# Доклади на Българската академия на науките <br> Comptes rendus de l'Académie bulgare des Sciences 

Tome 63, No 8, 2010

## MATHEMATIQUES

Théorie des graphes

# CHROMATIC NUMBER OF GRAPHS AND EDGE FOLKMAN NUMBERS 

Nedyalko D. Nenov

(Submitted by Corresponding Member V. Drensky on March 30, 2010)


#### Abstract

We consider only simple graphs. The graph $G_{1}+G_{2}$ consists of vertex disjoint copies of $G_{1}$ and $G_{2}$ and all possible edges between the vertices of $G_{1}$ and $G_{2}$. The chromatic number of the graph $G$ will be denoted by $\chi(G)$ and the clique number of $G$ by $\operatorname{cl}(G)$. The graphs $G$ for which $\chi(G)-\operatorname{cl}(G) \geq 3$ are considered. For these graphs the inequality $|V(G)| \geq \chi(G)+6$ was proved in $\left[{ }^{12}\right]$, where $V(G)$ is the vertex set of $G$. In this paper we prove that equality $|V(G)|=\chi(G)+6$ can be achieved only for the graphs $K_{\chi(G)-7}+Q, \chi(G) \geq 7$ and $K_{\chi(G)-9}+C_{5}+C_{5}+C_{5}, \chi(G) \geq 9$, where graph $Q$ is given in Fig. 1 and $K_{n}$ and $C_{5}$ are complete graphs on $n$ vertices and simple 5 -cycle, respectively. With the help of this result we prove the new facts for some edge Folkman numbers (Theorem 4.2).


Key words: vertex Folkman numbers, edge Folkman numbers
2000 Mathematics Subject Classification: 05C55

1. Introduction. We consider only finite, non-oriented graphs without loops and multiple edges. We call a $p$-clique of the graph $G$ a set of $p$ vertices each two of which are adjacent. The largest positive integer $p$ such that $G$ contains a $p$-clique is denoted by $\operatorname{cl}(G)$ (clique number of $G$ ). We shall use also the following notations:

- $V(G)$ is the vertex set of $G$;
- $E(G)$ is the edge set of $G$;

[^0]- $\bar{G}$ is the complement of $G$;
- $G-V, V \subseteq V(G)$ is the subgraph of $G$ induced by $V(G) \backslash V$;
- $\alpha(G)$ is the vertex independence number of $G$;
- $\chi(G)$ is the chromatic number of $G$;
- $f(G)=\chi(G)-\operatorname{cl}(G)$;
- $K_{n}$ is the complete graph on $n$ vertices;
- $C_{n}$ is the simple cycle on $n$ vertices;
- $N_{G}(v)$ is the set of neighbours of a vertex $v$ in $G$.

Let $G_{1}$ and $G_{2}$ be two graphs. We denote by $G_{1}+G_{2}$ the graph $G$ for which $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right), E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup E^{\prime}$, where $E^{\prime}=\{[x, y], x \in$ $\left.V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$.

We will use the following theorem by Dirac [ ${ }^{2}$ ]:
Theorem 1.1. Let $G$ be a graph such that $f(G) \geq 1$. Then $|V(G)| \geq \chi(G)+2$ and $|V(G)|=\chi(G)+2$ only when $G=K_{\chi(G)-3}+C_{5}$.

If $f(G) \geq 2$, then we have $\left[{ }^{12}\right]$ (see also $\left[{ }^{16}\right]$ ).
Theorem 1.2. Let $f(G) \geq 2$. Then
(a) $|V(G)| \geq \chi(G)+4$;
(b) $|V(G)|=\chi(G)+4$ only when $\chi(G) \geq 6$ and $G=K_{\chi(G)-6}+C_{5}+C_{5}$.

