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The absolute Galois group
6 = Gal(lFy/Fy) = {p € Aut(Fy) | ¢lr, = Idg, }

of a finite field F, is the Galois group of the algebraic closure F, = UX_;Fym of F, over F,.
The group & is isomorphic to the pro-finite closure Z := ligl(Z, +)/(nZ,+) of the infinite
cyclic group (Z,+), i.e., to the projective limit of the finite quotient groups (Z,+)/(nZ,+)
of (Z,+). If a group & acts on a set M, we say that M is a &-module. The &-action on
M is locally finite if all the &-orbits on M are finite and for any n € N there are finitely
many &-orbits on M. The cardinality of an orbit Orbg(x), z € M is called the degree
of Orbg(x) and denoted by degOrbg(x) or by |Orbg(x)|. The non-trivial &-modules M
under consideration have &-orbits of arbitrary degree n € N and, therefore, infinitely many
B-orbits.

Let us denote by P the set of the &-orbits on M. If X is a smooth irreducible projective
curve, defined over F,, then P is naturally isomorphic to the set of the places (i.e., the
equivalence classes of the discrete valuations) of the function field F' = Fy(X) of X over F,,.
The elements of the free Z-module Div(M), generated by P are called divisors on M. The
degree

deg : (Div(M),+) — (Z,+),

S S
deg Zajuj = Zaj deg(vj) for a; €Z,v; €P.
j=1 j=1

is easily seen to be a homomorphism of Z-modules or abelian groups. For an arbitrary
m € Z2°, we denote by Div™(M) the set of the divisors of degree m. Note that (Div’(M), +)
is a subgroup of (Div(M),+) and fix a subgroup (F,+) of Div®(M),+) of index h € N. If
M = X is a smooth irreducible curve, defined over F, with function field F' = [F,(X) over F,
and F = {(f) = (f)o — (f)oo | f € F*} is the group of the principal divisors on X then h is
the class number of X. That motivates us to say that h is the class number of M with respect
to F. Note that for an arbitrary m € N with Div"™(M) # () there are h linear equivalence
classes of divisors of M of degree m. Namely, for an arbitrary G, € Div""(M), there is a
bijective map
¢ : Div™(M) — Div? (M),

QD(G) =G - Go-
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A divisor G = a1v1 + ... + asvs with a; € Z, v; € P is effective if a; > 0 for V1 < j < s. Let
Div>o(M) be the set of the effective divisors of M. The (-function of M is the formal power

series )
() =11 <1—tdeg’/> :

veP
Note that deg(nv) = ndeg(v) for Vn € Z=°, v € P and expand

1 %
- deg(nv)
1 — tdegv Zt

n=0

as a sum of a geometric progression. Then

CM(t) — H <§: tdeg(m/)) — Z ZL/deg(D) — io:.Aﬂfl
=0

vepP n=0 DGDiVZO(M)

for the numbers A; of the effective divisors of M of degree i € Z=°,
For an arbitrary divisor G = aijv1 + ...+ asvs on M with a; € Z\ {0}, introduce the sero

Gt = Z a;v; € DiVZO(M)
aj>0
of G and the pole
G~ = Z (—aj)l/j S DiVZO(M)
CI,]'<0
of GG, in order to represent
G=Gt-G".
For any divisor G = ajv; + ... + asvs € Div(M), introduce the support
SuppG = {vj|a; #0} C P

of G as the set of the G-orbits on M with non-zero coefficients in G. By the very definition
of a Z-module, all divisors G have finite support. Let us fix a sum D = P, + ...+ P, of
&-fixed points P; € M, viewed as orbits of degree 1. A divisor G € Div(M) is regular at D
if Supp(G) N Supp(D) = 0. If any linear equivalence class [G,], 1 < j < h of divisors of M of
degree m € N has an effective representative G, regular at D, we say that D is m-saturated.
Let (Gj + F)>0 := (Gj + F) N Divso(M) and represent

