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1. POLYNOMIAL ALGEBRAS

We fix the following notation:
K is any field, e.g. the field Q of rational numbers, the field R of real numbers, the field
C of complex numbers or the finite field Fq with q elements, where q = pm for some prime
p and a positive integer m, etc. We shall call the elements of K scalars or constants. All
vector spaces are over a fixed field K.

Definition 1.1. A vector space R is called an associative algebra with 1 (or a unitary
associative algebra), if R is equipped with a binary operation · (i.e. a mapping (R, R) → R)
called multiplication, such that for any a, b, c ∈ R and any constant α ∈ K

(a · b) · c = a · (b · c), (a + b) · c = a · c + b · c, a · (b + c) = a · b + a · c,

α(a · b) = (αa) · b = a · (αb).

In other words, the notion of algebra generalize both the notion of vector space and of ring.
If we want to emphasize that R is an algebra over K, we shall say that R is a K-algebra.
The algebra is called commutative if it additionally satisfies the property

a · b = b · a

for all a, b ∈ R. Usually we shall omit the · in the multiplication and shall denote a · b by
ab.

Examples 1.2. (i) The field K itself is a commutative algebra with respect to the
usual operations. Every field extension L of the field K is also a commutative K-algebra.

(ii) The ring of polynomials K[x] in one variable x is an algebra. Another example is
the field K(x) of rational functions. By definition, K(x) consists of all fractions f(x)/g(x)
of two polynomials f(x) and g(x), where g(x) 6= 0. Recall, that in Algebra usually we
do not consider polynomials as functions and g(x) 6= 0 means that at least one of the
coefficients of g(x) is not equal to zero.

(iii) The ring of polynomials K[x1, . . . , xn] in n (a fixed number) variables x1, . . . , xn

is also an algebra. When we consider polynomials in small number of variables, we shall
usually denote the variables by x, y, z, etc.

(iv) The ring Mn(K) of all n × n matrices with entries from K is an example of a
non-commutative algebra.

In the all part of the course we shall consider commutative algebras only.
Definition 1.3. The vector subspace S of the algebra R is called a subalgebra if

it contains 1 and is closed with respect to the multiplication. (Clearly, our definition of
algebra implies that any algebra contains the base field K as a subalgebra.) The subalgebra
S is generated by the set of its elements {s1, s2, . . .} (called generators of S) if every element
s ∈ S can be presented as a finite sum of the form

s =
∑

αisi1 . . . sik
, αi ∈ K.

Sometimes we shall denote this by S = K[s1, s2, . . .]. Usually from the context will be clear
whether s1, s2, . . . are variables (i.e. S is a polynomial algebra in many (maybe infinitely
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many) variables, or s1, s2, . . . are simply the generators of S. The subalgebra S is finitely
generated, respectively, n-generated if it can be generated by a finite set, respectively, by a
set with n elements. The vector subspace U of R is called an ideal if for every u ∈ U and
every a ∈ R the products ua and au belong to U (we denote this property by RU ⊆ U and
UR ⊂ U). The ideal U is generated by the set of its elements {u1, u2, . . .} if every element
u ∈ U is of the form

u =
∑

aiuibi, ai, bi ∈ R.

The notions of finite generation and n-generation of ideals are similar to those for subal-
gebras. In the case of commutative algebras, the ideal U is principal if it is generated by
one element, i.e. there exists an element u0 ∈ U such that U = {au0 | a ∈ R}.

The notion of factor algebra R/U of the algebra R modulo the ideal U is similar to
the corresponding notion for rings. The basic theorems for ideals and factor rings are
true also in the case of algebras. In particular, the elements of R̄ = R/U are the classes
ā = a + U = {a + u | u ∈ U} and the operations are defined by

(a + U) + (b + U) = (a + b) + U, α(a + U) = (αa) + U, (a + U)(b + U) = ab + U.

The notions of homomorphism and isomorphism are also similar to the corresponding
notions for rings. In particular, the homomorphisms R → R are called endomorphisms
and the isomorphisms R → R are automorphisms.

Remark 1.4. It is a basic result of the undergraduate Algebra course, that every
ideal of the polynomial algebra in one variable is principal and its generator can be found
by the Euclidean algorithm. For the algebra of polynomials in more than one variable
this is not more true. For example, the set of all polynomials without constant terms (i.e.
f(0, 0) = 0) in K[x, y] is an ideal which is not principal.

The following easy proposition gives one of the universal properties of polynomial
algebras in the class of all commutative algebras.

Proposition 1.5. Every finitely generated commutative algebra is a homomorphic
image of some polynomial algebra.

Proof. Let the commutative algebra R be generated by the finite set {r1, . . . , rn}. We
define a mapping φ : K[x1, . . . , xn] → R by

φ
(∑

αkxk1
1 . . . xkn

n

)
=

∑
αkrk1

1 . . . rkn
n , αi ∈ K.

Clearly φ is a homomorphism of algebras. (Why? Use that the commutativity of R implies
that φ is well defined.) Since the generators r1, . . . , rn of R are the images of x1, . . . , xn,
we obtain that the mapping φ is onto R. By the isomorphism theorem the image Im(φ)
of φ is isomorphic to the factor algebra K[x1, . . . , xn]/Ker(φ) of K[x1, . . . , xn] modulo the
kernel Ker(φ).

Definition 1.6. If the algebra R is isomorphic to K[x1, . . . , xn]/U for some ideal
U generated by the set of polynomials {ui(x1, . . . , xn) | i = 1, 2, . . .}, then we say that
{ui(x1, . . . , xn) = 0 | i = 1, 2, . . .} is a set of defining relations of the algebra R and write
this as

R = K[x1, . . . , xn | ui(x1, . . . , xn) = 0, i = 1, 2, . . .].
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The algebra is finitely presented if it is finitely generated and has a finite number of defining
relations.

Definition 1.7. The (commutative) algebra R is called noetherian if every ideal of
R is finitely generated.

Hilbert Basis Theorem 1.8. If R is a noetheiran algebra, then the algebra of
polynomials R[x] is also noetherian.

Proof. Let R be noetherian and let U be any ideal of R[x]. If U = (0), then it is
finitely generated and without loss of generality we may assume that U 6= 0. For each
n ≥ 0 we define the set Vn of R consisting of all b ∈ R such that there exists a polynomial
f(x) = bxn + b1x

n−1 + . . . + bn−1x + bn in U of degree n and with leading coefficient b
(or b = 0). It is easy to see that Vn is an ideal of R. (Proof. If b, c ∈ Vn, then there
exist polynomials f(x), g(x) ∈ U of degree n and with leading coefficients b, c, respectively.
Then f(x)± g(x) ∈ U and its leading coefficient is equal to b± c and, since the elements
of R are polynomials of zero degree, for each a ∈ R the polynomial af(x) with leading
coefficient ab is also in U .) If b ∈ Vn and f(x) ∈ U is a polynomial with leading coefficient
b, then b is also the leading coefficient of xf(x) ∈ U and we obtain that Vn ⊆ Vn+1. In this
way we obtain an ascending chain of ideals V0 ⊆ V1 ⊆ V2 ⊆ . . .. The union V = ∪n≥0Vn of
the elements of the chain is also an ideal of R (prove it!). Since R is noetherian, we derive
that the ideal V is generated by some finite set of elements {c1, . . . , cs}. Let k be a positive
integer with the property that all c1, . . . , cs belong to Vk. Then V = Vk = Vk+1 = . . ..
For each m ≤ k we consider a finite set of generators {bm1, . . . , bmqm} of the ideal Vm and
choose in U polynomials fm1(x), . . . , fmqm(x) of degree m and with leading coefficients
bm1, . . . , bmqm . We shall show by induction on the degree d of f(x) ∈ U that the finite set

{fm1(x), . . . , fmqm(x) | m = 0, 1, . . . , k}
generates the ideal U . Let W be the ideal of R[x] generated by this set. The base of the
induction is d = 0. Then f(x) = b is a constant and, by the definition of V0, we obtain
that b ∈ V0. Hence, there exist a1, . . . , aq0 ∈ R such that b = a0b01 + . . . + aq0b0q0 . Again,
since f0i(x) ∈ U are polynomials of degree 0, we have that f0i(x) = b0i and b = f(x) =
a0f01(x)+ . . .+am0f0q0(x) is in W . Now, let d ≤ k. If b ∈ Vd, then b = a0bd1+ . . .+aqd

bdqd

for some a1, . . . , aqd
∈ R. Then the leading coefficient of g(x) = a0fd1(x)+. . .+aqd

fdqd
(x) is

also equal to b. Since g(x) ∈ W and W ⊂ U , we obtain that the degree of h(x) = f(x)−g(x)
is less than d and, by induction, h(x) ∈ W . Hence f(x) = g(x) + h(x) also belongs to
W . The considerations for d > n are similar: If f(x) = bxd + b1x

d−1 + . . . + bd ∈ U ,
since Vd = Vk, we have that b = a0bk1 + . . . + aqk

bkqk
for some a1, . . . , aqd

∈ R. Hence
g(x) = (a0x

d−k)fk1(x) + . . . + (aqk
xd−k)fkqk

(x) belongs to W . By inductive arguments,
h(x) = f(x)− g(x) ∈ W and f(x) ∈ W .

Corollary 1.9. The algebra of polynomials K[x1, . . . , xn] in n variables over any field
K is noetherian.

Proof. The only ideals of the field K are (0) and K (because every nonzero element
of K is invertible and generates K as an ideal). Hence K is a noetherian algebra. Then
we proceed by induction on the number of variables. If Rn−1 = K[x1, . . . , xn−1] is already
noetheiran (where R0 = K), then by Hilbert Basis Theorem,

Rn−1[xn] = (K[x1, . . . , xn−1])[xn] = K[x1, . . . , xn]

4



is also noetherian.
The following corollary follows immediately from Hilbert Basis Theorem and Propo-

sition 1.5.
Corollary 1.10. Every finitely generated commutative algebra is finitely presented.
Corollary 1.11. Every finitely generated commutative algebra is noetherian.
Proof. Let R ∼= K[x1, . . . , xn]/U for some ideal U and let V be any ideal of R. We take

any ideal W in K[x1, . . . , xn] which maps onto V modulo U . By Hilbert Basis Theorem,
the ideal W is finitely generated. Hence its homomorphic image V is also finitely generated
in the homomorphic image R of K[x1, . . . , xn] modulo U .

Definition 1.12. (i) The vector space V is called graded if it is presented as a direct
sum of its subspaces Vd, d = 0, 1, 2, . . ., i.e.

V = V0 ⊕ V1 ⊕ V2 ⊕ . . . =
∑

d≥0

⊕
Vd.

The subspace Vd is called the homogeneous component of degree d of V . The subspace
W of V is a graded (or homogeneous) subspace if W =

∑
d≥0(W ∩ Vd). In this case, the

factor space V/W =
∑

d≥0 Vd/(W ∩ Vd) can also be naturally graded (and we say that
V/W inherits the grading of V ).

(ii) If all homogeneous components Vd of the graded vector space V are finite dimen-
sional, then the formal power series

H(V, t) = Hilb(V, t) =
∑

d≥0

(dim Vd)td

is called the Hilbert (or Poincaré) series of V . For a function f(t), we shall write H(V, t) =
f(t) if H(V, t) converges in some neighbourhood of 0 and the functions H(V, t) and f(t)
are equal there.

Definition 1.13. The algebra R is graded, if it is graded as a vector space and its
homogeneous components Rd satisfy RdRe ⊆ Rd+e for all d, e ≥ 0.

Example 1.14. The polynomial algebra R = K[x1, . . . , nn] in n variables is natu-
rally graded with homogeneous component Rd of degree d consisting of all homogeneous
polynomials of degree d. Since a basis of Rd consists of all monomials xd1

1 . . . xdn
n of total

degree d (i.e. d1 + . . . + dn = d), we obtain for the Hilbert series of R:

H(K[x1, . . . , xn], t) =
∑

di≥0

td1 . . . tdn =
1

(1− t)d

because
∑

d≥0 td = 1/(1− t).
Remark 1.15. The Hilbert-Serre theorem states that the Hilbert series of any finitely

generated graded commutative algebra is rational (i.e. is equal to a rational function).
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Exercises

1. (i) Show that the subalgebra K[x2, x3] of K[x] generated by x2 and x3 consists of
all polynomials with coefficient of x1 equal to 0.

(ii) Show that K[x2, x3] is isomorphic to the factor algebra of K[y, z] modulo the
principal ideal generated by y3 − z2.

2. (i) Show that the algebra of Laurent polynomials in one variable generated as a
subalgebra of K(x) by x and x−1, consists of all rational functions of the form

∑q
i=−p aix

i,
ai ∈ K. Very often this algebra is denoted by K[x, x−1].

(ii) Show that every ideal of the algebra of Laurent polynomials is principal. (Hint.
Use that if U is an ideal of K[x, x−1] and 0 6= f(x) ∈ U , then we may write f(x) as
f(x) = x−mg(x), g(x) ∈ U ∩ K[x]. Take a nonzero element h(x) of minimal degree in
U ∩K[x] and show that U is generated by h(x).)

(iii) Show that K[x, x−1] is isomorphic to the factor algebra K[x, y]/(xy−1) of K[x, y]
modulo the ideal generated by xy − 1.

3. Let V be a vector space with basis {vi | i = 1, 2, . . .}. Let us define a multiplication
between the basis elements by vi · vj =

∑
k αk

ijvk, where for fixed i, j only a finite number
of constants αk

ij are different from 0. Show that the operation

(
m∑

i=1

βivi

)
·



n∑

j=1

γjvj


 =

m∑

i=1

n∑

j=1

∑

k

βiγjα
k
ijvk

gives to the vector space the structure of algebra if and only if (vi · vj) · vl = vi · (vj · vl) for
all basis elements vi, vj , vl and there exists an element e ∈ V such that e · vi = vi · e = vi

for all basis elements vi. This algebra is commutative if and only if vi · vj = vj · vi for all
i, j.

4. If G is a group, then the group algebra KG is defined as a vector space with basis
consisting of the elements of G and multiplication between the basis elements given by
g · h = gh, where gh is the product in G of g, h ∈ G. (We say that the multiplication in
KG is defined by the group operation in G.) Show that the group algebra is an algebra
which is commutative if and only if the group G is abelian.

5. (i) Let G = 〈g | gn = 1〉 be the cyclic group of order n. Show that the group
algebra KG is isomorphic to the factor algebra K[x]/(xn − 1) of the polynomial algebra
in one variable modulo the ideal generated by xn − 1.

(ii) If G is an infinite cyclic group, show that its group algebra is isomorphic to the
algebra of Laurent polynomials in one variable.

6. Calculate the Hilbert series of:
(i) R = K[x, y]/(x2 − y2);
(ii) R = K[x, y]/(x2− y2, x3− y3). (Hint. Use that in the factor algebra x(x2− y2) =

x3 − y3 = 0 and xy2 − y3 = 0. Hence every element of R has the form f(y) + x(a + by),
f(y) ∈ K[y], a, b ∈ K. Using that the ideal (x2 − y2, x3 − y3) in K[x, y] is homogeneous,
show that the elements 1, y, y2, y3, . . . , x, xy are linearly independent in R.)

7. Calculate the Hilbert series of the algebra of symmetric polynomials in n variables.
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8. Calculate the Hilbert series of the subalgebra R of K[x, y, z] generated by

e1(x, y, z) = x + y + z, e2(x, y, z) = xy + xz + yz, e3(x, y, z) = xyz,

f(x, y, z) = x2y + y2z + z2y

and find a presentation of this algebra as a homomorphic image of K[u1, u2, u3, u4]. (Hint.
Show that g(x, y, z) = f(x, y, z) + f(y, x, z) and f(x, y, z)(g(x, y, z) − f(x, y, z)) are sym-
metric polynomials and derive that as a vector space R=S ⊕ f(x, y, z)S, where S is the
algebra of symmetric polynomials in three variables. Show that R is a homomorphic image
of K[u1, u2, u3, u4] (with ui → ei, i = 1, 2, 3, u4 → f) modulo a principal ideal generated
by a polynomial of second degree with respect to u4.)

9∗. Show that every subalgebra of K[x] is finitely generated. (Hint. Let R be a
nonzero subalgebra of K[x] and let D be the set of d ∈ N ∪ {0} such that there exists a
polynomial of degree d in R. Show that D is an additivelly written semigroup which is
finitely generated. For each generator di of D take a polynomial fi of degree di in R and
show that the set of all fi generates R.)

