Non-linear Goppa codes

Azniv Kasparian, Tatjana Todorova, Ivan Marinov *

The absolute Galois group

$$
\mathfrak{G}=\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{q}\right)=\left\{\varphi \in \operatorname{Aut}\left(\overline{\mathbb{F}_{q}}\right)|\varphi|_{\mathbb{F}_{q}}=\operatorname{Id}_{\mathbb{F}_{q}}\right\}
$$

of a finite field \mathbb{F}_{q} is the Galois group of the algebraic closure $\overline{\mathbb{F}_{q}}=\cup_{m=1}^{\infty} \mathbb{F}_{q^{m}}$ of \mathbb{F}_{q} over \mathbb{F}_{q}. The group \mathfrak{G} is isomorphic to the pro-finite closure $\widehat{\mathbb{Z}}:=\lim _{\leftarrow}(\mathbb{Z},+) /(n \mathbb{Z},+)$ of the infinite cyclic group $(\mathbb{Z},+)$, i.e., to the projective limit of the finite quotient groups $(\mathbb{Z},+) /(n \mathbb{Z},+)$ of $(\mathbb{Z},+)$. If a group \mathfrak{G} acts on a set M, we say that M is a \mathfrak{G}-module. The \mathfrak{G}-action on M is locally finite if all the \mathfrak{G}-orbits on M are finite and for any $n \in \mathbb{N}$ there are finitely many \mathfrak{G}-orbits on M. The cardinality of an orbit $\operatorname{Orb}_{\mathfrak{G}}(x), x \in M$ is called the degree of $\operatorname{Orb}_{\mathfrak{G}}(x)$ and denoted by $\operatorname{deg} \operatorname{Orb}_{\mathfrak{G}}(x)$ or by $\left|\operatorname{Orb}_{\mathfrak{G}}(x)\right|$. The non-trivial \mathfrak{G}-modules M under consideration have \mathfrak{G}-orbits of arbitrary degree $n \in \mathbb{N}$ and, therefore, infinitely many \mathfrak{G}-orbits.

Let us denote by \mathcal{P} the set of the \mathfrak{G}-orbits on M. If X is a smooth irreducible projective curve, defined over \mathbb{F}_{q}, then \mathcal{P} is naturally isomorphic to the set of the places (i.e., the equivalence classes of the discrete valuations) of the function field $F=\mathbb{F}_{q}(X)$ of X over \mathbb{F}_{q}. The elements of the free \mathbb{Z}-module $\operatorname{Div}(M)$, generated by \mathcal{P} are called divisors on M. The degree

$$
\operatorname{deg}:(\operatorname{Div}(M),+) \longrightarrow(\mathbb{Z},+),
$$

$$
\operatorname{deg}\left(\sum_{j=1}^{s} a_{j} \nu_{j}\right):=\sum_{j=1}^{s} a_{j} \operatorname{deg}\left(\nu_{j}\right) \quad \text { for } \quad a_{j} \in \mathbb{Z}, \nu_{j} \in \mathcal{P} .
$$

is easily seen to be a homomorphism of \mathbb{Z}-modules or abelian groups. For an arbitrary $m \in \mathbb{Z}^{\geq 0}$, we denote by $\operatorname{Div}^{m}(M)$ the set of the divisors of degree m. Note that $\left(\operatorname{Div}^{0}(M),+\right.$) is a subgroup of $(\operatorname{Div}(M),+)$ and fix a subgroup $(\mathcal{F},+)$ of $\left.\operatorname{Div}^{0}(M),+\right)$ of index $h \in \mathbb{N}$. If $M=X$ is a smooth irreducible curve, defined over \mathbb{F}_{q} with function field $F=\mathbb{F}_{q}(X)$ over \mathbb{F}_{q} and $\mathcal{F}=\left\{(f)=(f)_{0}-(f)_{\infty} \mid f \in F^{*}\right\}$ is the group of the principal divisors on X then h is the class number of X. That motivates us to say that h is the class number of M with respect to \mathcal{F}. Note that for an arbitrary $m \in \mathbb{N}$ with $\operatorname{Div}^{m}(M) \neq \emptyset$ there are h linear equivalence classes of divisors of M of degree m. Namely, for an arbitrary $G_{o} \in \operatorname{Div}^{m}(M)$, there is a bijective map

$$
\begin{gathered}
\varphi: \operatorname{Div}^{m}(M) \longrightarrow \operatorname{Div}^{0}(M), \\
\varphi(G)=G-G_{o} .
\end{gathered}
$$

[^0]A divisor $G=a_{1} \nu_{1}+\ldots+a_{s} \nu_{s}$ with $a_{j} \in \mathbb{Z}, \nu_{j} \in \mathcal{P}$ is effective if $a_{j} \geq 0$ for $\forall 1 \leq j \leq s$. Let $\operatorname{Div} \geq 0(M)$ be the set of the effective divisors of M. The ζ-function of M is the formal power series

$$
\zeta_{M}(t)=\prod_{\nu \in \mathcal{P}}\left(\frac{1}{1-t^{\operatorname{deg} \nu}}\right) .
$$

Note that $\operatorname{deg}(n \nu)=n \operatorname{deg}(\nu)$ for $\forall n \in \mathbb{Z}^{\geq 0}, \nu \in \mathcal{P}$ and expand

$$
\frac{1}{1-t^{\operatorname{deg} \nu}}=\sum_{n=0}^{\infty} t^{\operatorname{deg}(n \nu)}
$$

as a sum of a geometric progression. Then

$$
\zeta_{M}(t)=\prod_{\nu \in \mathcal{P}}\left(\sum_{n=0}^{\infty} t^{\operatorname{deg}(n \nu)}\right)=\sum_{D \in \operatorname{Div} \geq 0(M)} t^{\operatorname{deg}(D)}=\sum_{i=0}^{\infty} \mathcal{A}_{i} t^{i}
$$

for the numbers \mathcal{A}_{i} of the effective divisors of M of degree $i \in \mathbb{Z}^{\geq 0}$.
For an arbitrary divisor $G=a_{1} \nu_{1}+\ldots+a_{s} \nu_{s}$ on M with $a_{j} \in \mathbb{Z} \backslash\{0\}$, introduce the sero

$$
G^{+}:=\sum_{a_{j}>0} a_{i} \nu_{j} \in \operatorname{Div}_{\geq 0}(M)
$$

of G and the pole

$$
G^{-}:=\sum_{a_{j}<0}\left(-a_{j}\right) \nu_{j} \in \operatorname{Div}_{\geq 0}(M)
$$

of G, in order to represent

$$
G=G^{+}-G^{-} .
$$

For any divisor $G=a_{1} \nu_{1}+\ldots+a_{s} \nu_{s} \in \operatorname{Div}(M)$, introduce the support

$$
\operatorname{Supp} G:=\left\{\nu_{j} \mid a_{j} \neq 0\right\} \subset \mathcal{P}
$$

