Доклади на Българската академия на науките Comptes rendus de l'Académie bulgare des Sciences

Tome 63, No 8, 2010

MATHEMATIQUES

Théorie des graphes

CHROMATIC NUMBER OF GRAPHS AND EDGE FOLKMAN NUMBERS

Nedyalko D. Nenov

(Submitted by Corresponding Member V. Drensky on March 30, 2010)

Abstract

We consider only simple graphs. The graph $G_1 + G_2$ consists of vertex disjoint copies of G_1 and G_2 and all possible edges between the vertices of G_1 and G_2 . The chromatic number of the graph G will be denoted by $\chi(G)$ and the clique number of G by cl(G). The graphs G for which $\chi(G) - cl(G) \ge 3$ are considered. For these graphs the inequality $|V(G)| \ge \chi(G) + 6$ was proved in [¹²], where V(G) is the vertex set of G. In this paper we prove that equality $|V(G)| = \chi(G) + 6$ can be achieved only for the graphs $K_{\chi(G)-7} + Q$, $\chi(G) \ge 7$ and $K_{\chi(G)-9} + C_5 + C_5 + C_5$, $\chi(G) \ge 9$, where graph Q is given in Fig. 1 and K_n and C_5 are complete graphs on n vertices and simple 5-cycle, respectively. With the help of this result we prove the new facts for some edge Folkman numbers (Theorem 4.2).

Key words: vertex Folkman numbers, edge Folkman numbers 2000 Mathematics Subject Classification: 05C55

1. Introduction. We consider only finite, non-oriented graphs without loops and multiple edges. We call a *p*-clique of the graph G a set of *p* vertices each two of which are adjacent. The largest positive integer *p* such that *G* contains a *p*-clique is denoted by cl(G) (clique number of *G*). We shall use also the following notations:

- V(G) is the vertex set of G;
- E(G) is the edge set of G;

This work was supported by the Scientific Research Fund of the St. Kliment Ohridski Sofia University under contract No 75, 2009.

- \overline{G} is the complement of G;
- $G V, V \subseteq V(G)$ is the subgraph of G induced by $V(G) \setminus V$;
- $\alpha(G)$ is the vertex independence number of G;
- $\chi(G)$ is the chromatic number of G;
- $f(G) = \chi(G) \operatorname{cl}(G);$
- K_n is the complete graph on n vertices;
- C_n is the simple cycle on n vertices;
- $N_G(v)$ is the set of neighbours of a vertex v in G.

Let G_1 and G_2 be two graphs. We denote by $G_1 + G_2$ the graph G for which $V(G) = V(G_1) \cup V(G_2), E(G) = E(G_1) \cup E(G_2) \cup E'$, where $E' = \{[x, y], x \in V(G_1), y \in V(G_2)\}$.

We will use the following theorem by DIRAC $[^2]$:

Theorem 1.1. Let G be a graph such that $f(G) \ge 1$. Then $|V(G)| \ge \chi(G)+2$ and $|V(G)| = \chi(G) + 2$ only when $G = K_{\chi(G)-3} + C_5$.

If $f(G) \ge 2$, then we have $[1^2]$ (see also $[1^6]$).

Theorem 1.2. Let $f(G) \ge 2$. Then

- (a) $|V(G)| \ge \chi(G) + 4;$
- (b) $|V(G)| = \chi(G) + 4$ only when $\chi(G) \ge 6$ and $G = K_{\chi(G)-6} + C_5 + C_5$.

In the case $\chi(G) = 4$ and $\chi(G) = 5$ we have the following better inequalities:

(1.1) if
$$f(G) \ge 2$$
 and $\chi(G) = 4$ then $|V(G)| \ge 11, [^1];$

(1.2) if
$$f(G) \ge 2$$
 and $\chi(G) = 5$ then $|V(G)| \ge 11$, $[^{13}]$ (see also $[^{14}]$).

For the case $f(G) \ge 3$ it was known that $[1^2]$ (see also [17, 18])

Theorem 1.3. Let G be a graph such that $f(G) \ge 3$. Then $|V(G)| \ge \chi(G) + 6$.