10. Show that the subalgebra R of K[x, y] generated by all xyk, k = 0, 1, 2, . . ., is
not finitely generated. (Hint. If R is finitely generated, then it can be generated by a
finite number of polynomials x, xy, xy2, . . . , xyn. Show that xyn+1 cannot be expressed as
a polynomial in x, xy, . . . , xyn.)
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2. INVARIANT THEORY OF FINITE GROUPS

In this section we assume that K is a fixed algebraically closed field of characteristic 0,
e.g. K = C. The assumption that K is algebraically closed is not essential for the results
(but simplifies the proofs). The requirement for the characteristic is essential. We fix an
n-dimensional vector space V with basis {x1, . . . , xn} and assume that V is contained in
the polynomial algebra K[x1, . . . , xn]. In this way, we consider the elements of V as linear
(and homogeneous) polynomials in n variables.

The group GLn(K) = GL(V ) of all invertible linear operators on V can be identified
(fixing some basis of V , e.g. {x1, . . . , xn}) with the group of all invertible n× n matrices
with entries from K. It acts on V and this action can be extended to an action on
K[x1, . . . , xn] by

(g(f))(x1, . . . , xn)) = f(g(x1), . . . , g(xn)),

g ∈ GLn(K), f = f(x1, . . . , xn) ∈ K[x1, . . . , xn].

Since every mapping xi → K[x1, . . . , xn], i = 1, . . . , n, induces an endomorphism of
K[x1, . . . , xn], and the elements of GLn(K) act invertible on V , we obtain that GLn(K)
acts as a group of automorphisms of K[x1, . . . , xn]. Pay attention, that this action is
homogeneous. Since g(xi), g ∈ GLn(K), is a linear combination of x1, . . . , xn, if f is a
homogeneous polynomial of degree d, then g(f) is also homogeneous of the same degree d.

Definition 2.1. Let G be a subgroup of GLn(K). The polynomials f = f(x1, . . . , xn)
in K[x1, . . . , xn] with the property that g(f) = f for all g ∈ G are called invariants of G
(or G-invariants). The set of all G-invariants is called the algebra of invariants of G. We
shall denote it by K[x1, . . . , xn]G.

Exercise 2.2. Show that the algebra of invariants K[x1, . . . , xn]G is a graded sub-
algebra of the polynomial algebra K[x1, . . . , xn] for any subgroup G of GLn(K). (Hint.
In order to prove that K[x1, . . . , xn]G is graded, write the invariant polynomials in the
form f = f0 + f1 + . . . + fm, where fd is homogeneous of degree d. Then f = g(f) =
g(f0) + g(f1) + . . . + g(fm) for g ∈ G and g(fd) is homogeneous of degree d. Comparing
the homogeneous components of f and g(f) we obtain that g(fd) = fd.)

Till the end of the section we fix: R = K[x1, . . . , xn]. For every graded subspace W of
R we denote by Wd its homogeneous component of degree d. V = R1 is the subspace of R
with basis {x1, . . . , xn} G = {g1, . . . , gk} is a finite subgroup of GLn(K) with k elements
and S = RG is the algebra of G-invariants.

Examples 2.3. (i) The symmetric group Sn may be considered as a subgroup of
GLn(K) acting on R by σ(f) = f(xσ(1), . . . , xσ(n)). The theory of symmetric polynomials
gives that the algebra of invariants S = RSn consists of the symmetric polynomials in n
variables. This algebra is generated by the elementary symmetric polynomials

e1 = x1 + x2 + . . . + xn, e2 = x1x2 + x1x3 + . . . + xn−1xn, . . . , en = x1x2 . . . xn

and the elementary symmetric polynomials are algebraically independent, i.e. S is isomor-
phic to the polynomial algebra K[e1, e2, . . . , en].

(ii) Let R = K[x, y, z] and let G be the cyclic group of order 3 generated by the linear
operator g defined by

g(x) = y, g(y) = z, g(z) = x,
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i.e. G is the subgroup of S3 generated by

g =
(

x y z
y z x

)
.

Then all symmetric functions are invariants of G but G has also other invariants, e.g.
f(x, y, z) = x2y + y2z + z2y. One can show (see the exercises in the end of the section)
that RG is generated by the elementary symmetric polynomials e1, e2, e3 and f .

(iii) The dihedral group D8 of order 8 of all symmetries of the square with vertices
A1 = (1, 0), A2 = (0, 1), A3 = (−1, 0), A4(0,−1) is isomorphic to the subgroup of the
symmetric group S4 generated by σ1 = (1234) and τ1 = (24) (where S4 acts on the
vertices A1, A2, A3, A4). The corresponding matrices in GL2(K) are

σ =
(

0 −1
1 0

)
, τ =

(
1 0
0 −1

)
.

The polynomial f(x, y) = x2 + y2 is a D8-invariant.
Lemma 2.4. Let φ be any linear operator of a vector space W of any (maybe infinite)

dimension and such that φ2 = φ. Then W is a direct sum of the image Im(φ) and the
kernel Ker(φ) and φ acts as the identity map on Im(φ).

Proof. Every element w ∈ W can be written as w = φ(w) + (w − φ(w)). Obviously
φ(w) is in Im(φ) and, since φ2 = φ, we obtain that φ((w− φ(w)) = φ(w)− φ2(w) = 0 and
w−φ(w) ∈ Ker(φ). Hence W = Im(φ)+Ker(φ) and we have to show that Im(φ)∩Ker(φ) =
0. If w1 = φ(w) ∈ Im(φ), then φ(w1) = φ2(w) = φ(w) = w1 and φ acts identically on
Im(φ). Hence, if w1 ∈ Ker(φ), then 0 = φ(w1) = w1. In this way, W is a direct sum of its
subspaces Im(φ) and Ker(φ) and φ acts as the identity map on Im(φ).

Now we define the Reynolds operator on R by

ρ(f) =
1
|G|

∑

g∈G

g(f), f ∈ R.

Proposition 2.5. The Reynolds operator ρ satisfies:
(i) h(ρ(f)) = ρ(f) for any h ∈ G and f ∈ R.
(ii) ρ2 = ρ.
(iii) The polynomial f ∈ R is a G-invariant if and only if ρ(f) = f . As a vector space,

the algebra of invariants is spanned by all polynomials of the form ρ
(
xd1

1 . . . xdn
n

)
.

(iv) ρ(fh) = fρ(h) for every G-invariant f and every polynomial h ∈ R.
Proof. (i) For any h ∈ G and f ∈ R,

h(ρ(f)) = h


 1
|G|

∑

g∈G

g(f)


 =

1
|G|

∑

g∈G

(hg)(f).

Since the sets hG = {hg | g ∈ G} and G coincide, we obtain that

h(ρ(f)) =
1
|G|

∑

g∈G

g(f) = ρ(f).
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(ii) By (i)

ρ2(f) =
1
|G|

∑

g∈G

g(ρ(f)) =
1
|G|

∑

g∈G

ρ(f) = ρ(f).

(iii) If f is a G-invariant, then g(f) = f for every g ∈ G and

ρ(f) =
1
|G|

∑

g∈G

g(f) =
1
|G|

∑

g∈G

f = f.

If ρ(f) = f , then g(ρ(f)) = ρ(f) = f for every g ∈ G and f is G-invariant. Since
S = RG = Im(ρ) = ρ(R) and R is spanned by all polynomials ρ

(
xd1

1 . . . xdn
n

)
, we obtain

the statement for the generating set of S.
(iv) Since G acts as a group of automorphisms of R and g(fh) = g(f)g(h) for every

g ∈ G and f, h ∈ R, if f ∈ S = RG, then g(f) = f and

ρ(fg) =
1
|G|

∑

g∈G

g(fh) =
1
|G|

∑

g∈G

g(f)g(h) =
1
|G|

∑

g∈G

fg(h) = f


 1
|G|

∑

g∈G

g(h)


 = fρ(h).

Now we shall prove the following theorem of Emmy Noether, which is one of the most
important theorems of invariant theory of finite groups.

Theorem 2.6. The algebra of invariants of any finite group is finitely generated.
Proof. Let G be a finite subgroup of GLn(K), R = K[x1, . . . , xn] and let S = RG be

the algebra of invariants of G. The homogeneous components of the polynomials in S are
also invariants and we consider the ideal U of R generated by the homogeneous invariants
of positive degree. Clearly, U is a graded subspace of R. By Hilbert Basis Theorem the
ideal U is finitely generated and we may choose a finite set {f1, . . . , fm} of homogeneous
invariants which generate U . Let S0 be the subalgebra of S generated by the invariants
f1, . . . , fm. We shall show that S0 = S. Let us assume that S 6= S0 and let f ∈ S
be a homogeneous invariant of minimal degree which is not in S0. Then, since f ∈ U ,
there exist some polynomials h1, . . . , hm ∈ R such that f = f1h1 + f2h2 + . . . + fmhm.
Since we work with homogeneous polynomials f, f1, . . . , fm, we may choose h1, . . . , hm

also homogeneous. All invariants f1, . . . , fm are of positive degree and hence the degrees
of h1, . . . , hm are lower than the degree of f . By Proposition 2.5,

f = ρ(f) = ρ(f1h1 + . . . + fmhm) = f1ρ(h1) + . . . + fmρ(hm)

and f is expressed by the generators f1, . . . , fm of S0 and the invariants ρ(h1), . . . , ρ(hm).
Since deg(ρ(hi)) = deg(hi) < deg(f), by the minimality of the degree of f , all ρ(hi) belong
to S0. Hence f also belongs to S0 and we reach a contradiction with the assumption that
f 6∈ S0.

The following statement is a consequence of the proof of Theorem 2.6.
Corollary 2.7. For any finite group G, let U be the ideal of R = K[x1, . . . , xn]

generated by the homogeneous G-invariants of positive degree. Then any set of generators
of U which is in S = RG generates S as a subalgebra of R.

10



Remark 2.8. (i) The original proof of Theorem 2.8 given by Emmy Noether (see
[St]) contains also an upper bound for the degree of the generators of S = RG: The algebra
S is generated by elements of degree ≤ |G|. Of course, these generators can be chosen as
in Proposition 2.5 (iii).

(ii) One of the most famous problems in Invariant Theory is the 14-th Hilbert Problem
from 1900, a partial case of which asks whether the algebra of invariants K[x1, . . . , xn]G

is finitely generated for any subgroup G of GLn(K). The negative answer was given by
Nagata in the 1950’s (for the exposition of the result of Nagata see [DC]).

Proposition 2.9. For |G| < ∞ the algebra of invariants RG has the same transcen-
dence degree as R = K[x1, . . . , xn] and every element of R is a linear combination with
coefficients in S of the polynomials xd1

1 . . . xdn
n , where di < |G|.

Proof. Let G = {g1, . . . , gk}, let f ∈ R and let

hf (z) =
∏

g∈G

(z − g(f)) = zk − e1z
k−1 + e2z

k−2 − . . . + (−1)k−1ek−1z + (−1)kek,

where ei = ei(g1(f), . . . , gk(f)) are the elementary symmetric polynomials in g1(f), . . .,
gk(f). Since gG = G for any g ∈ G, we obtain that

g(ei) = ei((gg1)(f), . . . , (ggk)(f)) = ei(g1(f), . . . , gk(f))

and ei is G-invariant. Since some of the elements gj in G is equal to the identity element
of G, we obtain for it that gj(f) = f and hf (f) = 0. Hence every element of R is algebraic
on S and this implies that R and S have the same transcendence degree. Applying the
above considerations for the variables xi, we obtain that xk

i is a linear combination with
coefficients in S of 1, xi, . . . , x

k−1
i . From here one easily derives that all degrees of xi have

the same property and this completes the proof.
Remark 2.10. Since the algebra of invariants of a finite group G is finitely generated,

it is an image of a polynomial algebra in a finite number of variables. Usually a theorem
which gives a set of generators of RG is called The First Fundamental Theorem of Invariant
Theory of G and a theorem giving the defining relations between these generators is called
The Second Fundamental Theorem of Invariant Theory of G.

Example 2.11. (See Example 2.3 (i)) The First Fundamental Theorem of Invariant
Theory of Sn states that the elementary symmetric polynomials generate the algebra of
invariants. The Second Fundamental Theorem gives that these generators are algebraically
independent, i.e. do not satisfy any nontrivial relation. Other examples will be considered
in the exercises.

Lemma 2.12. If g ∈ GLn(K) satisfies gr = 1 for some r > 0, then g is diagonalizable,
i.e. the linear operator corresponding to the matrix g has a diagonal matrix with respect
to a properly chosen basis.

Proof. Since the field K is algebraically closed, every matrix is similar to it Jordan
normal form and we shall fix a Jordan basis for the operator of g. In other words, changing
the basis of the vector space, we may think that the matrix g consists of blocks

g =




J1 0 · · · 0
0 J2 · · · 0
...

... · · · ...
0 0 · · · Js


 ,
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where each matrix Ji is of the form

Ji =




λi 1 0 · · · 0 0
0 λi 1 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · λi 1
0 0 0 · · · 0 λi




and λi is an eigenvalue of g. Since the field is of characteristic 0, if some Ji is a p × p
matrix with p > 1, then Jm

i 6= 1 for any m > 0. Hence gm 6= 1 which is a contradiction.
In this way, all blocks Ji are 1× 1 matrices, i.e. the normal Jordan form of g is diagonal.

In the exercises we shall give a direct proof of the lemma, without using the Jordan
normal form.

Lemma 2.13. If φ is a linear operator acting on a finite dimensional vector space W
and φ2 = φ, then dim(Im(φ)) = tr(φ), where tr(φ) is the trace of φ.

Proof. By Lemma 2.4, the vector space W is a direct sum of the image and the kernel
of φ and φ acts on the image as the identity map. We choose a basis of W which is a union
of bases of the image and the kernel of φ. Hence the dimension of the image of φ is equal
to the number of 1’s on the diagonal of φ with respect to the chosen basis, i.e. to the trace
of φ.

Molien Formula 2.14. If G is a finite subgroup of GLn(K), then the Hilbert series
of the algebra of invariants S = RG = K[x1, . . . , xn]G has the form

H(RG, t) =
1
|G|

∑

g∈G

1
det(1− gt)

,

where det(1− gt) is the determinant of the matrix 1− gt.
Proof. Let Rd be the vector space of the homogeneous polynomials of degree d. Then

RG is a direct sum of the homogeneous components Sd = (Rd)G and the Hilbert series of S
is equal to

∑
d≥0(dim Sd)td. Let ρd be the restriction of the Reynolds operator on Rd. By

Proposition 2.5, ρ2
d = ρd and Sd = ρ(Rd). By Lemma 2.13 we obtain that dim S = tr(ρd).

Clearly,

tr(ρd) =
1
|G|

∑

g∈G

tr(gd),

where gd is the restriction of g ∈ G on Rd. Since the group G is finite, its elements are of
finite order. Let g be an element of G. The change of the basis of the vector space V with
basis {x1, . . . , xn} corresponds to a linear change of the variables. It does not change the
algebra of invariants and the trace of the matrix gd acting on Rd. By Lemma 2.12 we may
choose new variables {y1, . . . , yn} such that g(yi) = λiyi for some roots of unity λi = λi(g),
i = 1, . . . , n. Hence gd acts on the basis elements yd1

1 . . . ydn
n of Rd, d1 + . . . + dn = d, by

gd(yd1
1 . . . ydn

n ) = λd1
1 . . . λdn

n yd1
1 . . . ydn

n

12



and the trace of gd is equal to the sum of all λd1
1 . . . λdn

n with d1 + . . . + dn = d. In this
way,

H(Rd, t) =
∑

d≥0

(dimSd)td =
∑

d≥0

tr(ρd)td

=
1
|G|

∑

g∈G

tr(gd)td =
1
|G|

∑

g∈G

∑

di≥0

λd1
1 . . . λdn

n td1+...+dn =

=
1
|G|

∑

g∈G


 ∑

d1≥0

(λ1t)d1


 . . .


 ∑

dn≥0

(λnt)dn


 =

1
|G|

∑

g∈G

1
(1− λ1t) . . . (1− λnt)

and in order to complete the proof it is sufficient to observe that

(1− λ1t) . . . (1− λnt) = det(1− tg).