of G as the set of the \mathfrak{G}-orbits on M with non-zero coefficients in G. By the very definition of a \mathbb{Z}-module, all divisors G have finite support. Let us fix a sum $D=P_{1}+\ldots+P_{n}$ of \mathfrak{G}-fixed points $P_{j} \in M$, viewed as orbits of degree 1. A divisor $G \in \operatorname{Div}(M)$ is regular at D if $\operatorname{Supp}(G) \cap \operatorname{Supp}(D)=\emptyset$. If any linear equivalence class $\left[G_{j}\right], 1 \leq j \leq h$ of divisors of M of degree $m \in \mathbb{N}$ has an effective representative G_{j}, regular at D, we say that D is m-saturated. Let $\left(G_{j}+\mathcal{F}\right)_{\geq 0}:=\left(G_{j}+\mathcal{F}\right) \cap \operatorname{Div}_{\geq 0}(M)$ and represent

$$
\operatorname{Div}_{\geq 0}^{m}(M)=\left(G_{1}+\mathcal{F}\right)_{\geq 0} \coprod \ldots \coprod\left(G_{h}+\mathcal{F}\right)_{\geq}
$$

as a disjoint union. For an arbitrary finite set S, we denote by $|S|$ the cardinality of S. Note that if G_{j} is regular at D then for any $\varphi \in \mathcal{F}$ with $G_{j}+\varphi=G_{j}+\varphi^{+}-\varphi^{-} \geq 0$ one has $G_{j} \geq \varphi^{-}$, due to $\operatorname{Supp}\left(\varphi^{+} \cap \operatorname{Supp}\left(\varphi^{-}=\emptyset\right.\right.$. The effectiveness of G_{j} and φ^{-}implies $\operatorname{Supp}\left(\varphi^{-}\right) \subset \operatorname{Supp}\left(G_{j}\right)$, whereas $\operatorname{Supp}\left(\varphi^{-}\right) \cap \operatorname{Supp}(D)=\emptyset$. Thus, for an arbitrary m saturated divisor $D=P_{1}+\ldots+P_{n}$ with $P_{j} \in \mathcal{P}$ of degree $\operatorname{deg}\left(P_{j}\right)=1$, there is an weight function

$$
\mathrm{wt}_{D}: \operatorname{Div}_{\geq 0}^{m}(M)=\coprod_{j=1}^{h}\left(G_{j}+\mathcal{F}\right)_{\geq 0} \longrightarrow\{0,1, \ldots, n\}
$$

$$
\operatorname{wt}_{D}\left(G_{j}+\varphi\right):=n-|\operatorname{Supp}(\varphi) \cap \operatorname{Supp}(D)|=n-\left|\operatorname{Supp}\left(\varphi^{+}\right) \cap \operatorname{Supp}(D)\right|
$$

of $\operatorname{Div}_{\geq}^{m}(M)$ with respect to D. Note that $\varphi=\varphi^{+}-\varphi^{-} \in \mathcal{F} \subset \operatorname{Div}^{0}(M)$ and $\varphi^{-} \leq G_{j}$ imply $\overline{\operatorname{deg}}\left(\varphi^{+}\right)=\operatorname{deg}\left(\varphi^{-}\right) \leq \operatorname{deg} G_{j}=m$, whereas $\left|\operatorname{Supp}\left(\varphi^{+}\right)\right| \leq \operatorname{deg}\left(\varphi^{+}\right) \leq m$. As a result, $\left|\operatorname{Supp}\left(\varphi^{+}\right) \cap \operatorname{Supp}(D)\right| \leq\left|\operatorname{Supp}\left(\varphi^{+}\right)\right| \leq m$ and $\operatorname{wt}_{D}\left(G_{j}+\varphi\right) \geq n-m$ for $\forall G_{j}+\varphi \in \operatorname{Div}_{\geq 0}^{m}(M)$. From now on, we consider only $m<n$ and refer to $n-m$ as to the designed minimum weight of $\operatorname{Div}_{\geq 0}^{m}(M)$ with respect to D.

Note that the set $\operatorname{Div}_{\geq 0}^{m}(M)$ is finite, as far as there are finitely many effective divisors $\varphi^{+}, \varphi^{-} \in \operatorname{Div}^{\geq 0}(M)$ of degree $\leq m$. We treat $\operatorname{Div}_{\geq 0}^{m}(M)$ as a non-linear code and denote by $\mathcal{Q}_{m}^{(s)}$ the number of the words $G_{j}+\varphi \in \operatorname{Div}_{\geq 0}^{m}(M)$ of D-weight wt ${ }_{D}\left(G_{j}+\varphi\right)=s$. The homogeneous polynomial

$$
\mathcal{W}_{m}(x, y):=\sum_{i=0}^{m} \mathcal{W}_{m}^{(n-m+i)} x^{m-i} y^{n-m+i} \in \mathbb{Z}[x, y]^{(n)}
$$

of degree n is referred to as the weight enumerator of $\operatorname{Div}_{\geq 0}^{m}(M)$ with respect to D.
In order to represent $\mathcal{W}_{m}(x, y)$ by the homogeneous weight enumerators of MDS-codes, let $C \subset \mathbb{F}_{q}^{n}$ be an \mathbb{F}_{q}-linear subspace of $\operatorname{dim}_{\mathbb{F}_{q}} C=k<n$. The weight of $c=\left(c_{1}, \ldots, c_{n}\right) \in C$ is the number of the non-zero components $c_{j} \neq 0$ of c. The minimum weight w of C is the minimum weight of a non-zero word of C. Singleton Bound asserts that $n+1-k-w \geq 0$. The linear codes $C_{n, w}$, attaining the equality $n+1-k-w=0$ are called Maximum Distance Separable or, briefly, MDS-ones. An arbitrary MDS-code $C \subset \mathbb{F}_{q}^{n}$ of minimum weight w has

$$
\mathcal{M}_{n, w}^{(s)}=\binom{n}{s} \sum_{j=0}^{s-w}(-1)^{j}\binom{s}{j}\left(q^{s+1-w-j}-1\right)
$$

words of weight $w \leq s \leq n$. The homogeneous polynomial

$$
\mathcal{M}_{n, w}(x, y):=x^{n}+\sum_{s=w}^{n} \mathcal{M}_{n, w}^{(s)} x^{n-s} y^{s}
$$

of degree n is called the homogeneous weight enumerator of $C_{n, w}$.
Let $C \subset \mathbb{F}_{q}^{n}$ be an \mathbb{F}_{q}-linear code of $\operatorname{dim}_{\mathbb{F}_{q}} C=k$ and minimum weight $w \leq n+1-k$ with dual

$$
C^{\perp}:=\left\{x \in \mathbb{F}_{q}^{n} \mid\langle x, c\rangle=\sum_{i=1}^{n} x_{i} c_{i}=0 \quad \text { for } \quad \forall c \in C\right\}
$$

of minimum weight $w^{\perp} \leq k+1$. Let $\mathcal{W}_{C}^{(s)}$ be the number of the words $c \in C \subset \mathbb{F}_{q}^{n}$ with s non-zero components and

$$
\mathcal{W}_{C}(x, y):=x^{n}+\sum_{s=w}^{n} \mathcal{W}_{C}^{(s)} x^{n-s} y^{s} \in \mathbb{Z}[x, y]^{(n)}
$$

be the weight enumerator of C. In [3] Duursma shows the existence of a unique polynomial

$$
P_{C}(t)=\sum_{i=0}^{r(C)} a_{i} t^{i} \in \mathbb{Q}[t]
$$

of degree $\operatorname{deg} P_{C}=r(C):=n+2-w-w^{\perp}$, such that

$$
\frac{\mathcal{W}_{C}(x, y)-x^{n}}{q-1}=\sum_{i=0}^{r(C)} a_{i} \frac{\mathcal{M}_{n, w+i}(x, y)-x^{n}}{q-1}
$$

