1 to h1 and then to the −f2-part a sequence
of reductions which brings −f2 to −h2 we obtain that h = h1 − h2. On the other
hand, f1 − f2 = g1z3 − z1g2 in K〈X〉 and, since ˜g1z3 − z1g2 < f̃ , by the inductive
assumption the normal form of g1z3 − z1g2 which is 0, is equal to the normal form
of f1 − f2 which is equal to h1 − h2. Hence h1 = h2 and this checks the diamond
condition.

(iv) p = q, e.g. p = 1, w1 = az1z2z3b, u1 = z1z2z3, u2 = z2, and

f1 = f − γ1ag1b, f2 = f − γ1az1g2z3b.

This case is similar to (iii).
Now, by the Diamond lemma, each connected component Γ1 of Γ has a unique

minimal vertex h. In order to complete the proof of the theorem it is sufficient to
apply the observation that the vertices of Γ1 are exactly the elements of h + U ,
where U is the ideal of K〈X〉 generated by G. Since the minimal vertices are linear
combinations of normal words with respect to G, we establish that every normal
word with respect to G is also normal with respect to U , i.e. G is a Gröbner basis
of U . ¤

Theorem 1.21 offers the following algorithm for constructing a Gröbner basis of
an ideal U generated in K〈X〉 by a finite set R.
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Algorithm 1.22. The input is a finite set of relations R (and an algebra pre-
sented as A = K〈X | R = 0〉.) The output is the (maybe infinite) reduced Gröbner
basis of the ideal generated by R.

Put G = R.
Step 1. (Norming) If

g = αu +
∑
v<u

βvv, 0 6= α, βv ∈ K, u, v ∈ 〈X〉,

then replace g by 1
αg, i.e. make all leading coefficients of g ∈ G equal to 1.

Step 2. (Reduction) If

f =
∑

γww ∈ G, γw ∈ K, w ∈ 〈X〉,

and ĝ (g ∈ G, f 6= g) is a subword of some w0 = aĝb in the expression of f , where
a, b ∈ 〈X〉, then replace f by f1 = f − γw0agb. In finite number of steps we obtain
either that f reduces to 0 and exclude it from G or that f reduces to a linear
combination of f̂ and normal with respect to G words. Norm this reduced f .

Step 3. (Composition) Let f, g ∈ G be such that

f̂ = ab, ĝ = bc, a, b, c ∈ 〈X〉, b 6= 1.

The result of the composition is the normed element ag−fc. Add all these elements
to G (if different from 0) and apply Step 2. ¤

Since one of the main applications of Gröbner bases is to present the elements of
the algebra in their normal worm, we give an algorithm for this purpose. It follows
easily from the proof of Theorem 1.13.

Algorithm 1.23. Let G be the reduced Gröbner basis of the ideal U of K〈X〉
and let

A = K〈X〉/U = K〈X | G = 0〉.
Let the generators of A be denoted by the same symbols X. The input is the
Gröbner basis U , a polynomial f = f(X) ∈ A and the output is the normal form
of f .

Let f =
∑

αww, αw ∈ K, w ∈ 〈X〉. If some w0 in the expression of f is not
normal with respect to G and w0 has the form w0 = aĝb, g ∈ G, a, b ∈ 〈X〉, then
replace f by f − αw0agb. Continue this procedure until some of the words of the
expression of f are not normal. ¤

Example 1.24. (i) A = K〈X | yx = x2〉, x < y. Then R = {g = yx − x2},
R̂ = {ĝ = yx}. There are no possible overlaps and G = R. The set of normal words
(the basis of A) is

{xkyl | k, l ≥ 0}.
For bringing the elements of A to their normal form, Algorithm 1.23 advises to re-
place any yx with x2. As above, we use capitals for Y X subject to the replacement.
For example

xy2x3yxy = xy2x3Y Xy = xy2x3x2y = xyY Xx4y = xyx6y = xY Xx5y = x8y.

(ii) A = K〈X | y2 = xy〉 (the same example with exchanged variables). Then
R = {g = y2 − xy}, R̂ = {ĝ = y2}. There is an overlap Y 2y = yY 2 between



11

the elements of R̂. Again we use capitals for the words subject to the reduction
y2 → xy:

yg − gy = y(y2 − xy)− (y2 − xy)y = −yxy + xY 2.

Replacing Y 2 we obtain

yg − gy − xg = −yxy + x2y

and add the new relation g1 = yxy − x2y to G, i.e.

G = {g = y2 − xy, g1 = yxy − x2y}, Ĝ = {ĝ = y2, ĝ1 = yxy}.

Now the possible overlaps between the elements of Ĝ are

Y 2xy = y(Y XY ), (Y XY )y = yxY 2, (Y XY )xy = yx(Y XY ).

We calculate

gxy − yg1 = yx2y − xY XY, gxy − yg1 − xg1 = yx2y − x3y

and add g2 = yx2y − x3y to G. Continuing in this way we obtain

G = {gn = yxny − xn+1y | n = 0, 1, 2, . . . }, (g0 = g).

The possible overlaps between the elements of Ĝ are

(Y XnY )xpy = yxn(Y XpY ),

which gives
gnxpy − yxngp = −xn+1Y XpY + Y Xn+p+1Y.

Replacing this expression with

(gnxpy − yxngp) + xn+1gp − gn+p+1 = −xn+p+2y + xn+p+2y = 0

we see that G is the reduced Gröbner basis of the ideal generated by R and the set
of normal words is

{xk, xkyxl | k, l ≥ 0}.
The algorithm for presenting the elements of A in their normal form replaces the
expressions yxny with xn+1y. For example

x2yx4yxy2x = x2yx4yxY Y x = x2yx4yxxyx =

= x2Y X4Y x2yx = x7Y X2Y x = x10yx. ¤

Example 1.25. The algebra A is finite dimensional, with basis {a1, a2, . . . , am},
a1 = 1, and multiplication table aiaj =

∑m
k=1 α

(k)
ij ak. Hence A has the presentation

A = K〈X | xixj =
m∑

k=1

α
(k)
ij xk, i, j = 1, . . . , m〉,
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R = {xixj −
m∑

k=1

α
(k)
ij xk, i, j = 1, . . . , m}.

The set of normal words with respect to R is {1} ∪ X \ {x1}. If there are some
additional relations in G \ R, then we shall obtain that some of the normal words
are linearly dependent in A which is impossible. Hence G = R. ¤

Example 1.26. (i) (See [B] for the history of the example.) If A has the
presentation

A = K〈x1, x2, x3 | x2
1 = x1, x

2
2 = x2, x

2
3 = x3, (x1 + x2 + x3)2 = x1 + x2 + x3〉,

is x1x2 equal to 0 in A?
We put G = R = {gi = x2

i −xi, i = 1, 2, 3, g0 = (x1 +x2 +x3)2− (x1 +x2 +x3)}
and start with reduction of g0:

g0 → g = g0 − (g1 + g2 + g3) =
∑

i 6=j

xixj .

Hence in G we replace g0 with g. The possible overlaps are ĝixi = X2
i xi = xiX

2
i =

xiĝi (which gives no new relations) and

ĝ0x2 = (X3X2)x2 = x3X
2
2 = x3ĝ2, ĝ3x2 = X2

3x2 = x3(X3X2) = x3ĝ0.

The new reductions may come from gx2−x3g2 and g3x2−x3g. Now (using capitals
to show the reduction) we replace X2

i by xi and X3X2 by

−(x3x1 + x2x3 + x2x1 + x1x3 + x1x2)

and obtain consecutively

gx2 − x3g2 = x3x1x2 + x2X3X2 + x2x1x2 + x1X3X2 + x1X2X2 + X3X2 →

→ x3x1x2 − (x2 + x1 + 1)(x3x1 + x2x3 + x2x1 + x1x3 + x1x2) + x2x1x2 + x1x2 =

= x3x1x2 − x2x3x1 −X2
2 (x3 + x1)− x2x1x3 − x1x3x1 − x1x2(x3 + x1)−

−X2
1 (x3 + x2)− (x3x1 + x2x3 + x2x1 + x1x3) →

→ h = x3x1x2 − x2x3x1 − x2x1x3 − x1x3x1 − x1x2x3 − x1x2x1−
−x3x1 − 2x2x3 − 2x1x3 − x1x2.

We add this new polynomial h to G. Direct verification shows that the overlap
ĝ3x2 = X2

3x2 = x3(X3X2) = x3ĝ0 does not give a new relation because g3x2 − x3g
reduces to 0. Now all possible overlaps are

ĥx2 = (X3X1X2)x2 = x3x1X
2
2 = x3x1ĝ2, ĝ3x1x2 = X2

3x1x2 = x3(X3X1X2) = x3ĥ

and direct calculations again give that hx2−x3x1g2 and g3x1x2−x3h both reduce
to 0. Hence the reduced Gröbner basis of A is

G = {g1, g2, g3, g, h}
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and the normal words with respect to G are the words which do not contain as
subwords x2

1, x2
2, x2

3, x3x2 and x3x1x2. Therefore x1x2 6= 0 in A and even x1x2 is
not a nil element.

(ii) Let A have the presentation

A = K〈x1, x2 | x2
1 = x1, x

2
2 = x2, (x1 + x2)2 = x1 + x2〉,

i.e. in (i) we have assumed that x3 = 0. Applying Algorithm 1.22 we obtain
consecutively

G = R = {g1 = x2
1 − x1, g2 = x2

2 − x2, g0 = (x1 + x2)2 − (x1 + x2)},

g0 → g0 − g1 − g2 = x2x1 + x1x2, G = {g1, g2, g}.
The possible overlaps come from X2

2x1 = x2(X2X1), and

g2x1 − x2g = (x2
2 − x2)x1 − x2(x2x1 + x1x2) = −(X2X1 + X2X1x2) →

→ x1x2 + x1X
2
2 → 2x1x2.

If charK 6= 2, we add to G x1x2 and, after reducing g, we add also x2x1. Hence
G = {g1, g2, x2x1, x1x2}. It is easy to see that the further overlaps give no new
relations and G is the Gröbner basis. The set of normal words is {1, x1, x2}. A
direct verification shows that the algebra A has the following presentation as a
direct sum of three subalgebras which of them being isomorphic to the base field
K:

A = K.x1 ⊕K.x2 ⊕K.(1− x1 − x2).

If charK = 2, then the relation g = 0 gives that the algebra A is commutative
and G = {g1, g2, g} is the reduced Gröbner basis. The set of normal words is
{1, x1, x2, x1x2}. Now A can be presented as a direct sum of four fields

A = K.x1x2 ⊕K.(x1 + x1x2)⊕K.(x2 + x1x2)⊕K.(1 + x1)(1 + x2). ¤

One of the important cases when the procedure of finding the Gröbner basis
is trivial and it is very easy to work with the presentation of the algebra is the
following.

Definition 1.27. The ideal U of K〈X〉 is called a monomial ideal if it is gener-
ated by a set R of monomials of 〈X〉. The corresponding algebra with its presen-
tation

A = K〈X | R = 0〉, R ⊂ 〈X〉,
is called a monomial algebra. ¤

Proposition 1.28. Every set R of monomials is a Gröbner basis of the ideal U
generated in K〈X〉 by R.

Proof. Let g1 = u1u2, g2 = u2u3 (respectively g1 = u1u2u3, g2 = u2) be two
monomials from R with an overlap. Since both g1 and g2 are monomials, ĝi = gi,
i = 1, 2, and g1u3 = u1g2 (respectively g1 = u1g2u3) as words in 〈X〉. Hence
g1u3 − u1g2 = 0 (respectively g1 = u1g2u3) and we obtain no new relations. ¤

The machinery of Gröbner bases can be also developed for one-sided ideals of
K〈X〉. We give a sketch of the constructions for right ideals.