Remark 2.15. Since the algebra of invariants S = RG of a finite group G has the
same transcendence degree as R = K[x1, . . . , xn], the Noether Normalization Theorem
in Commutative Algebra gives that there exist homogeneous invariants f1, . . . , fn which
are algebraically independent and a finite number of homogeneous invariants h1, . . . , hm

such that every invariant f has the form f = p1h1 + . . . + pmhm, where each coefficient
p1, . . . , pn is a polynomial of f1, . . . , fn. Then the Hilbert-Serre theorem has a more precise
form which gives that the Hilbert series of S is

H(S, t) =
q(t)

(1− td1) . . . (1− tdn)
,

where q(t) ∈ Q[t] and di is the degree of fi. In the special case, when

H(S, t) =
1

(1− td1) . . . (1− tdn)

this means that S = RG is generated by the algebraically independent invariants f1, . . . , fn

and S is isomorphic to a polynomial algebra. The theorem of Chevalley-Shephard-Todd
gives that the algebra of invariants is isomorphic to a polynomial algebra if and only if
the finite group G is generated by pseudo-reflections. Recall that a pseudo-reflection is a
matrix of finite order which has only one eigenvalue (counting the multiplicity) different
from 1. In other words, the pseudo-reflections are similar to matrices in the form

g =




λ 0 · · · 0
0 1 . . . 0
...

... · · · ...
0 0 · · · 1


 .
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Exercises

1. Show directly, without using the Jordan normal form: If φ is a linear operator
acting on a finite dimensional vector space W and such that the minimal polynomial of φ
has no multiple zeros, then the matrix of φ is diagonalizable.

Solution. Let the minimal polynomial of φ be f(z) = (z−λ1) . . . (z−λk), where all λi

are pairwise different. Consider the operator ψ = φ− λ1. Clearly, the kernel of ψ consists
of all eigenvectors of φ corresponding to the eigenvalue λ1, i.e.

Ker(ψ) = {w ∈ W | φ(w) = λ1w}.

On the other hand, if 0 6= w ∈ Im(ψ) ∩ Ker(ψ), then there exists some v ∈ W such that
w = ψ(v) and φ2(v) = ψ(w) = 0. Hence (φ − λ1)2(v) = 0 and (φ − λ1)(v) 6= 0. Since
(z−λ1)2 is relatively prime with (z−λ2) . . . (z−λk), there exist polynomials u1(z), u2(z) ∈
K[z] such that

u1(z)(z − λ1)2 + u2(z)(z − λ2) . . . (z − λk) = 1.

Applying this to v we obtain that

u1(φ)(φ− λ1)2(v) + u2(φ)(φ− λ2) . . . (φ− λk)(v) = v,

u2(φ)(φ− λ2) . . . (φ− λk)(v) = v,

(φ− λ1)(u2(φ)(φ− λ2) . . . (φ− λk))(v) = ψ(v) = w 6= 0.

Hence w = u2(φ)((φ−λ1)(φ−λ2) . . . (φ−λk)(v) = u2(φ)f(φ)(v) which is equal to 0, because
f(z) is the minimal polynomial of φ. This contradiction shows that Im(ψ) ∩ Ker(ψ) =
0. Using the equality dim(Im(ψ)) + dim(Ker(ψ)) = dim(W ) which holds for any linear
operator, we obtain that W is a direct sum of Im(ψ) and Ker(ψ). Both subspaces Im(ψ) and
Ker(ψ) are φ-invariant, dim Im(ψ) > 0 (there is a nonzero eigenvector of φ corresponding
to λ1) and the matrix of φ considered as an operator on Im(ψ) is diagonal. We may apply
inductive arguments and conclude: Ker(ψ) has a basis such that the restriction of φ on
Ker(ψ) has a diagonal matrix.

2. Show directly, without using the Jordan normal form and Execise 1: If φ is a linear
operator acting on any vector space W and such that φk = 1 for some k > 0, then W is a
direct sum of subspaces each consisting of eigenvectors of φ. In particular, if dim(W ) < ∞,
then the matrix of φ is diagonalizable.

Solution. (Proposed to the lecturer by M.-K. Siu.) Let ω be a fixed primitive root of
1. For any p = 0, 1, . . . , k − 1, we define a linear operator ψp by

ψp(x) = x +
φ(x)
ωp

+
φ2(x)
ω2p

+ . . . +
φk−1(x)
ω(k−1)p

, x ∈ W.

Using that ωk = 1 and φk = 1, direct verification shows that φ(ψp(x)) = ωpψp(x), i.e.
ψp(x) is an eigenvector of φ corresponding to ωp. Note that x = 1

k (ψ0(x) + ψ1(x) + . . . +
ψk−1(x)). Let Wp = {ψp(x) | x ∈ W}. Then W = W0 + W1 + . . . + Wk−1. On the other
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hand, let u0, u1, . . . , up−1 be some elements such that up ∈ Wp and u0+u1+. . .+uk−1 = 0.
Applying φs, s = 0, 1, . . . , k − 1, to this sum, we obtain that

φs(u0 + u1 + . . . + uk−1) = (ω0)su0 + (ω1)su1 + . . . + (ωk−1)suk−1 = 0.

Considering these equations as a homogeneous linear system with unknowns up and deter-
minant equal to the Vandermonde determinant (which is nonzero), we conclude that the
only solution of the system is up = 0, p = 0, 1, . . . , k − 1. This means that W is a direct
sum of the subspaces W0,W1, . . . ,Wk−1. Since all elements of Wp are eigenvectors of φ,
we complete the solution.

3. Find the image of f(x1, . . . , xn) under the action of g ∈ GLn(K) where:
(i) n = 2, f(x, y) = 2x + 5y + 3x2 + 5xy2 + y3 and g(x) = x + 2y, g(y) = −2x + 3y or

in matrix form,

g =
(

1 −2
2 3

)
;

(ii) n = 3, f(x, y, z) = xz − y2,

g = 1 +
∆
1!

+
∆
2!

+ . . . ,

where the linear operator ∆ is defined by ∆(x) = −2y, ∆(y) = z, ∆(z) = 0.
4. Find the generators of the algebra of invariants K[x, y]G of the group G generated

by g and h, where
g(x) = −x, g(y) = y, h(x) = x, h(y) = −y.

Answer. K[x, y]G = K[x2, y2].
5. Find the invariants of degree ≤ 3 of the cyclic group G of order 3 acting on

K[x, y, z] and generated by

g =
(

x y z
y z x

)
.

Find the generators of K[x, y, z]G.
Hint. First method: Apply the Reynolds operator to the monomials of degree ≤ 3.

Second method: Change the variables in such a way that with respect to the new variables
x1, y1, z1 the operator g acts by

g(x1) = x1, g(y1) = ωy1, g(z1) = ω2z1,

where ω3 = 1, ω 6= 1. Then the invariants are linear combinations of x1, y1z1 and y3
1 , z3

1 .
Derive from here (with or without using the bound of Emmy Noether) that the algebra
of invariants is generated by homogeneous polynomials of degree ≤ |G| = 3. Answer.
K[x, y, z]G is generated by x + y + z, xy + yz + zx, xyz and x2y + y2z + z2x. (Compare
with Exercise 8 from Section 1.)

6. Find generators of the algebra of invariants K[x, y]G, where G is the cyclic group
generated by g defined by g(x) = y, g(y) = −x.

15



Hint. Use the Reynolds operator or change the basis in such a way that g(x1) = ix1,
g(y1) = −iy1. The invariants are generated by xa

1yb
1, a−b ≡ 0 (mod 4). Then the generators

of the algebra of invariants with respect to the new basis are x1y1, x
4
1, y

4
1 . Answer. K[x, y]G

is generated by f1 = x2 + y2, f2 = x2y2 and f3 = xy(x2 − y2).
7. Calculate the Hilbert series of the algebra of invariants in Exercises 4, 5 and 6 and

find defining relations between the generators.
Hint. For Exercise 4 use that K[x, y]G = K[x2, y2] is the polynomial algebra in two

variables of degree 2. Hence

H(K[x, y]G, t) =
1

(1− t2)2
.

For the other exercisess apply the Molien formula. For Example 5 use that with respect
to a specially chosen basis g and g2 are diagonal matrices with entries 1, ω, ω2 and

det(1− tg) = det(1− tg2) = (1− t)(1− ωt)(1− ω2t) = 1− t3.

Together with det(1− t) = (1− t)3 we obtain

H(K[x, y, z]G, t) =
1
3

(
1

(1− t)3
+

2
1− t3

)
=

1− t + t2

(1− t)2(1− t3)
=

1 + t3

(1− t)(1− t2)(1− t3)
.

Hence K[x, y, z]G has the form (K + K(x2y + y2z + z2x))K[e1, e2, e3], where ej are the
elementary symmetric polynomials. Compare with Exercise 8 of Section 1. The consider-
ations for Exercise 6 are similar.

8. Calculate the Hilbert series and find generating sets and defining relations of the
algebra of invariants of the following groups:

(i) The dihedral group D8 of order 8 generated by

g =
(−1 0

0 1

)
, h =

(
0 −1
1 0

)
;

(ii) The quaternion group Q8 of order 8 generated by

g =
(

i 0
0 −i

)
, h =

(
0 1
−1 0

)
;

Hint. Calculate the determinants of 1− bt, b ∈ G. The answer is

H(K[x, y]D8 , t) =
1

(1− t2)(1− t4)

which confirms the fact that D8 is generated by pseudo-reflections and its algebra of
invariants has algebraically independent generators. The generators are x2 + y2 and x2y2.
For the quaternion group

H(K[x, y]Q8 , t) =
1− t2 + t4

(1− t2)(1− t4)
=

1 + t6

(1− t4)2
.
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Derive from here that the algebra of invariants has two generators of degree 4 and one of
degree 6. The generators are x2y2, x4 + y4, xy(x4 − y4). The defining relation between
them is (xy(x4 − y4))2 = (x2y2)((x4 + y4)2 − 4(x2y2).

9. Let the symmetric group act on the vector subspace W of V = span{x1, . . . , xn}
with basis {yi = xi − xi+1 | i = 1, . . . , n − 1}. Calculate the Hilbert series of the algebra
of invariants K[y1, . . . , yn−1]Sn .

Hint. Use that V is a direct sum of W and the one-dimensional vector space spanned
by x1 + x2 + . . . + xn, where Sn acts identically. For every σ ∈ Sn, the determinant of
1−σt on V is a product of 1− t and the determinant of 1−σt on W . Hence in the Molien
formula

H(K[x1, . . . , xn]Sn , t) =
1

1− t
H(K[y1, . . . , yn−1]Sn , t) =

n∏

k=1

1
1− tk

.
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3. AUTOMORPHISMS AND DERIVATIONS

OF POLYNOMIAL ALGEBRAS

In this section we assume that K is a fixed algebraically closed field of characterisric
0, e.g. K = C. The assumption that K is algebraically closed is not essential for the
results (but simplifies the proofs). The requirement for the characteristic sometimes is
essential. We fix a finite set of variables X = {x1, . . . , xn} and consider the polynomial
algebra K[X] = K[x1, . . . , xn].

Definition 3.1. The isomorphisms K[X] → K[X] are called automorphisms of K[X].
All automorphisms φ of K[X] form a group which we denote by AutK[X]. Since every
mapping X → K[X] can be extended to an endomorphism of K[X], it is sufficient to define
the automorphisms of K[X] only on X. In commutative algebra and algebraic geometry
one often denotes the automorphisms as F = (f1, . . . , fn), where fj = φ(xj). Then, if
G = (g1, . . . , gn) is another automorphism, where gj = ψ(xj), one has F ◦ G = F (G) =
(f1(G), . . . , fn(G)), fj(G) = fj(g1, . . . , gn) which corresponds to the composition ψ ◦ φ
(first applying φ and then ψ). We shall use the notation ψφ = ψ ◦ φ instead of F (G).

Definition 3.2. The automorphisms of the form

φ(xj) =
n∑

i=1

αijxi + βj , αij , βj ∈ K, i, j = 1, . . . , n,

(where the n × n matrix (αij) is invertible) are called affine. The automorphisms of the
form

φ(xj) = αjxj + fj(xj+1, . . . , xn), αj ∈ K∗, j = 1, . . . , n,

where the polynomials fj(xj+1, . . . , xn) do not depend on x1, . . . , xj , are called triangular.
The automorphisms which belong to the group generated by the affine and the triangular
automorphisms are called tame automorphisms. The automorphisms which are not tame
are called wild.

Example 3.3. (i) Let φ, ψ ∈ EndK[x, y] be defined by

φ(x) = x + y2, φ(y) = y,

ψ(x) = x− y2, ψ(y) = y.

Then φ ◦ ψ(y) = φ(ψ(y)) = φ(y) = y,

φ ◦ ψ(x) = φ(ψ(x)) = φ(x− y2) = φ(x)− φ(y)2 = (x + y2)− y2 = x.

Hence φ ◦ ψ is the identity automorphism. Similarly ψ ◦ φ is the identity. Hence φ, ψ are
automorphisms and ψ = φ−1. Clearly, φ, ψ are triangular automorphisms.

(ii) Let φ, ψ ∈ AutK[x, y] be defined by

φ(x) = x + y2, φ(y) = y,

ψ(x) = x, ψ(y) = y + x3,
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(ψ may be considered as a triangular automorphism with respect to the ordering of the
variables x1 = y, x2 = x). Then

φ−1(x) = x− y2, φ−1(y) = y,

ψ−1(x) = x, ψ−1(y) = y − x3,

φ ◦ ψ(x) = φ(ψ(x)) = φ(x) = x + y2, φ ◦ ψ(y) = φ(ψ(y)) = φ(y + x3) = y + (x + y2)3,

ψ ◦ φ(x) = ψ(x + y2) = x + (y + x3)2, ψ ◦ φ(y) = ψ(y) = y + x3,

(φ ◦ ψ)−1(x) = ψ−1(φ−1(x)) = ψ−1(x− y2) = x− (y − x3)2,

(φ ◦ ψ)−1(y) = ψ−1(φ−1(y)) = ψ−1(y) = y − x3.

One of the main open problems in the theory of automorphisms of the polynomial
algebras, which will be also in the centre of our course, is the following:

Problem 3.4. Is every automorphism of K[X] tame?
Lemma 3.5. For any commutative domain R let AutR[x, y] be the group of R-

automorphisms of R[x, y] (i.e. automorphisms fixing the elements of R) and let

A = {σ ∈ AutR[x, y] | σ(x) = αx + βy + γ, σ(y) = ξx + ηy + ζ, α, β, γ, ξ, η, ζ ∈ R}

be the affine group of automorphisms, let

B = {τ ∈ AutR[x, y] | τ(x) = πx + f(y), τ(y) = ρy + ω, π, ρ ∈ R∗, ω ∈ R, f(y) ∈ R[y]}

be the triangular group and let C = A ∩ B. Then every tame automorphism φ of R[x, y]
can be presented in the form

φ = σδ
1 ◦ τ1 ◦ σ2 ◦ . . . ◦ σk ◦ τk ◦ σε

k+1,

where δ, ε = 0, 1 (i.e. the expression of φ may start with τ1 or finish with τk), σi ∈ A,
τi ∈ B, σ2, . . . , σk (and σ1 and σk+1 if they participate in the expression) do not belong to
B, τ1, . . . , τk do not belong to A.

Proof. Clearly, every tame automorphism is a product of affine and triangular auto-
morphisms, φ = ρ1 ◦ . . . ◦ ρn, where ρi ∈ A ∪ B, i = 1, . . . , n. If two consecutive ρi, ρi+1

belong to the same group A or B, then we may replace them with their product. Hence,
we may assume that if ρi ∈ A, then ρi+1 ∈ B and ρi+1 does not belong to A; similarly if
ρi ∈ B. So, φ has the presentation φ = σδ

1 ◦ τ1 ◦ σ2 ◦ . . . ◦ σk ◦ τk ◦ σε
k+1.

For a nonzero polynomial g(x, y) we denote by g(x, y) the homogeneous component
of maximal degree of g(x, y).

Proposition 3.6. In the notation of the previous lemma, if φ = σδ
1◦τ1◦σ2◦. . .◦σk◦τk,

where ε = 0, 1, σi ∈ A, (and σi does not belong to B for i = 2, . . . , k), τi ∈ B, τi(x) =
πix + fi(y), τi(y) = ρiy + ωi, and the degree degf(y) of fi(y) is equal to di > 1, then

deg(φ(x)) = d1d2 . . . dk, deg(φ(y)) = d1 . . . dk−1,
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and the homogeneous components φ(x) and φ(y) of maximal degree respectively of φ(x)
and φ(y) are of the form

φ(x) = λ(κ(µx + νy)m)dk , φ(y) = κ(µx + νy)m,

for some κ, λ, µ, ν ∈ R and for m = d1 . . . dk−1.
Proof. Let σi(x) = αix + βiy + γi, σi(y) = ξix + ηiy + ζi. Since σi 6∈ B, we obtain

that ξi 6= 0 for i = 2, . . . , k. Let fi(y) = θiy
di , 0 6= θi ∈ R. Direct calculations give that

σk ◦ τk(y) = σk(ρky + ωk) = ρk(ξkx + ηky + ζk) + ωk,

σk ◦ τk(y) = ρk(ξkx + ηky), ρk ∈ R∗, ρkξk 6= 0,

σk ◦ τk(x) = πk(αkx + βky + γk) + fk(ξkx + ηky + ζk),

σk ◦ τk(x) = θk(ξkx + ηky)dk =
(
θkρ−dk

k

)
(ρk(ξkx + ηky))dk .

