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Abstract

We consider only simple graphs. The graph G1 + G2 consists of vertex
disjoint copies of G1 and G2 and all possible edges between the vertices of G1

and G2. The chromatic number of the graph G will be denoted by χ(G) and
the clique number of G by cl(G). The graphs G for which χ(G) − cl(G) ≥ 3
are considered. For these graphs the inequality |V (G)| ≥ χ(G) + 6 was proved
in [12], where V (G) is the vertex set of G. In this paper we prove that equality
|V (G)| = χ(G) + 6 can be achieved only for the graphs Kχ(G)−7 +Q, χ(G) ≥ 7
and Kχ(G)−9 + C5 + C5 + C5, χ(G) ≥ 9, where graph Q is given in Fig. 1 and
Kn and C5 are complete graphs on n vertices and simple 5-cycle, respectively.
With the help of this result we prove the new facts for some edge Folkman
numbers (Theorem 4.2).
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1. Introduction. We consider only finite, non-oriented graphs without loops
and multiple edges. We call a p-clique of the graph G a set of p vertices each
two of which are adjacent. The largest positive integer p such that G contains a
p-clique is denoted by cl(G) (clique number of G). We shall use also the following
notations:

• V (G) is the vertex set of G;

• E(G) is the edge set of G;
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• G is the complement of G;

• G− V , V ⊆ V (G) is the subgraph of G induced by V (G) \ V ;

• α(G) is the vertex independence number of G;

• χ(G) is the chromatic number of G;

• f(G) = χ(G)− cl(G);

• Kn is the complete graph on n vertices;

• Cn is the simple cycle on n vertices;

• NG(v) is the set of neighbours of a vertex v in G.

Let G1 and G2 be two graphs. We denote by G1 +G2 the graph G for which
V (G) = V (G1) ∪ V (G2), E(G) = E(G1) ∪ E(G2) ∪ E′, where E′ = {[x, y], x ∈
V (G1), y ∈ V (G2)}.

We will use the following theorem by Dirac [2]:
Theorem 1.1. Let G be a graph such that f(G) ≥ 1. Then |V (G)| ≥ χ(G)+2

and |V (G)| = χ(G) + 2 only when G = Kχ(G)−3 + C5.

If f(G) ≥ 2, then we have [12] (see also [16]).
Theorem 1.2. Let f(G) ≥ 2. Then

(a) |V (G)| ≥ χ(G) + 4;

(b) |V (G)| = χ(G) + 4 only when χ(G) ≥ 6 and G = Kχ(G)−6 + C5 + C5.

In the case χ(G) = 4 and χ(G) = 5 we have the following better inequalities:

if f(G) ≥ 2 and χ(G) = 4 then |V (G)| ≥ 11, [1];(1.1)

if f(G) ≥ 2 and χ(G) = 5 then |V (G)| ≥ 11, [13] (see also [14]).(1.2)

For the case f(G) ≥ 3 it was known that [12] (see also [17,18])
Theorem 1.3. Let G be a graph such that f(G) ≥ 3. Then |V (G)| ≥

χ(G) + 6.

In this paper we consider the case |V (G)| = χ(G)+6. We prove the following
main theorem.

Theorem 1.4. Let G be a graph such that f(G) ≥ 3 and |V (G)| = χ(G)+6.
Then χ(G) ≥ 7 and G = Kχ(G)−7 +Q or χ(G) ≥ 9 and G = Kχ(G)−9 +C5 +C5 +

C5, where Q is the graph, whose complementary graph Q is given in Fig. 1.

Obviously, if f(G) ≥ 3 then χ(G) ≥ 5. Therefore we will consider only the
cases χ(G) ≥ 5. If χ(G) = 5 or χ(G) = 6 then by Theorem 1.3 and Theorem 1.4
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Fig. 1. Graph Q

we see that |V (G)| ≥ χ(G) + 7. In these two cases we can state the following
stronger results:

if f(G) ≥ 3 and χ(G) = 5 then |V (G)| ≥ 22, [6];(1.3)

if f(G) ≥ 3 and χ(G) = 6 then |V (G)| ≥ 16, [9].(1.4)

The inequalities (1.3) and (1.4) are exact. Lathrop and Radziszowski [9]
proved that there are only two 16-vertex graphs for which (1.4) holds.

At the end of this paper we obtain by Theorem 1.4 new results about some
edge-Folkman numbers (Theorem 4.2).