14

Definition 1.29. (i) The word w ∈ 〈X〉 is r-normal with respect to G ⊂ K〈X〉,
if w 6∈ Ĝ〈X〉, i.e. there exist no words ĝ ∈ Ĝ and v ∈ 〈X〉 such that w = ĝv.

(ii) If U is a right ideal of K〈X〉, then G ⊂ U is an r-Gröbner basis of U if the
sets of the r-normal words with respect to U and G coincide. As in the case of
two-sided ideals, one can define a reduced r-Gröbner basis of U . ¤

Remark 1.30. Repeating the arguments of the proof of Theorem 1.18, it is easy
to see that the reduced r-Gröbner basis of a right ideal always exists and is unique.
It is also clear how to construct an r-Gröbner basis of the right ideal U generated by
some u1, . . . , uk. As in Algorithm 1.22 we start with G = {u1, . . . , uk}, (i) norm
the polynomials ui and (ii) make all possible reductions. (If ui has a summand
β(ûjv), i 6= j, then we replace ui with ui − βujv.) (iii) Finally, we consider all
û1, . . . , ûk. If ûi = ûjv for some i 6= j, v ∈ 〈X〉, then we add to G the polynomial
uk+1 = ui − ujv and go back to Step (ii). ¤

As an application we shall prove the following theorem of Cohn (see the book of
Cohn [C] for alternative approach).

Theorem 1.31. (Cohn) The free algebra K〈X〉 is a FIR (a free ideal ring), i.e.
every right ideal U is a free right K〈X〉-module.

Proof. Let U /r K〈X〉. We choose a minimal subset G ⊂ U such that the sets
of r-normal words with respect to G and U coincide, i.e. G is a minimal r-Gröbner
basis of U . Then

U =
∑

gi∈G

giK〈X〉.

If g1w1 + . . . + gnwn = 0 for some gi ∈ G and some wi ∈ K〈X〉, then we have to
show that w1 = . . . = wn = 0. Let ĝ1 > . . . > ĝn and let all wi be different from 0.
From the minimality of G we obtain that ĝi is not a beginning of ĝj , i < j and the
only words beginning with ĝ1 come from ĝ1w1. Hence ĝ1w1 = 0 and this implies
that w1 = 0 which is a contradiction. ¤

For further readings we recommend e.g. [AL] and [BW] for commutative Gröbner
bases, [B], [L], [M] and [U] for more general approach also in the noncommutative
case and [BBL] for monomial algebras and related topics.
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2. FIRST APPLICATIONS OF GRÖBNER BASES

In this chapter we shall apply the technique of Gröbner bases to universal en-
veloping algebras of Lie algebras and to some other algebras which are close to
them.

Definition 2.1. A vector space L with a binary operation (multiplication) ∗ is
called a Lie algebra if

a ∗ a = 0 (anticommutativity law)

(a ∗ b) ∗ c + (b ∗ c) ∗ a + (c ∗ a) ∗ b = 0 (the Jacobi identity)

for all a, b, c ∈ L. ¤
Since a ∗ a = 0, b ∗ b = 0,

0 = (a + b) ∗ (a + b) = a ∗ a + b ∗ b + (a ∗ b + b ∗ a) = a ∗ b + b ∗ a

for a, b ∈ L, we obtain that a ∗ b + b ∗ a = 0, i.e. the anticommutativity law does
imply that the multiplication in L is anticommutative.

Example 2.2. (i) Let L = R3 be the three-dimensional vector space over R
equipped with the vector multiplication. Then it is easy to check that L is a Lie
algebra.

(ii) Let A be any associative algebra and let L be a subspace of A closed under
the multiplication

a ∗ b = [a, b] = ab− ba, a, b ∈ L.

Obviously, [a, a] = 0 and direct verification shows that

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0, a, b, c ∈ L.

Hence L is a Lie algebra. The algebra A is called an enveloping algebra of L. If
L = A, we shall use the notation A(−) in order to pay attention that we consider
A as a Lie algebra. ¤

Below we shall show that every Lie algebra can be obtained as a subalgebra of
some associative algebra.

Definition 2.3. Let L be a Lie algebra and let the associative algebra U = U(L)
be an enveloping algebra of L, i.e. L ⊂ U (−). The algebra U is called the universal
enveloping algebra of L if U has the following universal property. For any associative
algebra A and any homomorphism of Lie algebras φ : L → A(−) there exists a unique
homomorphism of associative algebras ψ : U → A which extends φ, i.e. ψ is equal
to φ on L. ¤

Theorem 2.4. (The Poincaré-Birkhoff-Witt Theorem) Every Lie algebra L
possesses a unique (up to an isomorphism) universal enveloping algebra U(L). If
{bi | i ∈ I} is an ordered basis of L and the multiplication of L is given by the
multiplication table

bi ∗ bj =
∑

k∈I

α
(k)
ij bk, i, j ∈ I,

then U(L) has the presentation

U(L) = K〈xi, i ∈ I | [xi, xj ]−
∑

k∈I

α
(k)
ij xk = 0, i, j ∈ I〉.
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The set
G = {[xi, xj ]−

∑

k∈I

α
(k)
ij xk | i > j, i, j ∈ I}

is the reduced Gröbner basis of the corresponding ideal of K〈X〉 and as a vector
space U(L) has a basis

{bn1
i1

. . . b
np

ip
| i1 < . . . < ip, ik ∈ I, ni ≥ 0, p = 0, 1, 2, . . . }.

Proof. We consider the free associative algebra K〈X〉, where X = {xi | i ∈ I}
and its ideal J generated by the set

G = {[xi, xj ]−
∑

k∈I

α
(k)
ij xk | i > j, i, j ∈ I}.

Let U = U(L) = K〈X〉/J . We use the symbols x̄i for the generators of U .
First we shall show the universal property of U . Let ι : L → U (−) be the vector

space homomorphism defined by

ι :
∑

i∈I

βibi →
∑

i∈I

βix̄i, βi ∈ K.

Clearly, ι is also a Lie algebra homomorphism because for any bi ∗ bj (and by
linearity for any two elements of L),

ι(bi ∗ bj) = ι

(∑

k∈I

α
(k)
ij bk

)
=

∑

k∈I

α
(k)
ij ι(bk) =

=
∑

k∈I

α
(k)
ij x̄k = [x̄i, x̄j ] = [ι(bi), ι(bj)].

Let A be an associative algebra and let φ : L → A(−) be any Lie algebra homomor-
phism. Let φ(bi) = ai ∈ A, i ∈ I. We define a homomorphism θ : K〈X〉 → A by
θ(xi) = ai, i ∈ I. Since

[ai, aj ] = [φ(bi), φ(bj)] = φ(bi ∗ bj) =
∑

k∈I

α
(k)
ij φ(bk) =

∑

k∈I

α
(k)
ij ak,

we obtain that
[xi, xj ]−

∑

k∈I

α
(k)
ij xk ∈ Kerθ, J ⊆ Kerθ,

and we can define ψ : K〈X〉/J → A such that φ = ψ ◦ ι. The uniqueness of ψ is
obvious because U is generated by X.

Now we shall see that G is a reduced Gröbner basis of J . Applying Algorithm
1.22, for

gij = [xi, xj ]−
∑

k∈I

α
(k)
ij xk, i > j, i, j ∈ I,

we obtain that ĝij = xixj and the only overlaps are (XiXj)xk = xi(XjXk), i >
j > k. We denote

xi ∗ xj =
∑

k∈I

α
(k)
ij xk
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and extend the notation y1 ∗ y2 by linearity on the vector space spanned by X. In
particular, since the Lie algebra L is anticommutative and satisfies the Jacobian
identity, we have

xi ∗ xj = −xj ∗ xi, (xi ∗ xj) ∗ xk + (xj ∗ xk) ∗ xi + (xk ∗ xi) ∗ xj = 0.

Since gij = [xi, xj ]− xi ∗ xj , the reductions replace xixj by xjxi + xi ∗ xj . Let, for
example, i = 3, j = 2, k = 1. Then

g32x1 − x3g21 = (x3x2 − x2x3 − x3 ∗ x2)x1 − x3(x2x1 − x1x2 − x2 ∗ x1) =

= −x2X3X1 − (x3 ∗ x2)x1 + X3X1x2 + x3(x2 ∗ x1) →
→ −X2X1x3 − x2(x3 ∗ x1)− (x3 ∗ x2)x1 + x1X3X2 + (x3 ∗ x1)x2 + x3(x2 ∗ x1) →

→ −(x1x2 + x2 ∗ x1)x3 − x2(x3 ∗ x1)− (x3 ∗ x2)x1+

+x1(x2x3 + x3 ∗ x2) + (x3 ∗ x1)x2 + x3(x2 ∗ x1) =

= −(x2 ∗x1)x3−x2(x3 ∗x1)− (x3 ∗x2)x1 +x1(x3 ∗x2)+(x3 ∗x1)x2 +x3(x2 ∗x1) =

−(x2 ∗ x1) ∗ x3 + (x3 ∗ x1) ∗ x2 − (x3 ∗ x2) ∗ x1 =

= (x1 ∗ x2) ∗ x3 + (x3 ∗ x1) ∗ x2 + (x2 ∗ x3) ∗ x1 = 0.

Hence no new relations have to be added to G and G is a Gröbner basis for J .
Clearly it is reduced. A word w ∈ 〈X〉 is normal with respect to G if w has no
subword xixj , i > j. Hence the set of normal words is

{xi1 . . . xin | i1 ≤ . . . ≤ in, n = 0, 1, 2, . . . }

and U has a basis

{x̄i1 . . . x̄in | i1 ≤ . . . ≤ in, n = 0, 1, 2, . . . }.

Hence the words x̄i, i ∈ I, are linearly independent in U and this implies that the
vector space homomorphism ι is an embedding of L into U . Therefore, we may
identify L with ι(L) ⊂ U . ¤

Definition 2.5. The free Lie algebra L(X) freely generated by the set X is
defined by the universal property: L(X) is generated by X and for any Lie algebra
L any mapping X → L can be extended to a Lie algebra homomorphism L(X) → L.
(Compare with the universal property of K〈X〉 in Proposition 1.5.) ¤

Theorem 2.6. (Witt) The free Lie algebra L(X) is isomorphic to the Lie sub-
algebra of K〈X〉(−) generated by X and K〈X〉 is the universal enveloping algebra
of L(X).

Proof. Let L be any Lie algebra and let U(L) be the universal enveloping algebra
of L. Let φ : X → L be any mapping. We extend φ to an associative algebra
homomorphism (also denoted by φ) φ : K〈X〉 → U(L). (This is possible because
L ⊂ U(L).) Since φ([u, v]) = [φ(u), φ(v)], u, v ∈ K〈X〉, by induction on the length
of the commutators we see that

φ([[xi1 , . . . ], [. . . , xin ]]) = [[φ(xi1), . . . ], [. . . , φ(xin)]]
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belongs to L for any commutator [[xi1 , . . . ], [. . . , xin
]] ∈ K〈X〉. Hence the restric-

tion of φ on the Lie subalgebra L(X) generated by X in K〈X〉 is a Lie algebra
homomorphism from L(X) to L. Hence L(X) has the universal property of Defini-
tion 2.5 and is isomorphic to the free Lie algebra. Since the universal property of
U(L(X)) is also satified by K〈X〉, this gives that K〈X〉 = U(L(X)). ¤

We shall always assume the free Lie algebra L(X) is a Lie subalgebra of K〈X〉.
Combining the Poincaré-Birkhoff-Witt theorem with the Witt theorem we obtain

immediately the following important corollary which is very important for different
applications: computing the dimensions of the homogeneous components of L(X),
for concrete calculations with PI-algebras, etc. (see e.g.[Ba], [Bo], [S], [D]).