DivZy(M) = (G1+ F)so [[--- J[(Gn + F)>

as a disjoint union. For an arbitrary finite set S, we denote by |S| the cardinality of S.
Note that if G, is regular at D then for any ¢ € F with G; + ¢ = Gj+ ¢t — ¢~ >0
one has Gj > ¢, due to Supp(p™ N Supp(p~ = 0. The effectiveness of G; and ¢~ implies
Supp(¢~) C Supp(G;), whereas Supp(p~) N Supp(D) = (. Thus, for an arbitrary m-
saturated divisor D = P; + ... + P, with P; € P of degree deg(P;) = 1, there is an weight
function

h
wtp : DivZ(M) = [[(Gj + F)=0 — {0,1,...,n}
j=1



wtp(Gj + ¢) = n — [Supp(p) N Supp(D)| = n — [Supp(¢™) N Supp(D)|
of DivZ*(M) with respect to D. Note that ¢ = o™ — o~ € F C Div'(M) and ¢~ < G
imply deg(¢) = deg(¢™) < deg G = m, whereas [Supp(™)| < deg(pt) < m. As a result,
|Supp(¢™)NSupp(D)| < |Supp(¢™)| < m and wtp(G;+¢) > n—m for VG, +¢ € DivZy(M).
From now on, we consider only m < n and refer to n —m as to the designed minimum weight
of DivZ,(M) with respect to D.

Note that the set DivZ (M) is finite, as far as there are finitely many effective divisors
ot o™ € DivZ%(M) of degree < m. We treat DivZy(M) as a non-linear code and denote
by 0% the number of the words Gj + ¢ € Divl (M) of D-weight wtp(G; + ¢) = s. The
homogeneous polynomial B

m
Wiz, y) := Z Wn’f—mH)xm_iy”_mH € Zx,y| ()
i=0
of degree n is referred to as the weight enumerator of DivZ (M) with respect to D.

In order to represent W,,(x,y) by the homogeneous weight enumerators of MDS-codes,
let C C Fy be an Fy-linear subspace of dimp, C' =k < n. The weight of ¢ = (c1,...,cn) € C
is the number of the non-zero components ¢; # 0 of ¢. The minimum weight w of C is the
minimum weight of a non-zero word of C'. Singleton Bound asserts that n +1 —k —w > 0.
The linear codes C, 4, attaining the equality n+1—k —w = 0 are called Maximum Distance
Separable or, briefly, MDS-ones. An arbitrary MDS-code C' C Fy of minimum weight w has

mil= (D) e (-

J

words of weight w < s < n. The homogeneous polynomial

M) =27+ 3 MGy

S=w

of degree n is called the homogeneous weight enumerator of Cj, 4.
Let C' C Fy be an Fg-linear code of dimp, C' = k and minimum weight w <n +1—k
with dual

C’L = {;1;ng|<1:70> :inci =0 for Vce C}

i=1

of minimum weight wt < k + 1. Let Wg) be the number of the words ¢ € C' C Fy with s
non-zero components and

n
Wela,y) ="+ Y WEa"™y* € Z[z,y)™
S=w
be the weight enumerator of C. In [3] Duursma shows the existence of a unique polynomial

r(C)

Po(t) =) ait' € Q[t]
=0
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of degree deg Pc = 7(C) :=n +2 — w — w*, such that

r(C
Wele,y) — 2" _ (Z) Muri(w,y) — "
q—1 — q—1
After showing
Mﬂ,n*er’i(xvy) -z — COthm—i ([y(l — t) + xt] > (1)
q-—1 (1—t)(1 —qt)

in Proposition 1 from [3], he observes that Pc(t) is uniquely determined by the equality

We(x,y) —a" [y(1 —1) + wt]”)
qg—1 (1—t)(1—qt)

and calls Po(t) the (-polynomial of C. Suppose that X/F, C PN (F,) is a smooth irreducible
curve of genus g, defined over F, and D = P; + ... + P, is an m-saturated divisor on X,
which consists of Fg-rational points F;. Choose effective representatives G1,...,G) of the
linear equivalence classes of the divisors of F' = F,(X) of degree 2g — 2 < m < n, which are
regular at D and consider the Riemann-Roch spaces

L(G;) = H(X,0x(IGj])) == {f € Fo(X)"|(f) + G; > 0} U{0}.