2. Auxiliary results. A graph G is defined to be vertex-critical chromatic if
χ(G−v) < χ(G) for all v ∈ V (G). We shall use the following results of Gallai [4]
(see also [5]).

Theorem 2.1. Let G be a vertex-critical chromatic graph and χ(G) ≥ 2. If
|V (G)| < 2χ(G)− 1 then G = G1 +G2, where V (Gi) 6= ∅, i = 1, 2.

Theorem 2.2. Let G be a vertex-critical k-chromatic graph, |V (G)| = n and

k ≥ 3. Then there exist ≥
⌈

3

2

(
5

3
k − n

)⌉
vertices with the property that each of

them is adjacent to all the other n− 1 vertices.
Remark 2.1. The formulations of Theorem 2.1 and Theorem 2.2 given above

are obviously equivalent to the original ones in [4] (see Remark 1 and Remark 2
in [16]).

Proposition 2.1. Let G be a graph such that f(G) ≥ 3 and |V (G)| =
χ(G) + 6. Then G is a vertex-critical chromatic graph.

Proof. Assume the opposite. Then χ(G − v) = χ(G) for some v ∈ V (G).
Let G′ = G−v. Since cl(G′) ≤ cl(G) we have f(G′) ≥ f(G) ≥ 3. By Theorem 1.3

|V (G′)| ≥ χ(G′) + 6 = χ(G) + 6 = |V (G)|,

which is a contradiction.
The following result by Kerry [7] will be used later.
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Theorem 2.3. Let G be a 13-vertex graph such that α(G) ≤ 2 and cl(G) ≤ 4.
Then G is isomorphic to the graph Q, whose complementary graph Q is given in
Fig. 1.

Definition 2.1. The graph G is called a Sperner graph if NG(u) ⊆ NG(v)
for some u, v ∈ V (G).

Obviously if NG(u) ⊆ NG(v) then χ(G− u) = χ(G). Thus we have
Proposition 2.2. Every vertex-critical chromatic graph is not a Sperner

graph.

The following lemmas are used in the proof of Theorem 1.4.
Lemma 2.1. Let G be a graph and f(G) ≥ 2. Then

(a) |V (G)| ≥ 10;

(b) |V (G)| = 10 only when G = C5 + C5.

Proof. The inequality (a) follows from (1.1), (1.2) and Theorem 1.2(a). Let
|V (G)| = 10. Then by (1.1), (1.2) and Theorem 1.2(a) we see that χ(G) = 6.
From Theorem 1.2(b) we obtain G = C5 + C5.

Lemma 2.2. Let G be a graph such that f(G) ≥ 3 and G is not a Sperner
graph. Then

|V (G)| ≥ 11 + α(G).

Proof. Assume the opposite, i.e.

(2.1) |V (G)| ≤ 10 + α(G).

Let A ⊆ V (G) be an independent set of vertices of G such that |A| = α(G).
Consider the subgraph G′ = G− A. From (2.1) we see that |V (G′)| ≤ 10. Since
A is independent from f(G) ≥ 3 it follows f(G′) ≥ 2. According to Lemma 2.1(b),

G′ = C
(1)
5 + C

(1)
5 , where C

(i)
5 , i = 1, 2, are 5-cycles. Hence χ(G′) = 6, χ(G) ≤

7 and cl(G) ≤ 4. Thus if a ∈ A, then NG(a) ∩ V (C
(1)
5 ) or NG(a) ∩ V (C

(2)
5 )

is an independent set. Let NG(a) ∩ V (C
(1)
5 ) be independent set and C

(1)
5 =

v1v2v3v4v5v1. Then we may assume that NG(a) ∩ V (C
(1)
5 ) ⊆ {v1, v3}. We obtain

that NG(a) ⊆ NG(v2) which contradicts the assumption of Lemma 2.2.
Lemma 2.3. Let G be a graph such that f(G) ≥ 3 and |V (G)| = χ(G) + 6.

Then χ(G) ≥ 7 and:

(a) G = Q if χ(G) = 7;

(b) G = K1 +Q if χ(G) = 8;

(c) G = K2 +Q or G = C5 + C5 + C5 if χ(G) = 9.
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Proof. Since χ(G) 6= cl(G) we have cl(G) ≥ 2. Thus, from f(G) ≥ 3 it
follows χ(G) ≥ 5. By (1.3) and (1.4) we see that χ(G) 6= 5 and χ(G) 6= 6. Hence,
χ(G) ≥ 7.