Corollary 2.7. If {u1, u2, . . . } is an ordered basis of L(X), then K〈X〉 has a
basis

{un1
1 . . . unp

p | ni ≥ 0}. ¤

By analogy with defining relations of associative algebras we can introduce defin-
ing relations of Lie algebras. If L = L(X)/I and the ideal I is generated by some
set R, then L has the presentation L = L(X | R = 0) and R is a set of defining
relations for L.

Corollary 2.8. If L has the presentation L = L(X | R = 0), then its universal
enveloping algebra U(L) has the presentation U(L) = K〈X | R = 0〉.

Proof. Let I and J be respectively the ideals of L(X) and K〈X〉 generated by
R. Let

X̄ = {x̄1, . . . , x̄m} = {x1 + I, . . . , xm + I}.
Since J contains I, we obtain that K〈X〉/J satisfies all relations of L and is a
homomorphic image of U(L). Clearly, both L and U(L) are generated by X̄ and
we have the homomorphisms

ν : K〈X〉 → U(L), π : U(L) → K〈X〉/J.

Since U(L) also satisfies the relations R, we derive that the kernel of ν contains
J = K〈X〉RK〈X〉 and obtain that Kerν = J , i.e. π is an isomorphism. ¤

Definition 2.9. (i) The Lie algebra L is nilpotent of class c if [a1, . . . , ac+1] = 0
for all ai in L and there exit a1, . . . , ac ∈ L such that [a1, . . . , ac] 6= 0. (Pay
attention: If a1 . . . ac+1 = 0 for all ai in the nonunitary associative algebra A and
a1 . . . ac 6= 0 for some a1, . . . , ac ∈ A, then the associative algebra is nilpotent of
class c + 1.)

(ii) Let the ideals Lc(X) of L(X) be defined inductively by

L1(X) = L(X), Lc+1(X) = [Lc(X), L(X)], c = 1, 2, . . . ,

(L1(X) ⊃ L2(X) ⊃ . . . is called the lower central series of L(X).) The algebra
L(X)/Lc+1(X) is called the free nilpotent Lie algebra of class c. (It is easy to see
that the algebra L(X)/Lc+1(X) has the universal property that for any nilpotent of
class ≤ c Lie algebra L every mapping X → L can be extended to a homomorphism
L(X)/Lc+1(X) → L.) ¤

Example 2.10. The defining relations of the Lie algebra L(X)/Lc+1(X) are

R = {[xi1 , . . . , xic+1 ] | xij ∈ X}.
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(Using the anticommutativity and the Jacobi identity one can see that every com-
mutator of length ≥ c in L(X) and with any brackets decomposition belongs to
Lc(X).) ¤

Definition 2.11. Let V be a vector space with basis {e1, e2, . . . } and with a
symmetric bilinear form 〈ei, ej〉 = αij ∈ K, αij = αji, charK 6= 2. The Clifford
algebra C(V ) of V is the algebra with presentation

C(V ) = K〈x1, x2, . . . | xixj + xjxi = αij , i, j = 1, 2, . . . 〉. ¤

Theorem 2.12. The defining relations of the Clifford algebra C(V )

R = {gij = xixj + xjxi − αij | i ≥ j, i, j = 1, 2, . . . }

form a Gröbner basis and C(V ) has a basis

{ei1 . . . ein | i1 < . . . < in, n = 0, 1, 2, . . . }.

Proof. It is sufficient to apply Algorithm 1.22. The possible overlaps for the
leading terms of the relations gij are (XiXj)xk = xi(XjXk), i ≥ j ≥ k. The
reductions replace xixj , i > j, with −xjxi + αij and x2

i with 1
2αii. It is sufficient

to consider the cases (i) (i, j, k) = (3, 2, 1), (ii) (i, j, k) = (2, 2, 1) and (iii) (i, j, k) =
(2, 1, 1).

(i) g32x1 − x3g21 = x2(X3X1)− (X3X1)x2 − α23x1 + α12x3 →

→ −x2(x1x3 − α13) + (x1x3 − α13)x2 − α23x1 + α12x3 =

= −(X2X1)x3 + x1(X3X2)− α23x1 + α12x3 →
→ (x1x2 − α12)x3 − x1(x2x3 − α23)− α23x1 + α12x3 = 0.

(ii) 1
2g22x1 − x2g21 = (x2

2 − 1
2α22)x1 − x2(x2x1 + x1x2 − α12) =

= −1
2
α22x1 − (X2X1)x2 + α12x2 → −1

2
α22x1 + (x1x2 − α12)x2 + α12x2 =

= −1
2
α22x1 + x1X

2
2 → 0.

(iii) This case is similar to (ii). Hence R is a Gröbner basis. In order to make it
reduced it is sufficient to norm the relations for i = j. ¤

Definition 2.13. Let V be a vector space with an ordered basis {e1, e2, . . . }.
The Grassmann (or exterior) algebra E(V ) of V is the associative algebra with
presentation

E(V ) = K〈x1, x2, . . . | xixj + xjxi = 0, i, j = 1, 2, . . . 〉, charK 6= 2,

and is isomorphic to the Clifford algebra with the trivial form 〈ei, ej〉 = 0. Hence
E(V ) has a basis

{ei1 . . . ein | i1 < . . . < in, n = 0, 1, 2, . . . }. ¤
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The Grassmann algebra has numerous applications to the theory of superalge-
bras, algebraic geometry, geometry, algebras with polynomial identities, etc.

Example 2.14. (For this and other examples see [U, Section 2.11].) Let f =
f(t1, . . . , tm) ∈ K[t1, . . . , tm] be a homogeneous polynomial of degree n. The
generalized Clifford algebra is presented as

C(n,m, f) = K〈x1, . . . , xm | (t1x1 + . . . + tmxm)n = f(t1, . . . , tm)〉.

The relations should be read in the following way. Assuming that all ti commute
with X, we write

(t1x1 + . . . + tmxm)n =
∑

tn1
1 . . . tnm

m r(n1,... ,rm)(X),

f(t1, . . . , tm) =
∑

α(n1,... ,rm)t
n1
1 . . . tnm

m .

Then R = {r(n1,... ,rm) − α(n1,... ,rm) | n1 + . . . + nm = n}. It is known that R is a
Gröbner basis. ¤
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3. GRADED ALGEBRAS

We start with the necessary background on generating functions.
Definition 3.1. Let a0, a1, a2, . . . (or {an}n≥0) be a sequence of real (complex)

numbers.
(i) The formal power series

a(t) =
∑

n≥0

antn

is called the generating function of {an}n≥0.
(ii) If a(t) =

∑
n≥0 antn converges to the rational function p(t)

q(t) in a neighbour-
hood of 0 for some p(t), q(t) ∈ C[t], we say that a(t) is rational. ¤

The advantage of studying the generating functions instead of the sequence itself
is that we may apply the theory of analytic functions or to find some recurrence
relations. In particular, we may find a closed formula for an or to estimate its
asymptotic behaviour.

Definition 3.2. (i) Two sequences {an}n≥0 and {bn}n≥0 are asymptotically
equal (notation an ∼ bn) if an, bn 6= 0 for n sufficiently large and

lim
n→∞

an

bn
= 1.

(ii) If a(t) =
∑

n≥0 antn and b(t) =
∑

n≥0 antn and an ≥ bn for all n, we write
a(t) ≥ b(t). ¤

Proposition 3.3. Let {an}n≥0 and a(t) =
∑

n≥0 antn.
(i) The generating function a(t) is rational if and only if {an}n≥0 satisfies a linear

recurrence relation, i.e. there exist c1, . . . , ck such that

an+k = c1an+k−1 + c2an+k−2 + . . . + ckan, n ≥ 0.

(ii) If all an are rational and {an}n≥0 satisfies a linear recurrence relation, then

a(t) =
p(t)
q(t)

∈ Q(t).

Proof. (i) Let a(t) = p(t)
q(t) ∈ C(t), where

p(t) =
k∑

i=0

pit
i, q(t) =

l∑

j=0

qjt
j , q0 6= 0.

Since p(t) = q(t)a(t), we obtain

p(t) =
k∑

i=0

=




l∑

j=0

qjt
j





∑

n≥0

antn


 =

∑

n≥0




l∑

j=0

qjan−j


 tn.

Hence for n > k, n ≥ l,

q0an + q1an−1 + . . . + qlan−l = 0,
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an = − 1
q0

(q1an−1 + . . . + qlan−l)

which gives the linear recurrence relation.
Now, let

an+k = c1an+k−1 + . . . + ckan, n = 0, 1, 2, . . .

Multiplying these equations with tn+k and taking their formal sum, we obtain
∑

n≥k

antn = c1t
∑

n≥k−1

antn + . . . + cktk
∑

n≥0

antn,

a(t)−
k−1∑

i=0

ait
i = c1t

(
a(t)−

k−2∑

i=0

ait
i

)
+ . . . + ck−1t

k−1(a(t)− a0) + cktka(t)

and a(t)(1 − c1t − c2t
2 − . . . − cktk) is equal to a polynomial p(t). Hence a(t) is

equal to the rational function p(t)
q(t) , where q(t) = 1− c1t− c2t

2 − . . .− cktk.
(ii) If all an are rational, then in the second part of the proof of (i) we obtain

that p(t), q(t) ∈ Q[t] and a(t) ∈ Q(t). ¤
Definition 3.4. Let {an}n≥0 be a sequence of complex numbers.
(i) If there exist positive b and c such that |an| ≤ bnc for all n, we say that the

sequence {an}n≥0 is with polynomial growth. (We use this terminology although
it is more precise to say that the growth of {an}n≥0 is polynomially bounded.)

(ii) If there exist b1, b2 > 0, c1, c2 > 1 and a subsequence {ank
}k≥0 such that

b1c
nk
1 ≤ |ank

| ≤ b2c
nk
2 ,

then {an}n≥0 is with exponential growth.
(iii) If for any b, c > 0 there exists a subsequence {ank

}k≥0 such that |ank
| > bnc

k

and for any b1 > 0, c1 > 1 the inequality |an| < b1c
n
1 holds for all sufficiently large

n, then {an}n≥0 is of intermediate growth. ¤
Theorem 3.5. If

a(t) =
∑

n≥0

antn =
p(t)
q(t)

∈ C(t),

then the sequence {an}n≥0 is either of polynomial or of exponential growth.
Proof. Let a(t) = p(t)

q(t) , p(t), q(t) ∈ C[t]. Since a(0) = a0, we obtain that 0 is not
a pole of a(t) and we may assume that q(0) 6= 0. Let

q(t) = q0

d∏

i=1

(1− αit)ki ,

where α1, . . . , αd ∈ C are the different zeros of q(t). Hence

a(t) = b(t) +
d∑

i=1

kj∑

j=1

βij

(1− αit)j
, b(t) ∈ C[t], βij ∈ C.

Using the formula
1

(1− t)k
=

∑

n≥0

(
n + k − 1

k − 1

)
tn,
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we obtain that for n > degb(t)

an = b1(n)αn
1 + . . . + bd(n)αn

d ,

where bi(n) are polynomials of n.
(i) If |αi| ≤ 1 for all nonzero polynomails bi(n), then {an}n≥0 is with polynomial

growth.
(ii) Let an = b1(n)αn

1 + . . . + bk(n)αn
k , where all bi(n) are nonzero polynomials.