In this paper we consider the case $|V(G)| = \chi(G) + 6$. We prove the following main theorem.

Theorem 1.4. Let G be a graph such that $f(G) \ge 3$ and $|V(G)| = \chi(G) + 6$. Then $\chi(G) \ge 7$ and $G = K_{\chi(G)-7} + Q$ or $\chi(G) \ge 9$ and $G = K_{\chi(G)-9} + C_5 + C_5 + C_5$, where Q is the graph, whose complementary graph \overline{Q} is given in Fig. 1.

Obviously, if $f(G) \ge 3$ then $\chi(G) \ge 5$. Therefore we will consider only the cases $\chi(G) \ge 5$. If $\chi(G) = 5$ or $\chi(G) = 6$ then by Theorem 1.3 and Theorem 1.4

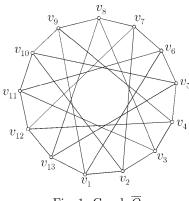


Fig. 1. Graph \overline{Q}

we see that $|V(G)| \ge \chi(G) + 7$. In these two cases we can state the following stronger results:

(1.3) if
$$f(G) \ge 3$$
 and $\chi(G) = 5$ then $|V(G)| \ge 22$, [⁶]

(1.4) if $f(G) \ge 3$ and $\chi(G) = 6$ then $|V(G)| \ge 16$, [⁹].

The inequalities (1.3) and (1.4) are exact. LATHROP and RADZISZOWSKI [⁹] proved that there are only two 16-vertex graphs for which (1.4) holds.

At the end of this paper we obtain by Theorem 1.4 new results about some edge-Folkman numbers (Theorem 4.2).

2. Auxiliary results. A graph G is defined to be vertex-critical chromatic if $\chi(G-v) < \chi(G)$ for all $v \in V(G)$. We shall use the following results of GALLAI [⁴] (see also [⁵]).

Theorem 2.1. Let G be a vertex-critical chromatic graph and $\chi(G) \ge 2$. If $|V(G)| < 2\chi(G) - 1$ then $G = G_1 + G_2$, where $V(G_i) \ne \emptyset$, i = 1, 2.

Theorem 2.2. Let G be a vertex-critical k-chromatic graph, |V(G)| = n and $k \ge 3$. Then there exist $\ge \left\lceil \frac{3}{2} \left(\frac{5}{3}k - n \right) \right\rceil$ vertices with the property that each of them is adjacent to all the other n - 1 vertices.

Remark 2.1. The formulations of Theorem 2.1 and Theorem 2.2 given above are obviously equivalent to the original ones in $[^4]$ (see Remark 1 and Remark 2 in $[^{16}]$).

Proposition 2.1. Let G be a graph such that $f(G) \ge 3$ and $|V(G)| = \chi(G) + 6$. Then G is a vertex-critical chromatic graph.

Proof. Assume the opposite. Then $\chi(G - v) = \chi(G)$ for some $v \in V(G)$. Let G' = G - v. Since $cl(G') \leq cl(G)$ we have $f(G') \geq f(G) \geq 3$. By Theorem 1.3

$$|V(G')| \ge \chi(G') + 6 = \chi(G) + 6 = |V(G)|,$$

which is a contradiction.

The following result by KERRY $[^7]$ will be used later.

Compt. rend. Acad. bulg. Sci., 63, No 8, 2010

1105

Theorem 2.3. Let G be a 13-vertex graph such that $\alpha(G) \leq 2$ and $\operatorname{cl}(G) \leq 4$. Then G is isomorphic to the graph Q, whose complementary graph \overline{Q} is given in Fig. 1.

Definition 2.1. The graph G is called a Sperner graph if $N_G(u) \subseteq N_G(v)$ for some $u, v \in V(G)$.

Obviously if $N_G(u) \subseteq N_G(v)$ then $\chi(G-u) = \chi(G)$. Thus we have

Proposition 2.2. Every vertex-critical chromatic graph is not a Sperner graph.