Case 1. χ(G) = 7. In this case |V (G)| = 13. From χ(G) = 7 and f(G) ≥ 3
we see that cl(G) = 4. It follows from Lemma 2.2 that α(G) ≤ 2. Thus, by
Theorem 2.3, G = Q.

Case 2. χ(G) = 8. In this situation we have |V (G)| = 14. By Proposi-
tion 2.1, G is a vertex-critical chromatic graph. Since |V (G)| < 2χ(G)− 1, from
Theorem 2.1 we obtain that G = G1 +G2. Clearly,

|V (G)| = |V (G1)|+ |V (G2)|;(2.2)

χ(G) = χ(G1) + χ(G2);(2.3)

f(G) = f(G1) + f(G2);(2.4)

(2.5) G1 and G2 are vertex-critical chromatic graphs.

Subcase 2.a. G = K1 +G′. Since χ(G′) = 7 and f(G′) = f(G) ≥ 3, by the
Case 1 we obtain G′ = Q and G = K1 +Q.

Subcase 2.b. G1 and G2 are not complete graphs. In this subcase, by (2.5),
we have χ(Gi) ≥ 3 and χ(Gi) 6= cl(Gi), i = 1, 2. Thus f(Gi) ≥ 1, i = 1, 2.
According to Theorem 1.1, |V (Gi)| ≥ 5, i = 1, 2. From these inequalities and (2.2)
it follows

(2.6) |V (Gi)| ≤ 9, i = 1, 2.

Let f(G1) ≤ f(G2). Then, by (2.4), f(G2) ≥ 2. From Lemma 2.1 we obtain
|V (G2)| ≥ 10. This contradicts (2.6).

Case 3. χ(G) = 9. In this case |V (G)| = 15. By Proposition 2.1, G is a
vertex-critical chromatic graph. Since |V (G)| < 2χ(G)− 1, from Theorem 2.1 it
follows that G = G1 +G2.

Subcase 3.a. G = K1 + G′. Since |V (G′)| = 14, χ(G′) = 8 and f(G′) =
f(G) ≥ 3, by Case 2 we have G′ = K1 +Q. Hence G = K2 +Q.

Subcase 3.b. G1 and G2 are not complete graphs. By (2.5) it follows
|V (Gi)| ≥ 5, i = 1, 2. From these inequalities and (2.2) we obtain

(2.7) |V (Gi)| ≤ 10, i = 1, 2.

Let f(G1) ≤ f(G2). Then according to (2.4) we have f(G2) ≥ 2. From (2.7) and
Theorem 2.1 we obtain G2 = C5 + C5. Since |V (G2)| = 10 and χ(G2) = 6 we
see from (2.2) and (2.3) that |V (G1)| = 5 and χ(G1) = 3. Thus, by (2.5), we
conclude that G1 = C5. Hence G1 = C5 + C5 + C5.
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3. Proof of Theorem 1.4. By Lemma 2.3 we have that χ(G) ≥ 7. If
χ(G) = 7 or χ(G) = 8 Theorem 1.4 follows from Lemma 2.3. Let χ(G) ≥ 9.
We prove Theorem 1.4 by induction on χ(G). The inductive base χ(G) = 9
follows from Lemma 2.3(c). Let χ(G) ≥ 10. Then 5

3χ(G) − |V (G)| > 0. By
Proposition 2.1 G is vertex-critical chromatic graph. Thus, according to Theo-
rem 2.2, we have G = K1 + G′. As χ(G′) = χ(G) − 1, f(G′) = f(G) ≥ 3 and
|V (G′)| = χ(G′) + 6, we can now use the inductive assumption and obtain

G′ = Kχ(G′)−7 +Q or G′ = Kχ(G′)−9 + C5 + C5 + C5.

Hence G = Kχ(G)−7 +Q or G = Kχ(G)−9 + C5 + C5 + C5.

4. Edge Folkman numbers Fe(a1, . . . , ar;R(a1, . . . , ar) − 2). Let a1,
. . . , ar be integers, ai ≥ 2, i = 1, . . . , r. The symbol G

e→ (a1 . . . , ar) means that
in every r-coloring

E(G) = E1 ∪ · · · ∪ Er, Ei ∩ Ej = ∅, i 6= j,

of the edge set E(G)there exists a monochromatic ai-clique Q of colour i for some
i ∈ {1, . . . , r}, that is E(Q) ⊆ Ei. The Ramsey number R(a1, . . . , ar) is defined
as min{n : Kn

e→ (a1, . . . , ar)}. Define

He(a1, . . . , ar; q) = {G : G
e→ (a1 . . . , ar) and cl(G) < q};

Fe(a1, . . . , ar; q) = min{|V (G)| : G ∈ He(a1, . . . , ar; q)}.