By induction, we assume that

σ2τ2 . . . σkτk(x) = λ2(κ2(µ2x + ν2y)n)dk , σ2τ2 . . . σkτk(y) = κ2(µ2x + ν2y)n,

n = d2 . . . dk−1, µ2 6= 0, κ2 ∈ R,

and obtain

σ1τ1(x) = π1(α1x + β1y + γ1) + f1(ξ1x + η1y + ζ1), σ1τ1(y) = ρ1(ξ1x + η1y + ζ1) + ω1,

σ1τ1(x) = f1(ξ1x + η1y) = θ1(ξ1x + η1y)d1 , σ1τ1(y) = ρ1(ξ1x + η1y), ρ1 ∈ R∗,

σ1τ1(σ2 . . . τk(x)) = λ2(κ2(µ2σ1τ1(x) + ν2µ2σ1τ1(y))n)dk + . . .

= λ2(κ2(µ2θ1)n(ξ1x + η1y)d1 + . . .)n)dk + . . .

where we have denoted with . . . summands of lower degree. Hence

σ1 . . . τk(x) = λ2

(
κ2µ

n
2 θn

1 (ξ1x + η1y)d1n
)dk

,

σ1τ1(σ2 . . . τk(y)) = κ2(µ2σ1τ1(x) + ν2σ1τ1(y))n + . . . ,

σ1 . . . τk(y) = κ2(µ2θ1)n(ξ1x + η1y)d1n.

Denoting κ1 = κ2(µ2θ1)n, m = d1n, we obtain that

σ1 . . . τk(x) = λ2(κ1(ξ1x + η1y)m)dk , σ1 . . . τk(y) = κ1(ξ1x + η1y)m.

If σ1 6∈ B, then ξ1 6= 0 and we may continue the inductive steps and prove the statement
for larger k.
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Theorem 3.7. Let R be a commutative domain and let φ ∈ AutR[x, y] be a tame
automorphism. Let the homogeneous components of maximal degree of φ(x) and φ(y) be,
respectively f(x, y) and g(x, y), deg(f) = m, deg(g) = n. Then either n divides m and

f(x, y) = λ(κ(µx + νy)n)d, g(x, y) = κ(µx + νy)n, λ, κ, µ, ν ∈ R, m = dn,

or m divides n and

f(x, y) = κ(µx + νy)m, g(x, y) = λ(κ(µx + νy)m)d, λ, κ, µ, ν ∈ R, n = dm,

or m = n and there exists an affine automorphism σ of R[x, y] such that

deg(φ ◦ σ−1(x)) = m > deg(φ ◦ σ−1(y)).

Proof. Let φ = σδ
1 ◦ τ1 ◦ σ2 ◦ . . . ◦ σk ◦ τk ◦ σε

k+1, where σi ∈ A, τi ∈ B, as in Lemma
3.5. If ε = 0, then φ is in the form of Proposition 3.6 and we obtain that φ(x) = κ(φ(y))d,
where d is the degree of fk(y) in the definition of τk. Now, let ε = 1 and let

σk+1 = αx + βy + γ, σ(y) = ξx + ηy + ζ, α, β, γ, ξ, η, ζ ∈ R,

and, by Proposition 3.6, for ψ = σδ
1τ1σ2 . . . σkτk

ψ(x) = λ1(κ1(µ1x + ν1y)n)d, ψ(y) = κ1(µ1x + ν1y)n.

Direct calculations give that

φ(x) = ψ ◦ σk+1(x) = αψ(x) + βψ(y),

φ(y) = ψ ◦ σk+1(y) = ξψ(x) + ηψ(y).

(i) If α 6= 0, ξ = 0, then η ∈ R∗ and

φ(x) = αψ(x) = αλ1(κ1(µ1x + ν1y)n)d = (αλ1η
−d)(ηκ1(µ1x + ν1y)n)d,

φ(y) = ηψ(y) = ηκ1(µ1x + ν1y)n.

(ii) If α = 0, then ξ 6= 0, β ∈ R∗ and

φ(x) = βψ(y) = βκ1(µ1x + ν1y)n

φ(y) = ξψ(x) = ξλ1(κ1(µ1x + ν1y)n)d = (αλ1η
−d)(ηκ1(µ1x + ν1y)n)d.

(iii) If α 6= 0, ξ 6= 0, then
φ(x) = αψ(x), φ(y) = ξψ(x),
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degφ(x) = degφ(y) = nd and for σ = σk+1 we obtain

φ ◦ σ−1(x) = ψ(x), φ ◦ σ−1(y) = ψ(y)

with degψ(x) = degφ(x) = nd, degψ(y) = n < degφ(y).

Definition 3.8. The endomorphism ν of K[x, y, z] defined by

ν(x) = x− 2(y2 + zx)y − (y2 + zx)2z, ν(y) = y + (y2 + zx)z, ν(z) = z

is called the Nagata automorphism (and its properties are described in [N]).

Exercise 3.9. Show that the Nagata automorphism is an automorphism.
Hint. Show that ν(y2 + zx) = y2 + zx which would help in the verification that the

endomorphism ρ defined by

ρ(x) = x + 2(y2 + zx)y − (y2 + zx)2z, ρ(y) = y − (y2 + zx)z, ρ(z) = z

is the inverse of ν. Later we shall see that the Nagata automorphism is an example of a
general class of naturally arising automorphisms.

Theorem 3.10. (Nagata [N]) The Nagata automorphism ν is wild considered as an
automorphism of the K[z]-algebra (K[z])[x, y].

Proof. Since ν fixes z, we may consider it as a K[z]-automorphism of (K[z])[x, y]. Let
ν be tame. Clearly, the homogeneous components of maximal degree of ν(x) and ν(y) are
(remember that z is considered to be a “constant”)

ν(x) = −zy4, ν(y) = zy2.

By Theorem 3.7, there exists a “constant” λ in R = K[z] (i.e. λ = λ(z) is a polynomial of
z) and d such that

ν(x) = λ(z)(ν(y))d.

Hence −zy4 = λ(z)(zy2)d, i.e. d = 2 and λ(z) = −1/z which is not a polynomial.
Therefore, ν is not a tame automorphism.

Remark 3.11. The Nagata automorphism is tame considered as an automorphism
of (K(z))[x, y], the algebra of polynomials in two variables x, y over the field of rational
functions K(z). One can decompose it as ν = τ ◦σ ◦ τ−1, where σ, τ ∈ Aut(K(z))[x, y] are
defined by

σ(x) = x, σ(y) = y + z2x, τ(x) = x +
y2

z
, τ(y) = y.

The following conjecture is one of the most famous conjectures on automorphisms of
polynomial algebras. For further discussions see e.g. the survey article [DY1].

Conjecture 3.12. (The Nagata Conjecture, [N]) The Nagata automorphism is wild
considered as an automorphism of the polynomial algebra K[x, y, z].
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Definition 3.13. Let φ be any endomorphism of K[x1, . . . , xn]. The n× n matrix

J(φ) =




∂φ(x1)
∂x1

∂φ(x2)
∂x1

. . . ∂φ(xn)
∂x1

∂φ(x1)
∂x2

∂φ(x2)
∂x2

. . . ∂φ(xn)
∂x2

...
... . . .

...
∂φ(x1)

∂xn

∂φ(x2)
∂xn

. . . ∂φ(xn)
∂xn




is called the Jacobian matrix of φ. (Very often in commutative algebra and algebraic
geometry one defines the Jacobian matrix as the transpose of the matrix in our definition.)

Proposition 3.14. (The Chain Rule) If φ and ψ are endomorphisms of K[x1, . . . , xn],
then

J(φ ◦ ψ) = J(φ)φ(J(ψ)),

where φ(J(ψ)) means that we apply φ to the entries of the matrix J(ψ).
Proof. We shall prove the chain rule for the case of two variables only. The proof in

the general case is similar. Let hx and hy denote the partial derivatives of h = h(x, y) with
respect to x and y. If

φ(x) = f(x, y), φ(y) = g(x, y), ψ(x) = u(x, y), ψ(y) = v(x, y),

then φ ◦ ψ(x) = φ(u(x, y)) = u(φ(x), φ(y)) = u(f, g), similarly φ ◦ ψ(y) = v(f, g) and

(φ ◦ ψ(x))x = (u(f, g))x = ux(f, g)fx + uy(f, g)gx,

(φ ◦ ψ(y))x = (v(f, g))x = vx(f, g)fx + vy(f, g)gx,

(φ ◦ ψ(x))y = (u(f, g))y = ux(f, g)fy + uy(f, g)gy,

(φ ◦ ψ(y))y = (v(f, g))y = vx(f, g)fy + vy(f, g)gy.

These equations can be rewritten in a matrix form as

(
fx gx

fy gy

)(
ux(f, g) vx(f, g)
uy(f, g) vy(f, g)

)
= J(φ)φ(J(ψ)).

Corollary 3.15. The Jacobian matrix of any automorphism of K[X] = K[x1, . . . , xn]
is invertible over K[X] (and the determinant of the Jacobian matrix is a nonzero constant).

Proof. Of course, if φ is an automorphism, then the Jacobian matrix of φ◦φ−1 is equal
to the Jacobian matrix of the identity automorphism which is the unit n× n matrix. By
the chain rule J(φ) is invertible and its determinant is an invertible element in (K[X])∗,
hence in K∗.

The inverse function theorem in calculus states that if the Jacobian matrix of a map-
ping Rn → Rn is invertible, then the mapping is locally invertible. The analogue for
polynomial algebras is that any endomorphism of K[X] with an invertible Jacobian matrix
and which preserves the augmentation ideal (i.e. sends the variables to polynomials without
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constant terms) induces an automorphism of the algebra K[[X]] of formal power series.
The famous Jacobian conjecture (Keller, 1939) is the following:

Jacobian Conjecture 3.16. Every endomorphism of K[X] = K[x1, . . . , xn] with an
invertible Jacobian matrix is an automorphism (of K[X]).

Till the end of the section we shall show the importance of derivations in the study of
automorphisms of polynomial algebras.

Definition 3.17. Let R be any (not necessarily commutative) algebra. The linear
mapping δ : R → R is called a derivation of R if

δ(uv) = δ(u)v + uδ(v)

for all u, v ∈ R. We denote by Kerδ = Rδ the kernel of δ (considered as a linear operator
of the vector space R), it is a subalgebra of R, see the exercises. The derivation δ of R is
called locally nilpotent, if for every u ∈ R there exists a d such that δd(u) = 0.

The derivation δ of the polynomial algebra K[x1, . . . , xn] is called triangular if δ(xj) ∈
K[xj+1, . . . , xn], j = 1, . . . , n.

Pay attention that for any derivation δ of the algebra R

δ(1) = δ(12) = δ(1)1 + 1δ(1) = 2δ(1)

and hence δ(1) = 0. By the linearity of δ we have that δ(α) = αδ(1) = 0 for any α ∈ K ⊂ R.
Examples 3.18. (i) Let R = K[X] and δ = ∂/∂xi, the partial derivative with respect

to xi. Clearly, δ is a derivation. It is locally nilpotent because for a polynomial u(X) of
degree k with respect to xi one has ∂k+1u/∂xk+1

i = 0.
(ii) Let fi(X) ∈ K[X], i = 1, . . . , n. Then the mapping δ defined by

δ(u) = f1
∂u

∂x1
+ f2

∂u

∂x2
+ . . . + fn

∂u

∂xn
, u ∈ K[X],

is a derivation of K[X]. Indeed, δ is a linear operator and

δ(uv) =
n∑

i=1

fi
∂(uv)
∂xi

=
n∑

i=1

fi

(
∂u

∂xi
v + u

∂v

∂xi

)

=

(
n∑

i=1

fi
∂u

∂xi

)
v + u

(
n∑

i=1

fi
∂v

∂xi

)
= δ(u)v + uδ(v).

(iii) The derivation δ = −2y ∂
∂x + z ∂

∂y is a triangular derivation of K[x, y, z] because
sends x to −2y, y to z and z to 0.

Lemma 3.19. Every mapping X → K[X] can be extended in a unique way to a
derivation of K[X]. Every derivation of K[X] is of the form δ =

∑n
i=1 fi

∂
∂xi

for suitable
fi ∈ K[X], i = 1, . . . , n.
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Proof. If δ is a derivation of some algebra R, and R is generated by the elements
r1, r2, . . ., then δ is completely defined by its values on r1, r2, . . . because the elements
r ∈ R have the form r =

∑
αprp1 . . . rpm

, αp ∈ K and

δ(r) =
∑

αp

(
m∑

i=1

rp1 . . . δ(rpi
) . . . rpm

)

is expressed by δ(r1), δ(r2), . . . In the case of the polynomial algebra, let f1, . . . , fn be some
polynomials in K[X]. Then it is direct to see that the derivation δ =

∑n
i=1 fi

∂
∂xi

from
Example 3.18 (ii) satisfies δ(xi) = fi, i = 1, . . . , n. Since, if the derivation of K[X] which
extends the mapping xi → fi exists, then it is unique, we obtain the proof of the lemma.

The following equality for derivations of any algebra R is the Leibniz formula:

δm(uv) =
m∑

k=0

(
m

k

)
δk(u)δm−k(v), u, v ∈ R.

It has also the more general form:

δm(u1 . . . up) =
∑

k1+...+kp=m

m!
k1! . . . kp!

δk1(u1) . . . δkp(up), u1, . . . , up ∈ R.

Lemma 3.20. (i) A derivation δ of the algebra R is locally nilpotent if and only if it
acts nilpotently on the generators of R (i.e. if R is generated by r1, r2, . . ., then δmi(ri) = 0
for some mi dependning on the generator ri).

(ii) The triangular derivations of K[X] are locally nilpotent.
Proof. (i) It is sufficient to show that any given product of generators is annihilated

by some high power of δ. This follows from the Leibniz formula. The proof of (ii) can
be obtained by induction on the number of variables: If δ is a triangular derivation,
then δ(xn) ∈ K and δ2(xn) = 0. If δ acts locally nilpotently on K[xi+1, . . . , xn], since
δ(xi) ∈ K[xi+1, . . . , xn], we obtain that δm(δ(xi)) = 0 for some m and δm+1(xi) = 0,
continuing the inductive process.

Lemma 3.21. If δ is a locally nilpotent derivation of the polynomial algebra K[X]
and w ∈ Ker(δ), then ∆ = wδ is also a locally nilpotent derivation.

Proof. By Lemma 3.19, ∆ = wδ is a derivation. If u ∈ K[X], then δ(wu) = δ(w)u +
wδ(u) = wδ(u) (because δ(w) = 0) and we obtain that ∆m(u) = wmδm(u). Since δ is
locally nilpotent and δm(u) = 0 for some m, we obtain that ∆ is also locally nilpotent.

Example 3.22. The derivation δ = −2y ∂
∂x + z ∂

∂y is triangular, and hence a locally
nilpotent derivation of K[x, y, z]. It sends x to −2y, y to z and z to 0. Hence δ3(x) = 0,
δ2(y) = 0, δ(z) = 0. The polynomials z and w = y2 + zx are in the kernel of δ (check it!).
Hence ∆ = h(z, y2 + zx)δ is a locally nilpotent derivation of K[x, y, z] for any polynomial
h in two variables.

Lemma 3.23. Let f1, . . . , fn−1 ∈ K[X] and let the linear operator δ acting on K[X]
be defined as the determinant

δ(u) =

∣∣∣∣∣∣∣

∂f1
∂x1

. . . ∂fn−1
∂x1

∂u
∂x1

... . . .
...

...
∂f1
∂xn

. . . ∂fn−1
∂xn

∂u
∂xn

∣∣∣∣∣∣∣
, u ∈ K[X].
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Then δ is a derivation. If fi = φ(xi), i = 1, . . . , n− 1, for some automorphism φ of K[X],
then δ is locally nilpotent.