Let
r = |α1| = . . . = |αl| > |αl+1| ≥ . . . ≥ |αk|, r > 1,

s = degb1(n) = . . . = degbm(n) > degbm+1(n) ≥ . . . ≥ degbl(n).

Then
lim sup

n→∞

∣∣∣ an

nsrn

∣∣∣ =

lim sup
n→∞

1
ns

∣∣∣b1(n)
(α1

r

)n

+ . . . + bm(n)
(αm

r

)n∣∣∣ =

= lim sup
n→∞

|β1ε
n
1 + . . . + βmεn

m|

for some nonzero β1, . . . , βm ∈ C and where |εi| = 1, i = 1, . . . , m. It is sufficient
to show that

lim sup
n→∞

|β1ε
n
1 + . . . + βmεn

m| > 0.

This will imply that |an| ≤ const.nsrn and that for every r1 ∈ R, 1 < r1 < r we
can find a subsequence {ani}i≥0 such that |ani | > const.rn

1 , which means that the
growth of {an}n≥0 is exponential. Let

cn = β1ε
n
1 + . . . + βmεn

m.

Since |cn| is bounded it is sufficient to assume that limn→∞ cn = 0 and to reach a
contradiction. Let limn→∞ cn = 0. Hence

cn+l = (β1ε
n
1 )εl

1 + . . . + (βmεn
m)εl

m = δn+l, l = 0, 1, . . . , m− 1.

We consider these m equations as a linear system with unknowns β1ε
n
1 , . . . , βmεn

m.
The determinant of the system is the Vandermonde determinant and is different
from 0. Hence the solutions of the system are

βiε
n
i =

m−1∑

j=0

γijδn+j ,

where γij depends on εl
ij only, i = 1, . . . ,m, l = 0, 1, . . . , m−1. Since limn→∞ δn =

0, we obtain that limn→∞ βiε
n
i = 0. Since |εi| = 1, this means that limn→∞ βi =

βi = 0 which is impossible. ¤
Corollary 3.6. If an ∈ Z, n = 0, 1, 2, . . . , and

a(t) =
∑

n≥0

antn ∈ Q(t),
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then the radius of convergency r of a(t) is either equal to ∞ or r ∈ (0, 1].
Proof. If a(t) ∈ Q[t], then r = ∞. If a(t) is not a polynomial, then {an}n≥0

satisfies a recurrence relation and for some d and k the coefficients adn+k are not
equal to 0. (Prove it!) Hence

∑

n≥0

|an|tn ≥ tk(1 + td + t2d + . . . ) =
tk

1− td
.

Hence r ≤ 1. The inequality r > 0 follows from Theorem 3.6. There exist b > 0,
c > 1 such that an ≤ bcn and r is bigger or equal to the radius of convergence 1

c of
b(1 + ct + c2t2 + . . . ). ¤

Definition 3.7. (i) The vector space V is graded if it is a direct sum of subspaces
V = V (0) ⊕ V (1) ⊕ V (2) ⊕ . . . . The subspace V (n) is the homogeneous component
of degree n of V . Similarly, V is multigraded, if for a fixed m it is a direct sum

V =
∑⊕V (n1,... ,nm)

of its (multi)homogeneous components V (n1,... ,nm), where the summation runs over
all ni ∈ Z, ni ≥ 0. Sometimes it is more convenient to use subscripts Vn instead of
V (n) but we prefer the latter notation.

(ii) If V =
∑⊕

V (n), W ⊂ V and W =
∑⊕(W ∩ V (n)), then W is a graded

subspace of V and hence V/W inherits the grading of V . We always shall consider
W and V/W as graded vector spaces with respect to this grading. ¤

Example 3.8. (i) The vector space V = K[X] is graded assuming that V (n) is
the vector space of all homogeneous polynomials of degree n. Similarly (assuming
as usually that X = {x1, . . . , xm}) V = K[X] is multigraded, where V (n1,... ,nm) is
the one-dimensional vector space spanned by xn1

1 . . . xnm
m .

(ii) The free algebra V = K〈X〉 is graded and multigraded in the same way
as K[X], i.e. V (n) is spanned by all products xi1 . . . xin and V (n1,... ,nm) ⊂ V (n),
n1 + . . .+nm = n, is spanned on these xi1 . . . xin which contain exactly ni symbols
xi. ¤

Definition 3.9. If V =
∑⊕

n≥0 V (n) is a graded vector space and dim V (n) < ∞
for all n ≥ 0, then the Hilbert (or Poincaré) series of V is the formal power series

H(V, t) =
∑

n≥0

dim V (n)tn.

Similarly, if V =
∑⊕

V (n1,... ,nm), dim V (n1,... ,nm) < ∞, then we define the Hilbert
series in m variables by

H(V, t1, . . . , tm) =
∑

dim V (n1,... ,tm)tn1
1 . . . tnm

m . ¤

Recall that for vector spaces V and W with bases respectively {vi | i ∈ I},
{wj | j ∈ J}, the tensor product V ⊗W = V ⊗K W is the vector space with basis
{vi ⊗ wj | i ∈ I, j ∈ J}. If V =

∑⊕
n≥0 V (n), W =

∑⊕
n≥0 W (n) are graded, then the

direct sum V ⊕W and the tensor product V ⊗W are also graded assuming that

(V ⊕W )(n) = V (n) ⊕W (n), (V ⊗W )(n) =
n∑

k=0

⊕
(
V (k) ⊕W (n−k)

)
.
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We can easily obtain the following formulas for the Hilbert series of V ⊕ W and
V ⊗W :

H(V ⊕W, t) = H(V, t) + H(W, t), H(V ⊗W, t) = H(V, t)H(W, t).

If W ⊂ V , then
H(V, t) = H(W, t) + H(V/W, t).

There are also similar definitions of grading and relations for Hilbert series of multi-
graded vector spaces.

Example 3.10. (i) For the polynomial algebra in one variable

K[x] = K ⊕Kx⊕Kx2 ⊕ . . .

Hence dim(K[x])(n) = 1 and

H(K[x], t) = 1 + t + t2 + . . . =
1

1− t
.

Since
K[x1, . . . , xm] ∼= K[x1, . . . , xm−1]⊗K[xm]

as graded vector spaces, by easy induction we obtain

H(K[x1, . . . , xm], t) = H(K[x1, . . . , xm−1], t)H(K[xm], t) =

=
1

(1− t)m−1

1
1− t

=
1

(1− t)m
,

H(K[x1, . . . , xm], t1, . . . , tm) =
m∏

i=1

1
1− ti

.

(ii) The homogeneous component of degree n of free associative algebra K〈X〉
has a basis

{xi1 . . . xin | ij = 1, . . . , m}.
Hence dim(K〈X〉)(n) = mn and the Hilbert series of K〈X〉 is

H(K〈X〉, t) = 1 + mt + m2t2 + . . . =
1

1−mt
.

Since as graded vector spaces

K〈X〉 = K ⊕ x1K〈X〉 ⊕ . . .⊕ xmK〈X〉,

H(K〈X〉, t1, . . . , tm) = 1 +
m∑

i=1

tiH(K〈X〉, t1, . . . , tm),

(
1−

m∑

i=1

ti

)
H(K〈X〉, t1, . . . , tm) = 1,

H(K〈X〉, t1, . . . , tm) =
1

1− (t1 + . . . + tm)
. ¤
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Studying the Hilbert series of finitely generated commutative graded algebras
A provides a lot of information about the algebras themselves (see e.g. [AM]). In
particular, the Hilbert-Serre theorem gives that H(A, t) ∈ Q(t).

Now we shall show that in the noncommutative case the situation is more compli-
cated. We shall construct some exotic examples of graded algebras with nonrational
Hilbert series.

Theorem 3.11. There exists a two-generated graded algebra with a nonrational
Hilbert series.

Proof. Let X = {x, y}, I ⊂ N0,

RI = {zyxky, yxkyz, yxiy | k ≥ 0, z = x, y, i ∈ I},

Ai = K〈x, y | RI = 0〉. Since RI consists of monomial relations, Proposition 1.28
gives that RI is a Gröbner basis of the ideal (RI) / K〈x, y〉 and the set of normal
words with respect to RI is a basis of AI . Hence AI has a homogeneous basis

{xk, xkyxl, yxjy | k, l ≥ 0, j ∈ N0 \ I}

and the Hilbert series of AI is

H(A, t) =
∑

k≥0

tk + t
∑

k,l≥0

tktl + t2
∑

j∈N0\I
tj =

1
1− t

+
t

(1− t)2
+

t2

1− t
− t2

∑

i∈I

ti.

Clearly, H(AI , t) is a rational function if and only if fI(t) =
∑

i∈I ti is rational.
Let fI(t) be rational. Then Proposition 3.3 gives that fI(t) ∈ Q(t). Now we have
two possibilities to complete the proof.

Aproach 1. Since the set of rational fuctions with rational coefficients is countable
it is sufficient to construct a continuum of different functions fI(t). Since the
functions fI(t) are in one-to-one correspondence with the subsets I of N0, we obtain
that there exists a set I with a nonrational function fI(t).

Approach 2. If the formal power series fI(t) =
∑

n≥0 εntn, εn = 0, 1, is rational,
then its coefficients εn satisfy a linear recurrence relation

εn+k = p1εn+k−1 + . . . + pkεn

for some k and some p1, . . . , pk. Now we choose I = {1!, 2!, . . . }. Hence εn = 1
if and only if n = q! for some q and εn = 0 otherwise. Fixing any k, for q
sufficiently large (e.g. such that (q + 1)! − q! > k) we obtain that εn = 0 for
n = q! + 1, q! + 2, . . . , q! + k. Now the recurrence relation implies that εn = 0 for
all n > q! which is a contradiction. Hence the function fI(t) =

∑
q≥1 tq! is not

rational. ¤
Corollary 3.12. There exists a continual set of finitely generated graded alge-

bras with pairwise different Hilbert series.
Proof. From the proof of Theorem 3.11 we obtain that if I1 and I2 are different

subsets of N0, then the Hilbert series of the algebras AI1 and AI2 are different.
Since the subsets of N0 are continually many, we complete the proof. ¤
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Using the trick of Olshanskii [O], we can construct the following exotic example.
Corollary 3.13. There exists a continual ascending chain {Uα | α ∈ R} of

graded ideals of K〈x, y〉 such that Uα ⊂ Uβ (and Uα 6= Uβ) if and only if α <
β. Hence, for every α < β there is a canonical homomorphism K〈x, y〉/Uα →
K〈x, y〉/Uβ .

Proof. Let Q = {q1, q2, . . . } be the set of rationals listed in an arbitrary way.
For α ∈ R we define the set Iα = {i | qi ≤ α}. Clearly, Iα ⊂ Iβ if and only if α ≤ β
and Iα 6= Iβ for α 6= β. Hence the ideals Uα of K〈x, y〉 from the proof of Theorem
3.11, Uα being generated by the set RIα , satisfy the condition Uα ⊆ Uβ for α ≤ β.
Since RIα

is the Gröbner basis of Uα, and the sets of normal words with respect to
RIα

and RIβ
are different for α 6= β, we obtain that Uα 6= Uβ for α 6= β. ¤

Remark 3.14. If two graded algebras are not isomorphic as graded algebras,
this does not mean that they are not isomorphic as algebras without grading. In
our case the algebras AI = K〈x, y | RI〉 from the proof of Theorem 3.11 are not
isomorphic as algebras. We shall sketch the proof. Let I1, I2 ⊆ N0, I1 6= I2, let
xj = x + (RIj ), yj = y + (RIj ), j = 1, 2, be the generators of AIj = K〈x, y〉/(RIj )
and let φ : AI1 → AI2 be an isomorphism.