After showing

$$
\begin{equation*}
\frac{\mathcal{M}_{n, n-m+i}(x, y)-x^{n}}{q-1}=\operatorname{Coeff}_{t^{m-i}}\left(\frac{[y(1-t)+x t]^{n}}{(1-t)(1-q t)}\right) \tag{1}
\end{equation*}
$$

in Proposition 1 from [3], he observes that $P_{C}(t)$ is uniquely determined by the equality

$$
\frac{\mathcal{W}_{C}(x, y)-x^{n}}{q-1}=\operatorname{Coeff}_{t^{n-w}}\left(P_{C}(x, y) \frac{[y(1-t)+x t]^{n}}{(1-t)(1-q t)}\right)
$$

and calls $P_{C}(t)$ the ζ-polynomial of C. Suppose that $X / \mathbb{F}_{q} \subset \mathbb{P}^{N}\left(\overline{\mathbb{F}_{q}}\right)$ is a smooth irreducible curve of genus g, defined over \mathbb{F}_{q} and $D=P_{1}+\ldots+P_{n}$ is an m-saturated divisor on X, which consists of \mathbb{F}_{q}-rational points P_{i}. Choose effective representatives G_{1}, \ldots, G_{h} of the linear equivalence classes of the divisors of $F=\mathbb{F}_{q}(X)$ of degree $2 g-2<m<n$, which are regular at D and consider the Riemann-Roch spaces

$$
\mathcal{L}\left(G_{j}\right)=H^{0}\left(X, \mathcal{O}_{X}\left(\left[G_{j}\right]\right)\right):=\left\{f \in \mathbb{F}_{q}(X)^{*} \mid(f)+G_{j} \geq 0\right\} \cup\{0\}
$$

Let

$$
\begin{gathered}
\mathcal{E}_{D}: \mathcal{L}\left(G_{j}\right) \longrightarrow \mathbb{F}_{q}^{n} \\
\mathcal{E}_{D}(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)
\end{gathered}
$$

be the evaluation map at D and $C_{j}:=\mathcal{E}_{D} \mathcal{L}\left(G_{j}\right) \subset \mathbb{F}_{q}^{n}$ be the images of $\mathcal{L}\left(G_{j}\right)$ under \mathcal{E}_{D}, viewed as linear codes of length n. Note that the poles of $f \in \mathcal{L}\left(G_{j}\right)$ are contained in G_{j} and form an effective divisor of degree $\leq m$. Therefore $f \in \mathcal{L}\left(G_{j}\right)$ has at most m zeros, counted with their multiplicities and the word $\mathcal{E}_{D}(f) \in C_{j}$ has at least $n-m$ non-zero components. In other words, the non-zero words of C_{j} are of weight $\geq n-m$. The ζ-function of X is

$$
\zeta_{X}(t)=\frac{L_{X}(t)}{(1-t)(1-q t)}
$$

for a polynomial $L_{X}(t) \in \prod_{i=1}^{2 g}\left(1-\omega_{i} t\right) \in \mathbb{Z}[t]$ with $L_{X}(0)=1, L_{X}(1)=h$ and $\omega_{i} \in \mathbb{C}$, $\left|\omega_{i}\right|=\sqrt{q}$ for $\forall 1 \leq i \leq g$. We call $L_{X}(t)$ the ζ-polynomial of X. Duursma's considerations from [2] imply that

$$
\begin{array}{r}
\operatorname{Coeff}_{t^{m}}\left(L_{X}(t) \frac{[y(1-t)+x t]^{n}}{(1-t)(1-q t)}\right)=\sum_{i=1}^{h} \frac{\mathcal{W}_{C_{i}}(x, y)-x^{n}}{q-1}= \\
\operatorname{Coeff}_{t^{m}}\left(\sum_{i=1}^{h} t^{m-n+w_{i}} P_{C_{i}}(t) \frac{[y(1-t)+x t]^{n}}{(1-t)(1-q t)}\right) \tag{2}
\end{array}
$$

for the minimal weights w_{i} of $C_{i}=\mathcal{E}_{D} \mathcal{L}\left(G_{i}\right)$. Note that $\sum_{i=1}^{h} \frac{\mathcal{W}_{C_{i}}(x, y)-x^{n}}{q-1}$ is the weight enumerator of $\operatorname{Div}_{\geq 0}^{m}(X)$ with respect to D and the ζ-polynomials $P_{C_{i}}(t)$ of algebro-geometric

Goppa codes $C_{i}=\mathcal{E}_{D} \mathcal{L}\left(G_{i}\right), 1 \leq i \leq h$ are related with the ζ-polynomial $L_{X}(t)$ of X by the equality

$$
L_{X}(t)=\sum_{i=1}^{h} t^{m-n+w_{i}} P_{C_{i}}(t) .
$$

That motivates Duursma to call the polynomial $P_{C}(t)$ of an abstract linear code $C^{\prime} \operatorname{subset} \mathbb{F}_{Q}^{n}$ the ζ-polynomial of C.

The next proposition shows the existence of a unique ζ-polynomial $P_{m}^{D}(t)=\sum_{i=0}^{m} a_{i} t^{i} \in \mathbb{Q}[t]$ of $\operatorname{deg} P_{m}^{D}(t) \leq m$ of the effective divisors $\operatorname{Div}_{\geq 0}^{m}(M)$ of a ζ-module M of degree m with respect to an m-saturated sum D of \mathfrak{G}-fixed points on M.

Proposition 1. Let M be a locally finite $\mathfrak{G}=\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{q}\right)$-module and $D=P_{1}+\ldots+P_{n} \in$ $\operatorname{Div}(M)$ be an m-saturated sum of \mathfrak{G}-fixed points P_{i} on M for some $m<n$. Denote by $\mathcal{W}_{m}(x, y)$ the weight enumerator of $\operatorname{Div}_{\geq 0}^{m}(M)$ with respect to D and put $\mathcal{M}_{n, w}(x, y)$ for the weight enumerator of an MDS-code $C_{n, w} \subset \mathbb{F}_{q}^{n}$ of minimal weight w. Then there is a unique polynomial $P_{m}^{D}(t)=\sum_{i=0}^{m} a_{i} t^{i} \in \mathbb{Q}[t]$ of degree $\operatorname{deg} P_{m}^{D} \leq m$ with

$$
\begin{equation*}
\mathcal{W}_{m}(x, y)=\sum_{i=0}^{m} a_{i} \frac{\mathcal{M}_{n, n-m+i}(x, y)-x^{n}}{q-1} \tag{3}
\end{equation*}
$$

The polynomial $P_{m}^{D}(t)$ is uniquely determined by the equality

$$
\begin{equation*}
\mathcal{W}_{m}(x, y)=\operatorname{Coeff}_{t^{m}}\left(P_{m}^{D}(t) \frac{[y(1-t)+x t]^{n}}{(1-t)(1-q t)}\right), \tag{4}
\end{equation*}
$$

where $\operatorname{Coeff}_{t^{m}}(f(t))$ stands for the coefficient of t^{m} in a formal power series $f(t) \in \mathbb{Q}[[t]]$. We call $P_{m}^{D}(t)=\sum_{i=0}^{m} a_{i} t^{i} \in \mathbb{Q}[t]$ the ζ-polynomial of $\operatorname{Div}_{\geq 0}^{m}(M)$ with respect to D.

