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The absolute Galois group

G = Gal(Fq/Fq) = {ϕ ∈ Aut(Fq) |ϕ|Fq = IdFq}

of a finite field Fq is the Galois group of the algebraic closure Fq = ∪∞m=1Fqm of Fq over Fq.
The group G is isomorphic to the pro-finite closure Ẑ := lim

←
(Z,+)/(nZ,+) of the infinite

cyclic group (Z,+), i.e., to the projective limit of the finite quotient groups (Z,+)/(nZ,+)
of (Z,+). If a group G acts on a set M , we say that M is a G-module. The G-action on
M is locally finite if all the G-orbits on M are finite and for any n ∈ N there are finitely
many G-orbits on M . The cardinality of an orbit OrbG(x), x ∈ M is called the degree
of OrbG(x) and denoted by deg OrbG(x) or by |OrbG(x)|. The non-trivial G-modules M
under consideration have G-orbits of arbitrary degree n ∈ N and, therefore, infinitely many
G-orbits.

Let us denote by P the set of the G-orbits on M . If X is a smooth irreducible projective
curve, defined over Fq, then P is naturally isomorphic to the set of the places (i.e., the
equivalence classes of the discrete valuations) of the function field F = Fq(X) of X over Fq.
The elements of the free Z-module Div(M), generated by P are called divisors on M . The
degree

deg : (Div(M),+) −→ (Z,+),

deg

 s∑
j=1

ajνj

 :=
s∑
j=1

aj deg(νj) for aj ∈ Z, νj ∈ P.

is easily seen to be a homomorphism of Z-modules or abelian groups. For an arbitrary
m ∈ Z≥0, we denote by Divm(M) the set of the divisors of degreem. Note that (Div0(M),+)
is a subgroup of (Div(M),+) and fix a subgroup (F ,+) of Div0(M),+) of index h ∈ N. If
M = X is a smooth irreducible curve, defined over Fq with function field F = Fq(X) over Fq
and F = {(f) = (f)0 − (f)∞ | f ∈ F ∗} is the group of the principal divisors on X then h is
the class number of X. That motivates us to say that h is the class number ofM with respect
to F . Note that for an arbitrary m ∈ N with Divm(M) 6= ∅ there are h linear equivalence
classes of divisors of M of degree m. Namely, for an arbitrary Go ∈ Divm(M), there is a
bijective map

ϕ : Divm(M) −→ Div0(M),

ϕ(G) = G−Go.
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A divisor G = a1ν1 + . . .+ asνs with aj ∈ Z, νj ∈ P is effective if aj ≥ 0 for ∀1 ≤ j ≤ s. Let
Div≥0(M) be the set of the effective divisors of M . The ζ-function of M is the formal power
series

ζM (t) =
∏
ν∈P

(
1

1− tdeg ν

)
.

Note that deg(nν) = n deg(ν) for ∀n ∈ Z≥0, ν ∈ P and expand

1

1− tdeg ν
=
∞∑
n=0

tdeg(nν)

as a sum of a geometric progression. Then

ζM (t) =
∏
ν∈P

( ∞∑
n=0

tdeg(nν)

)
=

∑
D∈Div≥0(M)

tdeg(D) =

∞∑
i=0

Aiti

for the numbers Ai of the effective divisors of M of degree i ∈ Z≥0.
For an arbitrary divisor G = a1ν1 + . . .+asνs on M with aj ∈ Z \ {0}, introduce the sero

G+ :=
∑
aj>0

aiνj ∈ Div≥0(M)

of G and the pole
G− :=

∑
aj<0

(−aj)νj ∈ Div≥0(M)

of G, in order to represent
G = G+ −G−.