Step 1. The ideal (yj) generated in AIj by yj is nilpotent because zjyjx
k
j yj =

yjx
k
j yjzj = 0 in AIj , zj = xj , yj , and AIj /(yj) ∼= K[xj ]. Hence (yj) is the Jacobson

radical of AIj and φ((y1)) = (y2). Hence φ induces an isomorphism φ̄ : K[x1] →
K[x2]. Since all automorphisms of K[x] are the affine defined by x → α0 + α1x,
α0, α1 ∈ K, α1 6= 0, we obtain that φ̄(x1) = α0 + α1x2, with the same restrictions
on α0, α1.

Step 2. Let φ(y1) = βy2+f(x2, y2), where the polynomial f(x2, y2) has no linear
component. Since φ(x1), φ(y1) generate AI2 , and the same holds for φ(x1) − α0,
φ(y1), then y2 = g(φ(x1)− α0, φ(y1)) for some g(u1, u2) ∈ K〈u1, u2〉. This implies
that β 6= 0, i.e.

φ(x1) = α0 + α1x2 + α2y2 + u, φ(y1) = βy2 + v, u, v ∈
∑

n≥2

⊕A
(n)
I2

.

Step 3. If I1 = N0, I2 6= N0, then the Jacobson radical of AI1 is nilpotent of
class 2 and the Jacobson radical of AI2 is nilpotent of class 3. Since the class of
nilpotency of the Jacobson radical is an invariant of the algebra, we obtain that
AI1 and AI2 are not isomorphic.

Step 4. Let I1, I2 6= N0. Since x1 annihilates the square of the Jacobson radical
of AI1 and φ is an automorphism (and hence φ sends the Jacobson radical onto the
Jacobson radical), φ(x1) satisfies the same property for annihilation. This implies
α0 = 0.

Step 5. Witout loss of generality we may assume that there exists an i in I1 \ I2.
Then y2x

i
2y2 6= 0, y1x

i
1y1 = 0 and

0 = φ(y1)φ(x1)iφ(y1) = αi
1β

2y2x
i
2y2 + w, w ∈

∑

n≥i+3

⊕A
(n)
I2

.

Since αi
1β

2y2x
i
2y2 6= 0, we reach a contradiction. ¤

We shall finish this chapter with a theorem of Formanek [F], see also [H].
Theorem 3.15. Let U and V be graded ideals of K〈X〉,

A = K〈X〉/U, B = K〈X〉/V, C = K〈X〉/UV.
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Then the Hilbert series of U, V, UV and A,B, C are related by the equations

H(UV, t) =
H(U, t)H(V, t)
H(K〈X〉, t) ,

H(C, t) = H(A, t) + H(B, t)− H(A, t)H(B, t)
H(K〈X〉, t) .

Proof. Let F = K〈X〉. By Theorem 1.31, any right (left) ideal of F is a free
right (left) F -module. Since U and V are graded, the proof of Theorem 1.31 gives
that they have homogeneous sets of free generators, say {ui | i ≥ 1}, {vj | j ≥ 1},
considered respectively as free right and left F -modules. Hence

U =
∑

i≥1

⊕uiF, V =
∑

j≥1

⊕Fvj .

Let deg ui = pi, deg vj = qj . Then

H(U, t) =
∑

i≥1

tpiH(F, t), H(V, t) =
∑

j≥1

tqj H(F, t).

Since F 2 = F , we obtain that

UV =


∑

i≥1

⊕uiF





∑

j≥1

⊕Fvj


 =

∑

i,j≥1

⊕uiFvj ,

H(UV, t) =
∑

i,j≥1

tpitqj H(F, t) =
H(U, t)H(V, t)

H(F, t)
.

Since H(A, t) + H(U, t) = H(F, t) and similar relations hold for B, U and C, UV ,
the relation between the Hilbert series of A, B,C follows from the relation between
the Hilbert series of U, V, UV replacing H(U, t), H(V, t), H(UV, t) respectively with
H(F, t)−H(A, t), H(F, t)−H(B, t), H(F, t)−H(C, t). ¤

Exercise 3.16. Prove a multigraded version of Theorem 3.15. ¤
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4. THE THEOREM OF GOLOD-SHAFAREVICH

In 1902 Burnside [B] posed his famous problem which was considered as one of
the main problems of the theory of infinite groups for more than 90 years.

Problem 4.1. (Burnside) Let G be a finitely generated group. If every element
of G is of finite order, does this imply that G is finite? ¤

In 1941 Kurosch [K] raised a similar problem in ring theory.
Problem 4.2. (Kurosch) (i) Let A be a finitely generated nonunitary algebra.

If every element of A is nil, does this imply that A is nilpotent?
(ii) If every element a of the finitely generated algebra A is algebraic (i.e. there

exists a nonzero polynomial f(x) ∈ K[x] such that f(a) = 0), is the algebra finite
dimensional. ¤

The negative solution of the Burnside problem was given by Novikov and Adyan,
see the book by Adyan [A]. They proved even more: If p is a fixed sufficiently large
prime, then there exists a finitely generated group G which is infinite and every
element of G is of exponent p. The construction of Novikov and Adyan is based on
purely group theoretical methods. The negative solution of the Kurosh problem was
given by Golod and Shafarevich [GS], [G]. They constructed a finitely generated nil
algebra which is not nilpotent. As a consequence they also obtained for every prime
p a new example of a finitely generated p-group G (i.e. every g ∈ G is of order gn

for some n) which is infinite. The approach of Golod and Shafarevich is based on
Hilbert series and is ring theoretical. A nice exposition close to the original papers
[GS], [G] is given in the book of Herstein [H]. Our approach is closer to that in the
survey article of Ufnarovsky [U] combined with ideas of the original papers.

Lemma 4.3. Let rk ≥ 0, k = 2, 3, . . . , let m > 0 and let

q(t) =
1

1−mt +
∑

k≥2 rktk
=

∑

k≥0

qktk.

If qk ≥ 0 for all k ≥ 0, then q(t) cannot be a polynomial.
Proof. Let q(t) = q0 + q1t + . . . + qntn, qk ≥ 0, qn 6= 0. Then

q(t)


1−mt +

∑

k≥2

rktk


 = 1,

q(t)


1 +

∑

k≥2

rktk


 = 1 + mtq(t).

Comparing the coefficients of degree n + 2 of both sides of this equation, we obtain

q0rn+2 + q1rn+1 + . . . + qnr2 = 0.

Since qi, ri ≥ 0, qn > 0, we see that r2 = 0. Now we compare the coefficients of
degree n + 3:

q0rn+3 + q1rn+2 + . . . + qnr3 = 0

and again r3 = 0. Continuing in this way, we obtain that r4 = r5 = . . . = 0 and

q(t) =
1

1−mt
= 1 + mt + m2t2 + . . . ,
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i.e. q(t) cannot be a polynomial. ¤
As usually, we fix an integer m ≥ 2 and the set X = {x1, . . . , xm}. Let U be a

graded ideal of F = K〈X〉 generated by a set R of homogeneous polynomials. We
denote by rn the number of elements of degree n in the generating set R and by
r(t) =

∑
n≥2 rntn the corresponding generating function.

Lemma 4.4. Let in the above notation N be the vector space spanned by the
normal words with respect to U . Then U = UX + NR.

Proof. By Theorem 1.12, F = N ⊕ U as vector spaces and since F = FX ⊕K
and R ⊂ FX2 (because the relations in R are homogeneous of degree ≥ 2), we
obtain

U = FRF = FR(FX + K) = FRFX + FR = UX + (N + U)R =

= UX + NR + UR ⊆ UX + NR + UFX2 = UX + NR,

i.e. U ⊆ UX + NR. Since UX ⊆ U , NR ⊆ U , we obtain U = UX + NR. ¤
Corollary 4.5. Let A = F/U = K〈X | R = 0〉. Then

H(U, t) ≤ H(U, t)mt + H(A, t)r(t).

Proof. Since N and A are isomorphic as graded vector spaces, we obtain that

H(U, t) = H(UX + NR, t) ≤ H(UX, t) + H(NR, t) ≤

≤ H(U, t)mt + H(N, t)r(t) = H(U, t)mt + H(A, t)r(t). ¤

Theorem 4.6. (Golod-Shafarevich) If all coefficients of the series

q(t) =
1

1−mt +
∑

k≥2 rktk

are nonnegative, then the algebra A = K〈X | R = 0〉 is infinite dimensional.
Proof. In the inequality

H(U, t)(1−mt) ≤ H(A, t)r(t)

in Corollary 4.5 we replace

H(U, t) = H(F, t)−H(A, t) =
1

1−mt
−H(A, t)

and obtain (
1

1−mt
−H(A, t)

)
(1−mt) ≤ H(A, t)r(t),

H(A, t)(1−mt + r(t)) ≥ 1.

Since the coefficients of q(t) are nonnegative, we derive

H(A, t) = H(A, t)(1−mt + r(t))q(t) =

= H(A, t)(1−mt + r(t))
1

1−mt + r(t)
≥ 1

1−mt + r(t)
.
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Now, applying Lemma 4.3, we obtain that q(t) is not a polynomial and this implies
that infinitely many of the coefficients of H(A, t) are positive. Hence A is not finite
dimensional. ¤

Corollary 4.7. If all coefficients of the series

p(t) =
1

1−mt +
∑

n≥2 sntn
=

∑

n≥0

pntn

are nonnegative and rn ≤ sn for all n ≥ 2, then the algebra A is also infinite
dimensional.

Proof. In the notation of Theorem 4.6 it is sufficient to show that the coefficients
of q(t) = (1−mt +

∑
n≥2 rntn)−1 are nonnegative. Let

u(t) = 1−mt + r(t) = 1−mt +
∑

n≥2

rntn,

s(t) = 1−mt +
∑

n≥2

sntn.

Then p(t) = 1
s(t) , q(t) = 1

u(t) . We know that s(t) ≥ u(t), p(t) ≥ 0 and want to show
that q(t) ≥ p(t), i.e. 1

u(t) ≥ 1
s(t) . Hence v(t) = s(t)−u(t) ≥ 0 and the formal power

series v(t) has no constant term. Therefore

u(t) = s(t)− v(t) = s(t)− s(t)v(t)
1

s(t)
= s(t)

(
1− v(t)

s(t)

)
,

1
u(t)

=
1

s(t)
.

1

1− v(t)
s(t)

,

q(t) = p(t)
1

1− v(t)
s(t)

.

Since v(t)
s(t) has no constant term,

1

1− v(t)
s(t)

= 1 +
v(t)
s(t)

+
v(t)
s(t)

2

+ . . .

and the inequalities v(t) ≥ 0, 1
s(t) ≥ 0 imply that v(t)

s(t) ≥ 0. Hence

1

1− v(t)
s(t)

= 1 +
v(t)
s(t)

+
v(t)
s(t)

2

+ . . . ≥ 1,

which gives that q(t) ≥ p(t). ¤
Corollary 4.8. If 0 < ε < m

2 and rn ≤ ε2(m − 2ε)n−2 for all n ≥ 2, then the
algebra A is infinite dimensional.