= Coeffjn—w (Pc(a:, Y)

Let
Ep : L(G)) — IE‘Z,

be the evaluation map at D and Cj := EpL(G;) C Fy be the images of £(G;) under Ep,
viewed as linear codes of length n. Note that the poles of f € £(G;) are contained in G; and
form an effective divisor of degree < m. Therefore f € £(G;) has at most m zeros, counted
with their multiplicities and the word Ep(f) € C; has at least n — m non-zero components.
In other words, the non-zero words of C; are of weight > n — m. The (-function of X is

Lx(t)

“O=Th0

29
for a polynomial Lx(t) € [[(1 —wit) € Z[t] with Lx(0) = 1, Lx(1) = h and w; € C,
i—1

1=
lwi| = /g for V1 < i < g. We call Lx(t) the (-polynomial of X. Duursma’s considerations
from [2] imply that

[y(1 —t) +xt]"> E’l: We,(@,y) — 2"

Coeffym (LX(t) QA-t1—qt) ) q—1

- (2)
h [y(1 —t) + 2t]”
Coeffym tmontwi po (¢
t (; z<><1_t)<1_qt)>
h n
for the minimal weights w; of C; = EpL(G;). Note that > % is the weight enu-
i=1

merator of DivZy(X) with respect to D and the C—polynor;lials Pc,(t) of algebro-geometric
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Goppa codes C; = EpL(G;), 1 <i < h are related with the {-polynomial Lx(t) of X by the
equality

h
Lx(t) = Y 7=+ po (t).
=1

That motivates Duursma to call the polynomial Po(t) of an abstract linear code C” subsetlFy,
the (-polynomial of C'.

m .
The next proposition shows the existence of a unique ¢-polynomial P2 () = 3 a;t* € Q[t]
i=0

of deg PP(t) < m of the effective divisors DivZ,(M) of a (-module M of degree m with
respect to an m-saturated sum D of &-fixed points on M.

Proposition 1. Let M be a locally finite & = Gal(F,/F,)-module and D = P+ ...+ P, €
Div(M) be an m-saturated sum of &-fized points P; on M for some m < n. Denote by
Wi (z,y) the weight enumerator of Divly (M) with respect to D and put My, o (z,y) for the
weight enumerator of an MDS-code Cn,; C Fy of minimal weight w. Then there is a unique

m .
polynomial PP (t) = Y a;t' € Q[t] of degree deg PY < m with
=0

Win(z,y) = ZaiMn’nme(:E’ y -z . (3)

i=0 ¢—1

The polynomial PP (t) is uniquely determined by the equality

Wt ) = oot (200 A "

where Coeffym (f(t)) stands for the coefficient of t™ in a formal power series f(t) € Q[[t]].
We call PR (t) = 3" a;t' € Q[t] the C-polynomial of DivZy(M) with respect to D.
i=0 -

Proof. Note that

m
Win(,y) :=Y Wi Hgm=iynmti g 7] )
i=0
belongs to the Q-span of the homogeneous monomials x6m — iy™ ™+ of total degree n,
which are of degree > n — m with respect to y. For any 0 < ¢ < m one has

Mn,n—m-i—i(xy y) —z" 1 . (s) n—s, s
T g1 > MY

q- 1 s=n—m-1

from Spang{z"~*y*|n —m +i < s <n} with non-zero coefficient

1 (n—m+1) n . n
q—lM"’”_m+i_ n—m+i) \m—i



Mn,n7m+i(x7y)_xn
q—1

form a Q-basis of Spang{z"~*y* |[n—m < s < n}. Now, Wy, (x,y) € Spang{z"*y* [n—m <

Mn,nf'mﬂ»i(x:y)*xn
q—1 ’

m—i, n—m-+i

of 2™y . Therefore

with 0 < ¢ < m are Q-linearly independent and

s < n} has uniquely determined coordinates a; with respect to the basis
which satisfy (??7). Making use of (1), we note that

" [y(1 —1t) + xt]"
(1—t)(1 —qt)

Thus, there exist uniquely determined a; € Q with

_ < _ Sy —t) +at]™\ = Lily(L =) +at]”
Wl ) = Z; nCocter <t (1—)(1 - qt) > - Coeltin (Z; DI q) ) ’

Mn,nferi(l‘a y) — T
q—1

= Coeffm <ti > for VO <i<m.

m .
so that the polynomial P2 (t) := 3 a;t’ can be defined by (4).
i=0
l 0
Combining (4) with (2), one observes that for any smooth irreducible curve X/F, C

PN (F,) of genus g > 1, any natural number 29 — 2 < m < n and any m-saturated sum
D = P, + ...+ P, of F,-rational points P; € X(F,), the (-function

D - PR (t)
Cxm (1) == A=0(1=q) € Q[t]]
of Divy(X) with respect to D coincides with the ¢-function
_ Lx(t)
Cx(t) = A= —q) € Z[[t]]

of X. That leads to the next

Definition 2. A locally finite module M over & = Gal(F,/F,) is (m,D)-balanced if the
C-function

Pp(t)
D m

1) = = t

of DivZy (M) with respect to the m-saturated sum D = Py+. ..+ P, of &-fized points P; € M
coincides with the -function of M.