In the case $\chi(G)=4$ and $\chi(G)=5$ we have the following better inequalities:

$$
\begin{align*}
& \text { if } f(G) \geq 2 \text { and } \chi(G)=4 \text { then }|V(G)| \geq 11,\left[{ }^{1}\right] \text {; }  \tag{1.1}\\
& \text { if } f(G) \geq 2 \text { and } \chi(G)=5 \text { then }|V(G)| \geq 11,\left[{ }^{13}\right] \text { (see also }\left[{ }^{14}\right] \text { ). } \tag{1.2}
\end{align*}
$$

For the case $f(G) \geq 3$ it was known that $\left[{ }^{[2}\right]$ (see also [ ${ }^{17,18]}$ )
Theorem 1.3. Let $G$ be a graph such that $f(G) \geq 3$. Then $|V(G)| \geq$ $\chi(G)+6$.

In this paper we consider the case $|V(G)|=\chi(G)+6$. We prove the following main theorem.

Theorem 1.4. Let $G$ be a graph such that $f(G) \geq 3$ and $|V(G)|=\chi(G)+6$. Then $\chi(G) \geq 7$ and $G=K_{\chi(G)-7}+Q$ or $\chi(G) \geq 9$ and $G=K_{\chi(G)-9}+C_{5}+C_{5}+$ $C_{5}$, where $Q$ is the graph, whose complementary graph $\bar{Q}$ is given in Fig. 1.

Obviously, if $f(G) \geq 3$ then $\chi(G) \geq 5$. Therefore we will consider only the cases $\chi(G) \geq 5$. If $\chi(G)=5$ or $\chi(G)=6$ then by Theorem 1.3 and Theorem 1.4


Fig. 1. Graph $\bar{Q}$
we see that $|V(G)| \geq \chi(G)+7$. In these two cases we can state the following stronger results:

$$
\begin{align*}
& \text { if } \left.f(G) \geq 3 \text { and } \chi(G)=5 \text { then }|V(G)| \geq 22,{ }^{6}\right] ;  \tag{1.3}\\
& \text { if } \left.f(G) \geq 3 \text { and } \chi(G)=6 \text { then }|V(G)| \geq 16,{ }^{9}\right] . \tag{1.4}
\end{align*}
$$

The inequalities (1.3) and (1.4) are exact. Lathrop and Radziszowski [ ${ }^{9}$ ] proved that there are only two 16 -vertex graphs for which (1.4) holds.

At the end of this paper we obtain by Theorem 1.4 new results about some edge-Folkman numbers (Theorem 4.2).
2. Auxiliary results. A graph $G$ is defined to be vertex-critical chromatic if $\chi(G-v)<\chi(G)$ for all $v \in V(G)$. We shall use the following results of Gallai [ $\left.{ }^{4}\right]$ (see also $\left[{ }^{5}\right]$ ).

Theorem 2.1. Let $G$ be a vertex-critical chromatic graph and $\chi(G) \geq 2$. If $|V(G)|<2 \chi(G)-1$ then $G=G_{1}+G_{2}$, where $V\left(G_{i}\right) \neq \varnothing, i=1,2$.

Theorem 2.2. Let $G$ be a vertex-critical $k$-chromatic graph, $|V(G)|=n$ and $k \geq 3$. Then there exist $\geq\left\lceil\frac{3}{2}\left(\frac{5}{3} k-n\right)\right\rceil$ vertices with the property that each of them is adjacent to all the other $n-1$ vertices.

Remark 2.1. The formulations of Theorem 2.1 and Theorem 2.2 given above are obviously equivalent to the original ones in [ ${ }^{4}$ ] (see Remark 1 and Remark 2 in $\left[{ }^{[6]}\right]$ ).

Proposition 2.1. Let $G$ be a graph such that $f(G) \geq 3$ and $|V(G)|=$ $\chi(G)+6$. Then $G$ is a vertex-critical chromatic graph.

Proof. Assume the opposite. Then $\chi(G-v)=\chi(G)$ for some $v \in V(G)$. Let $G^{\prime}=G-v$. Since $\operatorname{cl}\left(G^{\prime}\right) \leq \operatorname{cl}(G)$ we have $f\left(G^{\prime}\right) \geq f(G) \geq 3$. By Theorem 1.3

$$
\left|V\left(G^{\prime}\right)\right| \geq \chi\left(G^{\prime}\right)+6=\chi(G)+6=|V(G)|,
$$

which is a contradiction.
The following result by Kerry [ ${ }^{7}$ ] will be used later.