Proof. Using the equation

1
(1− t)2

= 1 + 2t + 3t2 + . . .
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we calculate

1
1−mt +

∑
n≥2 ε2(m− 2ε)n−2tn

=
1

1−mt + ε2t2

1−(m−2ε)t

=

=
1− (m− 2ε)t

(1− (m− ε)t)2
=

m− 2ε

(m− ε)(1− (m− ε)t)
+

ε

(m− ε)(1− (m− ε)t)2
=

= (m− 2ε)
∑

n≥0

(m− ε)n−1tn + ε
∑

n≥0

(n + 1)(m− ε)n−1tn

and the coefficients of the series are positive for all n ≥ 0. Hence by Corollary 4.7
the algebra A is not finite dimensional. ¤

Lemma 4.9. Let A be a nilpotent algebra generated by {a1, . . . , am}. This
system of generators is minimal if and only if the set

{āi = ai + A2 | i = 1, . . . , m}

is a basis of the vector space Ā = A/A2.
Proof. Let a ∈ A be such that a 6∈ A2. Since a1, . . . , am generate A,

a =
∑

αiai1 . . . aik
, αi ∈ K, k ≥ 1.

Working modulo A2 we obtain that ā = a + A2 is a linear combination of āi,
i = 1, . . . , m. Hence {āi | i = 1, . . . , m} is a generating set of A/A2.

Let {āi | i = 1, . . . , p} be a basis of A/A2. We shall show that it generates the
algebra A. Let A be nilpotent of class n, i.e. An = 0 and An−1 6= 0. We shall
use induction on n, the base of the induction n = 2 being trivial. Assuming that
every element of Ã = A/An−1 is a polynomial of ã1, . . . , ãm, ãi = ai + An−1, it is
sufficient to show that every element of An−1 is a polynomial of a1, . . . , am. The
elements ap+1, . . . , am have the form ai = bi + ci, where bi is a linear combination
of a1, . . . , ap and ci ∈ A2, i = p + 1, . . . ,m. Since every element a ∈ An−1 can be
presented as

a =
∑

αiai1 . . . aik
, αi ∈ K, ij = 1, . . . ,m, k ≥ n− 1,

and ai1 . . . ain = 0, we obtain that it is sufficient to consider only the summands
with k = n − 1. Replacing ai with bi + ci for i > p and expressing bi as linear
combinations of a1, . . . , ap, we obtain that

a =
∑

βjaj1 . . . ajn−1 +
∑

γikak1 . . . cki . . . akn−1 , βj , γik ∈ K,

and the second sum consists of all products containing at least one cki . Since
cki ∈ A2, we obtain that ak1 . . . cki . . . akn−1 ∈ An = 0 and a is a polynomial of
a1, . . . , ap. ¤

Theorem 4.10. Let A be a nilpotent algebra with a minimal system of m > 1
generators and with r defining relations with respect to this minimal generating
system. Then r >

(
m−1

2

)2.
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Proof. Let {a1, . . . , am} be a minimal system of generators of A and let F =
K〈X〉, F+ =

∑
n≥1 F (n). Hence A ∼= F+/U for some ideal U of F+ and A has the

presentation
A = (K〈X | R = 0〉)+

for some set R of r elements. By Lemma 4.9, the set

{āi = ai + A2 | i = 1, . . . , m}

is a basis of A modulo A2. Since A/A2 ∼= F+/((F+)2 + U), this means that
U ⊆ (F+)2 and the relations in R have no linear terms. Every elemet ui ∈ R,
i = 1, . . . , r, has the form

ui = ui2 + ui3 + . . . + uik, uij ∈ F (j).

We add all uij to R as new relations and obtain that the new ideal U ′ generated
in F+ by

R′ = {uij | i = 1, . . . , r, j = 1, . . . , k}
contains U . Hence the algebra A′ = F+/U ′ is a homomorphic image of the original
algebra A = F+/U and is nilpotent. Now the set R′ of the generators of U ′ consists
of homogeneous polynomials and U ′ is a graded vector space. The algebra A′ is
m-generated, m ≥ 2, and has ≤ r relations of degree 2, ≤ r relations of degree
3, etc. Let r ≤ (

m−1
2

)2. Using the notation of Theorem 4.6, we obtain that
rn ≤ r ≤ (

m−1
2

)2. Hence

∑

n≥2

rntn ≤
∑

n≥2

(
m− 1

2

)2

tn =
(

m− 1
2

)2
t2

1− t
.

The series

1−mt +
∑

n≥2

(
m− 1

2

)2

tn

is equal to

1−mt +
(

m− 1
2

)2
t2

1− t

and its inverse is

p(t) =
1

1−mt +
(

m−1
2

)2 t2

1−t

=
1− t

(1−mt)(1− t) +
(

m−1
2

)2
t2

=

=
1− t(

1− m+1
2 t

)2 =
2

(m + 1)
(
1− m+1

2 t
) +

m− 1

(m + 1)
(
1− m+1

2 t
)2 .

Since
1

1− m+1
2 t

= 1 +
m + 1

2
t +

(
m + 1

2

)2

t2 + . . . ,

1(
1− m+1

2 t
)2 = 1 + 2

m + 1
2

t + 3
(

m + 1
2

)2

t2 + . . . ,
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we obtain that p(t) has positive coefficients and apply Corollary 4.7. Hence A′ is
not finite dimensional and hence not nilpotent. This is a contradiction with the
nilpotency of A′. ¤

Now we give the negative solution of the Kurosch problem.
Theorem 4.11. For every m ≥ 2 there exists an m-generated nil algebra which

is not nilpotent.
Proof. We fix ε ∈ (0, 1

2 ). We need a set of homogeneous (and nonlinear) polyno-
mials R = {u1, u2, . . . } which generates the ideal U of F = K〈X〉 with the following
properties:

(1) The number rn of the polynomials ui of degree n satisfies the inequality
rn ≤ ε2(m− 2ε)n−2.

(2) For every v ∈ F+ there exists a positive integer q = q(v) such that vq ∈ U .
Then by Corollary 4.8 the algebra A = F+/U is infinite dimensional (and hence

not nilpotent) and (2) guarantees that A is nil.
We apply induction on the degree k of v. Let the set of homogeneous polynomials

Rk−1 = {u1, . . . , upk−1} be chosen in such a way that for any v ∈ F+, deg v ≤ k−1,
there exists a q such that vq belongs to the ideal Uk−1 generated by Rk−1 and the set
Rk−1 satisfies the inequalities rn ≤ ε2(m− 2ε)n−2. Now we shall add to Rk−1 new
homogeneous polynomials upk−1+1, . . . , upk

such that the set Rk = {u1, . . . , upk
}

satisfies the same conditions as Rk−1 but for all v of degree ≤ k. We consider the
“generic” polynomial of degree k in F+

v =
∑

1≤l≤k

αixi1 . . . xil
, αi ∈ K.

If αj1 , . . . , αjs are all coefficients of v, then

vq =
∑

a1+...+as=q

αa1
j1

. . . αas
js

va(x1, . . . , xm),

where va are polynomials which do not depend on αi. Each va is homogeneous
of degree p ∈ [q, kq]. We choose q sufficiently large in order to guarantee that the
degrees of all va are higher than the degrees of the polynomials of Rk−1 and assume
that

Rk = Rk−1 ∪ {va | a = (a1, . . . , as), a1 + . . . + as = q}.
Then for every v ∈ F+, deg v ≤ k, we obtain that vq ∈ Uk. Since the degree of va

is higher than the degree of ui ∈ Rk−1, for small n the integers rn are the same for
Rk−1 and Rk. We shall estimate the number of va. The total number of monomials
xi1 . . . xil

of degree ≤ k is s = m + m2 + . . . + mk and the number of monomials
αa1

j1
. . . αas

js
of degree q and in s variables is

(
s + q − 1

s− 1

)
≤ (s + q − 1)s−1.

Since k (and hence s) is fixed, for sufficiently large q

(s + q − 1)s−1 ≤ ε2(m− 2ε)q−2

and for all n ≥ q

rn ≤ (s + q − 1)s−1 ≤ ε2(m− 2ε)q−2 ≤ ε2(m− 2ε)n−2.
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Hence we have done the inductive step and this completes the proof. ¤
Now we shall show how Theorem 4.11 gives the negative solution of the Burnside

problem.
Theorem 4.12. For every m ≥ 2 and every prime p there exists an m-generated

p-group which is infinite.
Proof. We consider the algebra A = F+/U from Theorem 4.10 for the prime

field K = Zp. Then A is m-generated, nil and not nilpotent. Let A1 = F/U (i.e.
A1 = Zp + A is obtained from A by formal adjunction of 1). Since charZp = p and
for any v ∈ A there exists a q = q(v) such that vq = 0, for some pk ≥ q, k = k(v), we
have that (1 + v)pk

= 1 + vpk

= 1 and 1 + v is invertible in A1. Hence the elements
1 + x̄i = 1 + xi + U , i = 1, . . . ,m, generate a subgroup G of the multiplicative
group of A1. Let B be the subalgebra of A1 generated by 1+ x̄1, . . . , 1+ x̄m. Since
(1 + x̄i)pk

= 1 ∈ B, x̄i = (1 + x̄i) − 1 ∈ B, we obtain that 1, x̄1, . . . , x̄m ∈ B and
B = A1. Clearly gi, gj ∈ G implies gigj ∈ G and every element of B is a linear
combination of elements of G. If the group G is finite, then dimB = |G| < ∞.
This is impossible because B = A1 and the algebra A1 is infinite dimensional. ¤
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5. GELFAND-KIRILLOV DIMENSION

In this chapter we fix an algebra A generated by a finite set {a1, . . . , am}.
Definition 5.1. Let

V n = span{ai1 . . . ain
| ij = 1, . . . , m}, n = 0, 1, 2, . . . ,

where we assume that V 0 = K if A is unitary and V 0 = 0 if it is not unitary. The
growth function of A (with respect to {a1, . . . , am} or with respect to V ) is defined
by

g(n) = gV (n) = dim(V 0 + V 1 + . . . + V n), n = 0, 1, 2, . . . ¤

Clearly g(n) is monotone.
Example 5.2. (i) For the polynomial algebra A = K[X] and V = span(X),

X = {x1, . . . , xm}, the growth function g(n) is equal to the number of monomials
in m variables and of degree ≤ n, i.e.

g(n) =
(

n + m

m

)
.

(ii) For the free algebra K〈X〉 and the same V = span(X) and m > 1,

g(n) = 1 + m + m2 + . . . mn =
mn+1 − 1

m− 1
. ¤

Exercise 5.3. (Bergman, see [S]) Show that limn→∞
(
g(n)1/n

)
always exists.

Hint. Step 1. Assume that the fuction g(n) is not bounded, otherwise 0 ≤
g(n) < k for some k ∈ N and limn→∞

(
g(n)1/n

)
= 0.

Step 2. Using that the algebra A is associative, show that g(n + p) ≤ g(n)g(p)
for all n, p ≥ 1.

Step 3. Let n = sp + q, s ≥ 0, 0 ≤ q < p. Using Step 1, obtain that

g(n)1/n ≤ (g(p)s.g(q))1/n = g(p)s/n.g(q)1/n.

Since g(n) is not decreasing, s/n ≤ 1/p and g(p) ≥ 1, derive that

g(n)1/n ≤ g(p)s/n.g(q)1/n ≤ g(p)1/p.g(p)1/n.

Step 4. Chose g(p)1/p close to lim infn→∞ g(n)1/n. Show that the sequence
{g(n)1/n}n≥0 converges. ¤

Lemma 5.4. Let V = span{a1, . . . , am} and W = span{b1, . . . , bs} be two
generating vector spaces of the algebra A. Then there exists a k ∈ N such that

gV (n) ≤ gW (kn), n = 0, 1, 2, . . .

Proof. Since A is generated by W , there exists a k ∈ N such that

a1, . . . , am ∈ W 0 + W 1 + . . . + W k.