For any divisor G = a1ν1 + . . .+ asνs ∈ Div(M), introduce the support

SuppG := {νj | aj 6= 0} ⊂ P

of G as the set of the G-orbits on M with non-zero coefficients in G. By the very definition
of a Z-module, all divisors G have finite support. Let us fix a sum D = P1 + . . . + Pn of
G-fixed points Pj ∈M , viewed as orbits of degree 1. A divisor G ∈ Div(M) is regular at D
if Supp(G)∩Supp(D) = ∅. If any linear equivalence class [Gj ], 1 ≤ j ≤ h of divisors of M of
degree m ∈ N has an effective representative Gj , regular at D, we say that D is m-saturated.
Let (Gj + F)≥0 := (Gj + F) ∩Div≥0(M) and represent

Divm≥0(M) = (G1 + F)≥0

∐
. . .
∐

(Gh + F)≥

as a disjoint union. For an arbitrary finite set S, we denote by |S| the cardinality of S.
Note that if Gj is regular at D then for any ϕ ∈ F with Gj + ϕ = Gj + ϕ+ − ϕ− ≥ 0
one has Gj ≥ ϕ−, due to Supp(ϕ+ ∩ Supp(ϕ− = ∅. The effectiveness of Gj and ϕ− implies
Supp(ϕ−) ⊂ Supp(Gj), whereas Supp(ϕ−) ∩ Supp(D) = ∅. Thus, for an arbitrary m-
saturated divisor D = P1 + . . . + Pn with Pj ∈ P of degree deg(Pj) = 1, there is an weight
function

wtD : Divm≥0(M) =
h∐
j=1

(Gj + F)≥0 −→ {0, 1, . . . , n}
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wtD(Gj + ϕ) := n− |Supp(ϕ) ∩ Supp(D)| = n− |Supp(ϕ+) ∩ Supp(D)|

of Divm≥ (M) with respect to D. Note that ϕ = ϕ+ − ϕ− ∈ F ⊂ Div0(M) and ϕ− ≤ Gj
imply deg(ϕ+) = deg(ϕ−) ≤ degGj = m, whereas |Supp(ϕ+)| ≤ deg(ϕ+) ≤ m. As a result,
|Supp(ϕ+)∩Supp(D)| ≤ |Supp(ϕ+)| ≤ m and wtD(Gj+ϕ) ≥ n−m for ∀Gj+ϕ ∈ Divm≥0(M).
From now on, we consider only m < n and refer to n−m as to the designed minimum weight
of Divm≥0(M) with respect to D.

Note that the set Divm≥0(M) is finite, as far as there are finitely many effective divisors
ϕ+, ϕ− ∈ Div≥0(M) of degree ≤ m. We treat Divm≥0(M) as a non-linear code and denote
by Q(s)

m the number of the words Gj + ϕ ∈ Divm≥0(M) of D-weight wtD(Gj + ϕ) = s. The
homogeneous polynomial

Wm(x, y) :=

m∑
i=0

W(n−m+i)
m xm−iyn−m+i ∈ Z[x, y](n)

of degree n is referred to as the weight enumerator of Divm≥0(M) with respect to D.
In order to represent Wm(x, y) by the homogeneous weight enumerators of MDS-codes,

let C ⊂ Fnq be an Fq-linear subspace of dimFq C = k < n. The weight of c = (c1, . . . , cn) ∈ C
is the number of the non-zero components cj 6= 0 of c. The minimum weight w of C is the
minimum weight of a non-zero word of C. Singleton Bound asserts that n+ 1− k − w ≥ 0.
The linear codes Cn,w, attaining the equality n+1−k−w = 0 are called Maximum Distance
Separable or, briefly, MDS-ones. An arbitrary MDS-code C ⊂ Fnq of minimum weight w has

M(s)
n,w =

(
n

s

) s−w∑
j=0

(−1)j
(
s

j

)
(qs+1−w−j − 1)

words of weight w ≤ s ≤ n. The homogeneous polynomial

Mn,w(x, y) := xn +
n∑

s=w

M(s)
n,wx

n−sys

of degree n is called the homogeneous weight enumerator of Cn,w.
Let C ⊂ Fnq be an Fq-linear code of dimFq C = k and minimum weight w ≤ n + 1 − k

with dual

C⊥ :=

{
x ∈ Fnq | 〈x, c〉 =

n∑
i=1

xici = 0 for ∀c ∈ C

}

of minimum weight w⊥ ≤ k + 1. Let W(s)
C be the number of the words c ∈ C ⊂ Fnq with s

non-zero components and

WC(x, y) := xn +

n∑
s=w

W(s)
C xn−sys ∈ Z[x, y](n)

be the weight enumerator of C. In [3] Duursma shows the existence of a unique polynomial

PC(t) =

r(C)∑
i=0

ait
i ∈ Q[t]
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of degree degPC = r(C) := n+ 2− w − w⊥, such that

WC(x, y)− xn

q − 1
=

r(C)∑
i=0

ai
Mn,w+i(x, y)− xn

q − 1
.