Theorem 2.3. Let $G$ be a 13 -vertex graph such that $\alpha(G) \leq 2$ and $\mathrm{cl}(G) \leq 4$. Then $G$ is isomorphic to the graph $Q$, whose complementary graph $\bar{Q}$ is given in Fig. 1.

Definition 2.1. The graph $G$ is called a Sperner graph if $N_{G}(u) \subseteq N_{G}(v)$ for some $u, v \in V(G)$.

Obviously if $N_{G}(u) \subseteq N_{G}(v)$ then $\chi(G-u)=\chi(G)$. Thus we have
Proposition 2.2. Every vertex-critical chromatic graph is not a Sperner graph.

The following lemmas are used in the proof of Theorem 1.4.
Lemma 2.1. Let $G$ be a graph and $f(G) \geq 2$. Then
(a) $|V(G)| \geq 10$;
(b) $|V(G)|=10$ only when $G=C_{5}+C_{5}$.

Proof. The inequality (a) follows from (1.1), (1.2) and Theorem 1.2(a). Let $|V(G)|=10$. Then by (1.1), (1.2) and Theorem $1.2(\mathrm{a})$ we see that $\chi(G)=6$. From Theorem 1.2(b) we obtain $G=C_{5}+C_{5}$.

Lemma 2.2. Let $G$ be a graph such that $f(G) \geq 3$ and $G$ is not a Sperner graph. Then

$$
|V(G)| \geq 11+\alpha(G) .
$$

Proof. Assume the opposite, i.e.

$$
\begin{equation*}
|V(G)| \leq 10+\alpha(G) . \tag{2.1}
\end{equation*}
$$

Let $A \subseteq V(G)$ be an independent set of vertices of $G$ such that $|A|=\alpha(G)$. Consider the subgraph $G^{\prime}=G-A$. From (2.1) we see that $\left|V\left(G^{\prime}\right)\right| \leq 10$. Since $A$ is independent from $f(G) \geq 3$ it follows $f\left(G^{\prime}\right) \geq 2$. According to Lemma 2.1(b), $G^{\prime}=C_{5}^{(1)}+C_{5}^{(1)}$, where $C_{5}^{(i)}, i=1,2$, are 5-cycles. Hence $\chi\left(G^{\prime}\right)=6, \chi(G) \leq$ 7 and $\operatorname{cl}(G) \leq 4$. Thus if $a \in A$, then $N_{G}(a) \cap V\left(C_{5}^{(1)}\right)$ or $N_{G}(a) \cap V\left(C_{5}^{(2)}\right)$ is an independent set. Let $N_{G}(a) \cap V\left(C_{5}^{(1)}\right)$ be independent set and $C_{5}^{(1)}=$ $v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$. Then we may assume that $N_{G}(a) \cap V\left(C_{5}^{(1)}\right) \subseteq\left\{v_{1}, v_{3}\right\}$. We obtain that $N_{G}(a) \subseteq N_{G}\left(v_{2}\right)$ which contradicts the assumption of Lemma 2.2.

Lemma 2.3. Let $G$ be a graph such that $f(G) \geq 3$ and $|V(G)|=\chi(G)+6$. Then $\chi(G) \geq 7$ and:
(a) $G=Q$ if $\chi(G)=7$;
(b) $G=K_{1}+Q$ if $\chi(G)=8$;
(c) $G=K_{2}+Q$ or $G=C_{5}+C_{5}+C_{5}$ if $\chi(G)=9$.

Proof. Since $\chi(G) \neq \operatorname{cl}(G)$ we have $\operatorname{cl}(G) \geq 2$. Thus, from $f(G) \geq 3$ it follows $\chi(G) \geq 5$. By (1.3) and (1.4) we see that $\chi(G) \neq 5$ and $\chi(G) \neq 6$. Hence, $\chi(G) \geq 7$.