Proof. Note that

$$
\mathcal{W}_{m}(x, y):=\sum_{i=0}^{m} \mathcal{W}_{m}^{(n-m+i)} x^{m-i} y^{n-m+i} \in \mathbb{Z}[x, y]^{(n)}
$$

belongs to the \mathbb{Q}-span of the homogeneous monomials $x 6 m-i y^{n-m+i}$ of total degree n, which are of degree $\geq n-m$ with respect to y. For any $0 \leq i \leq m$ one has

$$
\frac{\mathcal{M}_{n, n-m+i}(x, y)-x^{n}}{q-1}=\frac{1}{q-1}\left(\sum_{s=n-m+i}^{n} \mathcal{M}_{n, n-m+i}^{(s)} x^{n-s} y^{s}\right)
$$

from $\operatorname{Span}_{\mathbb{Q}}\left\{x^{n-s} y^{s} \mid n-m+i \leq s \leq n\right\}$ with non-zero coefficient

$$
\frac{1}{q-1} \mathcal{M}_{n, n-m+i}^{(n-m+i)}=\binom{n}{n-m+i}=\binom{n}{m-i}
$$

of $x^{m-i} y^{n-m+i}$. Therefore $\frac{\mathcal{M}_{n, n-m+i}(x, y)-x^{n}}{q-1}$ with $0 \leq i \leq m$ are \mathbb{Q}-linearly independent and form a \mathbb{Q}-basis of $\operatorname{Span}_{\mathbb{Q}}\left\{x^{n-s} y^{s} \mid n-m \leq s \leq n\right\}$. Now, $\mathcal{W}_{m}(x, y) \in \operatorname{Span}_{\mathbb{Q}}\left\{x^{n-s} y^{s} \mid n-m \leq\right.$ $s \leq n\}$ has uniquely determined coordinates a_{i} with respect to the basis $\frac{\mathcal{M}_{n, n-m+i}(x, y)-x^{n}}{q-1}$, which satisfy (??). Making use of (1), we note that

$$
\frac{\mathcal{M}_{n, n-m+i}(x, y)-x^{n}}{q-1}=\operatorname{Coeff}_{t^{m}}\left(t^{i} \frac{[y(1-t)+x t]^{n}}{(1-t)(1-q t)}\right) \quad \text { for } \quad \forall 0 \leq i \leq m
$$

Thus, there exist uniquely determined $a_{i} \in \mathbb{Q}$ with

$$
\mathcal{W}_{m}(x, y)=\sum_{i=0}^{m} a_{i} \operatorname{Coeff}_{t^{m}}\left(t^{i} \frac{[y(1-t)+x t]^{n}}{(1-t)(1-q t)}\right)=\operatorname{Coeff}_{t^{m}}\left(\sum_{i=0}^{m} a_{i} t^{i} \frac{[y(1-t)+x t]^{n}}{(1-t)(1-q t)}\right)
$$

so that the polynomial $P_{m}^{D}(t):=\sum_{i=0}^{m} a_{i} t^{i}$ can be defined by (4).

Combining (4) with (2), one observes that for any smooth irreducible curve $X / \mathbb{F}_{q} \subset$ $\mathbb{P}^{N}\left(\overline{\mathbb{F}_{q}}\right)$ of genus $g \geq 1$, any natural number $2 g-2<m<n$ and any m-saturated sum $D=P_{1}+\ldots+P_{n}$ of \mathbb{F}_{q}-rational points $P_{i} \in X\left(\mathbb{F}_{q}\right)$, the ζ-function

$$
\zeta_{X, m}^{D}(t):=\frac{P_{m}^{D}(t)}{(1-t)(1-q t)} \in \mathbb{Q}[[t]]
$$

of $\operatorname{Div}_{\geq 0}^{m}(X)$ with respect to D coincides with the ζ-function

$$
\zeta_{X}(t)=\frac{L_{X}(t)}{(1-t)(1-q t)} \in \mathbb{Z}[[t]]
$$

of X. That leads to the next
Definition 2. A locally finite module M over $\mathfrak{G}=\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{q}\right)$ is (m, D)-balanced if the ζ-function

$$
\zeta_{m}^{D}(t):=\frac{P_{m}^{D}(t)}{(1-t)(1-q t)}=\zeta_{M}(t)
$$

of $\operatorname{Div}_{\geq 0}^{m}(M)$ with respect to the m-saturated sum $D=P_{1}+\ldots+P_{n}$ of \mathfrak{G}-fixed points $P_{i} \in M$ coincides with the ζ-function of M.

It is well known that the series

$$
\sum_{i=0}^{\infty} \mathcal{A}_{i} t^{i}=\frac{P_{m}^{D}(t)}{(1-t)(1-q t)}
$$

is a rational function with polynomial denominator

$$
q t^{2}-(q+1) t+1
$$

if and only if the sequence $\left\{\mathcal{A}_{i}\right\}_{i=0}^{\infty}$ satisfies the recurrence relation

$$
\mathcal{A}_{n}-(q+1) \mathcal{A}_{n-1}+q \mathcal{A}_{n-2}=0
$$

for sufficiently large $n \geq n_{0}$. This, in turn, is equivalent to

$$
\mathcal{A}_{n}=C_{1} q^{n}+C_{2} \quad \text { for } \quad \forall n \geq n_{0}
$$

and some constants $C_{1}, C_{2} \in \mathbb{C}$. In fact, C_{1}, C_{2} are rational numbers, due to

$$
C_{1}=\frac{\mathcal{A}_{n+1}-\mathcal{A}_{n}}{q^{n}(q-1)}, \quad C_{2}=\frac{q \mathcal{A}_{n}-\mathcal{A}_{n+1}}{q-1}
$$

with $\mathcal{A}_{n}, \mathcal{A}_{n+1} \in \mathbb{Z}^{\geq 0}$. Note also that

$$
1=\zeta_{M}(0)=\mathcal{A}_{0}=a_{0}
$$

so that $P_{m}^{D}(t)$ can be represented in the form

$$
P_{m}^{D}(t)=\prod_{i=1}^{\operatorname{deg} P_{m}^{D}}\left(1-\omega_{i} t\right)
$$

for some complex numbers $\omega_{i} \in \mathbb{C}$.
Recall that the connected sum of two smooth irreducible curves $X_{1} / \mathbb{C} \subset \mathbb{P}^{N_{1}}(\mathbb{C}), X_{2} / \mathbb{C} \subset$ $\mathbb{P}^{N_{2}}(\mathbb{C})$, defined over the field \mathbb{C} of complex numbers is obtained from the disjoint union $X_{1} \amalg X_{2}$ by removing small discs from X_{1}, X_{2} and gluing along their boundaries. The boundary of a disc is a circle and has vanishing Euler number. That is why, the Euler number of $X_{1} \sharp X_{2}$ equals

$$
e\left(X_{1} \sharp X_{2}\right)=e\left(X_{1}\right)+e\left(X_{2}\right)-2 .
$$

Note that one of the removed small discs from X_{1} and X_{2} is homotopic to a point, so that up to a homotopy, the connected sum can be obtained from $X_{1} \amalg X_{2}$ by removing a projective line $\mathbb{P}^{1}(\mathbb{C})$ and gluing along subsets of X_{1} and X_{2} with vanishing Euler numbers.