After showing
Mn,n−m+i(x, y)− xn

q − 1
= Coefftm−i

(
[y(1− t) + xt]n

(1− t)(1− qt)

)
(1)

in Proposition 1 from [3], he observes that PC(t) is uniquely determined by the equality

WC(x, y)− xn

q − 1
= Coefftn−w

(
PC(x, y)

[y(1− t) + xt]n

(1− t)(1− qt)

)
and calls PC(t) the ζ-polynomial of C. Suppose that X/Fq ⊂ PN (Fq) is a smooth irreducible
curve of genus g, defined over Fq and D = P1 + . . . + Pn is an m-saturated divisor on X,
which consists of Fq-rational points Pi. Choose effective representatives G1, . . . , Gh of the
linear equivalence classes of the divisors of F = Fq(X) of degree 2g − 2 < m < n, which are
regular at D and consider the Riemann-Roch spaces

L(Gj) = H0(X,OX([Gj ])) := {f ∈ Fq(X)∗ | (f) +Gj ≥ 0} ∪ {0}.

Let
ED : L(Gj) −→ Fnq ,

ED(f) = (f(P1), . . . , f(Pn))

be the evaluation map at D and Cj := EDL(Gj) ⊂ Fnq be the images of L(Gj) under ED,
viewed as linear codes of length n. Note that the poles of f ∈ L(Gj) are contained in Gj and
form an effective divisor of degree ≤ m. Therefore f ∈ L(Gj) has at most m zeros, counted
with their multiplicities and the word ED(f) ∈ Cj has at least n−m non-zero components.
In other words, the non-zero words of Cj are of weight ≥ n−m. The ζ-function of X is

ζX(t) =
LX(t)

(1− t)(1− qt)

for a polynomial LX(t) ∈
2g∏
i=1

(1 − ωit) ∈ Z[t] with LX(0) = 1, LX(1) = h and ωi ∈ C,

|ωi| =
√
q for ∀1 ≤ i ≤ g. We call LX(t) the ζ-polynomial of X. Duursma’s considerations

from [2] imply that

Coefftm

(
LX(t)

[y(1− t) + xt]n

(1− t)(1− qt)

)
=

h∑
i=1

WCi(x, y)− xn

q − 1
=

Coefftm

(
h∑
i=1

tm−n+wiPCi(t)
[y(1− t) + xt]n

(1− t)(1− qt)

) (2)

for the minimal weights wi of Ci = EDL(Gi). Note that
h∑
i=1

WCi
(x,y)−xn
q−1 is the weight enu-

merator of Divm≥0(X) with respect to D and the ζ-polynomials PCi(t) of algebro-geometric
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Goppa codes Ci = EDL(Gi), 1 ≤ i ≤ h are related with the ζ-polynomial LX(t) of X by the
equality

LX(t) =
h∑
i=1

tm−n+wiPCi(t).

That motivates Duursma to call the polynomial PC(t) of an abstract linear code C ′subsetFnQ
the ζ-polynomial of C.

The next proposition shows the existence of a unique ζ-polynomial PDm (t) =
m∑
i=0

ait
i ∈ Q[t]

of degPDm (t) ≤ m of the effective divisors Divm≥0(M) of a ζ-module M of degree m with
respect to an m-saturated sum D of G-fixed points on M .

Proposition 1. Let M be a locally finite G = Gal(Fq/Fq)-module and D = P1 + . . .+ Pn ∈
Div(M) be an m-saturated sum of G-fixed points Pi on M for some m < n. Denote by
Wm(x, y) the weight enumerator of Divm≥0(M) with respect to D and putMn,w(x, y) for the
weight enumerator of an MDS-code Cn,w ⊂ Fnq of minimal weight w. Then there is a unique

polynomial PDm (t) =
m∑
i=0

ait
i ∈ Q[t] of degree degPDm ≤ m with

Wm(x, y) =
m∑
i=0

ai
Mn,n−m+i(x, y)− xn

q − 1
. (3)

The polynomial PDm (t) is uniquely determined by the equality

Wm(x, y) = Coefftm

(
PDm (t)

[y(1− t) + xt]n

(1− t)(1− qt)

)
, (4)

where Coefftm(f(t)) stands for the coefficient of tm in a formal power series f(t) ∈ Q[[t]].