CASE 1. $\chi(G)=7$. In this case $|V(G)|=13$. From $\chi(G)=7$ and $f(G) \geq 3$ we see that $\operatorname{cl}(G)=4$. It follows from Lemma 2.2 that $\alpha(G) \leq 2$. Thus, by Theorem 2.3, $G=Q$.

CASE 2. $\chi(G)=8$. In this situation we have $|V(G)|=14$. By Proposition 2.1, $G$ is a vertex-critical chromatic graph. Since $|V(G)|<2 \chi(G)-1$, from Theorem 2.1 we obtain that $G=G_{1}+G_{2}$. Clearly,

$$
\begin{align*}
|V(G)| & =\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|  \tag{2.2}\\
\chi(G) & =\chi\left(G_{1}\right)+\chi\left(G_{2}\right)  \tag{2.3}\\
f(G) & =f\left(G_{1}\right)+f\left(G_{2}\right) \tag{2.4}
\end{align*}
$$

$G_{1}$ and $G_{2}$ are vertex-critical chromatic graphs.
Subcase 2.A. $G=K_{1}+G^{\prime}$. Since $\chi\left(G^{\prime}\right)=7$ and $f\left(G^{\prime}\right)=f(G) \geq 3$, by the Case 1 we obtain $G^{\prime}=Q$ and $G=K_{1}+Q$.

Subcase 2.B. $G_{1}$ and $G_{2}$ are not complete graphs. In this subcase, by (2.5), we have $\chi\left(G_{i}\right) \geq 3$ and $\chi\left(G_{i}\right) \neq \operatorname{cl}\left(G_{i}\right), i=1,2$. Thus $f\left(G_{i}\right) \geq 1, i=1,2$. According to Theorem 1.1, $\left|V\left(G_{i}\right)\right| \geq 5, i=1,2$. From these inequalities and (2.2) it follows

$$
\begin{equation*}
\left|V\left(G_{i}\right)\right| \leq 9, \quad i=1,2 \tag{2.6}
\end{equation*}
$$

Let $f\left(G_{1}\right) \leq f\left(G_{2}\right)$. Then, by $(2.4), f\left(G_{2}\right) \geq 2$. From Lemma 2.1 we obtain $\left|V\left(G_{2}\right)\right| \geq 10$. This contradicts (2.6).

Case 3. $\chi(G)=9$. In this case $|V(G)|=15$. By Proposition 2.1, $G$ is a vertex-critical chromatic graph. Since $|V(G)|<2 \chi(G)-1$, from Theorem 2.1 it follows that $G=G_{1}+G_{2}$.

Subcase 3.a. $G=K_{1}+G^{\prime}$. Since $\left|V\left(G^{\prime}\right)\right|=14, \chi\left(G^{\prime}\right)=8$ and $f\left(G^{\prime}\right)=$ $f(G) \geq 3$, by Case 2 we have $G^{\prime}=K_{1}+Q$. Hence $G=K_{2}+Q$.

SUBCASE 3.B. $G_{1}$ and $G_{2}$ are not complete graphs. By (2.5) it follows $\left|V\left(G_{i}\right)\right| \geq 5, i=1,2$. From these inequalities and (2.2) we obtain

$$
\begin{equation*}
\left|V\left(G_{i}\right)\right| \leq 10, \quad i=1,2 \tag{2.7}
\end{equation*}
$$

Let $f\left(G_{1}\right) \leq f\left(G_{2}\right)$. Then according to (2.4) we have $f\left(G_{2}\right) \geq 2$. From (2.7) and Theorem 2.1 we obtain $G_{2}=C_{5}+C_{5}$. Since $\left|V\left(G_{2}\right)\right|=10$ and $\chi\left(G_{2}\right)=6$ we see from (2.2) and (2.3) that $\left|V\left(G_{1}\right)\right|=5$ and $\chi\left(G_{1}\right)=3$. Thus, by (2.5), we conclude that $G_{1}=C_{5}$. Hence $G_{1}=C_{5}+C_{5}+C_{5}$.
3. Proof of Theorem 1.4. By Lemma 2.3 we have that $\chi(G) \geq 7$. If $\chi(G)=7$ or $\chi(G)=8$ Theorem 1.4 follows from Lemma 2.3. Let $\chi(G) \geq 9$. We prove Theorem 1.4 by induction on $\chi(G)$. The inductive base $\chi(G)=9$ follows from Lemma 2.3(c). Let $\chi(G) \geq 10$. Then $\frac{5}{3} \chi(G)-|V(G)|>0$. By Proposition $2.1 G$ is vertex-critical chromatic graph. Thus, according to Theorem 2.2, we have $G=K_{1}+G^{\prime}$. As $\chi\left(G^{\prime}\right)=\chi(G)-1, f\left(G^{\prime}\right)=f(G) \geq 3$ and $\left|V\left(G^{\prime}\right)\right|=\chi\left(G^{\prime}\right)+6$, we can now use the inductive assumption and obtain