Hence
V p ⊆ (W 0 + W 1 + . . . + W k)p ⊆ W 0 + W 1 + . . . + W kp,
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V 0 + V 1 + . . . + V n ⊆ W 0 + W 1 + . . . + W kn,

gV (n) ≤ gW (kn), n = 0, 1, 2, . . . ¤

Definition 5.5. Let A be a finitely generated algebra with growth function
g(n) (with respect to the some generating space span{a1, . . . , am}). The Gelfand-
Kirillov dimension of A is defined by

GKdim(A) = lim sup
n→∞

(logn g(n)) = lim sup
n→∞

log g(n)
log n

. ¤

Lemma 5.6. The Gelfand-Kirillov dimension of a finitely generated algebra
does not depend on the choice of the set of generators.

Proof. Let V = span{a1, . . . , am} and W = span{b1, . . . , bs} be two generating
spaces of A. Let GKdimV (A) and GKdimW (A) be the Gelfand-Kirillov dimensions
of A defined respectively by means of V and W . By Lemma 5.4, there exists a
k ∈ N such that gV (n) ≤ gW (kn), n = 0, 1, 2, . . . , and

GKdimV (A) = lim sup
n→∞

log gV (n)
log n

≤ lim sup
n→∞

log gW (kn)
log(kn)

≤

≤ lim sup
n→∞

log gW (n)
log n

= GKdimW (A).

Similarly GKdimW (A) ≤ GKdimV (A) and GKdim(A) is well defined. ¤
In the sequel, considering an algebra with a presentation A = K〈X | R = 0〉 we

always assume that its growth function is with respect to V = span(X).
Example 5.7. By Example 5.2 the growth function of the polynomial algebra

in m variables is a polynomial of degree m and this gives that

GKdim(K[x1, . . . , xm]) = m.

By the same example for the free algebra K〈X〉, m ≥ 2, we obtain that

log g(n)
log n

=
log(1 + m + m2 + . . . + mn)

log n
≥ log mn

log n
=

n log m

log n

which tends to infinity for n →∞. Hence GKdim(K〈X〉) = ∞ for m > 1. ¤
Exercise 5.8. Show that GKdim(A) < 1 implies that GKdim(A) = 0 and

dim A < ∞.
Hint. Let g(n) be the growth function of A with respect to some generating

vector space V . If g(n) ≥ n for all n ≥ 0, then GKdim(A) ≥ 1. Hence g(n0) < n0

for some n0. Then in the chain

V 0 ⊆ V 0 + V 1 ⊆ V 0 + V 1 + V 2 + . . . ⊆ V 0 + V 1 + . . . + V n0

we have V 0 +V 1 + . . .+V k = V 0 +V 1 + . . .+V k+1, i.e. V k+1 ⊆ V 0 +V 1 + . . .+V k.
This implies that

V k+2 ⊆ (V 0 + V 1 + . . . + V k)V ⊆ V 0 + V 1 + . . . + V k+1 ⊆ V 0 + V 1 + . . . + V k,
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and V 0 + V 1 + . . . + V n = V 0 + V 1 + . . . + V k for all n ≥ k. Hence g(n) = g(k),
n ≥ k, and

GKdim(A) = lim sup
n→∞

log g(k)
log n

= 0. ¤

Remark 5.9. By the theorem of Bergman (see [KL]), there is no algebra A with
GKdim(A) ∈ (1, 2). ¤

Proposition 5.10. Let A = K〈X〉/U = K〈X | G = 0〉, where G is a Gröbner
basis of the ideal U and let bn be the number of normal words of length n with
respect to G. Then the growth function g(n) of A (with respect to V = span(X))
satisfies

g(n) = b0 + b1 + . . . + bn, n = 0, 1, 2, . . .

Proof. For every w ∈ K〈X〉 we denote by w̄ = w + U its image in A. All
normal words x̄i1 . . . x̄in

belong to V n and are linearly independend by Theorem
1.12. Hence g(n) ≥ b0 + b1 + . . . + bn. We shall complete the proof if we establish
that for every word w = xj1 . . . xjn ∈ 〈X〉, its image w̄ is a linear combination of
normal words of length ≤ n. We use induction on the homogeneous lexicographic
ordering. Since the desired presentation of the normal words is obvious, the base
of the induction is trivial. Now let w be not normal, i.e. w = aĝb for some g ∈ G,
a, b ∈ 〈X〉. By Algorithm 1.23, in order to present w̄ in its normal form, we
replace w̄ with w − agb which is a linear combination of words smaller than w in
the ordering. Hence the length of each of these words is bounded by n and we apply
inductive arguments. ¤

Corollary 5.11. Let G be a Gröbner basis of the ideal U of K〈X〉 and let Ĝ
be the set of leading words of G. Then the algebra A = K〈X〉/U = K〈X | G = 0〉
and the monomial algebra B = K〈X | Ĝ = 0〉 have the same growth functions.

Proof. By Proposition 1.28 the set Ĝ is a Gröbner basis for the ideal generated
by Ĝ in K〈X〉. Since the sets of normal words with respect to G and Ĝ coincide
and both G and Ĝ are Gröbner bases, we apply Proposition 5.10 and complete the
proof. ¤

Sometimes, it is convenient to consider the generalized Hilbert series Hg(A, t) of
any (not necessarily graded) algebra A = K〈X | R = 0〉. It is defined by

Hg(A, t) =
∑

n≥0

(g(n)− g(n− 1))tn,

(where g(−1) = 0). Clearly, the coefficient g(n) − g(n − 1) of tn is equal to the
number of normal words of length n (where the normality is with respect to the
ideal U generated by R).

Corollary 5.12. For any m-dimensional Lie algebra L, the Gelfand-Kirillov
dimension of the universal enveloping algebra U(L) is equal to m.

Proof. Let {a1, . . . , am} be a basis of L and let the multiplication table of L is
given by

[ai, aj ] =
m∑

k=1

α
(k)
ij ak, α

(k)
ij ∈ K.

By the Poincaré-Birkhoff-Witt Theorem 2.4, the set of defining relations of U(L)

G = {[xi, xj ]−
m∑

k=1

α
(k)
ij xk | i, j = 1, . . . , m}
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is a Gröbner basis and the set of normal words with respect to G is {xn1
1 . . . xnm

m |
ni ≥ 0}. Hence Proposition 5.10 gives that the growth function g(n) of U(L) is
equal to the growth function of the polynomial algebra K[X] and GKdim(U(L)) =
GKdim(K[X]) = m. ¤

In the next chapter we shall show how behave the growth functions of universal
enveloping algebras of finitely generated but not finite dimensional Lie albgebras.

It is well known that the Gelfand-Kirillov dimension of any finitely generated
commutative algebra A is equal to the transcendence degree of A (and to the Krull
dimension of A), see [KL]. Now we shall construct an example of two-generated
algebra A with GKdim(A) = α for any fixed real number α ≥ 2. The example
is a modification of the examle of Borho and Kraft [BK]. On the other hand,
Petrogradsky [P] constructed an example of a finitely generated Lie algebra with
Gelfand-Kirillov dimension any α ≥ 1.

Lemma 5.13. Let f1(x) and f2(x) be two continuous monotone increasing
functions defined for every x ≥ 0. Let

f1(n) ≤ an ≤ f2(n), n = 1, 2, . . . ,

where

a(t) =
∑

n≥1

antn, b(t) =
a(t)
1− t

=
∑

n≥1

bntn.

Then ∫ n

0

f1(x)dx ≤ bn = a1 + a2 + . . . + an ≤
∫ n+1

1

f2(x)dx.

Proof. For every k = 1, 2, . . . , n,

f1(k − 1) ≤ f1(x) ≤ f1(k) ≤ ak, k − 1 ≤ x ≤ k + 1.

Hence
∫ k

k−1

f1(x)dx ≤ ak,

∫ n

0

f1(x)dx =
n∑

k=1

∫ k

k−1

f(x)dx ≤ a1 + a2 + . . . + an = bn.

The other inequality can be obtained analogously. ¤
We fix a real number 0 < β < 1 and define a sequence {an}n≥0 assuming a0 = 0,

a1 = 1, and, inductively,

an = 0, if a1 + a2 + . . . + an−1 = [nβ ],

an = 1, if a1 + a2 + . . . + an−1 < [nβ ],

where [nβ ] is the integer part of nβ . By the Mean Value Theorem, for every x ≥ 1

(x + 1)β − xβ

(x + 1)− x
= βξβ−1 < 1,

for some ξ ∈ (x, x + 1). Hence

(n + 1)β − nβ < (n + 1)− n = 1
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and [(n+1)β ]−[nβ ] ≤ 1. This means that we can always construct the next element
an+1 of the sequence.

Lemma 5.14. Let 0 < β < 1, let {an}n≥0 be the above constructed sequence
and a(t) =

∑
n≥0 antn. Then for every k ∈ N there exist γ ∈ R+ and polynomials

h1(n), h2(n) with real coefficients and of degree ≤ k such that the coefficients cn of
the series

c(t) =
∑

n≥1

cntn =
a(t)

(1− t)k
,

satisfy the inequality

γnk+β − h1(n) ≤ c1 + . . . + cn ≤ γ(n + k)k+β + h2(n), n = 1, 2, . . .

Proof. Let

b(t) =
∑

n≥1

bntn =
a(t)
1− t

.

Then bn = a1 + . . . + an and by the construction of an we have

nβ − 1 < bn ≤ nβ , n = 1, 2, . . .

Applying Lemma 5.13, we obtain for the coefficients b
(2)
n of the series

∑

n≥1

b(2)
n tn =

a(t)
(1− t)2

1
β + 1

nβ+1 − n =
∫ n

0

xβdx− n ≤
n∑

i=1

bi ≤
∫ n+1

1

xβdx =
1

β + 1
((n + 1)β+1 − 1).

Continuing in this way, we obtain the statement of the lemma. ¤
Theorem 5.15. For any α ≥ 2 there exists a two-generated algebra A with

GKdim(A) = α.
Proof. Let α = k + β, where 0 ≤ β < 1. If β = 0, i.e. α = k, we consider the

algebra Aα = K〈x, y〉/Uα, where Uα is the ideal generated by the monomials

yxp1yxp2 . . . yxpky, pj ≥ 0.

If β > 0, then Aα = K〈x, y〉/Uα, where Uα is generated by

yxp1yxp2 . . . yxpky, pj ≥ 0,

and
yxiyxp2 . . . yxpk−1y, pj ≥ 0, i ∈ I,

where the set I consists of all i ∈ N0 such that ai = 0 with the above definition
of the sequence {an}n≥0. We shall consider the case β > 0 only. The case β = 0
is easier and can be handled in a similar way. By Proposition 1.28, the given
generating set of the monomial ideal Uα is a Gröbner basis and the set of normal
words with respect to Uα consists of

xp0yxp1y . . . xpq−1yxpq , pj ≥ 0, q ≤ k − 1,
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xp0yxsy . . . xpk−1yxpk , pj ≥ 0, s ∈ J = N0 \ I.

Hence the Hilbert series of Aα is

H(Aα, t) =
k−1∑
q=0

tq(1 + t + t2 + . . . )q+1 +
∑

n∈J

tk+n(1 + t + t2 + . . . )k =

=
1

1− t
+

t

(1− t)2
+ . . . +

tk−1

(1− t)k
+

a(t)
(1− t)k

=
∑

n≥0

bntn.