We call PDm (t) =
m∑
i=0

ait
i ∈ Q[t] the ζ-polynomial of Divm≥0(M) with respect to D.

Proof. Note that

Wm(x, y) :=
m∑
i=0

W(n−m+i)
m xm−iyn−m+i ∈ Z[x, y](n)

belongs to the Q-span of the homogeneous monomials x6m− iyn−m+i of total degree n,
which are of degree ≥ n−m with respect to y. For any 0 ≤ i ≤ m one has

Mn,n−m+i(x, y)− xn

q − 1
=

1

q − 1

(
n∑

s=n−m+i

M(s)
n,n−m+ix

n−sys

)

from SpanQ{xn−sys |n−m+ i ≤ s ≤ n} with non-zero coefficient

1

q − 1
M(n−m+i)

n,n−m+i =

(
n

n−m+ i

)
=

(
n

m− i

)
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of xm−iyn−m+i. Therefore Mn,n−m+i(x,y)−xn
q−1 with 0 ≤ i ≤ m are Q-linearly independent and

form a Q-basis of SpanQ{xn−sys |n−m ≤ s ≤ n}. Now,Wm(x, y) ∈ SpanQ{xn−sys |n−m ≤
s ≤ n} has uniquely determined coordinates ai with respect to the basis Mn,n−m+i(x,y)−xn

q−1 ,
which satisfy (??). Making use of (1), we note that

Mn,n−m+i(x, y)− xn

q − 1
= Coefftm

(
ti

[y(1− t) + xt]n

(1− t)(1− qt)

)
for ∀0 ≤ i ≤ m.

Thus, there exist uniquely determined ai ∈ Q with

Wm(x, y) =

m∑
i=0

aiCoefftm

(
ti

[y(1− t) + xt]n

(1− t)(1− qt)

)
= Coefftm

(
m∑
i=0

ait
i [y(1− t) + xt]n

(1− t)(1− qt)

)
,

so that the polynomial PDm (t) :=
m∑
i=0

ait
i can be defined by (4).

Combining (4) with (2), one observes that for any smooth irreducible curve X/Fq ⊂
PN (Fq) of genus g ≥ 1, any natural number 2g − 2 < m < n and any m-saturated sum
D = P1 + . . .+ Pn of Fq-rational points Pi ∈ X(Fq), the ζ-function

ζDX,m(t) :=
PDm (t)

(1− t)(1− qt)
∈ Q[[t]]

of Divm≥0(X) with respect to D coincides with the ζ-function

ζX(t) =
LX(t)

(1− t)(1− qt)
∈ Z[[t]]

of X. That leads to the next

Definition 2. A locally finite module M over G = Gal(Fq/Fq) is (m,D)-balanced if the
ζ-function

ζDm(t) :=
PDm (t)

(1− t)(1− qt)
= ζM (t)

of Divm≥0(M) with respect to the m-saturated sum D = P1 + . . .+Pn of G-fixed points Pi ∈M
coincides with the ζ-function of M .

It is well known that the series
∞∑
i=0

Aiti =
PDm (t)

(1− t)(1− qt)

is a rational function with polynomial denominator

qt2 − (q + 1)t+ 1

if and only if the sequence {Ai}∞i=0 satisfies the recurrence relation

An − (q + 1)An−1 + qAn−2 = 0
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for sufficiently large n ≥ n0. This, in turn, is equivalent to

An = C1q
n + C2 for ∀n ≥ n0

and some constants C1, C2 ∈ C. In fact, C1, C2 are rational numbers, due to

C1 =
An+1 −An
qn(q − 1)

, C2 =
qAn −An+1

q − 1

with An,An+1 ∈ Z≥0. Note also that

1 = ζM (0) = A0 = a0,

so that PDm (t) can be represented in the form

PDm (t) =

degPDm∏
i=1

(1− ωit)

for some complex numbers ωi ∈ C.
Recall that the connected sum of two smooth irreducible curves X1/C ⊂ PN1(C), X2/C ⊂

PN2(C), defined over the field C of complex numbers is obtained from the disjoint union
X1
∐
X2 by removing small discs fromX1, X2 and gluing along their boundaries. The bound-

ary of a disc is a circle and has vanishing Euler number. That is why, the Euler number of
X1]X2 equals

e(X1]X2) = e(X1) + e(X2)− 2.