The following lemmas are used in the proof of Theorem 1.4. Lemma 2.1. Let G be a graph and $f(G) \ge 2$. Then

- (a) $|V(G)| \ge 10;$
- (b) |V(G)| = 10 only when $G = C_5 + C_5$.

Proof. The inequality (a) follows from (1.1), (1.2) and Theorem 1.2(a). Let |V(G)| = 10. Then by (1.1), (1.2) and Theorem 1.2(a) we see that $\chi(G) = 6$. From Theorem 1.2(b) we obtain $G = C_5 + C_5$.

Lemma 2.2. Let G be a graph such that $f(G) \ge 3$ and G is not a Sperner graph. Then

$$|V(G)| \ge 11 + \alpha(G)$$

Proof. Assume the opposite, i.e.

(2.1)
$$|V(G)| \le 10 + \alpha(G).$$

Let $A \subseteq V(G)$ be an independent set of vertices of G such that $|A| = \alpha(G)$. Consider the subgraph G' = G - A. From (2.1) we see that $|V(G')| \leq 10$. Since A is independent from $f(G) \geq 3$ it follows $f(G') \geq 2$. According to Lemma 2.1(b), $G' = C_5^{(1)} + C_5^{(1)}$, where $C_5^{(i)}$, i = 1, 2, are 5-cycles. Hence $\chi(G') = 6$, $\chi(G) \leq$ 7 and $cl(G) \leq 4$. Thus if $a \in A$, then $N_G(a) \cap V(C_5^{(1)})$ or $N_G(a) \cap V(C_5^{(2)})$ is an independent set. Let $N_G(a) \cap V(C_5^{(1)})$ be independent set and $C_5^{(1)} =$ $v_1v_2v_3v_4v_5v_1$. Then we may assume that $N_G(a) \cap V(C_5^{(1)}) \subseteq \{v_1, v_3\}$. We obtain that $N_G(a) \subseteq N_G(v_2)$ which contradicts the assumption of Lemma 2.2.

Lemma 2.3. Let G be a graph such that $f(G) \ge 3$ and $|V(G)| = \chi(G) + 6$. Then $\chi(G) \ge 7$ and:

- (a) G = Q if $\chi(G) = 7$;
- (b) $G = K_1 + Q$ if $\chi(G) = 8;$
- (c) $G = K_2 + Q$ or $G = C_5 + C_5 + C_5$ if $\chi(G) = 9$.

N. Nenov

Proof. Since $\chi(G) \neq \operatorname{cl}(G)$ we have $\operatorname{cl}(G) \geq 2$. Thus, from $f(G) \geq 3$ it follows $\chi(G) \geq 5$. By (1.3) and (1.4) we see that $\chi(G) \neq 5$ and $\chi(G) \neq 6$. Hence, $\chi(G) \geq 7$.

CASE 1. $\chi(G) = 7$. In this case |V(G)| = 13. From $\chi(G) = 7$ and $f(G) \ge 3$ we see that cl(G) = 4. It follows from Lemma 2.2 that $\alpha(G) \le 2$. Thus, by Theorem 2.3, G = Q.

CASE 2. $\chi(G) = 8$. In this situation we have |V(G)| = 14. By Proposition 2.1, G is a vertex-critical chromatic graph. Since $|V(G)| < 2\chi(G) - 1$, from Theorem 2.1 we obtain that $G = G_1 + G_2$. Clearly,

(2.2)
$$|V(G)| = |V(G_1)| + |V(G_2)|;$$

(2.3)
$$\chi(G) = \chi(G_1) + \chi(G_2);$$

(2.4) $f(G) = f(G_1) + f(G_2);$

(2.5) G_1 and G_2 are vertex-critical chromatic graphs.

SUBCASE 2.A. $G = K_1 + G'$. Since $\chi(G') = 7$ and $f(G') = f(G) \ge 3$, by the Case 1 we obtain G' = Q and $G = K_1 + Q$.