Now, suppose that M_{1} and M_{2} are locally finite modules over $\mathfrak{G}=\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{1}\right)$. Then the disjoint union $M_{1} \amalg M_{2}$ is a \mathfrak{G}-module with ζ-function

$$
\zeta_{M_{1}} \amalg M_{2}(t)=\zeta_{M_{1}}(t) \zeta_{M_{2}}(t),
$$

as far as the union of the \mathfrak{G}-orbits on M_{j} of degree d is the set of the \mathfrak{G}-orbits on $M_{1} \amalg M_{2}$ of degree d. In particular, if M_{1} is $\left(m_{1}, D_{1}\right)$-balanced and M_{2} is $\left(m_{2}, D_{2}\right)$-balanced then

$$
\zeta_{M_{1}} \amalg_{M_{2}}(t)=\frac{P_{m_{1}}^{D_{1}}(t) P_{m_{2}}^{D_{2}}(t)}{(1-t)^{2}(1-q t)^{2}}
$$

reveals that $M_{1} \amalg M_{2}$ cannot be balanced. We form the connected sum $M_{1} \sharp_{\mathbb{F}_{q}} M_{2}$ of M_{1} and M_{2} over \mathbb{F}_{q} by removing a projective line $\mathbb{P}^{1}\left(\overline{\mathbb{F}_{q}}\right)$ form the disjoint union $M_{1} \amalg M_{2}$. The ζ-function

$$
\zeta_{M_{1} \mathbb{H}_{\mathbb{F}_{q}} M_{2}}(t)=\zeta_{M_{1} \amalg M_{2}}(t): \zeta_{\mathbb{P}^{1}\left(\overline{\mathbb{F}_{q}}\right)}(t)=\frac{\zeta_{M_{1}}(t) \zeta_{M_{2}}(t)}{\zeta_{\mathbb{P}^{1}\left(\overline{\mathbb{F}_{q}}\right)}(t)}=(1-t)(1-q t) \zeta_{M_{1}}(t) \zeta_{M_{2}}(t) .
$$

It is clear that if M_{1} is (m_{1}, D_{1})-balanced and M_{2} is $\left(m_{2}, D_{2}\right)$-balanced then $M_{1} \sharp_{\mathbb{F}_{q}} M_{2}$ is ($m_{1}+m_{2}, D_{1}+D_{2}$)-balanced and the ζ-function

$$
\zeta_{M_{1} \sharp_{\mathbb{F}_{q}} M_{2}}(t)=\frac{P_{m_{1}}^{D_{1}}(t) P_{m_{2}}^{D_{2}}(t)}{(1-q)(1-q t)}
$$

Lemma 3. (i) Let M be a locally finite $\mathfrak{G}=\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{q}\right)$-module with ζ-function

$$
\zeta_{M}(t)=\frac{P_{M}(t)}{(1-t)(1-q t)}
$$

for some polynomial

$$
P_{M}(t)=\prod_{i=1}^{d}\left(1-\omega_{i} t\right) \in \mathbb{Q}[t]
$$

of $\operatorname{deg} P_{M}(t)=d$ with $P_{m}(0)=1$ and

$$
\check{P_{M}}(t):=\prod_{i=1}^{d}\left(1-\frac{q}{\omega_{i}} t\right)
$$

Then the product $P_{M}^{*}(t):=P_{M}(t) \check{P_{M}}(t)$ satisfies the functional equation

$$
P_{M}^{*}(t)=P_{M}^{*}\left(\frac{1}{q t}\right) q^{d} t^{2 d}
$$

and has leading coefficient $\mathrm{LC}\left(P_{M}^{*}(t)\right)=q^{d}$.
(ii) If a polynomial $P^{*}(t) \in \mathbb{R}[t]$ of degree $\operatorname{deg} P^{*}(t)=\delta$ with $P^{*}(0)=1$ and leading coefficient $\mathrm{LC}\left(P^{*}(t)\right)=q^{\frac{\delta}{2}}$ satisfies the functional equation

$$
P^{*}(t)=P^{*}\left(\frac{1}{q t}\right) q^{\frac{\delta}{2}} t^{\delta},
$$

then $\frac{1}{\omega_{i}} \in \mathbb{C}$ is a root of $P^{*}(t)$ exactly when $\frac{\omega_{i}}{q} \in \mathbb{C}$ is a root of $P^{*}(t)$.
Proof. (i) Straightforwardly,

$$
\begin{aligned}
P_{M}^{*}\left(\frac{1}{q t}\right) q^{d} t^{2 d}=P_{M}\left(\frac{1}{q t}\right) \check{P_{M}}\left(\frac{1}{q t}\right) q^{d} t^{2 d}= & {\left[\prod_{i=1}^{d}\left(1-\frac{\omega_{i}}{q t}\right)\left(1-\frac{1}{\omega_{i} t}\right)\right] q^{d} t^{2 d}=} \\
& \prod_{i=1}^{d}\left(1-\omega_{i} t\right)\left(1-\frac{q}{\omega_{i}} t\right)=P_{M}(t) \check{P_{M}}(t)=P_{M}^{*}(t)
\end{aligned}
$$

by

$$
\left.\left(1-\frac{\omega_{i}}{q t}\right)\left(1-\frac{1}{\omega_{i} t}\right)=\frac{q t^{2}}{(} 1-\omega_{i} t\right)\left(1-\frac{q}{\omega_{i}} t\right) .
$$

(ii) Due to $P^{*}(0)=1$, one has $P^{*}(t)=\prod_{i=1}^{\delta}\left(1-\omega_{i} t\right)$ for the reciprocals $\omega_{i} \in \mathbb{C}$ of the complex roots of $P^{*}(t)$. Making use of

$$
1-\frac{\omega_{i}}{q t}=\frac{\left(-\omega_{i}\right)}{q t}\left(1-\frac{q}{\omega_{i}} t\right)
$$

one observes that

$$
\begin{array}{r}
P^{*}\left(\frac{1}{q t}\right) q^{\frac{\delta}{2}} t^{\delta}=\left[\prod_{i=1}^{\delta}\left(1-\frac{\omega_{i}}{q t}\right)\right] q^{\frac{\delta}{2}} t^{\delta}=\frac{\prod_{i=1}^{\delta}\left(-\omega_{i}\right)}{q^{\delta} t^{\delta}}\left[\prod_{i=1}^{\delta}\left(1-\frac{q}{\omega_{i}} t\right)\right] q^{\frac{\delta}{2}} t^{\delta}= \\
\frac{\mathrm{LC}\left(P^{*}\right)}{q^{\frac{\delta}{2}}}\left[\prod_{i=1}^{\delta}\left(1-\frac{q}{\omega_{i}}\right)\right]=\prod_{i=1}^{\delta}\left(1-\frac{q}{\omega_{i}} t\right)
\end{array}
$$

coincides with $P^{*}(t)=\prod_{i=1}^{\delta}\left(1-\omega_{i} t\right)$ if and only if for any root $\frac{1}{\omega_{i}} \in \mathbb{C}$ of $P^{*}(t)=0$ the complex number $\frac{\omega_{i}}{q} \in \mathbb{C}$ is also a root of $P^{*}(t)=1$.