Note that one of the removed small discs from X1 and X2 is homotopic to a point, so that up
to a homotopy, the connected sum can be obtained from X1

∐
X2 by removing a projective

line P1(C) and gluing along subsets of X1 and X2 with vanishing Euler numbers.
Now, suppose that M1 and M2 are locally finite modules over G = Gal(Fq/F1). Then

the disjoint union M1
∐
M2 is a G-module with ζ-function

ζM1
∐
M2

(t) = ζM1(t)ζM2(t),

as far as the union of the G-orbits on Mj of degree d is the set of the G-orbits on M1
∐
M2

of degree d. In particular, if M1 is (m1, D1)-balanced and M2 is (m2, D2)-balanced then

ζM1
∐
M2

(t) =
PD1
m1

(t)PD2
m2

(t)

(1− t)2(1− qt)2

reveals that M1
∐
M2 cannot be balanced. We form the connected sum M1]FqM2 of M1

and M2 over Fq by removing a projective line P1(Fq) form the disjoint union M1
∐
M2. The

ζ-function

ζM1]FqM2(t) = ζM1
∐
M2

(t) : ζP1(Fq)(t) =
ζM1(t)ζM2(t)

ζP1(Fq)(t)
= (1− t)(1− qt)ζM1(t)ζM2(t).

It is clear that if M1 is (m1, D1)-balanced and M2 is (m2, D2)-balanced then M1]FqM2 is
(m1 +m2, D1 +D2)-balanced and the ζ-function

ζM1]FqM2(t) =
PD1
m1

(t)PD2
m2

(t)

(1− q)(1− qt)
.
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Lemma 3. (i) Let M be a locally finite G = Gal(Fq/Fq)-module with ζ-function

ζM (t) =
PM (t)

(1− t)(1− qt)

for some polynomial

PM (t) =
d∏
i=1

(1− ωit) ∈ Q[t]

of degPM (t) = d with Pm(0) = 1 and

P̌M (t) :=

d∏
i=1

(
1− q

ωi
t

)
.

Then the product P ∗M (t) := PM (t)P̌M (t) satisfies the functional equation

P ∗M (t) = P ∗M

(
1

qt

)
qdt2d

and has leading coefficient LC(P ∗M (t)) = qd.
(ii) If a polynomial P ∗(t) ∈ R[t] of degree degP ∗(t) = δ with P ∗(0) = 1 and leading

coefficient LC(P ∗(t)) = q
δ
2 satisfies the functional equation

P ∗(t) = P ∗
(

1

qt

)
q
δ
2 tδ,

then 1
ωi
∈ C is a root of P ∗(t) exactly when ωi

q ∈ C is a root of P ∗(t).

Proof. (i) Straightforwardly,

P ∗M

(
1

qt

)
qdt2d = PM

(
1

qt

)
P̌M

(
1

qt

)
qdt2d =

[
d∏
i=1

(
1− ωi

qt

)(
1− 1

ωit

)]
qdt2d =

d∏
i=1

(1− ωit)
(

1− q

ωi
t

)
= PM (t)P̌M (t) = P ∗M (t)

by (
1− ωi

qt

)(
1− 1

ωit

)
=
qt2

(
1− ωit)

(
1− q

ωi
t

)
.

(ii) Due to P ∗(0) = 1, one has P ∗(t) =
δ∏
i=1

(1 − ωit) for the reciprocals ωi ∈ C of the

complex roots of P ∗(t). Making use of

1− ωi
qt

=
(−ωi)
qt

(
1− q

ωi
t

)
,
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one observes that

P ∗
(

1

qt

)
q
δ
2 tδ =

[
δ∏
i=1

(
1− ωi

qt

)]
q
δ
2 tδ =

δ∏
i=1

(−ωi)

qδtδ

[
δ∏
i=1

(
1− q

ωi
t

)]
q
δ
2 tδ =

LC(P ∗)

q
δ
2

[
δ∏
i=1

(
1− q

ωi

)]
=

δ∏
i=1

(
1− q

ωi
t

)

coincides with P ∗(t) =
δ∏
i=1

(1−ωit) if and only if for any root 1
ωi
∈ C of P ∗(t) = 0 the complex

number ωi
q ∈ C is also a root of P ∗(t) = 1.