SUBCASE 2.B. G_1 and G_2 are not complete graphs. In this subcase, by (2.5), we have $\chi(G_i) \geq 3$ and $\chi(G_i) \neq \operatorname{cl}(G_i)$, i = 1, 2. Thus $f(G_i) \geq 1$, i = 1, 2. According to Theorem 1.1, $|V(G_i)| \geq 5$, i = 1, 2. From these inequalities and (2.2) it follows

(2.6)
$$|V(G_i)| \le 9, \quad i = 1, 2.$$

Let $f(G_1) \leq f(G_2)$. Then, by (2.4), $f(G_2) \geq 2$. From Lemma 2.1 we obtain $|V(G_2)| \geq 10$. This contradicts (2.6).

CASE 3. $\chi(G) = 9$. In this case |V(G)| = 15. By Proposition 2.1, G is a vertex-critical chromatic graph. Since $|V(G)| < 2\chi(G) - 1$, from Theorem 2.1 it follows that $G = G_1 + G_2$.

SUBCASE 3.A. $G = K_1 + G'$. Since |V(G')| = 14, $\chi(G') = 8$ and $f(G') = f(G) \ge 3$, by Case 2 we have $G' = K_1 + Q$. Hence $G = K_2 + Q$.

SUBCASE 3.B. G_1 and G_2 are not complete graphs. By (2.5) it follows $|V(G_i)| \ge 5, i = 1, 2$. From these inequalities and (2.2) we obtain

(2.7)
$$|V(G_i)| \le 10, \quad i = 1, 2.$$

Let $f(G_1) \leq f(G_2)$. Then according to (2.4) we have $f(G_2) \geq 2$. From (2.7) and Theorem 2.1 we obtain $G_2 = C_5 + C_5$. Since $|V(G_2)| = 10$ and $\chi(G_2) = 6$ we see from (2.2) and (2.3) that $|V(G_1)| = 5$ and $\chi(G_1) = 3$. Thus, by (2.5), we conclude that $G_1 = C_5$. Hence $G_1 = C_5 + C_5 + C_5$.

2 Compt. rend. Acad. bulg. Sci., 63, No 8, 2010

3. Proof of Theorem 1.4. By Lemma 2.3 we have that $\chi(G) \geq 7$. If $\chi(G) = 7$ or $\chi(G) = 8$ Theorem 1.4 follows from Lemma 2.3. Let $\chi(G) \geq 9$. We prove Theorem 1.4 by induction on $\chi(G)$. The inductive base $\chi(G) = 9$ follows from Lemma 2.3(c). Let $\chi(G) \geq 10$. Then $\frac{5}{3}\chi(G) - |V(G)| > 0$. By Proposition 2.1 G is vertex-critical chromatic graph. Thus, according to Theorem 2.2, we have $G = K_1 + G'$. As $\chi(G') = \chi(G) - 1$, $f(G') = f(G) \geq 3$ and $|V(G')| = \chi(G') + 6$, we can now use the inductive assumption and obtain

$$G' = K_{\chi(G')-7} + Q$$
 or $G' = K_{\chi(G')-9} + C_5 + C_5 + C_5.$

Hence $G = K_{\chi(G)-7} + Q$ or $G = K_{\chi(G)-9} + C_5 + C_5 + C_5$.

4. Edge Folkman numbers $F_e(a_1, \ldots, a_r; R(a_1, \ldots, a_r) - 2)$. Let a_1, \ldots, a_r be integers, $a_i \ge 2, i = 1, \ldots, r$. The symbol $G \stackrel{e}{\rightarrow} (a_1, \ldots, a_r)$ means that in every *r*-coloring

$$E(G) = E_1 \cup \dots \cup E_r, \quad E_i \cap E_j = \emptyset, \quad i \neq j,$$

of the edge set E(G) there exists a monochromatic a_i -clique Q of colour i for some $i \in \{1, \ldots, r\}$, that is $E(Q) \subseteq E_i$. The Ramsey number $R(a_1, \ldots, a_r)$ is defined as $\min\{n : K_n \xrightarrow{e} (a_1, \ldots, a_r)\}$. Define

$$H_e(a_1, \dots, a_r; q) = \{ G : G \xrightarrow{e} (a_1 \dots, a_r) \text{ and } cl(G) < q \}; F_e(a_1, \dots, a_r; q) = \min\{ |V(G)| : G \in H_e(a_1, \dots, a_r; q) \}.$$