Proof. Since the first n−1 columns of the determinant are fixed, it is a linear function
on its last column, i.e. δ is a linear operator on K[X]. The condition δ(uv) = δ(u)v+uδ(v),
u, v ∈ K[X], also follows from the properties of determinants and the fact that the entries
of the last column of the determinant for δ(uv) are ∂(uv)

∂xi
= ∂u

∂xi
v + u ∂v

∂xi
, i = 1, . . . , n. If

φ ∈ AutK[X] and fi = φ(xi), i = 1, . . . , n, then f1, . . . , fn generate K[X] and δ(fi) = 0
for i = 1, . . . , n − 1, because two columns of the determinant are equal. Finally, δ(fn) is
equal to the determinant of the Jacobian matrix of φ and is a constant because φ is an
automorphism. Hence δ2(fn) = 0. In this way δ acts nilpotently on a set of generators of
K[X] and is locally nilpotent.

Remark 3.24. By a theorem of Rentschler [R] every locally nilpotent derivation of
the algebra of polynomials in two variables is of the above form: If δ is a locally nilpotent
derivation of K[x, y], then there exists an automorphism φ of K[x, y] and a polynomial w
from the kerenl of δ such that

δ(u) = w(φ(x))

∣∣∣∣∣
∂φ(x)

∂x
∂u
∂x

∂φ(x)
∂y

∂u
∂y

∣∣∣∣∣ = w(φ(x))
(

∂φ(x)
∂x

∂u

∂y
− ∂φ(x)

∂y

∂u

∂x

)
.

If δ 6= 0, then the kernel of δ consists of all polynomials h(φ(x)).
For the algebra of polynomials in three variables a theorem of Miyanishi [M] states:

If ∆ is a locally nilpotent derivation of K[x, y, z], then there exist polynomials

f(x, y, z), g(x, y, z), w(x, y, z)

such that ∆ = wδ, where w belongs to the kernel of δ and δ is a locally nilpotent derivation
defined by

δ(u) =

∣∣∣∣∣∣

∂f
∂x

∂g
∂x

∂u
∂x

∂f
∂y

∂g
∂y

∂u
∂y

∂f
∂z

∂g
∂z

∂u
∂z

∣∣∣∣∣∣
.

The kernel of ∆ consists of all elements of K[f, g].
For polynomial algebras in more than three variables this is not more true. There are

examples of locally nilpotent derivations of K[x, y, z, t] with any number of generators of
the kernel of the derivation. For polynomial algebras with more than four generators there
are locally nilpotent derivations with kernels which are not finitely generated. The most
recent example is given by Daigle and Freudenburg [DF] for the algebra with five variables.
In this way they have given a counterexample in minimal known number of variables to the
14-th Hilbert Problem. (Originally the problem was solved by Nagata in terms of invariant
theory, see Section 2. See also the book by Nowicki [No] amd the paper [DF] for more
comments on the 14-th Hilbert Problem and the contributions of other mathematicians to
the problem.)

On the other hand, a theorem of Weizenböck from 1932 (see [No]) gives that if δ is
a linear nilpotent operator acting on the vector space with basis X, and we denote by the
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same symbol δ the induced derivation of K[X], then the kernel of the derivation δ is a
finitely generated algebra.

Definition 3.25. Let δ be a locally nilpotent derivation of an algebra R. Then the
mapping φ : R → R defined by

φ(u) = u +
δ(u)
1!

+
δ2(u)

2!
+

δ3(u)
3!

+ . . . , u ∈ R,

is well defined because δ is locally nilpotent and for any u ∈ R there exists an m with
δm(u) = 0 and the sum is finite. It turns out that φ is an automorphism of R (see the
exercises), which we call an exponential automorphism and denote by exp(δ).

Example 3.26. (i) If δ is a triangular derivation of K[X], then

δ(xi) ∈ K[xi+1, . . . , xn]

and δk(xi) also belongs to K[xi+1, . . . , xn] for all k ≥ 1. Moreover δ is locally nilpotent
and the corresponding automorphism exp(δ) is a triangular automorphism.

(ii) Let ∆ = (y2 + zx)δ, where δ = −2y ∂
∂x + z ∂

∂y , be the derivation in Example 3.22.
Since δ3(x) = 0, δ2(y) = 0, δ(z) = 0, we obtain that

exp(∆) : x → x + (y2 + zx)
δ(x)
1!

+ (y2 + zx)2
δ2(x)

2!
= x− 2(y2 + zx)y + (y2 + zx)2z,

exp(∆) : y → y + (y2 + zx)
δ(y)
1!

= y + (y2 + zx)z,

exp(∆) : z → z,

and we obtain that exp(∆) is the Nagata automorphism.
Let φ be an automorphism of K[x1, . . . , xn]. Then for every positive integer m we may

extend φ to (an automorphism!) φ̄ of K[x1, . . . , xn+m] by φ̄(xn+i) = xn+i, i = 1, . . . ,m.
Definition 3.27. If φ is an automorphism of K[x1, . . . , xn] and its extension φ̄ by

φ̄(xn+i) = xn+i, i = 1, . . . , m, to an automorphism of K[x1, . . . , xn+m] for some m is a
tame automorphism of K[x1, . . . , xn+m], we say that φ is a stably tame automorphism of
K[x1, . . . , xn]. (In other words, we do not know whether φ is tame, but it becomes tame
in some bigger polynomial algebra.)

The following theorem of Martha Smith shows that a class of exponential automor-
phisms, including the Nagata automorphism, are stably tame.

Theorem 3.28. (Martha Smith [S]) Let δ be a triangular derivation of K[x1, . . . , xn]
and let w ∈ Ker(δ). Then the automorphism exp(wδ) is stably tame and becomes tame
extended to K[x1, . . . , xn+1] by exp(wδ) : xn+1 → xn+1.

Proof. Let us extend the action of δ to K[x1, . . . , xn+1] by δ(xn+1) = 0. Clearly, δ
is still triangular considered as a derivation of K[x1, . . . , xn+1]. Since xn+1 ∈ Ker(δ), the
derivation ∆1 = xn+1δ is locally nilpotent and even triangular (because δ is triangular,
∆1(xi) ∈ xn+1K[xi+1, . . . , xn], i = 1, . . . , n, and ∆1(xn+1) = 0.) Consider the tame
automorphism σ of K[x1, . . . , xn+1] defined by σ(xi) = xi, i = 1, . . . , n, σ(xn+1) = xn+1 +
w(x1, . . . , xn) (which is triangular if we consider the inverse ordering of the variables).
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Clearly σ acts as the identity mapping on K[x1, . . . , xn]. Let φ = σ−1 ◦ exp(−∆1) ◦ σ ◦
exp(∆1). (Obviously exp(−∆1) = (exp(∆1))−1.) Direct calculations show that

exp(±∆1)(xn+1) = xn+1, exp(±∆1)(w) = w

because xn+1 and w are in the kernel of ∆1 (equal to the kernel of δ),

φ(xn+1) = σ−1(exp(−∆1)(σ(exp(∆1)(xn+1)))) = σ−1(exp(−∆1)(σ(xn+1))) =

= σ−1(exp(−∆1)(xn+1 + w)) = σ−1(xn+1 + w) = xn+1.

For u ∈ K[x1, . . . , xn] we have

φ(u) = σ−1(exp(−∆1)(σ(exp(∆1)(u)))) = σ−1(exp(−∆1)(σ(exp(xn+1δ)(u)))) =

= σ−1(exp(−∆1)(exp(σ(xn+1)δ)(u))) = σ−1(exp((−xn+1δ)(exp(xn+1 + w)δ)(u)))

because σ is the identity mapping on u ∈ K[x1, . . . , xn],

φ(u) = σ−1(exp(−xn+1 + (xn+1 + w))δ)(u))

because exp((w1 + w2)δ) = exp(w1δ) ◦ exp(w2δ) if w1, w2 ∈ Ker(δ) (see the exercises).

φ(u) = σ−1(exp(wδ)(u)) = exp(wδ)(u).

In this way exp(wδ) = φ is a composition of the tame automorphisms σ and exp(∆1) and
their inverses. Hence exp(wδ) is a tame automorphism of K[x1, . . . , xn+1] and is stably
tame for K[x1, . . . , xn].

Corollary 3.29. The Nagata automorphism is stably tame.
Proof. We consider the presentation of the Nagata automorphism in Example 3.26

(ii) as exp(∆), where ∆ = (y2 + zx)δ, and δ = −2y ∂
∂x + z ∂

∂y is a triangular derivation.
Then the proof follows directly from the theorem.
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Exercises

1. Find the inverse of the automorphism φi (of the corresponding polynomial algebra)
defined by:

φ1(x) = x + (y2 + 2y + 3), φ1(y) = y;

φ2(x) = 2x + (y2 + 2y + 3), φ2(y) = −y + 2;

φ3(x) = x + (y2 + 2y + 3z), φ3(y) = −y + (2z − 3), φ3(z) = z + 1;

φ4(x) = 2x + 3y, φ4(y) = x + y;

φ5(x) = 2x + 3y + 1, φ5(y) = x + y − 3.

φ6(x) = 3x + 5y + 1, φ6(y) = 2x + 3y + 5.

φ7(x) = 2x + (3y2 + yz + z3), φ7(y) = 3y + (2z + 3), φ7(z) = −z + 5.

Solution. For the triangular automorphisms calculate step by step the action of φ−1
i

on the variables in inverse order, e.g. first on z, then on y and finally on x:
Obviously, φ−1

1 (y) = y. If φ−1
1 (x) = αx + g(y), then

x = φ−1
1 (φ1(x)) = φ−1

1 (x + y2 + 2y + 3) = (αx + g(y)) + y2 + 2y + 3,

and g(y) = −(y2 + 2y + 3). Hence φ−1
1 (x) = x− (y2 + 2y + 3).

Let φ−1
2 (y) = αy + β. Then

y = φ−1
2 (φ2(y)) = φ−1

2 (−y + 2) = −(αy + β) + 2,

α = −1, −β + 2 = 0, i.e. β = 2 and φ−1
2 (y) = −y + 2. If φ−1

2 (x) = γx + g(y), then

x = φ−1
2 (φ2(x)) = φ−1

2 (2x + (y2 + 2y + 3)) = 2(γx + g(y)) + (y2 + 2y + 3),

2γ = 1, 2g(y) + (y2 + 2y + 3) = 0 and φ−1
2 (x) = x/2− (y2 + 2y + 3)/2.

Similarly, φ3(z) = z − 1, φ−1
3 (y) = −y + 2z − 5, φ−1

3 (x) = x + f(y, z),

x = φ−1
3 (φ3(x)) = φ−1

3 (x + (y2 + 2y + 3z))

= x + f(y, z) + (−y + 2z − 5)2 + 2(−y + 2z − 5) + 3(z − 1),

φ−1
3 (x) = x− ((−y + 2z − 5)2 + 2(−y + 2z − 5) + 3(z − 1)).

For the linear automorphism φ4 with matrix g =
(

2 1
3 1

)
the inverse automorphism

has a matrix

g−1 =
(−1 1

3 −2

)
, and φ−1

4 (x) = −x + 3y, φ−1
4 (y) = x− 2y.

The inverse of the affine automorphism φ5 has a linear component which is inverse to
the linear component of φ5 and

φ−1
5 (x) = −x + 3y + α, φ−1

5 (y) = x− 2y + β.
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Then

x = φ5(φ−1
5 (x)) = φ(−x + 3y + α) = −(2x + 3y + 1) + 3(x + y − 3) + α, α = 10,

y = φ5(φ−1
5 (y)) = φ(x− 2y + β) = (2x + 3y + 1)− 2(x + y − 3) + β, β = −7.

2. Find the product φ−1 ◦ ψ−1 ◦ τ ◦ σ, where

σ(x) = 2x + y + 1, σ(y) = x + y − 1,

τ(x) = x + 2y2, τ(y) = y,

ψ(x) = x + 2y + 1, ψ(y) = x + 3y + 2,

φ(x) = x + 1, φ(y) = y + x2.

3. Prove that the triangular automorphisms φf of K[x, y] of the form φf (x) = x+f(y),
φf (y) = y form an abelian group isomorphic to the additive group of K[y].

Hint. Show that φf ◦ φg = φf+g for any f, g ∈ K[y].
4. Show that the the following derivations are locally nilpotent and the polynomials

w belong to the kernels of the derivations of K[X]:

δ1 = y
∂

∂x
+ z

∂

∂y
, w1 = y2 − 2xz, X = {x, y, z};

δ2 = 2u(vy − uz)
∂

∂x
− 2v(vy − uz)

∂

∂y
+ (v2x− u2y)

∂

∂z
,

w′2 = xy − z2, w′′2 = v2x + u2y − 2uvz, X = {u, v, x, y, z}.
Hint. Use that δ1(x) = y, δ1(y) = z, δ1(z) = 0 and check that δ3

1(x) = 0, δ2
1(y) = 0,

δ1(w1) = 0. The calculations for δ2 are similar but more complicated. Then δ2(u) =
δ2(v) = 0, δ2(x) = 2u(vy− uz), δ2(y) = 2v(vy− uz), δ2(z) = (v2x− u2y), δ3

2(x) = δ3
2(y) =

δ3
2(z) = 0.

5. Let R be a (not necessarily commutative) algebra and let D(R) be the set of all
derivations of R. Show that D(R) is a vector space (with respect to the usual operations
on sets of linear operators: addition and multiplication with constants). Define [δ1, δ2] =
δ1 ◦ δ2 − δ2 ◦ δ1 and show that D(R) satisfies the relations:

[δ, δ] = 0 (anticommutative low),

[[δ1, δ2], δ3] + [[δ2, δ3], δ1] + [[δ3, δ1], δ2] = 0 (Jacobi identity),

for all δ, δ1, δ2, δ3 ∈ D(R). (This means that D(R) is a Lie algebra.)
6. Prove the Leibniz formula for δn(uv), where δ is a derivation of the algebra R and

u, v ∈ R.
7. Let R be any algebra and let δ be a derivation of R. Show that Ker(δ) is a

subalgebra of R.
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Hint. Use that Ker(δ) is a subspace of R for any linear operator δ on R. Then show
that if δ(u) = δ(v) = 0, then δ(uv) = 0.

8. Show that the exponent exp(δ) of a locally nilpotent derivation δ of the algebra R
is an automorphism.

Hint. Show that exp(δ) is a linear operator on R and, using the Leibniz formula, that
(exp(δ))(uv) = (exp(δ))(u)(exp(δ))(v), u, v ∈ R.

9. If δ1, δ2 are locally nilpotent derivations and δ1 ◦ δ2 = δ2 ◦ δ1, show that δ1 + δ2 is
also locally nilpotent and exp(δ1 + δ2) = exp(δ1) ◦ exp(δ2).

Hint. Use, that if the linear operators δ1, δ2 commute and are locally nilpotent, then
δ1 + δ2 is also locally nilpotent and exp(a + b) = exp(a)exp(b), provided that ab = ba and
an = bm = 0.

10. Find a system of generators of the kernel of the derivation δi of the polynomial
algebra K[X], where:

δ1 = y
∂

∂x
+ z

∂

∂y
, δ2 = −2y

∂

∂x
+ z

∂

∂y
, X = {x, y, z};

δ3 = y
∂

∂x
+ t

∂

∂z
, δ4 = y

∂

∂x
+ z

∂

∂y
+ t

∂

∂z
, X = {x, y, z, t}.

Solution. Method 1. We shall consider δ2 because is related with the Nagata auto-
morphism. The considerations for δ1 are similar. For δ3 and δ4 it is better to use the
second method. It is easy to see that y2 + zx and z are in the kernel of δ2. Hence
K[y2 + zx, z] ⊆ Ker(δ2). Let f(x, y, z) ∈ Ker(δ2). We present it in the form

f(x, y, z) = f0(x, y2, z)+yf1(x, y2, z) = f0(x, (y2 +zx)−zx, z)+yf1(x, (y2 +zx)−zx, z) =

= g0(x, y2 + zx, z) + yg1(x, y2 + zx, z) =
m∑

k=0

ak(y2 + zx, z)xk + y

m∑

k=0

bk(y2 + zx, z)xk, ak, bk ∈ K[y2 + zx, z].

Using that ak, bk ∈ Ker(δ2), we obtain

0 = δ2(f) = −2y

m∑

k=0

kak(y2 + zx, z)xk−1

−2y2
m∑

k=0

kbk(y2 + zx, z)xk−1 + z

m∑

k=0

bk(y2 + zx, z)xk.