Let M be a G-module with ζ-polynomial

PM (t) =

d∏
i=1

(1− ωit)

for some ωi ∈ C∗. If there is a G-module M̌ with ζ-polynomial

P̌M (t) :=
d∏
i=1

(
1− q

ωi
t

)
then

P ∗M (t) := PM (t)P̌M (t) = PM]FqM̌
(t)

is the ζ-polynomial of the connected sum of M and M̌ over Fq.
Let C ⊂ Fnq be an Fq-linear code of dimension dimFq C = k and minimum weight w

with dual C⊥ of minimum weight w⊥. The deviation g := n + 1 − k − w, respectively,
g⊥ := n + 1 − (n − k) − w⊥ = k + 1 − w⊥ from the equality in the Singleton Bound
g ≥ 0, respectively, g⊥ ≥ 0 is called the genus of C, respectively, C⊥. The ζ-polynomials
PC(t), PC⊥(t) ∈ Q[t] of C and C⊥ are of degree g + g⊥. Mac Williams identities for the
weight distribution of C and C⊥ are equivalent to the equality

PC⊥(t) = PC

(
1

qt

)
qgtg+g

⊥

for their ζ-polynomials. An Fq-linear code C ⊂ Fnq is formally self-dual if C and C⊥ have
one and a same number of words od weight s for all 0 ≤ s ≤ n. The formal self-duality of C
is equivalent to the functional equation

PC(t) = PC

(
1

qt

)
qgt2g

for its ζ-polynomial PC(t). That motivates the next
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Lemma-Definition 4. LetM be a locally finite module over G = Gal(Fq/Fq) with ζ-function

ζM (t) =
PM (t)

(1− t)(1− qt)

for some polynomial PM (t) ∈ Q[t] of even degree degPM (t) = 2d and R(t) ∈ Q[[t]] be the
formal power series, defined by the equality

R(t) := (q − 1)t1−dζM (t) + h

[
t1−d

1− t
− qdtd

1− qt

]
∈ Q[[t]]. (5)

Then the following conditions are equivalent:
(i) PM (t) satisfies the functional equation

PM (t) = PM

(
1

qt

)
qdt2d; (6)

(ii) the rational function

t1−dζM (t) =

(
1

qt

)1−d
ζM

(
1

qt

)
(7)

is invariant under the substitution t 7→ 1
qt ;

(iii) R(t) is a Laurent polynomial of the form

R(t) = R0 +

d−1∑
i=1

Ri

(
ti +

1

qiti

)
∈ SpanQ

{
ti +

1

qiti

∣∣∣ 0 ≤ i ≤ d− 1

}
. (8)

If there holds one and, therefore, any one of the aforementioned conditions, we say that
the G-module M is formally self-dual.

Proof. Making use of (
1− 1

qt

)(
1− q

qt

)
= q−1t−2(1− t)(1− qt),

one observes that(
1

qt

)1−d
ζM

(
1

qt

)
= qd−1td−1

PM

(
1
qt

)
(

1− 1
qt

) (
1− 1

t

) = qdtd+1
PM

(
1
qt

)
(1− t)(1− qt)

coincides with
t1−dζM (t) = t1−d

PM (t)

(1− t)(1− qt)
if and only if

t1−dPM (t) = qdtd+1PM

(
1

qt

)
.

After multiplication by td−1, this amounts to (6) and proves the equivalence of (i) and (ii).
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Note that R(t) :=
∞∑
i=0

Ri−d+1t
i−d+1 ∈ Q[[t]] can be defined by the equalities

Ri−d+1 = (q − 1)Ai + h(1− qi−d+1) for ∀i ∈ Z≥0. (9)

Note that the rational function

Phi(t) :=
t1−d

1− t
− qdtd

1− qt

is invariant under the substitution t 7→ 1
qt , according to(

1

qt

)1−d
.

1

1− 1
qt

= − qdtd

1− qt

and

qd
(

1

qt

)d
.

1

1− q
qt

= − t
1−d

1− t
.