For q ≥ 1 the series ∑

n≥0

c(q)
n tn =

1
(1− t)q

is the Hilbert series of the polynomial algebra in q variables and

g(q)(n) = c
(q)
0 + c

(q)
1 + . . . + c(q)

n =
(

n + q

q

)

is a polynomial of degree q. Since the coefficients of the series

∑

n≥0

d(q)
n tn =

tq−1

(1− t)q

satisfy d
(q)
n+q−1 = c

(q)
n and d

(q)
n = 0 for n < q−1, we obtain that d

(q)
0 +d

(q)
1 + . . .+d

(q)
n

is also a polynomial of degree q. Hence the coefficients of

∑

n≥0

dntn =
1

1− t
+

t

(1− t)2
+ . . . +

tk−1

(1− t)k

satisfy d0 + d1 + . . . + dn = f(n) for some polynomial of degree k. By Lemma 5.14
the coefficients cn of the series

c(t) =
∑

n≥0

cntn =
a(t)

(1− t)k

satisfy the inequality

γnk+β − h1(n) ≤ c1 + . . . + cn ≤ γ(n + k)k+β + h2(n), n = 1, 2, . . .

for some γ ∈ R+ and some polynomials h1(n), h2(n) with real coefficients and of
degree ≤ k. Hence the growth function of Aα

g(n) = b0 + b1 + . . . + bn = (d0 + d1 + . . . + dn) + (c0 + c1 + . . . + cn)

satisfies the inequality

γnk+β + f(n)− h1(n) ≤ g(n) ≤ γ(n + k)k+β + f(n) + h2(n), n = 1, 2, . . . ,
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and for n sufficiently large

γ(n− 1)k+β < g(n) < γ(n + k + 1)k+β ,

which means that

GKdim(A) = lim
n→∞

log g(n)
log n

= k + β = α. ¤
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6. ALGEBRAS WITH INTERMEDIATE GROWTH

Let A be a finitely generated algebra with growth function g(n).
Definition 6.1. The algebra A is called an algebra with intermediate growth if

its growth function is of intermediate growth. ¤
By Definition 3.4 and Exercise 5.3 this means that for for any p ∈ N and any

α > 1
np < g(n) < αn

for all sufficiently large n. Lemma 5.4 easily implies that the property of interme-
diate growth does not depend on the set of generators of A.

Exercise 6.2. Show that A is with intermediate growth if and only if g(n) grows
faster than any polynomial function p(n) and limn→∞

(
g(n)1/n

)
= 1. (See Exercise

5.3 for the existence of limn→∞
(
g(n)1/n

)
.)

Hint. If g(n) grows faster than a polynomial, then limn→∞
(
g(n)1/n

) ≥ 1. The
inequality limn→∞

(
g(n)1/n

)
> 1 is equivalent to the fact that g(n) > αn for some

α > 1 and n sufficiently large. ¤
If A is a graded algebra and its Hilbert series is a rational function then by

Theorem 3.5 the growth of the coefficients of H(A, t) is either polynomial or expo-
nential and this gives that the growth function of A is also either of polynomial or
exponential growth. One may expect that the algebras with intermediate growth
are exotic and big exceptions in the class of all algebras. In this chapter we shall
show that this is not the case and shall give examples of algebras with intermediate
growth obtained with natural constructions. The first examples were obtained by
Borho and Kraft [BK] and Martha Smith [Sm], see also [KL]. Lichtman [L] showed
that the class of algebras with intermediate growth is quite large and Ufnarovsky
[U] found that there exist finitely presented algebras with intermediate growth. Re-
cently Petrogradsky [P] started to build the theory of algebras with intermediate
growth introducing a refined scale for measuring the growth.

We shall give a simple example of a two-generated algebra with intermediate
growth. The exposition is based on the paper of Smith [Sm]. We fix the following
formal products and express them as formal power series

c(t) =
∏

k≥1

1
1− tk

=
∑

n≥0

cntn,

d(t) =
1

1− t

∏

k≥1

1
1− tk

=
∑

n≥0

dntn,

h(t) =
d(t)
1− t

=
∑

n≥0

hntn.

Clearly the series are with positive coefficients and

dn = c0 + c1 + . . . + cn, hn = d0 + d1 + . . . + dn, 1 = h0 < h1 < . . .

Lemma 6.3. The coefficients hn grow faster than any polynomial function, i.e.
for any p ∈ N we have hn > np for sufficiently large n.
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Proof. We use the formalism of comparing the coefficients of formal power series.
Since (1− tk)−1 > 1, we obtain

h(t) >

p+2∏

k=1

=
p+2∏

k+1

(1 + tk + t2k + . . . ) >

>
(
1 + t(p+2)! + t2(p+2)! + . . .

)p+2

=

=
1

(1− t(p+2)!)p+2
=

∑

n≥0

(
n + p + 1

p + 1

)
tn(p+2)!

and hn(p+2)! > anp+1 for some positive a ∈ R and sufficiently large n. Since the
sequence {hn}n≥0 is monotone increasing, we obtain that

hn ≥ a

[
n

(p + 2)!

]p+1

> np

for sufficiently large n. ¤
Proposition 6.4. For any α > 1 and for n sufficiently large we have hn < αn.
Proof. If for some α > 1 there exists a sequence 1 ≤ n1 < n2 < . . . such that

hni ≥ αni , then the radius of convergence r of h(t) would be bounded by 1
α < 1.

Since h(t) > 1
1−t , we know that r ≤ 1 and we shall show that r = 1. It is sufficient

to show this for the series c(t). We shall see that the function c(t) is well defined
for any q ∈ (0, 1) and this will complete the proof. Let us consider the function

f(t) =
ln(1− t)

t
, t ∈ (0, q), 0 < q < 1.

By the L’Hôpitale Rule

lim
t→0

f(t) =
limt→0(ln(1− t))′

t′
= lim

t→0

( −1
1− t

)
= −1.

Since f(t) is continuous in (0, q), this implies that f(t) it is bounded and there exist
a, b > 0 such that −a < f(t) < −b, t ∈ (0, q). Let

pn(t) =
n∏

k=1

1
1− tk

.

Using that 0 < qk ≤ q, k = 1, 2, . . . , we obtain that

−aqk < ln(1− qk) < −bqk, bqk < − ln(1− qk) < aqk,

ln pn(q) = −
n∑

k=1

ln(1− qk),

b(q + q2 + . . . + qn) ≤ ln pn(q) ≤ a(q + q2 + . . . + qn).
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Since

q + q2 + . . . + qn =
q(1− qn)

1− q
,

q =
q(1− q)
1− q

≤ q(1− qn)
1− q

≤ q

1− q
,

we derive that
bq ≤ ln pn(q) ≤ aq

1− q
, ebq ≤ pn(q) ≤ e

aq
1−q .

Since {pn(q)}n≥1 is a monotone increasing sequence, limn→∞ pn(q) exists and is
finite. Hence h(q) is well defined for any q ∈ (0, 1). Using that the partial sum

h0 + h1q + h2q
2 + . . . + hnqn

is bounded by
1

(1− q)2

n∏

k=1

1
1− qk

=
1

(1− q)2
pn(q),

we obtain that the radius of convergence of h(t) is equal to 1. ¤
Lemma 6.3 and Proposition 6.4 immediately give:
Corollary 6.5. The coefficients hn of the formal power series h(t) are of inter-

mediate growth. ¤
Let X = {x, y} and let L be the Lie algebra with defining relations w = 0,

where w = [. . . , y, . . . , y, . . . ] runs on the set of all commutators (with any bracket
decomposition) containing two or more symbols y (i.e. degy w ≥ 2).

Lemma 6.6. The algebra L has a basis

{x, y, [y, x, . . . , x︸ ︷︷ ︸
n−1

] | n ≥ 2}.

Proof. Let W be the ideal generated by all w in the free Lie algebra L(x, y).
Since L(x, y) is a multigraded vector space, we obtain that

W =
∑

p≥1

∑

q≥2

L(x, y)(p,q),

where L(x, y)(p,q) is the multihomogeneous component of degree (p, q) of L(x, y).
Hence as a multigraded vector space

L = L(x, y)/W = L(x, y)(1,0) ⊕ L(x, y)(0,1) ⊕
∑

p≥1

⊕L(x, y)(p,1).

Since L(x, y)(1,0) and L(x, y)(0,1) are one-dimensional vector spaces spanned re-
spectively on x and y, it is sufficient to see that L(x, y)(p,1), p ≥ 1, is also one-
dimensional and spanned on the commutator [y, x, . . . , x︸ ︷︷ ︸

p

]. This is obvious because

the anticommutativity law gives that [y, x, . . . , x︸ ︷︷ ︸
p

] is the only commutator contain-

ing a single symbol y and p symbols x. Clearly this commutator is not equal to 0
in L(x, y). ¤
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Theorem 6.7. The universal enveloping algebra of the Lie algebra L defined
above is with intermediate growth.

Proof. By the Poincaré-Birkhoff-Witt Theorem 2.4 and by Lemma 6.6, the
universal enveloping algebra U = U(L) has a basis

{xayb
∏

n≥2

[y, x, . . . , x︸ ︷︷ ︸
n−1

]bn | a, b, bn ≥ 0}

which is homogeneous with respect to the usual grading of K〈x, y〉. Hence the
Hilbert series of U is

H(U, t) =
1

1− t

∏

k≥1

1
1− tk

= d(t) =
∑

n≥0

dntn.

Since the growth function g(n) of U satisfies

g(n) = d0 + d1 + . . . + dn,

we obtain that g(n) = hn, where

h(t) =
∑

n≥0

hntn =
1

1− t
d(t).

Now Corollary 6.5 gives that the coefficients hn are of intermediate growth. ¤
Remark 6.8. The coefficient cn of the series

c(t) =
∏

k≥1

1
1− tk

=
∑

n≥0

cntn

is equal to the number of partitions of n. The asymptotic behaviour of the sequence
{cn}n≥0 is well know (see e.g. [H, equation (4.2.8)] or [A]) and is

cn ∼ 1
4n
√

3
exp

(
π

√
2n

3

)
.

This gives directly that the growth of U(L) is intermediate. ¤
There was a conjecture of Borho and Kraft [BK] that the finitely presented

associative algebras cannot be with intermediate growth. Repeating the arguments
of the proof of Theorem 6.7 (and replacing H(U(L), t) with the generalized Hilbert
series of U(L), it is sufficient to show that there exists a finitely presented and
infinite dimensional Lie algebra with polynomial growth. The easiest example is
the Witt algebra L of the derivations of K[z]. The algebra L has a basis {an | n =
−1, 0, 1, 2, . . . } and multiplication table [ai, aj ] = (i−j)ai+j . It is generated by a−1

and a2. A finite set of defining relations of L was found by Stewart [St]. Changing
the notation and assuming that L is generated by x−1, x0, x1, x2 and introducing
the notation

xi+1 =
1

i− 1
[xi, x1], i ≥ 2,
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the defining relations of L are

[x−1, x0] = −x−1, [x−1, x1] = −2x0, [x−1, x2] = −3x1,

[x0, x1] = −x1, [x0, x2] = −2x2, [x2, x3] = −x5, [x2, x5] = −3x7.

Other examples of finitely presented and infinite dimensional Lie algebras with
polynomial growth can be found in the paper of Kac [K]. The simplest example
among the algebras of Kac is L generated by e1, e2, f1, f2, h and with defining
relations

[ei, fj ] = δijh, [h, ei] = 2ei, [h, fi] = −2fi, i = 1, 2,

[e2, e1, e1, e1] = [e1, e2, e2, e2] = 0,

[f2, f1, f1, f1] = [f1, f2, f2, f2] = 0.

By the result of Lichtman [L] the intermediate growth of U(L) holds for every
infinite dimensional finitely generated Lie algebra L which has an ideal I such that
I is solvable and dim L/I < ∞.
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