It is well known that

(4.1)
$$F_e(a_1, \dots, a_r; q) \text{ exists } \iff q > \max\{a_1, \dots, a_r\}.$$

In the case r = 2 this was proved in [³] and the general case in [¹⁹]. The numbers $F_e(a_1, \ldots, a_r; q)$ are called edge Folkman numbers. An exposition of the known edge Folkman numbers is given in [⁸]. In this section we consider the numbers $F_e(a_1, \ldots, a_r; R(a_1, \ldots, a_r) - 2)$, where $a_i \ge 3$, $i = 1, \ldots, r$. We know only one Folkman number of this kind, namely $F_e(3, 3, 3, 3; 15) = 23$ (see [¹¹]).

In $[1^2]$ we prove the following statement.

Theorem 4.1. Let a_1, \ldots, a_r be integers and $a_i \ge 3$, $i = 1, \ldots, r$, $r \ge 2$. Then

(4.2)
$$F_e(a_1, \dots, a_r; R(a_1, \dots, a_r) - 2) \ge R(a_1, \dots, a_r) + 6.$$

Remark 4.1. It follows from $a_i \geq 3$ and $r \geq 2$ that $R(a_1, \ldots, a_r) > 2 + \max\{a_1, \ldots, a_r\}$. Thus, by (4.1), the numbers $F_e(a_1, \ldots, a_r; R(a_1, \ldots, a_r) - 2)$ exist.

The aim of this section is to prove the following result.

N. Nenov

Theorem 4.2. Let a_1, \ldots, a_r be integers and $a_i \ge 3$, $i = 1, \ldots, r$, $r \ge 2$. Then

$$F_e(a_1, \dots, a_r; R(a_1, \dots, a_r) - 2) = R(a_1, \dots, a_r) + 6$$

if and only if $K_{R-7} + Q \xrightarrow{e} (a_1, \ldots, a_r)$ or $K_{R-9} + C_5 + C_5 + C_5 \xrightarrow{e} (a_1, \ldots, a_r)$, where $R = R(a_1, \ldots, a_r)$.

We shall use the following result obtained by LIN [¹⁰]:

(4.3)
$$G \xrightarrow{e} (a_1, \dots, a_r) \Rightarrow \chi(G) \ge R(a_1, \dots, a_r)$$

Proof of Theorem 4.2. I. Let $F_e(a_1, ..., a_r; R-2) = R+6$. Let $G \in H_e(a_1, ..., a_r; R-2)$ and

(4.4)
$$|V(G)| = R + 6.$$

Since $cl(G) \leq R-3$, from (4.3) it follows $f(G) \geq 3$. By Theorem 1.3, we have

$$(4.5) |V(G)| \ge \chi(G) + 6.$$

From (4.3), (4.4) and (4.5) we see that $\chi(G) = R$ and $|V(G)| = \chi(G) + 6$. Thus, according to Theorem 1.4, $G = K_{\chi(G)-7} + Q = K_{R-7} + Q$ or $G = K_{\chi(G)-9} + C_5 + C_5 + C_5 = K_{R-9} + C_5 + C_5 + C_5$. This implies $K_{R-7} + Q \stackrel{e}{\to} (a_1, \ldots, a_r)$ or $K_{R-9} + C_5 + C_5 + C_5 \stackrel{e}{\to} (a_1, \ldots, a_r)$ because $G \in H_e(a_1, \ldots, a_r; R-2)$.

II. Let $K_{R-7} + Q \xrightarrow{e} (a_1, ..., a_r)$. Then $K_{R-7} + Q \in H_e(a_1, ..., a_r; R-2)$ because $cl(K_{R-7} + Q) = R - 3$. Hence

$$F_e(a_1, \dots, a_r; R-2) \le |V(K_{R-7} + Q)| = R + 6.$$

This inequality and (4.2) imply that $F_e(a_1, \ldots, a_r; R-2) = R+6$.