Therefore, (7) is equivalent to the invariance

R(t) = R

(
1

qt

)
(10)

of R(t) := (q − 1)t1−dζM (t) + hΦ(t) under the transformation t 7→ 1
qt . The ζ-function

ζM (t) =
∞∑
i=0
Aiti has no pole at t = 0. The power series

Φ(t) = t1−d

( ∞∑
s=0

ts

)
− qdtd

( ∞∑
s=0

qsts

)
=

∞∑
s=1−d

Φst
s

has terms of degree ≥ 1− d, as well as the power series

t1−dζM (t) = t1−d

( ∞∑
i=0

Aiti
)
.

Therefore R(t) =
∞∑

i=1−d
Rit

i has a pole of order ≤ d − 1 at t = 0. The functional equation

(10) asserts the coincidence of the formal power series

R

(
1

qt

)
=

d−1∑
i=1−d

Riq
−it−i +

∞∑
i=d

Riq
−−it−i =

d−1∑
j=1−d

R−jq
jtj +

−d∑
j=−∞

R−jq
jtj

with the formal power series

R(t) =

d−1∑
i=1−d

Rit
i +

∞∑
i=d

Rit
i.

11



This is equivalent to the identical vanishing of

0 ≡ R(t)−R
(

1

qt

)
= −

−d∑
i=−∞

R−iq
iti +

d−1∑
i=1−d

(ri − qiR−i)ti +

∞∑
i=d

Rit
i

and holds exactly when Ri = 0 for all i ≥ d and

d−1∑
j=1−d

R−jt
−j =

d−1∑
i=1−d

Rit
i =

d−1∑
i=1−d

qiR−it
i =

d−1∑
j=1−d

q−jRjt
−j .

The last equality of power series is equivalent to

R−j = q−jRj for ∀1− d ≤ j ≤ d− 1

and amounts to

R(t) =
−1∑

j=1−d
Rjt

j +R0 +
d−1∑
j=1

Rjt
j =

d−1∑
i=1

R−it
−i +R0 +

d−1∑
j=1

Rjt
j =

R0 +
d−1∑
i=1

Ri
(
ti + q−it−i

)
.

That justifies (ii)⇔ (iii).

Let X/Fq ⊂ PN (Fq) be a smooth irreducible curve of genus g, defined over Fq. Then the
ζ-polynomial of X is of degree 2g and Riemann-Roch Theorem implies that X has

Am = h
qm−g+1 − 1

q − 1

effective divisors of degree m > 2g − 2. Drawing an analogy with this example of a locally
finite module over G = Gal(Fq/Fq), we give the following

Corollary-Definition 5. Let M be a locally finite (m,D)-balanced module over the absolute

Galois group G = Gal(Fq/Fq) with ζ-function ζM (t) =
∞∑
i=0
Aiti and R(t) be the formal power

series, defined by the equality

R(t) := (q − 1)t1−dζM (t) + h

[
t1−d

1− t
− qdtd

1− qt

]
∈ Q[[t]].

Then R(t) =
n1∑

j=1−d
Rjt

j is a Laurent polynomial if and only if

Ai = h
qi−d+1 − 1

q − 1
for sufficiently large i ≥ n1 + d. (11)

The G-modules M , satisfying (11) are called Riemann-Roch modules.
In particular, any formally self-dual G-module is a Riemann-Roch module.
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Proof. If R(t) =
n1∑

j=1−d
Rjt

j is a Laurent polynomial, then (9) implies that

Ri−d+1 = (q − 1)Ai + h(1− qi−d+1) = 0 for all i ≥ n1 + d.

As a result, there holds (11) for all i ≥ n1 + d.
Conversely, (11) for all i ≥ n1 + d and (9) imply that Ri−d+1 = 0 for all i ≥ n1 + d,

whereas R(t) =
n1∑

j=1−d
Rjt

j .

Definition 6. Let M be a locally finite module M over G = Gal(Fq/Fq) with ζ-function

ζM (t) =
PM (t)

(1− t)(1− qt)

for some polynomial PM (t) ∈ Q[t]. Then M satisfies the Riemann Hypothesis Analogue if all
the roots α ∈ C of PM (t) are of |α| = 1√

q .

Proposition 7. (Това твърдение е от стария ръкопис) Let M be a formally self-dual G-
module with ζ-function

ζM (t) =
PM (t)

(1− t)(1− qt)
,

PM (t) =

2d∏
i=1

(1− ωit) ∈ Q[t], ωi ∈ C and

Sν := −
2d∑
i=1

ωνi for ∀ν ∈ N.