First we consider the summands with odd powers of y and obtain that ak(y2+zx, z) = 0 for
k = 1, . . . , m. Then we consider the sum as a polynomial in the new variables x, y2 + zx, z
and compare the powers of x starting from the highest. We obtain consecutively that
bk(y2 + zx) = 0, k = m,m− 1, . . . , 1. Hence f = a0(y2 + zx, z)+ yb0(y2 + zx, z) and, since
δ2(f) = zb0(y2+zx, z) = 0, we have that f = a0(y2+zx, z). Hence Ker(δ2) = K[y2+zx, z].
The result for δ1 is Ker(δ1) = K[y2 − 2zx, z].
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Method 2. Since δ2(z) = 0, we may think that z is a constant and (for a moment
only) to consider δ2 as a derivation of (K(z))[x, y]. Changing the variables as follows, we
obtain a better form of δ2. Let

u = x +
y2

z
, v =

y

z
.

Then (K(z))[x, y] = (K(z))[u, v] and δ2(u) = 0, δ2(v) = 1. Hence δ2 = ∂
∂v and Ker(δ2) =

K(z)[u]. In other words, the kernel of δ2 in (K(z))[x, y] consists of all polynomials in
u = x + y2/z with coefficients which are rational functions of z. Hence the kernel of δ2 in
K[x, y, z] consists of all polynomials in x, y, z in the form

f(x, y, z) =
m∑

k=0

ak(z)
bk(z)

(
x +

y2

z

)k

=
1

b(z)

m∑

k=0

ck(z)(y2 + zx)k,

where ai, bi, ci, b are polynomials in z. From here one can easily deduce that b(z) = 1 and
to derive that f(x, y, z) is a polynomial of y2 + zx and z.

The considerations for δ3 are in the same spirit. Since δ3(y) = δ3(t) = 0, we consider
y and t as constants and assume that δ3 as a derivation of (K(y, t))[x, z]. Then δ3(x/y) =
δ3(z/t) = 1 and the new variables

u =
x

y
− z

t
, v =

z

t

of K(y, t)[x, z] satisfy δ3(u) = 0, δ3(v) = 1. Hence Ker(δ3) = (K(y, t))[u] and f(x, y, z, t) ∈
Ker(δ3) is a polynomial of the form

f(x, y, z, t) =
m∑

k=0

ak(y, t)
bk(y, t)

(
x

y
− z

t

)k

.

From here we can easily derive that f(x, y, z, t) ∈ Ker(δ3) ∩K[x, y, z, t] is a polynomial of
y, t, xt− zy.

For Ker(δ4) and the kernels of other linear locally nilpotent derivations see the book
by Nowicki [No]. The idea is to use the results for δ1 and the second method. The answer
is that the kerenl of δ4 is generated by

t, z2 − 2yt, z3 − 3tyz + 3t2x, y2z2 − 2z3x + 6txyz − 8
3
ty3 − 3t2x3.
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4. TAME AUTOMORPHISMS OF POLYNOMIAL ALGEBRAS

IN TWO VARIABLES

In this section we assume that K is a fixed algebraically closed field of characteristic
0, e.g. K = C. The assumption that K is algebraically closed is not essential for the
results (but simplifies the proofs). We shall prove the theorem that every automorphism
of K[x, y] is tame. The first proof for K = C was given by Jung [J] in 1942. The general
case was established by van der Kulk [V] in 1953. Since this is one of the main results in
the theory of automorphisms of polynomial algebras with numerous applications also to
algebraic geometry, there are several different proofs of the theorem, see the book by van
den Essen [E2]. We shall present the proof of Makar-Limanov [ML] given in a preprint
form (and included also in [D]).

Definition 4.1. Let δ be a locally nilpotent derivation of K[x, y]. We define a degree
function deg = degδ by

degδ(u) + min(n | δn+1(u) = 0), 0 6= u ∈ K[x, y].

If u = 0, then we define degδ(0) = −∞.
In the special case of δ = ∂

∂x the degree with respect to δ coincides with the usual
degree with respect to x. (One needs to apply 3 times ∂

∂x to annihilate a polynomial
a(y)x2 + b(y)x + c(y).)

Lemma 4.2. If δ is a locally nilpotent derivation of K[x, y], then for every u, v ∈
K[x, y]

(i) degδ(u + v) ≤ max(degδ(u),degδ(v)),
(ii) degδ(u + v) = degδ(u) + degδ(v).
(iii) If degδ(uv) = 0, then degδ(u) = degδ(v) = 0.
Proof. If degδ(u) = n, degδ(v) = m, then δn+1(u) = δm+1(v) = 0, δn(u), δm(v) 6= 0.
(i) If n ≥ m, then δn+1(u + v) = δn+1(u) + δn+1(v) = 0 and degδ(uv) ≤ n.
(ii) By the Leibniz formula

δp(uv) =
p∑

k=0

(
p

k

)
δp−k(u)δk(v).

If p = n + m + 1, then either p − k ≥ n + 1 or k ≥ m + 1 and δn+m+1(uv) = 0. If
p = n + m, then the only summand with p− k ≤ n, k ≤ m is for k = m and δn+m(uv) =(
n+m

m

)
δn(u)δm(v) 6= 0. Hence degδ(uv) = n + m.

(iii) If degδ(uv) = 0, then u, v 6= 0, and degδ(u),degδ(v) ≥ 0. By (ii), 0 = degδ(uv) =
degδ(u) + degδ(v), i.e. degδ(u) = degδ(v) = 0.

Let f(x, y) ∈ K[x, y] be a fixed polynomial. We define the derivation δ of K[x, y] by

δ(u) =
∣∣∣∣

∂f
∂x

∂u
∂x

∂f
∂y

∂u
∂y

∣∣∣∣ = fxuy − fyux, u ∈ K[x, y],
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i.e.
δ = fx

∂

∂y
− fy

∂

∂x
,

(see Section 3 for the properties of δ).
If φ and ψ are automorphisms of K[x, y] such that φ(x) = ψ(x), then φ−1 ◦ψ(x) = x.

If φ−1 ◦ψ(y) = g(x, y), then, calculating the determinant of the Jacobian matrix of φ−1 ◦ψ
(which is a nonzero constant because φ−1 ◦ ψ is an automorphism), we obtain that

detJ(φ−1 ◦ ψ) =
∣∣∣∣
(φ−1 ◦ ψ(x))x (φ−1 ◦ ψ(y))x

(φ−1 ◦ ψ(x))y (φ−1 ◦ ψ(y))y

∣∣∣∣ =
∣∣∣∣
xx gx

xy gy

∣∣∣∣ =
∣∣∣∣
1 gx

0 gy

∣∣∣∣ = gy = α ∈ K∗.

Hence g(x, y) = αy + h(x) and φ−1 ◦ ψ is a triangular automorphism. In this way, every
automorphism is “almost” determined by the image of x. It is difficult to describe the
polynomials φ(x), where φ ∈ AutK[x, y] but we are able to describe their highest homoge-
neous components. (Compare with the description of the tame automorphisms of R[x, y]
in Section 3.)

Let us fix two positive relatively prime integers p and q and let us assume that the
degree of x is equal to p and the degree of y is equal to q. (We have seen such kind
of grading in invariant theory. For example, the algebra of symmetric polynomials in n
variables is generated by the elementary symmetric polynomials e1, . . . , en and we assume
that deg(ei) = i.) For example, if p = 2, q = 5, then

deg(x6y3) = 6.2 + 3.5 = deg(xy5) = 1.2 + 5.5 = deg(x11y) = 11.2 + 1.5 = 27,

deg(x4y2) = 4.2 + 2.5 = 18, deg(x10y) = 10.2 + 1.5 = 25,

and the homogeneous component of maximal degree (equal to 27) of

u(x, y) = 5x6y3 − xy5 + 2x11y + 6x4y2 − 3x10y

is u(x, y) = 5x6y3−xy5+2x11y. As in Section 3, we use u(x, y) to denote the homogeneous
component of maximal degree of u(x, y) with respect to our (p, q)-grading.

Lemma 4.3. (i) Let p, q be positive relatively prime integers and let u, v ∈ K[x, y]. If
(u)x(v)y − (u)y(v)x 6= 0, then

uxvy − uyvx = (u)x(v)y − (u)y(v)x.

(ii) If f(x, y) ∈ K[x, y] is a fixed polynomial and the derivation δ defined by δ(u) =
fxuy − fyux, u ∈ K[x, y], is locally nilpotent, then the derivation δ1 defined by

δ1(u) = (f)xuy − (f)yux, u ∈ K[x, y],

is also locally nilpotent.
Proof. (i) For two monomials xayb and xcyd, the determinant of the Jacobian matrix

is

Jac(xayb, xcyd) =
∣∣∣∣
(xayb)x (xcyd)x

(xayb)y (xcyd)y

∣∣∣∣ = (ad− bc)xa+c−1yb+d−1.
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Since uxvy−uyvx is a linear combination of Jacobian determinants of the monomials which
participate in the expressions of u and v, and

deg(p,q)(Jac(xayb, xcyd)) = deg(p,q)(x
a+c−1yb+d−1) = deg(p,q)(x

ayb)+deg(p,q)(x
cyd)−p−q,

we obtain that the (p, q)-degree of uxvy−uyvx is equal to deg(p,q)(u)+deg(p,q)(v)−p−q (if
(u)x(v)y − (u)y(v)x 6= 0), or less otherwise, and the homogeneous component uxvy − uyvx

of maximal degree of uxvy − uyvx is (u)x(v)y − (u)y(v)x if this expression is not equal to
0.

(ii) If δ is locally nilpotent, then δn(u) = 0 for some n. It is sufficient to prove
that δn

1 (x) = δm
1 (y) = 0 for some n,m. If u, v are (p, q)-homogeneous polynomials, then

uxvy−uyvx is also (p, q)-homogeneous (of degree with p+q smaller than the degree of uv).
Hence δk

1 (x) is homogeneous for all k and δk
1 (x) = δk(x) if δk

1 6= 0. In this way, δn
1 (x) = 0

(because δn(x) = 0). Similarly δm
1 (y) = 0 and δ1 is locally nilpotent.

Lemma 4.4. Let p, q be positive relatively prime integers and let the nonzero polyno-
mial f(x, y) ∈ K[x, y] be (p, q)-homogeneous. Then f has a decomposition of the form

f(x, y) = αxayb
k∏

i=1

(xq − βiy
p), α ∈ K∗, βi ∈ K, a, b, k ≥ 0.

Proof. We write f(x, y) in the form

f(x, y) = αxayb(xc0 + γ1x
c1yd1 + . . . + γpx

csyds + γs+1y
ds+1), γi ∈ K.

Since f is (p, q)-homogeneous, we have for all monomials

pc0 = pc1 + qd1 = . . . = pcs + qds = qds+1.

Since p and q are relatively prime, we obtain that p divides d1, . . . , ds, ds+1 and q divides
c0, c1, . . . , cs. If ci = qni, i = 0, 1, . . . , s, and di = pmi, i = 1, . . . , s, s + 1, then the degree
of the summands are respectively pqn0 = pq(n1 + m1) = . . . = pq(ns + ms) = pqms+1.
In other words, ni + mi = n0 = ms+1, i = 1, . . . , s, and f is a product of αxayb and an
expression of the form (xq)n + ρ1(xq)n−1(yp) + . . . + ρk−1(xq)(yp)k−1 + ρk(yp)k, ρi ∈ K.
Now, it is sufficient to use that the base field K is algebraically closed and to decompose
the polynomial tn + ρ1t

n−1 + . . . + ρk−1t + ρk as a product of linear factors.
Studying the tame automorphisms of R[x, y] in Section 3, we proved that for every

tame automorphism φ and up to the action of an affine automorphism, one of the homo-
geneous components of maximal degree φ(x) and φ(y) is a power of the other. In most of
the proofs of the theorem that all automorphisms of K[x, y] are tame, we have to prove
something similar for any automorphism of K[x, y].

Lemma 4.5. Let p, q be positive relatively prime integers and let φ be an automor-
phism of K[x, y]. Then the (p, q)-homogeneous component of maximal degree φ(x) of φ(x)
is of the form αxa, αyb or α(xq − βyp)k.

Proof. Let f(x, y) = φ(x). Then the derivation δ defined by δ(u) = fxuy − fyux,
u ∈ K[x, y], is locally nilpotent (because φ is an automorphism, see Section 3). Hence, the
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derivation δ1 defined by δ1(u) = (f)xuy − (f)yux, u ∈ K[x, y], is also locally nilpotent, be
Lemma 4.3. Additionally, δ1(f) = 0. Let us decompose f as in Lemma 4.4. If

f(x, y) = αxayb
k∏

i=1

(xq − βiy
p), α ∈ K∗, βi ∈ K, a, b, k ≥ 0,

then, f is in the kernel of δ1 and degδ1
(f) = 0. By Lemma 4.2, all factors also belong to

the kernel of δ1. If f has two different factors, then we obtain that both of them belong
to the kernel. Let, for example, δ1(xq − β1y

p) = δ1(xq − β2y
p) = 0 for β1 6= β2. Then

δ1(xq) = 0, δ1(yp) = 0 and again by Lemma 4.2, δ1(x) = δ1(y) = 0. Hence δ1 = 0, which is
impossible (because f = φ(x) is not a constant). In this way, f(x, y) has only one (maybe
multiple) factor.

Lemma 4.6. Let p, q be positive relatively prime integers and let φ be an automor-
phism of K[x, y]. If the (p, q)-homogeneous component of maximal degree φ(x) of φ(x) is
of the form α(xq − βyp)k with β 6= 0, then p = 1 or q = 1.

Proof. Let f(x, y) = φ(x) = (xq−βyp)k. (The assumption α = 1 is not essential for the
considerations.) By Lemma 4.3, the derivation δ1 defined by δ1(u) = ((xq − βyp)k)xuy −
((xq − βyp)k)yux, u ∈ K[x, y], is locally nilpotent. Let us define the derivation δ2 by
δ2(u) = (xq−βyp)xuy−(xq−βyp)yux, u ∈ K[x, y]. Then xq−βyp belongs to the kernel of
δ2 and δ1 = k(xq−βyp)k−1δ2. Then, as in Section 3, we see that δn

1 = (k(xq−βyp)k−1)nδn
2 .

Since δ1 is locally nilpotent, δ2 is also locally nilpotent. We check directly, than δ2(x) =
βpyp−1, δ2(y) = qxp−1. Let deg = degδ2

be the degree function related (as in Definition
4.1) to the locally nilpotent derivation δ2. Let d = deg(x), e = deg(y). Hence δd+1

2 (x) = 0
and δd

2(x) 6= 0. Hence δd
2(δ2(x)) = 0, δd−1

2 (δ2(x)) 6= 0 and deg(δ2(x)) = d − 1. Similarly
deg(δ2(e)) = e− 1. On the other hand, the degree of a product is equal to the sum of the
degrees of the factors. Hence the equalities δ2(x) = βpyp−1 and δ2(y) = qxp−1 imply that

d−1 = deg(δ2(x)) = (p−1)deg(y) = (p−1)e, e−1 = deg(δ2(y)) = (q−1)deg(x) = (q−1)d.

Hence −2 = (q − 2)d + (p − 2)e. Since p, q are positive integers, this is possible only if
p = 1 or q = 1.

Theorem 4.7. (Jung [J], van der Kulk [V] ) Every automorphism of K[x, y] is tame.
Proof. Let φ be an automorphism of K[x, y]. We apply induction on the product

degx(φ(x)) · degy(φ(x)), the degrees of φ(x) with respect to x and y. If this product is
equal to 0, then φ(x) depends only on x or only on y. In the first case φ(x) = αx + β, the
determinant of the Jacobian is an invertible element of K and is equal to

∣∣∣∣
(φ(x))x φ(y))x

(φ(x))y φ(y))y

∣∣∣∣ =
∣∣∣∣
α φ(y))x

0 φ(y))y

∣∣∣∣ = α(φ(y))y.