$$
G^{\prime}=K_{\chi\left(G^{\prime}\right)-7}+Q \quad \text { or } \quad G^{\prime}=K_{\chi\left(G^{\prime}\right)-9}+C_{5}+C_{5}+C_{5} .
$$

Hence $G=K_{\chi(G)-7}+Q$ or $G=K_{\chi(G)-9}+C_{5}+C_{5}+C_{5}$.
4. Edge Folkman numbers $\boldsymbol{F}_{e}\left(a_{1}, \ldots, a_{r} ; \boldsymbol{R}\left(a_{1}, \ldots, a_{r}\right)-2\right)$. Let $a_{1}$, $\ldots, a_{r}$ be integers, $a_{i} \geq 2, i=1, \ldots, r$. The symbol $G \xrightarrow{e}\left(a_{1} \ldots, a_{r}\right)$ means that in every $r$-coloring

$$
E(G)=E_{1} \cup \cdots \cup E_{r}, \quad E_{i} \cap E_{j}=\varnothing, \quad i \neq j,
$$

of the edge set $E(G)$ there exists a monochromatic $a_{i}$-clique $Q$ of colour $i$ for some $i \in\{1, \ldots, r\}$, that is $E(Q) \subseteq E_{i}$. The Ramsey number $R\left(a_{1}, \ldots, a_{r}\right)$ is defined as $\min \left\{n: K_{n} \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right)\right\}$. Define

$$
\begin{aligned}
H_{e}\left(a_{1}, \ldots, a_{r} ; q\right) & =\left\{G: G \xrightarrow{e}\left(a_{1} \ldots, a_{r}\right) \text { and } \operatorname{cl}(G)<q\right\} ; \\
F_{e}\left(a_{1}, \ldots, a_{r} ; q\right) & =\min \left\{|V(G)|: G \in H_{e}\left(a_{1}, \ldots, a_{r} ; q\right)\right\} .
\end{aligned}
$$

It is well known that

$$
\begin{equation*}
F_{e}\left(a_{1}, \ldots, a_{r} ; q\right) \text { exists } \Longleftrightarrow q>\max \left\{a_{1}, \ldots, a_{r}\right\} \tag{4.1}
\end{equation*}
$$

In the case $r=2$ this was proved in $\left[{ }^{3}\right]$ and the general case in $\left[{ }^{19}\right]$. The numbers $F_{e}\left(a_{1}, \ldots, a_{r} ; q\right)$ are called edge Folkman numbers. An exposition of the known edge Folkman numbers is given in $\left.{ }^{8}\right]$. In this section we consider the numbers $F_{e}\left(a_{1}, \ldots, a_{r} ; R\left(a_{1} \ldots, a_{r}\right)-2\right)$, where $a_{i} \geq 3, i=1, \ldots, r$. We know only one Folkman number of this kind, namely $F_{e}(3,3,3,3 ; 15)=23$ (see [ ${ }^{11}$ ]).