Let M be a \mathfrak{G}-module with ζ-polynomial

$$
P_{M}(t)=\prod_{i=1}^{d}\left(1-\omega_{i} t\right)
$$

for some $\omega_{i} \in \mathbb{C}^{*}$. If there is a \mathfrak{G}-module \check{M} with ζ-polynomial

$$
\check{P_{M}}(t):=\prod_{i=1}^{d}\left(1-\frac{q}{\omega_{i}} t\right)
$$

then

$$
P_{M}^{*}(t):=P_{M}(t) \check{P_{M}}(t)=P_{M \sharp \mathbb{R}_{q} \check{M}}(t)
$$

is the ζ-polynomial of the connected sum of M and \bar{M} over \mathbb{F}_{q}.
Let $C \subset \mathbb{F}_{q}^{n}$ be an \mathbb{F}_{q}-linear code of $\operatorname{dimension}^{\operatorname{dim}_{\mathbb{F}_{q}} C=k \text { and minimum weight } w}$ with dual C^{\perp} of minimum weight w^{\perp}. The deviation $g:=n+1-k-w$, respectively, $g^{\perp}:=n+1-(n-k)-w^{\perp}=k+1-w^{\perp}$ from the equality in the Singleton Bound $g \geq 0$, respectively, $g^{\perp} \geq 0$ is called the genus of C, respectively, C^{\perp}. The ζ-polynomials $P_{C}(t), P_{C^{\perp}}(t) \in \mathbb{Q}[t]$ of C and C^{\perp} are of degree $g+g^{\perp}$. Mac Williams identities for the weight distribution of C and C^{\perp} are equivalent to the equality

$$
P_{C^{\perp}}(t)=P_{C}\left(\frac{1}{q t}\right) q^{g} t^{g+g^{\perp}}
$$

for their ζ-polynomials. An \mathbb{F}_{q}-linear code $C \subset \mathbb{F}_{q}^{n}$ is formally self-dual if C and C^{\perp} have one and a same number of words od weight s for all $0 \leq s \leq n$. The formal self-duality of C is equivalent to the functional equation

$$
P_{C}(t)=P_{C}\left(\frac{1}{q t}\right) q^{g} t^{2 g}
$$

for its ζ-polynomial $P_{C}(t)$. That motivates the next

Lemma-Definition 4. Let M be a locally finite module over $\mathfrak{G}=\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{q}\right)$ with ζ-function

$$
\zeta_{M}(t)=\frac{P_{M}(t)}{(1-t)(1-q t)}
$$

for some polynomial $P_{M}(t) \in \mathbb{Q}[t]$ of even degree $\operatorname{deg} P_{M}(t)=2 d$ and $R(t) \in \mathbb{Q}[[t]]$ be the formal power series, defined by the equality

$$
\begin{equation*}
R(t):=(q-1) t^{1-d} \zeta_{M}(t)+h\left[\frac{t^{1-d}}{1-t}-\frac{q^{d} t^{d}}{1-q t}\right] \in \mathbb{Q}[[t]] \tag{5}
\end{equation*}
$$

Then the following conditions are equivalent:
(i) $P_{M}(t)$ satisfies the functional equation

$$
\begin{equation*}
P_{M}(t)=P_{M}\left(\frac{1}{q t}\right) q^{d} t^{2 d} \tag{6}
\end{equation*}
$$

(ii) the rational function

$$
\begin{equation*}
t^{1-d} \zeta_{M}(t)=\left(\frac{1}{q t}\right)^{1-d} \zeta_{M}\left(\frac{1}{q t}\right) \tag{7}
\end{equation*}
$$

is invariant under the substitution $t \mapsto \frac{1}{q t}$;
(iii) $R(t)$ is a Laurent polynomial of the form

$$
\begin{equation*}
R(t)=R_{0}+\sum_{i=1}^{d-1} R_{i}\left(t^{i}+\frac{1}{q^{i} t^{i}}\right) \in \operatorname{Span}_{\mathbb{Q}}\left\{\left.t^{i}+\frac{1}{q^{i} t^{i}} \right\rvert\, 0 \leq i \leq d-1\right\} \tag{8}
\end{equation*}
$$

If there holds one and, therefore, any one of the aforementioned conditions, we say that the \mathfrak{G}-module M is formally self-dual.

Proof. Making use of

$$
\left(1-\frac{1}{q t}\right)\left(1-\frac{q}{q t}\right)=q^{-1} t^{-2}(1-t)(1-q t)
$$

one observes that

$$
\left(\frac{1}{q t}\right)^{1-d} \zeta_{M}\left(\frac{1}{q t}\right)=q^{d-1} t^{d-1} \frac{P_{M}\left(\frac{1}{q t}\right)}{\left(1-\frac{1}{q t}\right)\left(1-\frac{1}{t}\right)}=q^{d} t^{d+1} \frac{P_{M}\left(\frac{1}{q t}\right)}{(1-t)(1-q t)}
$$

coincides with

$$
t^{1-d} \zeta_{M}(t)=t^{1-d} \frac{P_{M}(t)}{(1-t)(1-q t)}
$$

if and only if

$$
t^{1-d} P_{M}(t)=q^{d} t^{d+1} P_{M}\left(\frac{1}{q t}\right)
$$

After multiplication by t^{d-1}, this amounts to (6) and proves the equivalence of (i) and (ii).