Hence (φ(y))y = γ ∈ K∗ and φ(y) = γy+h(x). In this way, φ is a triangular automorphism.
The case when φ(x) depends on y only is similar and φ is of the form φ(x) = αy + β,
φ(y) = γx + h(y). Then φ = θ ◦ ψ, where the triangular automorphism ψ and the linear
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automorphism θ are defined by ψ(x) = αx + β, ψ(y) = γy + h(x) and θ(x) = y, θ(y) = x.
In both the cases φ is tame. Now we assume that φ(x) essentially depends on both x and
y. Let degx(φ(x)) = a, degy(φ(x)) = b. We choose positive relatively prime integers p
and q such that pa = bq and introduce the (p, q)-grading of K[x, y]. Let the (p, q)-degree
of φ(x) be equal to c. Clearly, c ≥ pa because φ(x) contains a monomial αxaym for
some m ≥ 0. If c = pa, then the (p, q)-homogeneous component φ(x) of φ(x) contains a
summand αxa. Similarly it contains α1y

b and φ(x) essentially depends on both x and y. If
c > pa = qb, then any monomial ρxnyn of maximal degree satisfies pn+ qm = c > pa = qb
which (because n ≤ a, m ≤ b) is possible only for n,m ≥ 1. Again, φ(x) depends on
both x and y. By Lemma 4.5, φ(x) is of the form φ(x) = α(xq − βyp)k (and hence
c = pa = qb = kpq). By Lemma 4.6 we obtain that p = 1 or q = 1 and φ(x) = α(x−βyp)k

or φ(x) = α1(y − β1x
q)k, for some α, β, α1, β1 ∈ K∗. First, let φ(x) = α1(y − β1x

q)k. Let
us compose φ with the tame automorphism ψ defined by ψ(x) = x, ψ(y) = y + β1x

q. Pay
attention that the element ψ(y) = y + β1x

q is (p, q)-homogeneous of degree q (because
the degree of x is equal to p = 1 and the degree of y is equal to q) and this degree is
equal to the degree of y. Hence ψ sends a (p, q)-homogeneous polynomials to homogeneous
polynomials of the same degree. In this way, the homogeneous component of maximal
degree of ψ ◦φ(x) = ψ(φ(x)) is equal to the image under ψ of the homogeneous component
φ(x). Hence ψ ◦ φ(x) = ψ

(
φ(x)

)
= ψ(α1(y−β1x

q)k) = α1y
k. The (p, q)-degree of φ(x) is

kq = a = qb (p = 1) and degx(φ(x)) = a = kq, degy(φ(x)) = b = k. Since the (p, q)-degree
of ψ ◦ φ(x) is equal to the same a = kq, and the leading homogeneous component is α1y

k,
we obtain that degx(ψ ◦ φ(x)) < a, degy(ψ ◦ φ(x)) = b, and their product is smaller than
the corresponding product for φ(x). By inductive arguments, the automorphism ψ ◦ φ is
tame and, since ψ is also tame, we conclude that φ is tame.

Remark 4.8. The proof of Theorem 4.7 gives an algorithm how to decompose any
automorphism of K[x, y] as a product of triangular and affine automorphisms (see the
exercises for an example).
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Exercises

1. Given the automorphisms φi of K[x, y], where

φ1(x) = 2x + 3y, φ1(y) = x + 2y,

φ2(x) = x + 2y2, φ2(y) = y,

φ3(x) = x + 2y, φ3(y) = 2x + 5y,

φ4(x) = x + y3, φ4(y) = y,

φ5(x) = x + y, φ5(y) = 2x + 3y,

find the composition φ = φ5 ◦ φ4 ◦ φ3 ◦ φ2 ◦ φ1 and then decompose φ as a product of
triangular and affine automorphisms following the proof of the theorem of Jung-van der
Kulk.

Solution. By direct calculations one sees that

φ(x) = (46x+65y)+4(12x+17y)2 +8(2x+3y)3 +16(12x+17y)(2x+3y)3 +16(2x+3y)6,

φ(y) = (29x + 41y) + 2(12x + 17y)2 + 5(2x + 3y)3 + 8(12x + 17y)(2x + 3y)3 + 8(2x + 3y)6.

For the decomposition, we see that the homogeneous components of maximal degree of
φ(x) and φ(y) satisfy φ(x) = 2φ(y) and we consider ρ1 = φ ◦ ψ1, where

ψ1(x) = x− 2y, ψ1(y) = y,

and obtain
ρ1(x) = (−12x− 17y)− 2(2x + 3y)3,

ρ1(y) = (29x + 41y) + 2(12x + 17y)2 + 5(2x + 3y)3 + 8(12x + 17y)(2x + 3y)3 + 8(2x + 3y)6.

Again, ρ1(y) = 2(ρ1(x))2 and for

ψ2(x) = x, ψ2(y) = y − 2x2,

the composition ρ2 = ρ1 ◦ ψ2 satisfies

ρ2(x) = (−12x− 17y)− 2(2x + 3y)3,

ρ2(y) = (29x + 41y) + 5(2x + 3y)3.

Since ρ2(y) = (−5/2)ρ2(x), the next step is to calculate ρ3 = ρ2 ◦ ψ3, where ψ3(x) = x,
ψ3(y) = y + 5x/2. In order to work with integers only, we shall consider instead the above
ψ3

ψ3(x) = x, ψ3(y) = 2y + 5x,

and ρ3 = ρ2 ◦ ψ3, and obtain after calculations

ρ3(x) = (−12x− 17y)− 2(2x + 3y)3, ρ3(y) = −(2x + 3y).
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Finally, for ψ4(x) = x + 2y3, ψ4(y) = y and ρ4 = ρ3 ◦ ψ4 we obtain

ρ4(x) = −(12x + 17y), ρ4(y) = −(2x + 3y)

which is affine. Hence φ ◦ ψ1 ◦ ψ2 ◦ ψ3 ◦ ψ4 = ρ4 and

φ = ρ4 ◦ ψ−1
4 ◦ ψ−1

3 ◦ ψ−1
2 ◦ ψ−1

1 .

2. The same problem as in Exercise 1 for the product φ−1 ◦ ψ−1 ◦ τ ◦ σ, where

σ(x) = 2x + y + 1, σ(y) = x + y − 1,

τ(x) = x + 2y2, τ(y) = y,

ψ(x) = x + 2y + 1, ψ(y) = x + 3y + 2,

φ(x) = x + 1, φ(y) = y + x2.
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5. ALGORITHMS FOR AUTOMORPHISMS

OF POLYNOMIAL ALGEBRAS

In this section we assume that K is a fixed field of characteristic 0 and we are able
to perform calculations in K. For example, we may assume that K = Q. The proof
of the theorem of Jung-van der Kulk presented in Section 4 gives an effective algorithm
which decomposes any automorphism of K[x, y] as a product of triangular and affine
automorphisms. It is also clear that if we apply the algorithm to any endomorphism of
K[x, y], we either will obtain that the endomorphism is an automorphism and will obtain
its decomposition, or, we will be not able to perform some step of the algorithm and this
will mean that the endomorphism is not an automorphism.

We shall give two more algorithms. The first one works in a very general situation
(even for noncommutative algebras). It decides whether an endomorphism of the polyno-
mial algebra K[X] is an automorphism and, if this is the case, finds the inverse.

The second algorithm decides whether a polynomial p(x, y) in K[x, y] is an image of x
under some automorphism of K[x, y]. The careful study of the proof allows also to deduce
an algorithm which finds a concrete φ ∈ AutK[x, y] such that p(x, y) = φ(x).

The theoretical result involved in the first algorithm has several proofs, see van den
Essen [E1] and Shannon and Sweedler [SS] for fields, Abhyankar and Li [AL] for arbitrary
commutative rings R and Drensky, Gutierrez and Yu [DGY] in the general noncommutative
setup.

Lemma 5.1. Let X = {x1, . . . , xn}, Y = {y1, . . . , yn} and let φ : K[X] → K[Y ] be
a homomorphism such that φ(xi) = fi(Y ) = fi(y1, . . . , yn), i = 1, . . . , n. Extend φ to a
homomorphism φ0 : K[X, Y ] → K[Y ] by φ0(xi) = φ(xi), φ0(yi) = yi, i = 1, . . . , n. Then
the kernel of φ0 is the ideal U of K[X, Y ]

Ker(φ0) = U = (xi − fi(Y ) | i = 1, . . . , n)

generated by all xi − fi(Y ) and Ker(φ0) ∩K[Y ] = (0).
Proof. Obviously φ0(xi−fi(Y )) = φ(xi)−fi(Y ) = fi(Y )−fi(Y ) = 0 and xi−fi(Y ) ∈

Ker(φ0). Hence the ideal U generated by all xi − fi(Y ) is contained in Ker(φ0). Consider
ti = xi − fi(Y ), i = 1, . . . , n, and define an endomorphism ρ : K[X, Y ] → K[X, Y ] by
ρ(xi) = ti, ρ(yi) = yi, i = 1, . . . , n. Obviously, ρ is a triangular automorphism of K[X, Y ],
hence we may replace the algebra K[X,Y ] with K[T, Y ], where T = {t1, . . . , tn}. Clearly,
φ0(ti) = φ0(xi − fi(Y )) = 0, φ0(yi) = yi and φ0 is the homomorphism K[T, Y ] → K[Y ]
which sends T to 0 and acts as the identity mapping on K[Y ]. Hence the kernel of φ0 is
the ideal of K[T, Y ] generated by T and

Ker(φ0) = (ti | i = 1, . . . , n) = (xi − fi(Y ) | i = 1, . . . , n)

and Ker(φ0) ∩K[Y ] = (0).

Proposition 5.2. Let X = {x1, . . . , xn}, Y = {y1, . . . , yn} and let φ : K[X] → K[Y ],
ψ : K[Y ] → K[X] be homomorphisms such that

φ(xi) = fi(Y ) = fi(y1, . . . , yn), ψ(yi) = gi(X) = gi(x1, . . . , xn),
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i = 1, . . . , n. Extend φ, ψ to homomorphisms φ0 : K[X, Y ] → K[Y ], ψ0 : K[X,Y ] → K[X]
by φ0(xi) = φ(xi) = fi(Y ), φ0(yi) = yi, ψ0(xi) = xi, ψ0(yi) = ψ(yi) = gi(X), i = 1, . . . , n.
Let the ideals U and V of K[X,Y ] be defined as

U = (xi − fi(Y ) | i = 1, . . . , n), V = (yi − gi(X) | i = 1, . . . , n).

Then φ and ψ are isomorphisms and ψ = φ−1 if and only if the ideals U and V coincide.
Proof. (i) Let φ, ψ be isomorphisms and ψ = φ−1. Hence

yi = φ(ψ(yi)) = φ(gi(x1, . . . , xn)) = gi(φ(x1), . . . , φ(xn)) = gi(f1(Y ), . . . , fn(Y )),

i = 1, . . . , n. Working modulo the ideal U of K[X,Y ], we have xi ≡ fi(Y ). Therefore

yi = gi(f1(Y ), . . . , fn(Y )) ≡ gi(x1, . . . , xn) ≡ gi(X) (mod U),

and yi−gi(X) ∈ U for all i = 1, . . . , n. Since the polynomials yi−gi(X) generate the ideal
V , we obtain that V ⊆ U . Similarly, using that xi = ψ(φ(xi)), we derive that U ⊆ V and
U = V .

(ii) Let U = V . Then the factor algebras K[X, Y ]/U and K[X, Y ]/V coincide and
xi ≡ fi(Y ), yi ≡ gi(X) modulo the ideal U = V . Hence

yi ≡ gi(x1, . . . , xn) ≡ gi(f1(Y ), . . . , fn(Y )) ≡ φ ◦ ψ(yi) (mod U)

and φ ◦ ψ is the identity mapping on K[Y ] modulo the ideal U . Similarly, ψ ◦ φ is the
identity mapping on K[X] modulo the ideal V and for every p(X) ∈ K[X] we have
ψ ◦ φ(p(X)) ≡ p(X) (mod V ). The polynomial ψ ◦ φ(xi) belongs to K[X] and is equal to
xi modulo the ideal V . Hence ψ ◦φ(xi)−xi ∈ V ∩K[X] and this intersection is equal to 0
by Lemma 5.1. Hence xi = ψ ◦φ(xi), i = 1, . . . , n. Similarly, we obtain that yi = φ◦ψ(yi),
i = 1, . . . , n, and the mappings φ and ψ are inverse to each other. Hence φ and ψ are
isomorphisms and ψ = φ−1.

Theorem 5.3. Let X = {x1, . . . , xn} and let θ : K[X] → K[X] be an endomorphism
of K[X] defined by θ(xi) = fi(X), i = 1, . . . , n. Then θ is an automorphism if and only if
there exist polynomials gi(X), i = 1, . . . , n, such that the ideals

U = (xi − fi(Y ) | i = 1, . . . , n), V = (yi − gi(X) | i = 1, . . . , n)

of K[X,Y ] coincide. Then the inverse automorphism ρ = θ−1 is defined by ρ(xi) = gi(X),
i = 1, . . . , n.

Proof. The condition that θ is an automorphism is equivalent to the fact that the ho-
momorphism φ : K[X] → K[Y ] defined by φ(xi) = fi(Y ), i = 1, . . . , n, is an isomorphism.
Then the proof of the theorem follows immediately from Proposition 5.2.

Remark 5.4. By Theorem 5.3, if θ is an endomorphism of K[X], and φ(xi) = fi(X),
the problem to decide whether θ is an automorphism and, if “yes”, to find its inverse, is
reduced to the problem to decide whether the ideal U of K[X,Y ] generated by xi− fi(Y ),
i = 1, . . . , n, has a system of generators of the form yi− gi(X), i = 1, . . . , n. In the case of
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polynomial algebras this problem can be solved effectively using Gröbner bases. For details
we refer to some book on Gröbner bases, e.g. by Adams and Loustaunau [ALo] or Becker
and Weispfenning [BW]. The idea is the following. First, let us consider the variables X
larger than Y in the lexicographic ordering of X ∪ Y . Then the leading monomial of the
polynomial xi − fi(Y ) is equal to xi and the generators xi − fi(Y ) of the ideal U form a
Gröbner basis of U . Now, let us assume that the variables Y are higher than X in the
lexicographic ordering of X ∪Y . Hence xi is not more the leading monomial of xi− fi(Y ).
If we calculate the Gröbner basis of U with respect to this new ordering, we shall obtain
some new system of generators of U where the monomials containing y’s are higher than
those containing only x’s. The monomial yi is the smallest monomial (in the lexicographic
ordering) which contains yi. Hence, if θ is an automorphism, we shall obtain that some
polynomials yi − gi(X) belong to the new Gröbner basis. If θ is not an automorphism,
then for some i there will be no polynomial of the form yi − gi(X) in U and, of course,
there will be no such polynomial in the Gröbner basis.

The second algorithm in our course is due to Shpilrain and Yu [SY] for polynomial
algebras K[x, y]. It has a version which works for tame automorphisms of (K[z])[x, y], see
Drensky and Yu [DY2]. We follow the exposition of [DY2].

Lemma 5.5. Let d : K[x, y] → Z2 be the degree function on K[x, y] induced by the
lexicographic ordering x > y, i.e. d(f(x, y)) = (a, b) if the leading term of f 6= 0 is αxayb,
α ∈ K∗. Let a1, . . . , ak be matrices in GL2(K) which do not belong to the lower triangular
group and let

ci = (e11 + e22) + fie21 =
(

1 0
fi 1

)
, i = 1, . . . , k,

where f1, . . . , fk are polynomials of positive degree. Then the column-matrices
(

u0

v0

)
=

(
0
1

)
,

(
ui

vi

)
= ciai

(
ui−1

vi−1

)
, i = 1, . . . , k,

satisfy the equation
d(vi) = d(ui) + d(fi).

Proof. We apply induction on k. Let

ai =
(

α1i β1i

α2i β2i

)
, β1i 6= 0, ci =

(
1 0
fi 1

)
.

Concrete calculation shows that
(

u1

v1

)
=

(
1 0
fi 1

)(
α11 β11

α21 β21

)(
0
1

)
=

(
β11

β11f1 + β21

)
.

Since β11 6= 0, we obtain that d(u1) = d(β1) = (0, 0), d(v1) = d(f1), and d(v1) = d(u1) +
d(f1). We calculate

(
uk

vk

)
=

(
1 0
fk 1

)(
α1k β1k

α2k β2k

)(
uk−1

vk−1

)
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=
(

α1kuk−1 + β1kvk−1

fk(α1kuk−1 + β1kvk−1) + (α2kuk−1 + β2kvk−1)

)
.

By induction, d(vk−1) = d(uk−1) + d(fk−1) > d(uk−1) and, since β1k 6= 0,

d(uk) = d(α1kuk−1 + β1kvk−1) = d(vk−1),

d(vk) = d(vk−1) + d(fk) = d(uk) + d(fk),

completing the inductive arguments.

Recall that the Euclidean algorithm for two polynomials u(t) and v(t) calculates the
greatest common divisor of u(t) and v(t) and works as follows: Let, for example deg(u) ≤
deg(v). We divide v(t) = u(t)q(t) + r(t), where either deg(r) < deg(u) or r(t) = 0. If
r(t) = 0, then the greatest common divisor of u(t) and v(t) is equal to u(t). If r(t) 6= 0,
then we replace v(t) with r(t) and perform the same calculations with u(t) and r(t). We
can write this in a matrix form as

(
u(t)
r(t)

)
=

(
1 0

−q(t) 1

)(
u(t)
v(t)

)
.