In [ ${ }^{12}$ ] we prove the following statement.
Theorem 4.1. Let $a_{1}, \ldots, a_{r}$ be integers and $a_{i} \geq 3, i=1, \ldots, r, r \geq 2$. Then

$$
\begin{equation*}
F_{e}\left(a_{1}, \ldots, a_{r} ; R\left(a_{1} \ldots, a_{r}\right)-2\right) \geq R\left(a_{1} \ldots, a_{r}\right)+6 \tag{4.2}
\end{equation*}
$$

Remark 4.1. It follows from $a_{i} \geq 3$ and $r \geq 2$ that $R\left(a_{1}, \ldots, a_{r}\right)>2+$ $\max \left\{a_{1}, \ldots, a_{r}\right\}$. Thus, by (4.1), the numbers $F_{e}\left(a_{1}, \ldots, a_{r} ; R\left(a_{1}, \ldots, a_{r}\right)-2\right)$ exist.

The aim of this section is to prove the following result.

Theorem 4.2. Let $a_{1}, \ldots, a_{r}$ be integers and $a_{i} \geq 3, i=1, \ldots, r, r \geq 2$. Then

$$
F_{e}\left(a_{1}, \ldots, a_{r} ; R\left(a_{1}, \ldots, a_{r}\right)-2\right)=R\left(a_{1}, \ldots, a_{r}\right)+6
$$

if and only if $K_{R-7}+Q \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right)$ or $K_{R-9}+C_{5}+C_{5}+C_{5} \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right)$, where $R=R\left(a_{1}, \ldots, a_{r}\right)$.

We shall use the following result obtained by Lin [ ${ }^{10}$ ]:

$$
\begin{equation*}
G \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right) \Rightarrow \chi(G) \geq R\left(a_{1}, \ldots, a_{r}\right) \tag{4.3}
\end{equation*}
$$

Proof of Theorem 4.2. I. Let $F_{e}\left(a_{1}, \ldots, a_{r} ; R-2\right)=R+6$. Let $G \in$ $H_{e}\left(a_{1}, \ldots, a_{r} ; R-2\right)$ and

$$
\begin{equation*}
|V(G)|=R+6 \tag{4.4}
\end{equation*}
$$

Since $\operatorname{cl}(G) \leq R-3$, from (4.3) it follows $f(G) \geq 3$. By Theorem 1.3, we have

$$
\begin{equation*}
|V(G)| \geq \chi(G)+6 \tag{4.5}
\end{equation*}
$$

From (4.3), (4.4) and (4.5) we see that $\chi(G)=R$ and $|V(G)|=\chi(G)+6$. Thus, according to Theorem 1.4, $G=K_{\chi(G)-7}+Q=K_{R-7}+Q$ or $G=K_{\chi(G)-9}+$ $C_{5}+C_{5}+C_{5}=K_{R-9}+C_{5}+C_{5}+C_{5}$. This implies $K_{R-7}+Q \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right)$ or $K_{R-9}+C_{5}+C_{5}+C_{5} \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right)$ because $G \in H_{e}\left(a_{1}, \ldots, a_{r} ; R-2\right)$.
II. Let $K_{R-7}+Q \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right)$. Then $K_{R-7}+Q \in H_{e}\left(a_{1}, \ldots, a_{r} ; R-2\right)$ because $\operatorname{cl}\left(K_{R-7}+Q\right)=R-3$. Hence

$$
F_{e}\left(a_{1}, \ldots, a_{r} ; R-2\right) \leq\left|V\left(K_{R-7}+Q\right)\right|=R+6
$$

This inequality and (4.2) imply that $F_{e}\left(a_{1}, \ldots, a_{r} ; R-2\right)=R+6$.
In the same way we see that from $K_{R-9}+C_{5}+C_{5}+C_{5} \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right)$ it follows that $F_{e}\left(a_{1}, \ldots, a_{r} ; R-2\right)=R+6$.

Remark 4.2. We obtain, in $\left[{ }^{11}\right]$, the equality $F_{e}(3,3,3 ; 15)=23$ proving that $K_{8}+C_{5}+C_{5}+C_{5} \xrightarrow{e}(3,3,3)$. We do not know whether $K_{10}+Q \xrightarrow{e}(3,3,3)$.