Note that $R(t):=\sum_{i=0}^{\infty} R_{i-d+1} t^{i-d+1} \in \mathbb{Q}[[t]]$ can be defined by the equalities

$$
\begin{equation*}
R_{i-d+1}=(q-1) \mathcal{A}_{i}+h\left(1-q^{i-d+1}\right) \quad \text { for } \quad \forall i \in \mathbb{Z}^{\geq 0} \tag{9}
\end{equation*}
$$

Note that the rational function

$$
\operatorname{Phi}(t):=\frac{t^{1-d}}{1-t}-\frac{q^{d} t^{d}}{1-q t}
$$

is invariant under the substitution $t \mapsto \frac{1}{q t}$, according to

$$
\left(\frac{1}{q t}\right)^{1-d} \cdot \frac{1}{1-\frac{1}{q t}}=-\frac{q^{d} t^{d}}{1-q t}
$$

and

$$
q^{d}\left(\frac{1}{q t}\right)^{d} \cdot \frac{1}{1-\frac{q}{q t}}=-\frac{t^{1-d}}{1-t}
$$

Therefore, (7) is equivalent to the invariance

$$
\begin{equation*}
R(t)=R\left(\frac{1}{q t}\right) \tag{10}
\end{equation*}
$$

of $R(t):=(q-1) t^{1-d} \zeta_{M}(t)+h \Phi(t)$ under the transformation $t \mapsto \frac{1}{q t}$. The ζ-function $\zeta_{M}(t)=\sum_{i=0}^{\infty} \mathcal{A}_{i} t^{i}$ has no pole at $t=0$. The power series

$$
\Phi(t)=t^{1-d}\left(\sum_{s=0}^{\infty} t^{s}\right)-q^{d} t^{d}\left(\sum_{s=0}^{\infty} q^{s} t^{s}\right)=\sum_{s=1-d}^{\infty} \Phi_{s} t^{s}
$$

has terms of degree $\geq 1-d$, as well as the power series

$$
t^{1-d} \zeta_{M}(t)=t^{1-d}\left(\sum_{i=0}^{\infty} \mathcal{A}_{i} t^{i}\right)
$$

Therefore $R(t)=\sum_{i=1-d}^{\infty} R_{i} t^{i}$ has a pole of order $\leq d-1$ at $t=0$. The functional equation (10) asserts the coincidence of the formal power series

$$
R\left(\frac{1}{q t}\right)=\sum_{i=1-d}^{d-1} R_{i} q^{-i} t^{-i}+\sum_{i=d}^{\infty} R_{i} q^{--i} t^{-i}=\sum_{j=1-d}^{d-1} R_{-j} q^{j} t^{j}+\sum_{j=-\infty}^{-d} R_{-j} q^{j} t^{j}
$$

with the formal power series

$$
R(t)=\sum_{i=1-d}^{d-1} R_{i} t^{i}+\sum_{i=d}^{\infty} R_{i} t^{i}
$$

This is equivalent to the identical vanishing of

$$
0 \equiv R(t)-R\left(\frac{1}{q t}\right)=-\sum_{i=-\infty}^{-d} R_{-i} q^{i} t^{i}+\sum_{i=1-d}^{d-1}\left(r_{i}-q^{i} R_{-i}\right) t^{i}+\sum_{i=d}^{\infty} R_{i} t^{i}
$$

and holds exactly when $R_{i}=0$ for all $i \geq d$ and

$$
\sum_{j=1-d}^{d-1} R_{-j} t^{-j}=\sum_{i=1-d}^{d-1} R_{i} t^{i}=\sum_{i=1-d}^{d-1} q^{i} R_{-i} t^{i}=\sum_{j=1-d}^{d-1} q^{-j} R_{j} t^{-j}
$$

The last equality of power series is equivalent to

$$
R_{-j}=q^{-j} R_{j} \quad \text { for } \quad \forall 1-d \leq j \leq d-1
$$

and amounts to

$$
\begin{array}{r}
R(t)=\sum_{j=1-d}^{-1} R_{j} t^{j}+R_{0}+\sum_{j=1}^{d-1} R_{j} t^{j}=\sum_{i=1}^{d-1} R_{-i} t^{-i}+R_{0}+\sum_{j=1}^{d-1} R_{j} t^{j}= \\
R_{0}+\sum_{i=1}^{d-1} R_{i}\left(t^{i}+q^{-i} t^{-i}\right) .
\end{array}
$$

That justifies $(i i) \Leftrightarrow(i i i)$.

Let $X / \mathbb{F}_{q} \subset \mathbb{P}^{N}\left(\overline{\mathbb{F}_{q}}\right)$ be a smooth irreducible curve of genus g, defined over \mathbb{F}_{q}. Then the ζ-polynomial of X is of degree $2 g$ and Riemann-Roch Theorem implies that X has

$$
\mathcal{A}_{m}=h \frac{q^{m-g+1}-1}{q-1}
$$

effective divisors of degree $m>2 g-2$. Drawing an analogy with this example of a locally finite module over $\mathfrak{G}=\operatorname{Gal}\left(\mathbb{F}_{q} / \mathbb{F}_{q}\right)$, we give the following

Corollary-Definition 5. Let M be a locally finite (m, D)-balanced module over the absolute Galois group $\mathfrak{G}=\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{q}\right)$ with ζ-function $\zeta_{M}(t)=\sum_{i=0}^{\infty} \mathcal{A}_{i} t^{i}$ and $R(t)$ be the formal power series, defined by the equality

$$
R(t):=(q-1) t^{1-d} \zeta_{M}(t)+h\left[\frac{t^{1-d}}{1-t}-\frac{q^{d} t^{d}}{1-q t}\right] \in \mathbb{Q}[[t]] .
$$

Then $R(t)=\sum_{j=1-d}^{n_{1}} R_{j} t^{j}$ is a Laurent polynomial if and only if

$$
\begin{equation*}
\mathcal{A}_{i}=h \frac{q^{i-d+1}-1}{q-1} \quad \text { for sufficiently large } \quad i \geq n_{1}+d \tag{11}
\end{equation*}
$$

The \mathfrak{G}-modules M, satisfying (11) are called Riemann-Roch modules.
In particular, any formally self-dual \mathfrak{G}-module is a Riemann-Roch module.

Proof. If $R(t)=\sum_{j=1-d}^{n_{1}} R_{j} t^{j}$ is a Laurent polynomial, then (9) implies that

$$
R_{i-d+1}=(q-1) \mathcal{A}_{i}+h\left(1-q^{i-d+1}\right)=0 \quad \text { for all } \quad i \geq n_{1}+d
$$

As a result, there holds (11) for all $i \geq n_{1}+d$.
Conversely, (11) for all $i \geq n_{1}+d$ and (9) imply that $R_{i-d+1}=0$ for all $i \geq n_{1}+d$, whereas $R(t)=\sum_{j=1-d}^{n_{1}} R_{j} t^{j}$.

Definition 6. Let M be a locally finite module M over $\mathfrak{G}=\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{q}\right)$ with ζ-function

$$
\zeta_{M}(t)=\frac{P_{M}(t)}{(1-t)(1-q t)}
$$

for some polynomial $P_{M}(t) \in \mathbb{Q}[t]$. Then M satisfies the Riemann Hypothesis Analogue if all the roots $\alpha \in \mathbb{C}$ of $P_{M}(t)$ are of $|\alpha|=\frac{1}{\sqrt{q}}$.