In the same way we see that from $K_{R-9} + C_5 + C_5 + C_5 \xrightarrow{e} (a_1, \ldots, a_r)$ it follows that $F_e(a_1, \ldots, a_r; R-2) = R+6$.

Remark 4.2. We obtain, in [¹¹], the equality $F_e(3,3,3;15) = 23$ proving that $K_8 + C_5 + C_5 + C_5 \xrightarrow{e} (3,3,3)$. We do not know whether $K_{10} + Q \xrightarrow{e} (3,3,3)$.

Remark 4.3. By Theorem 4.1 we have $F_e(3,5;12) \ge 20$ and $F_e(4,4;16) \ge 24$. The exact values of these numbers are not known. Therefore, having in mind Theorem 4.2, it will be interesting to know whether the following statements are true:

$$K_7 + Q \xrightarrow{e} (3,5), \qquad K_5 + C_5 + C_5 \xrightarrow{e} (3,5);$$

$$K_{11} + Q \xrightarrow{e} (4,4), \qquad K_9 + C_5 + C_5 \xrightarrow{e} (4,4).$$

Remark 4.4. By Theorem 4.1, $F_e(3,4;7) \ge 15$. It was proved in [⁸] that $F_e(3,4;8) = 16$. Thus $F_e(3,4;7) \ge 17$.

Compt. rend. Acad. bulg. Sci., 63, No 8, 2010

REFERENCES

- ^[1] CHVÁTAL V. Lecture Notes in Math., **406**, 1979, 243–246.
- ^[2] DIRAC G. J. London Math. Soc., **31**, 1956, 460–471.
- ^[3] FOLKMAN J. SIAM J. Appl. Math., **18**, 1970, 19–24.
- ^[4] GALLAI T. Publ. Math. Inst. Hung. Acad. Sci., Ser. A, 8, 1963, 373–395.
- ^[5] GALLAI T. In: Theory of Graphs and Its Applications, Proceedings of the Symposium held in Smolenice in June 1963, Czechoslovak Acad. Sciences, Prague, 1964, 43 - 45.
- JENSEN T., G. ROYLE. J. Graph Theory, 19, 1995, 107–116.
- 71 KERY G. Mat. Lapok, 15, 1964, 204-224.
- KOLEV N., N. NENOV. Compt. rend. Acad. bulg. Sci., 59, 2006, No 1, 25-30.
- ^[9] LATHROP J., S. RADZISZOWSKI. Compute the Folkman Number $F_n(2, 2, 2, 2, 2, 2, 4)$. 23rd Midwest Conference on Combinatorics, Cryptography and Computing, Oct 3-4, 2009 (to appear in JCMCC).
- ^[10] LIN S. J. Combin. Theory, Ser. B, **12**, 1972, 82–92.
- ^[11] NENOV N. Compt. rend. Acad. bulg. Sci., **34**, 1981, 1209–1212 (in Russian).
- [12] NENOV N. Serdica Bulg. Math. Publ., 9, 1983, 161–167 (in Russian).
- ^[13] NENOV N. Compt. rend. Acad. bulg. Sci., **37**, 1984, 301–304 (in Russian).
- ^[14] NENOV N. Discrete Math., **188**, 1998, 297–298.
- ^[15] NENOV N. Ann. Univ. Sofia Fac. Math. Inform., **95**, 2001, 59–69.
- ^[16] NENOV N. Discrete Math., **271**, 2003, 327–334.
- [17] NENOV N. On the vertex Folkman numbers $F_v(2,\ldots,2;r-1)$ and $F_v(2,\ldots,2;r-2)$. Preprint: arXiv: 0903.3151v1[math. C0], 18 Mar 2009, Annuaire Univ. Sofia

Fac. Math. Inform. (submitted 2007).

- ^[18] NENOV N. Serdica Math. J., **35**, 2009, 251–272.
- ^[19] NESETRIL J., V. RÖDL. J. Combin. Theory, Ser. B, **20**, 1976, 243–249.

Faculty of Mathematics and Informatics St Kliment Ohridski University of Sofia 5, J. Bourchier Blvd 1164 Sofia, Bulgaria e-mail: nenov@fmi.uni-sofia.bg