It is well known that the series

= . PR
2 A= T g

is a rational function with polynomial denominator
qt> — (g+ 1t +1
if and only if the sequence {A;}°, satisfies the recurrence relation

An - (q + 1)~An—1 + qAn—Q =0



for sufficiently large n > ng. This, in turn, is equivalent to
A, =C1¢g" +Cy for Vn>ng
and some constants Cq,Cy € C. In fact, Cq, Cy are rational numbers, due to
Apt1 — Ay Cy = qA, — Apt1
¢ (q—1) "’ q—1
with A, A,4+1 € ZZ°. Note also that
1 =(m(0) = Ag = ao,

so that PP(t) can be represented in the form

Cy =

deg PP
PRty =[] (1 —wit)
i=1
for some complex numbers w; € C.

Recall that the connected sum of two smooth irreducible curves X1 /C C PN1(C), X,/C C
PN2(C), defined over the field C of complex numbers is obtained from the disjoint union
X1 [] X2 by removing small discs from X7, X9 and gluing along their boundaries. The bound-
ary of a disc is a circle and has vanishing Euler number. That is why, the Euler number of
X1#X5 equals

e(leng) = €(X1) + €(X2) — 2.
Note that one of the removed small discs from X7 and X5 is homotopic to a point, so that up
to a homotopy, the connected sum can be obtained from X; [[ X2 by removing a projective
line P!(C) and gluing along subsets of X; and X5 with vanishing Euler numbers.

Now, suppose that M; and My are locally finite modules over & = Gal(F,;/F1). Then
the disjoint union M [ My is a $-module with (-function

Cam 11 M2 (1) = Cary (8)Cany (1),
as far as the union of the &-orbits on M; of degree d is the set of the &-orbits on M [ M>
of degree d. In particular, if M; is (my, Di)-balanced and Ms is (mg, D2)-balanced then
o PROPEW
M EE T - 021 - gr)?

reveals that Mj [[ M cannot be balanced. We form the connected sum MltthMQ of My
and My over F, by removing a projective line P*(F,) form the disjoint union M [[ Ma. The
(-function

<M1 (t)CMQ (t)
e Mo (1) = Cury 110, (B) = Cpa 7y (B) =
e, M2 (8) = Cory 1102 (F) : Cpr iy (2) Cormy (1)

It is clear that if My is (my, D1)-balanced and My is (ma, D2)-balanced then Mifp, M> is
(my + ma, D1 + Ds)-balanced and the (-function

PDy()PD:(t)
CMlquMQ(t) - m

= (1 =8)(1 = qt)Cary (£)Car (1)-
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Lemma 3. (i) Let M be a locally finite ® = Gal(F,/F,)-module with (-function

_ P (t)
= =0
for some polynomial ]
Pa(t) = [[(1 - wit) € Q]
i=1

of deg Py (t) = d with Pp,(0) =1 and

PM@y:fi<1—5j>.

i=1
Then the product P, (t) := Py(t)Pa(t) satisfies the functional equation
P (t) — p* i thZd
M M\
and has leading coefficient LC(P3;(t)) = ¢%.

(i1) If a polynomial P*(t) € Rt] of degree deg P*(t) = ¢ with P*(0) = 1 and leading
coefficient LC(P*(t)) = qg satisfies the functional equation

P (t) = P* ( 1 ) e

then - € Cis a root of P*(t) exactly when % € C is a root of P*(t).

Proof. (i) Straightforwardly,

o) e (63 (-]

d ~
[T - wit) (1= L¢) = Pu(Pisto) = Pigt)

Wi
i=1
by
i 1 ¢
<L—w><1—>:q1—wﬂ<1—qt).
qt w;t ( wj
0
(ii) Due to P*(0) = 1, one has P*(t) = [](1 — w;t) for the reciprocals w; € C of the

i=1

complex roots of P*(t). Making use of

I Gl N PR A
qt qt wj




one observes that

coincides with P*(t) = ] (1—w;t) if and only if for any root = € C of P*(t) = 0 the complex
i=1 '
number £ € C is also a root of P*(t) = 1.
g

Let M be a &-module with (-polynomial

d

Py (t) = [J(1 = wit)

=1

for some w; € C*. If there is a -module M with ¢-polynomial

d
Put) =TT (1- L+
o =111~ 3)
then )
Piy(t) := Pu(6) Pru(t) = Pyyy, 3r(1)

is the ¢-polynomial of the connected sum of M and M over F,.