The case deg(u) > deg(v) is similar. If u(t) = v(t)q(t) + r(t), we write this in matrix form
as (

r(t)
v(t)

)
=

(
1 −q(t)
0 1

)(
u(t)
v(t)

)
=

(
0 1
1 0

)(
1 −q(t)
0 1

)(
0 1
1 0

)(
u(t)
v(t)

)
.

In the case of polynomials in one variable over a field the Euclidean algorithm always gives
the greatest common divisor. In the case of more variables it does not always work. We say
that the greatest common divisor of two polynomials u(x, y) and v(x, y) can be obtained by
the Euclidean algorithm if the leading monomial of one of the polynomials is divisible by
the leading monomial of the other, we can perform the first step of the Euclidean algorithm
and we can perform the further calculations until we obtain the greatest common divisor
of u(x, y) and v(x, y).

Theorem 5.6. (Shpilrain and Yu [SY]) Let p(x, y) ∈ K[x, y]. The following state-
ments for p(x, y) are equivalent:

(i) The polynomial p(x, y) is a coordinate (i.e. an image of x under some automor-
phism of K[x, y]);

(ii) Applying the Euclidean algorithm to the partial derivatives px and py, the result
is equal to 1 (or to a nonzero constant in K).

Proof. We shall prove only the part which states that if the Euclidean algorithm
applied to the partial derivatives px and py, gives a nonzero constant, then p(x, y) is a
coordinate. The proof of the other part uses: (i) the chain rule for the Jacobian matrices
of a product of automorphisms; (ii) the theorem that every automorphism of K[x, y] is
tame and there is an algorithm which in each step composes the automorphism with an
affine or with a triangular automorphism of the form τ(x) = x + h(y), τ(y) = y and the
degrees of the images of x and y decrease; (iii) the fact that the Jacobian matrix of an affine
automorphism is in GL2(K) and of a triangular automorphism of the form τ(x) = x+h(y),
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τ(y) = y is a triangular matrix of the form c = (e11 + e22) + h′(y)e21. Now, let us assume
that the application of the Euclidean algorithm to px and py gives a nonzero constant. In
a matrix form this means that

(
0
1

)
= bδ

1d1b2d2 . . . bkdkbε
k+1

(
px

py

)
,

where the matrices bi are linear, di = di(x, y) = (e11 + e22) + fi(x, y)e21, δ, ε = 0, 1. As
in the description of the tame automorphisms in Section 3, we may assume that bi does
not belong to the lower triangular group and degfi > 1 for i = 1, . . . , k. (The case when

the column of the matrix is
(

1
0

)
is similar.) We denote g(x, y) = bδ

1d1b2d2 . . . bkdk, and

assume that ε = 1, i.e. (
0
1

)
= g(x, y)

(
α1 β1

α2 β2

)(
px

py

)
,

In this equation we replace x := α1x + α2y, y := β1x + β2y and obtain
(

0
1

)
= g(α1x + α2y, β1x + β2y)

(
α1 β1

α2 β2

) (
px(α1x + α2y, β1x + β2y)
py(α1x + α2y, β1x + β2y)

)
,

where g1(x, y) = g(α1x + α2y, β1x + β2y) is a product of bidi(α1x + α2y, β1x + β2y), i.e.
of the same form as g(x, y). Let q(x, y) = p(α1x + α2y, β1x + β2y). Then

qx = α1px(α1x + α2y, β1x + β2y) + α2py(α1x + α2y, β1x + β2y),

qy = β1px(α1x + α2y, β1x + β2y) + β2py(α1x + α2y, β1x + β2y),

and in a matrix form
(

qx

qy

)
=

(
α1 β1

α2 β2

)(
px(α1x + α2y, β1x + β2y)
py(α1x + α2y, β1x + β2y)

)
.

Hence (
0
1

)
= g1(x, y)

(
qx

qy

)

and we may assume that g(x, y) = bδ
1d1(x, y)b2d2(x, y) . . . bkdk(x, y) and

(
0
1

)
= g(x, y)

(
px

py

)
,

where the last factor of g(x, y) is dk(x, y) (and not bk+1). In this way,
(

px

py

)
= g−1(x, y)

(
0
1

)
=

= (bδ
1d1(x, y)b2d2(x, y) . . . bkdk(x, y))−1

(
0
1

)
= ckak . . . c1a

δ
1

(
0
1

)
,
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where ai = b−1
i , ci = d−1

i . By Lemma 5.5, we obtain that the degrees of px, py and fk(x, y)
satisfy d(py) = d(px) + d(fk). First, let fk(x, y) depend on x. Hence d(fk) = (a, b) and
a ≥ 1. Let d(px) = (c, d). Then d(py) = (a+c, b+d) and py contains as a leading monomial
αxa+cyb+d. Hence the leading monomial of pyx = (py)x is α(a+c)xa+c−1yb+d (here we use
that a ≥ 1) and d(pyx) = (a + c− 1, b + d). On the other hand, let the leading monomial
of px be βxcyd. If it depends on y, then the leading monomial of pxy = (px)y is βdxcyd−1

and d(pxy) = (c, d− 1). Since pxy = pyx, we obtain that (a + c− 1, b + d) = (c, d− 1) and
for the second coordinate this is impossible, because all a, b, c, d are nonnegative integers.
If the leading monomial of px does not depend on y, then the monomials of px containing
y are below than βxc in the lexicographic ordering, i.e. the leading monomial of (px)y is
γxeyr for some e ≤ c−1 and d(pxy) ≤ (c−1, r). We obtain that (a+c−1, b+d) ≤ (c−1, r)
and for the first coordinate this is impossible, because a ≥ 1. The conclusion is that the
polynomial fk does not depend on x and fk = fk(y). We have obtained that

dk(x, y) =
(

1 0
fk(y) 1

)
,

(
0
1

)
= bδ

1d1b2d2 . . . bk

(
1 0

fk(y) 1

)(
px

py

)
.

In this equation we replace x by x + g(y) where g′(y) = fk(y) (i.e. g(y) is an integral of
fk(y)). It is easy to see, that

(
1 0

fk(y) 1

)(
px(x + g(y), y)
py(x + g(y), y)

)
=

(
(p(x + g(y), y))x

(p(x + g(y), y))y

)
=

(
qx

qy

)
,

where q(x, y) = p(x + g(y), y) and we obtain some shorter expression. The first change of
the coordinates

x := α1x + α2y, y := β1x + β2y

corresponds to a linear automorphism. The second one

x := x + g(y), y := y

to a triangular automorphisms. Hence we have replaced the generators x, y of K[x, y] with
another system of generators. The shorter expression above means a smaller number of
steps of application of the Euclidean algorithm. By inductive arguments, we obtain that qx

and qy are the derivatives of the image q(x, y) of x under the action of some automorphism
of K[x, y].

Remark 5.7. The above theorem gives an algorithm to recognize the coordinate
polynomials in K[x, y]. The same algorithm allows to find whether p(x, y) is an image of
x under a tame automorphism of R[x, y] for some commutative algebras R (see [DY2] for
the case R = K[z]). In this form the algorithm does not allow to decide whether f(x, y) ∈
R[x, y] is an image of x under the action of a nontame automorphism. Nevertheless, if
the algebra R is good enough (see again [DY2] for R = K[z]) one can solve this problem
in the following way. The polynomial p(x, y) ∈ (K[z])[x, y] is an image of x under some
automorphism of (K[z])[x, y] if it is a coordinate polynomial for (K(z))[x, y] and the partial
derivatives px, py generate K[x, y, z] as an ideal.
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Exercises

1. Using the method of Theorem 5.3, find the inverse (i) of the Nagata automorphism
of K[x, y, z] and (ii) of the automorphism θ of K[x, y] defined by

θ(x) = (46x+65y)+4(12x+17y)2 +8(2x+3y)3 +16(12x+17y)(2x+3y)3 +16(2x+3y)6,

θ(y) = (29x + 41y) + 2(12x + 17y)2 + 5(2x + 3y)3 + 8(12x + 17y)(2x + 3y)3 + 8(2x + 3y)6.

Solution. (i) We assume that x1 = x, x2 = y, x3 = z, y1 = t, y2 = u, y3 = v and form
the ideal U of K[x, y, z, t, u, v] generated by

p1 = x− (t− 2(u2 + tv)u− (u2 + tv)2v), p2 = y − (u + (u2 + tv)v), p3 = z − v.

We assume that the variables are ordered t > u > v > x > y > z and try to minimize the
leading monomials of p1, p2, p3, replacing one system of generators of U with another and
maybe adding new generators. We mimique the algorithm for calculating of the Gröbner
basis of an ideal.

Step 0. We replace p3 := −p3 and obtain p3 = v − z.
Step 1. In p1 and p2 we replace v with v + p3 = z − (v− z) = z. In this way, the new

p1, p2, p3 still generate U :

p1 := x− t + 2(u2 + tz)u + (u2 + tz)2z, p2 = y − u− (u2 + tz)z, p3 = v − z.

Step 2. We replace p1 := p1+(u2+tz)p2 in order to annihilate the summand (u2+tz)2z:

p1 := x− t + (u2 + tz)y + (u2 + tz)u, p2 = y − u− (u2 + tz)z, p3 = v − z.

Step 3. We add a new relation p4 := p1z + p2u because (following the theory of
Gröbner bases) the leading summands tuz of p1 and −tz2 of p2 have a common factor tz:

p1 := x− t + (u2 + tz)y + (u2 + tz)u, p2 = y − u− (u2 + tz)z, p3 = v − z,

p4 := p1z + p2u = xz + yu− (u2 + tz) + (u2 + tz)yz.

Step 4. We replace p4 := p4 + p2y in order to minimize the leading monomial of p4:

p4 := (xz + y2)− (u2 + tz).

Step 5. We minimize the leading monomials of p1, p2:

p1 := p1 + p4u = x− t + (u2 + tz)y + (y2 + xz)u,

p1 := p1 + p4y = x− t + (y2 + xz)y + (y2 + xz)u,

p2 := p2 − p4z = y − u− (y2 + xz)z.
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The result is

p1 = x− t + 2(y2 + xz)y + (y2 + xz)u, p2 = y − u− (y2 + xz)z,

p3 = v − z, p4 = (xz + y2)− (u2 + tz).

Pay attention that −p2 and p3 are already in the desired form yi − gi(X), as prescribed
by Theorem 5.3.

Step 6. p1 := p1 + p2(y2 + xz) = x + 2(y2 + xz)y − (y2 + xz)2z − t and −p1 is also of
the form we need.

Step 7. p1 := −p1, p2 := −p2:

p1 = t− (x + 2(y2 + xz)y − (y2 + xz)u), p2 = u− (y − (y2 + xz)z),

p3 = v − z, p4 = (xz + y2)− (u2 + tz).

Step 8. We try to annihilate p4 and replace it by p4 := p4 + p2
2 + p1z. After some

calculations we obtain that

p4 = 2(y − (y2 + xz)z)(−u + (y − (y2 + xz)z)) = −2(y − (y2 + xz)z)p2.

Since p4 is a multiple of p2, we may remove it from the system. The ideal U is generated
by

p1 = t− (x + 2(y2 + xz)y − (y2 + xz)u), p2 = u− (y − (y2 + xz)z), p3 = v − z,

which means that the inverse of the Nagata automorphism is defined by

x → x + 2(y2 + xz)y − (y2 + xz)u, y → y − (y2 + xz)z, z → z.

2. Prove that the following polynomial of K[x, y] is an image of x under some auto-
morphism:

p(x, y) = (46x+65y)+4(12x+17y)2+8(2x+3y)3+16(12x+17y)(2x+3y)3+16(2x+3y)6.

Solution. We calculate px and py and obtain

px = 46 + 96(12x + 17y) + 48(2x + 3y)2 + 192(2x + 3y)3

+96(12x + 17y)(2x + 3y)2 + 192(2x + 3y)5,

py = 65 + 136(12x + 17y) + 72(2x + 3y)2 + 272(2x + 3y)3

+144(12x + 17y)(2x + 3y)2 + 288(2x + 3y)5.

Applying the Euclidean algorithm, we obtain (the factor 2 is for convenience)

r = 2(3px/2− py) = 8(1 + 2(12x + 17y) + 4(2x + 3y)3),
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and, replacing r with r/8, we obtain r = 1 + 2(12x + 17y) + 4(2x + 3y)3. The next steps
are

s = px − 48(2x + 3y)2r = 46 + 96(12x + 17y) + 192(2x + 3y)3,

t = s− 48r = −2.

Hence we obtained that px and py are relatively prime by the Euclidean algorithm. Hence
p(x, y) is the image of x under some automorphism of K[x, y].

3. Show that p1(x, y) = x− 2(y2 + zx)y − (y2 + zx)2z and p2(x, y) = y + (y2 + zx)z
are not images of x under a tame automorphism of (K[z])[x, y].

Solution. Let p = p1. Then

px = 1− 2zy − 2(y2 + zx)z, py = −2(y2 + zx)− 4y2 − 4zy(y2 + zx),

px = −2z2y2 + . . . , py = −4zy3 + . . .

and we cannot apply the Euclidean algorithm considering these polynomials as polynomials
in x and y with coefficients which are polynomials in z. For the second polynomial p = p2,
we have

px = z2, py = 1 + 2yz

and again we cannot apply the Euclidean algorithm.
On the other hand, the ideal of (K[z])[x, y] generated by px = z2 and py = 1 + 2yz

contains pyz− 2ypx = z, py− 2yz = 1 and coincides with (K[z])[x, y]. Working over K(z),
we obtain that px = z2 is invertible in K(z) and generates the whole (K(z))[x, y] as an
ideal. By the theorem mentioned in Remark 5.7, we obtain that p is an image of some
(wild) automorphism of (K[z])[x, y]. This gives one more proof of the theorem of Nagata,
that his automorphism is wild for (K[z])[x, y].
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Bases, J. Pure and Appl. Algebra 61 (1989), 211-222.

[ALo] W.W. Adams, P. Loustaunau, An Introduction to Gröbner Bases, Graduate Studies
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TOPICS IN ALGEBRA

FINAL EXAMINATION

(K is a field of characteristic 0):
I. Theoretical Question: Choose one of the following:
(i) 1. Prove the Hilbert Basis Theorem: If R is a noetheiran (commutative)

algebra, then the algebra of polynomials R[x] is also noetherian.
(ii) 1. Prove the Molien Formula: If G is a finite subgroup of GLn(K), then the

Hilbert series of the algebra of invariants S = RG = K[x1, . . . , xn]G has the form

H(RG, t) =
1
|G|

∑

g∈G

1
det(1− gt)

,

where det(1− gt) is the determinant of the matrix 1− gt.
(iii) 1. Prove the Theorem of Martha Smith: Let δ be a triangular derivation

of K[x1, . . . , xn] and let w ∈ Ker(δ). Then the automorphism exp(wδ) is stably tame and
becomes tame extended to K[x1, . . . , xn+1] by exp(wδ) : xn+1 → xn+1.

II. Problems: Choose one or two of the following:
1. Calculate the Hilbert series of R = K[x, y]/(x2 − y2);
2. Find the generators of the algebra of invariants K[x, y]G of the group G generated

by g and h, where
g(x) = −x, g(y) = y, h(x) = x, h(y) = −y.

3. Find the generators of the algebra of invariants K[x, y, z]G of the cyclic group G
of order 3 acting on K[x, y, z] and generated by

g =
(

x y z
y z x

)
.

4. Show that the the following derivation of K[u, v, x, y, z] is locally nilpotent and the
polynomials w1, w2 belong to its kernel:

δ = 2u(vy−uz)
∂

∂x
−2v(vy−uz)

∂

∂y
+(v2x−u2y)

∂

∂z
, w1 = xy−z2, w2 = v2x+u2y−2uvz.

5. Find the product φ−1 ◦ ψ−1 ◦ τ ◦ σ, where φ, ψ, σ, τ ∈ AutK[x, y] are defined by

σ(x) = 2x + y + 1, σ(y) = x + y − 1,

τ(x) = x + 2y2, τ(y) = y,

ψ(x) = x + 2y + 1, ψ(y) = x + 3y + 2,

φ(x) = x + 1, φ(y) = y + x2,

and, by definition, α ◦ β(u) = α(β(u)), for any mappings α, β.
Suggested combinations: I (i) and II 2, 4; I (ii) and II 1, 5; I (iiii) and II 3.
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