It is well known that

(4.1) Fe(a1, . . . , ar; q) exists ⇐⇒ q > max{a1, . . . , ar}.

In the case r = 2 this was proved in [3] and the general case in [19]. The numbers
Fe(a1, . . . , ar; q) are called edge Folkman numbers. An exposition of the known
edge Folkman numbers is given in [8]. In this section we consider the numbers
Fe(a1, . . . , ar;R(a1 . . . , ar) − 2), where ai ≥ 3, i = 1, . . . , r. We know only one
Folkman number of this kind, namely Fe(3, 3, 3, 3; 15) = 23 (see [11]).

In [12] we prove the following statement.
Theorem 4.1. Let a1, . . . , ar be integers and ai ≥ 3, i = 1, . . . , r, r ≥ 2.

Then

(4.2) Fe(a1, . . . , ar;R(a1 . . . , ar)− 2) ≥ R(a1 . . . , ar) + 6.

Remark 4.1. It follows from ai ≥ 3 and r ≥ 2 that R(a1, . . . , ar) > 2 +
max{a1, . . . , ar}. Thus, by (4.1), the numbers Fe(a1, . . . , ar;R(a1, . . . , ar) − 2)
exist.

The aim of this section is to prove the following result.
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Theorem 4.2. Let a1, . . . , ar be integers and ai ≥ 3, i = 1, . . . , r, r ≥ 2.
Then

Fe(a1, . . . , ar;R(a1, . . . , ar)− 2) = R(a1, . . . , ar) + 6

if and only if KR−7 +Q
e→ (a1, . . . , ar) or KR−9 + C5 + C5 + C5

e→ (a1, . . . , ar),
where R = R(a1, . . . , ar).

We shall use the following result obtained by Lin [10]:

(4.3) G
e→ (a1, . . . , ar)⇒ χ(G) ≥ R(a1, . . . , ar).

Proof of Theorem 4.2. I. Let Fe(a1, . . . , ar;R − 2) = R + 6. Let G ∈
He(a1, . . . , ar;R− 2) and

(4.4) |V (G)| = R+ 6.

Since cl(G) ≤ R− 3, from (4.3) it follows f(G) ≥ 3. By Theorem 1.3, we have

(4.5) |V (G)| ≥ χ(G) + 6.

From (4.3), (4.4) and (4.5) we see that χ(G) = R and |V (G)| = χ(G) + 6. Thus,
according to Theorem 1.4, G = Kχ(G)−7 + Q = KR−7 + Q or G = Kχ(G)−9 +

C5 +C5 +C5 = KR−9 +C5 +C5 +C5. This implies KR−7 +Q
e→ (a1, . . . , ar) or

KR−9 + C5 + C5 + C5
e→ (a1, . . . , ar) because G ∈ He(a1, . . . , ar;R− 2).

II. Let KR−7 + Q
e→ (a1, . . . , ar). Then KR−7 + Q ∈ He(a1, . . . , ar;R − 2)

because cl(KR−7 +Q) = R− 3. Hence

Fe(a1, . . . , ar;R− 2) ≤ |V (KR−7 +Q)| = R+ 6.

This inequality and (4.2) imply that Fe(a1, . . . , ar;R− 2) = R+ 6.
In the same way we see that from KR−9 + C5 + C5 + C5

e→ (a1, . . . , ar) it
follows that Fe(a1, . . . , ar;R− 2) = R+ 6.

Remark 4.2. We obtain, in [11], the equality Fe(3, 3, 3; 15) = 23 proving
that K8 +C5 +C5 +C5

e→ (3, 3, 3). We do not know whether K10 +Q
e→ (3, 3, 3).

Remark 4.3. By Theorem 4.1 we have Fe(3, 5; 12) ≥ 20 and Fe(4, 4; 16) ≥
24. The exact values of these numbers are not known. Therefore, having in mind
Theorem 4.2, it will be interesting to know whether the following statements are
true:

K7 +Q
e→ (3, 5), K5 + C5 + C5 + C5

e→ (3, 5);

K11 +Q
e→ (4, 4), K9 + C5 + C5 + C5

e→ (4, 4).

Remark 4.4. By Theorem 4.1, Fe(3, 4; 7) ≥ 15. It was proved in [8] that
Fe(3, 4; 8) = 16. Thus Fe(3, 4; 7) ≥ 17.
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