Let C C Fy be an Fy-linear code of dimension dimp, C' = k and minimum weight w
with dual C* of minimum weight w'. The deviation ¢ := n 4+ 1 — k — w, respectively,
gt =n+1—-(n—k)—wt =k+1—w from the equality in the Singleton Bound
g > 0, respectively, g= > 0 is called the genus of C, respectively, C. The ¢(-polynomials
Po(t), Poo(t) € Q[t] of C and Ct are of degree g + g-. Mac Williams identities for the
weight distribution of C' and Ct are equivalent to the equality

1 1
o e (1)

for their (-polynomials. An F-linear code C' C Fy is formally self-dual if C' and C* have
one and a same number of words od weight s for all 0 < s < n. The formal self-duality of C'
is equivalent to the functional equation

b - e (o

qt

for its (-polynomial Po(t). That motivates the next



Lemma-Definition 4. Let M be a locally finite module over & = Gal(F,/F,) with (-function

Py (1)
(1—-1)(1—qt)

for some polynomial Py(t) € Q[t] of even degree deg Py(t) = 2d and R(t) € Q[[t]] be the
formal power series, defined by the equality

Cm(t) =

1d 751—d thd
t):=(q— 1t~ t h — t||. )
RO = (0= Do) + b |1 - 12| el )
Then the following conditions are equivalent:
(i) Par(t) satisfies the functional equation
1
Py(t) = Py (qt> gt (6)
(ii) the rational function
1\ 1
)= () o () )
18 invariant under the substitution t — it;
(i13) R(t) is a Laurent polynomial of the form
d—1 ' 1 ‘ 1
R(t) = RO—I—ZRi (tz—i— qiti) € Spang {tl+qiti‘0 <i<d-— 1}. (8)

i=1

If there holds one and, therefore, any one of the aforementioned conditions, we say that
the &-module M is formally self-dual.

1 q —1,-2
< qt> < qt> q ( )( q )a
one observes that

(3) (i) e el e E

Proof. Making use of

qt 1—#)(1—
qt qt _ i) (1-1 (1-t)(1—qt)
coincides with Pu(t)
Wl = 0 g
if and only if
1
APy (1) = ¢t Py <t> .
q

After multiplication by t4~!, this amounts to (6) and proves the equivalence of (i) and (ii).

10



Note that R(t) := 3" R;_q41t""%*1 € Q[[t]] can be defined by the equalities
=0

Ri—gp1 = (g — DA+ h(1 — ¢~ for Viez>°.

Note that the rational function
tl_d dtd
Phi(t) == _ 4
11—t 1—gqt

is invariant under the substitution ¢ — é, according to

1\ 1 qtd

<qt> '1—$:_1—qt
and

(1N 1

K (m) 1T-Z7 T1-¢

Therefore, (7) is equivalent to the invariance

R(t) =R (;) (10)

of R(t) := (¢ — 1)t'=%(y(t) + h®(t) under the transformation ¢ é. The (-function

Aj;t* has no pole at t = 0. The power series

o0
u(t) =3
i=0

o o oo

s=0 s=0 s=1—d
has terms of degree > 1 — d, as well as the power series

e .
4 (t) = 179 (Z A#) .
i=0

&S] .
Therefore R(t) = >, R;t* has a pole of order < d — 1 at t = 0. The functional equation
i=1-d

(10) asserts the coincidence of the formal power series

d—1 0o d—1 —d
1 —ia—i ——iy—i J4+J J+7
R(qt>: S R Y R = Y RgE s Y Rt
i=1—d i=d j=1-d j=—o00
with the formal power series
d—1 . [e'S)
Rt)= > Rit'+ ) Rt
i=1—d i=d