Proposition 7. (Това твърдение е от стария ръкопис) Let M be a formally self-dual \mathfrak{G} module with ζ-function

$$
\begin{gathered}
\zeta_{M}(t)=\frac{P_{M}(t)}{(1-t)(1-q t)}, \\
P_{M}(t)=\prod_{i=1}^{2 d}\left(1-\omega_{i} t\right) \in \mathbb{Q}[t], \quad \omega_{i} \in \mathbb{C} \quad \text { and } \\
S_{\nu}:=-\sum_{i=1}^{2 d} \omega_{i}^{\nu} \quad \text { for } \quad \forall \nu \in \mathbb{N} .
\end{gathered}
$$

Then M satisfies the Riemann Hypothesis Analogue if and only if the sequence $\left\{S_{\nu} q^{-\frac{\nu}{2}}\right\}_{\nu=1}^{\infty} \subset$ \mathbb{C} is absolutely bounded.

Proof. By Lemma 3 (ii), $1-\omega_{i} t$ is a factor of $P_{M}(t)$ if and only if $1-\frac{q}{\omega_{i}} t$ is a factor of $P_{M}(t)$. That is why

$$
\begin{equation*}
S_{\nu}=-\sum_{j=1}^{2 d}\left(\frac{q}{\omega_{i}}\right)^{\nu} \quad \text { for } \quad \forall \nu \in \mathbb{N} \tag{12}
\end{equation*}
$$

If M satisfies the Riemann Hypothesis Analogue and $\omega_{j}=e^{i \varphi_{j}} \sqrt{q}$ for some $\varphi_{j} \in[0,2 \pi)$, then

$$
S_{\nu} q^{-\frac{\nu}{2}}=-\sum_{j=1}^{2 d} e^{i \nu \varphi_{j}}
$$

by (??) and

$$
\left|S_{\nu} q^{-\frac{\nu}{2}}\right| \leq \sum_{j=1}^{2 d}\left|e^{i \nu_{j} \varphi_{j}}\right| \leq 2 d
$$

is bounded for any $\nu \in \mathbb{N}$.
Conversely, assume that

$$
S_{\nu} q^{-\frac{\nu}{2}}=-\sum_{j=1}^{2 d}\left(\frac{\omega_{i}}{\sqrt{q}}\right)^{\nu} \quad \text { for } \forall \nu \in \mathbb{N}
$$

form an absolutely bounded sequence of complex numbers. Then there exist a positive real constant C and $\nu_{o} \in \mathbb{N}$, such that

$$
\left|S_{\nu} q^{-\frac{\nu}{2}}\right| \leq C \quad \text { for all } \quad \nu \geq \nu_{o}
$$

As a result, the series

$$
S(t):=\sum_{\nu=\nu_{o}}^{\infty} S_{\nu} q^{-\frac{\nu}{2}} t^{\nu}
$$

converges absolutely for all $t \in \Delta(0,1):=\{z \in \mathbb{C}| | z \mid<1\}$, according to

$$
\sum_{\nu=\nu_{o}}^{\infty}\left|S_{\nu} q^{-\frac{\nu}{2}} \| t\right|^{\nu} \leq C\left(\sum_{\nu=\nu_{o}}^{\infty}|t|^{\nu}\right)=\frac{C|t|^{\nu_{o}}}{1-|t|} \quad \text { for } \quad \forall|t|<1
$$

However,

$$
\begin{aligned}
S(t) & =\sum_{\nu=\nu_{o}}^{\infty} S_{\nu} q^{-\frac{\nu}{2}} t^{\nu}=-\sum_{\nu=\nu_{o}}^{\infty}\left[\sum_{j=1}^{2 d}\left(\frac{\omega_{j}}{\sqrt{q}}\right)^{\nu}\right] t^{\nu}= \\
& -\sum_{j=1}^{2 d}\left[\sum_{\nu=\nu_{o}}^{\infty}\left(q^{-\frac{1}{2}} \omega_{j} t\right)^{\nu}\right]=-\sum_{j=1}^{2 d} \frac{\left(q^{-\frac{1}{2}} \omega_{j} t\right)^{\nu_{o}}}{1-q^{-\frac{1}{2}} \omega_{j} t}
\end{aligned}
$$

is a sum of $2 d$ geometric progressions with ratios $q^{-\frac{1}{2}} \omega_{j} t$ and the convergence of $S(t)$ for all $t \in \Delta(0,1)$ requires the rational function

$$
-\sum_{j=1}^{2 d} \frac{\left(q^{-\frac{1}{2}} \omega_{j} t\right)^{\nu_{o}}}{1-q^{-\frac{1}{2}} \omega_{j} t}
$$

of t to have no poles in $\Delta(0,1)$. In other words, all the poles $\frac{\sqrt{q}}{\omega_{j}}$ of this ratio of polynomials are from $\mathbb{C} \backslash \Delta(0,1)$, i.e.,

$$
\begin{equation*}
\left|\frac{\sqrt{q}}{\omega_{j}}\right| \geq 1 \tag{13}
\end{equation*}
$$

Making use of (12), one observes that the convergence of the power series

$$
\begin{aligned}
& S(t)=\sum_{\nu=\nu_{o}} S_{\nu} q^{-\frac{\nu}{2}} t^{\nu}=-\sum_{\nu=\nu_{o}}^{\infty}\left[\sum_{j=1}^{2 d}\left(\frac{\sqrt{q}}{\omega_{j}}\right)^{\nu}\right]= \\
& -\sum_{j=1}^{2 d}\left[\sum_{\nu=\nu_{o}}^{\infty}\left(\omega_{j}^{-1} \sqrt{q} t\right)^{\nu}\right]=-\sum_{j=1}^{2 d} \frac{\left(\omega_{j}^{-1} \sqrt{q} t\right)^{\nu_{o}}}{1-\omega_{j}^{-1} \sqrt{q} t}
\end{aligned}
$$

for all $t \in \Delta(0,1)$ implies that the poles $\frac{\omega_{j}}{\sqrt{q}}$ belong to $\mathbb{C} \backslash \Delta(0,1)$, i.e.,

$$
\begin{equation*}
\left|\frac{\omega_{j}}{\sqrt{q}}\right| \geq 1 \tag{14}
\end{equation*}
$$

Combining (13) with (14), one concludes that

$$
\left|\frac{\sqrt{q}}{\omega_{j}}\right|=1 \quad \text { for all } \quad 1 \leq j \leq 2 d
$$

Thus, all the roots $\frac{1}{\omega_{j}} \in \mathbb{C}$ of $P_{M}(t)=0$ are from the circle

$$
\partial \Delta\left(0, \frac{1}{\sqrt{q}}\right):=\left\{z \in \mathbb{C}| | z \left\lvert\,=\frac{1}{\sqrt{q}}\right.\right\}
$$

and M satisfies the Riemann Hypothesis Analogue.

References

[1] E. Bombieri, Counting points on curves over finite fields (d'après A. Stepanov), Seminaire Bourbaki 1972/73, Exp. 430, Lecture Notes in Mathematics, , Vol. 383, pp. 234 - 241, Springer, Berlin, 1974.
[2] I. Duursma, Weight distribution of geometric Goppa codes, Transections of the American Mathematical Society, 351 (1999), 3609-3639.
[3] I. Duursma, From weight enumerators to zeta functions, Discrete Applied Mathematics, 111 (2001), 55-73.
[4] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1992.

[^0]: *Research partially supported by Contract $144 / 2015$ with the Scientific Foundation of Kliment Ohridski University of Sofia.