Remark 4.3. By Theorem 4.1 we have $F_{e}(3,5 ; 12) \geq 20$ and $F_{e}(4,4 ; 16) \geq$ 24. The exact values of these numbers are not known. Therefore, having in mind Theorem 4.2, it will be interesting to know whether the following statements are true:

$$
\begin{array}{ll}
K_{7}+Q \xrightarrow{e}(3,5), & K_{5}+C_{5}+C_{5}+C_{5} \xrightarrow{e}(3,5) \\
K_{11}+Q \xrightarrow{e}(4,4), & K_{9}+C_{5}+C_{5}+C_{5} \xrightarrow{e}(4,4) .
\end{array}
$$

Remark 4.4. By Theorem 4.1, $F_{e}(3,4 ; 7) \geq 15$. It was proved in $\left[{ }^{8}\right]$ that $F_{e}(3,4 ; 8)=16$. Thus $F_{e}(3,4 ; 7) \geq 17$.

## REFERENCES

${ }^{1}$ ] Chvátal V. Lecture Notes in Math., 406, 1979, 243-246.
${ }^{2}$ ] Dirac G. J. London Math. Soc., 31, 1956, 460-471.
$\left.{ }^{3}{ }^{3}\right]$ Folkman J. SIAM J. Appl. Math., 18, 1970, 19-24.
${ }^{[4]}$ Gallai T. Publ. Math. Inst. Hung. Acad. Sci., Ser. A, 8, 1963, 373-395.
$\left.{ }^{5}\right]$ Gallai T. In: Theory of Graphs and Its Applications, Proceedings of the Symposium held in Smolenice in June 1963, Czechoslovak Acad. Sciences, Prague, 1964, 43-45.
${ }^{[6}$ ] Jensen T., G. Royle. J. Graph Theory, 19, 1995, 107-116.
$\left.{ }^{7}{ }^{7}\right]$ Kery G. Mat. Lapok, 15, 1964, 204-224.
$\left.{ }^{8}{ }^{8}\right]$ Kolev N., N. Nenov. Compt. rend. Acad. bulg. Sci., 59, 2006, No 1, 25-30.
$\left.{ }^{9}\right]$ Lathrop J., S. Radziszowski. Compute the Folkman Number $F_{v}(2,2,2,2,2 ; 4)$. 23rd Midwest Conference on Combinatorics, Cryptography and Computing, Oct 3-4, 2009 (to appear in JCMCC).
$\left[{ }^{10}\right]$ Lin S. J. Combin. Theory, Ser. B, 12, 1972, 82-92.
$\left.{ }^{11}\right]$ Nenov N. Compt. rend. Acad. bulg. Sci., 34, 1981, 1209-1212 (in Russian).
[12] Nenov N. Serdica Bulg. Math. Publ., 9, 1983, 161-167 (in Russian).
$\left.{ }^{[13}\right]$ Nenov N. Compt. rend. Acad. bulg. Sci., 37, 1984, 301-304 (in Russian).
[14] Nenov N. Discrete Math., 188, 1998, 297-298.
$\left.{ }^{15}\right]$ Nenov N. Ann. Univ. Sofia Fac. Math. Inform., 95, 2001, 59-69.
$\left[{ }^{16}\right]$ Nenov N. Discrete Math., 271, 2003, 327-334.
[17] Nenov N. On the vertex Folkman numbers $F_{v}(\underbrace{2, \ldots, 2}_{r} ; r-1)$ and $F_{v}(\underbrace{2, \ldots, 2}_{r} ; r-2)$. Preprint: arXiv: 0903.3151v1[math. C0], 18 Mar 2009, Annuaire Univ. Sofia Fac. Math. Inform. (submitted 2007).
[18] Nenov N. Serdica Math. J., 35, 2009, 251-272.
[19] Nesetril J., V. Rödl. J. Combin. Theory, Ser. B, 20, 1976, 243-249.

Faculty of Mathematics and Informatics St Kliment Ohridski University of Sofia

5, J. Bourchier Blvd
1164 Sofia, Bulgaria
e-mail: nenov@fmi.uni-sofia.bg


[^0]:    This work was supported by the Scientific Research Fund of the St. Kliment Ohridski Sofia University under contract No 75, 2009.