This is equivalent to the identical vanishing of

d—1
0=R(t)— R () ZqutZ > (ri—¢'R; tH—Zth

1=—00 i=1—d i=d

and holds exactly when R; = 0 for all ¢ > d and

d—1 d—1
Z R_jt™ = Z Rit'= Y ¢Rt'= > ¢ IRt

j=1-d i=1—d i=1—d j=1-d
The last equality of power series is equivalent to
R_j=q7R; for V1-d<j<d-1

and amounts to

Z Rtﬂ+RO+ZRtJ—ZR 4 +RO+ZRt7—

j=1-d
Ro+> Ri(t'+q7't™").
i=1
That justifies (i7) < (iii).
O
Let X/F, C PY(F,) be a smooth irreducible curve of genus g, defined over F,. Then the
¢- polynomlal of X is of degree 2g and Riemann-Roch Theorem implies that X has
m—g+1 _ 1
A, =pL — —-
q—1
effective divisors of degree m > 2g — 2. Drawing an analogy with this example of a locally
finite module over & = Gal(F,/F,), we give the following

Corollary-Definition 5. Let M be a locally finite (m, D)-balanced module over the absolute

Galois group ® = Gal(F,/F,) with (-function (y(t) = Y. Aitt and R(t) be the formal power
i=0

series, defined by the equality

tl —d dtd

q
1—t 1—qt

R(t) = (¢ — )¢ (t) + h [ } e Q[

ni .
Then R(t) = Y Rj;t) is a Laurent polynomial if and only if
j=1—d
i—d+1 _ q

A = ne for sufficiently large i > ny + d. (11)

q—1
The &-modules M, satisfying (11) are called Riemann-Roch modules.
In particular, any formally self-dual &-module is a Riemann-Roch module.

12



ni )
Proof. If R(t) = )  Rj;t/ is a Laurent polynomial, then (9) implies that
j=1-d

Ri—ap1=(q— DA +h(l =g~y =0 forall i>n;+d.
As a result, there holds (11) for all ¢ > n; + d.
Conversely, (11) for all ¢ > ny + d and (9) imply that R;_4.1 = 0 for all © > n; + d,
ni .
whereas R(t) = ). R;t’.
j=1—d

Definition 6. Let M be a locally finite module M over & = Gal(IF,/F,) with (-function

Py(t)
(1-=1)(1—qt)

for some polynomial Py (t) € Q[t]. Then M satisfies the Riemann Hypothesis Analogue if all

the roots a € C of Pp(t) are of |a] = ﬁ.

Cum(t) =

Proposition 7. (Tosa tBbpjenue e or crapust pbkonuc) Let M be a formally self-dual &-
module with (-function

Pu(t)
t e
2d
Py (t) = H(l —wit) € Q[t], wieC and

i=1

2d
Sy = —Zwi” for Vv eN.
i=1
Then M satisfies the Riemann Hypothesis Analogue if and only if the sequence {S,,qu }Oil C

C is absolutely bounded.

Proof. By Lemma 3 (ii), 1 —w;st is a factor of Pys(t) if and only if 1 — Lt is a factor of Pas(2).
That is why

2d v
Sy =— Z <q> for Vv eN (12)

w;
g=1 27"

If M satisfies the Riemann Hypothesis Analogue and w; = ewﬂ'\/@ for some ¢; € [0,2m), then

2d
Syqié = - Z eiij
j=1
by (??7) and
2d
1Sug™2| <D [e™i%i] < 2d
j=1

13



is bounded for any v € N.
Conversely, assume that

form an absolutely bounded sequence of complex numbers. Then there exist a positive real
constant C' and v, € N, such that

\S,,q_%| <C foral v>u,.
As a result, the series

S(t) == Z S,q 2t

v=r,

converges absolutely for all ¢t € A(0,1) := {z € C||z| < 1}, according to

- — S|4V = v C’|t|l/o
> ISzt < C <:Z It] ) =17 for Vt| < 1.

v=r,

However,

is a sum of 2d geometric progressions with ratios q_%wjt and the convergence of S(t) for all
t € A(0,1) requires the rational function

of t to have no poles in A(0, 1). In other words, all the poles g—f of this ratio of polynomials
are from C\ A(0,1), i.e.,

‘%‘ > 1. (13)

Making use of (12), one observes that the convergence of the power series

S =D S it =-3 Y (\f)u _

V=V, v=vo | j=1
oo

E[E ] S

V=V,



for all t € A(0, 1) implies that the poles <% belong to C\ A(0,1), i.e.,

Va

ﬂ‘ > 1.
Va
Combining (13) with (14), one concludes that

ﬁ =1 forall 1<j5<2d.

Wy
Thus, all the roots i € C of Py(t) = 0 are from the circle

m(o,\}a) = {zeC’]z]—\}a}

and M satisfies the Riemann Hypothesis Analogue.
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