ThenM satisfies the Riemann Hypothesis Analogue if and only if the sequence
{
Sνq

− ν
2

}∞
ν=1
⊂

C is absolutely bounded.

Proof. By Lemma 3 (ii), 1−ωit is a factor of PM (t) if and only if 1− q
ωi
t is a factor of PM (t).

That is why

Sν = −
2d∑
j=1

(
q

ωi

)ν
for ∀ν ∈ N. (12)

IfM satisfies the Riemann Hypothesis Analogue and ωj = eiϕj
√
q for some ϕj ∈ [0, 2π), then

Sνq
− ν

2 = −
2d∑
j=1

eiνϕj

by (??) and

|Sνq−
ν
2 | ≤

2d∑
j=1

|eiνjϕj | ≤ 2d

13



is bounded for any ν ∈ N.
Conversely, assume that

Sνq
− ν

2 = −
2d∑
j=1

(
ωi√
q

)ν
for ∀ν ∈ N

form an absolutely bounded sequence of complex numbers. Then there exist a positive real
constant C and νo ∈ N, such that

|Sνq−
ν
2 | ≤ C for all ν ≥ νo.

As a result, the series

S(t) :=

∞∑
ν=νo

Sνq
− ν

2 tν

converges absolutely for all t ∈ ∆(0, 1) := {z ∈ C | |z| < 1}, according to
∞∑

ν=νo

|Sνq−
ν
2 ||t|ν ≤ C

( ∞∑
ν=νo

|t|ν
)

=
C|t|νo
1− |t|

for ∀|t| < 1.

However,

S(t) =
∞∑

ν=νo

Sνq
− ν

2 tν = −
∞∑

ν=νo

 2d∑
j=1

(
ωj√
q

)ν tν =

−
2d∑
j=1

[ ∞∑
ν=νo

(
q−

1
2ωjt

)ν]
= −

2d∑
j=1

(
q−

1
2ωjt

)νo
1− q−

1
2ωjt

is a sum of 2d geometric progressions with ratios q−
1
2ωjt and the convergence of S(t) for all

t ∈ ∆(0, 1) requires the rational function

−
2d∑
j=1

(
q−

1
2ωjt

)νo
1− q−

1
2ωjt

of t to have no poles in ∆(0, 1). In other words, all the poles
√
q

ωj
of this ratio of polynomials

are from C \∆(0, 1), i.e., ∣∣∣√q
ωj

∣∣∣ ≥ 1. (13)

Making use of (12), one observes that the convergence of the power series

S(t) =
∑
ν=νo

Sνq
− ν

2 tν = −
∞∑

ν=νo

 2d∑
j=1

(√
q

ωj

)ν =

−
2d∑
j=1

[ ∞∑
ν=νo

(
ω−1
j

√
qt
)ν]

= −
2d∑
j=1

(
ω−1
j

√
qt
)νo

1− ω−1
j

√
qt
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for all t ∈ ∆(0, 1) implies that the poles ωj√
q belong to C \∆(0, 1), i.e.,∣∣∣ ωj√
q

∣∣∣ ≥ 1. (14)

Combining (13) with (14), one concludes that∣∣∣√q
ωj

∣∣∣ = 1 for all 1 ≤ j ≤ 2d.

Thus, all the roots 1
ωj
∈ C of PM (t) = 0 are from the circle

∂∆

(
0,

1
√
q

)
:=

{
z ∈ C

∣∣∣ |z| = 1
√
q

}
and M satisfies the Riemann Hypothesis Analogue.

References

[1] E. Bombieri, Counting points on curves over finite fields (d’après A. Stepanov), Semi-
naire Bourbaki 1972/73, Exp. 430, Lecture Notes in Mathematics, , Vol. 383, pp. 234
- 241, Springer, Berlin, 1974.

[2] I. Duursma, Weight distribution of geometric Goppa codes, Transections of the Ameri-
can Mathematical Society, 351 (1999), 3609 - 3639.

[3] I. Duursma, From weight enumerators to zeta functions, Discrete Applied Mathematics,
111 (2001), 55 - 73.

[4] H. Stichtenoth, Algebraic Function Fields and Codes, Springer, Berlin, 1992.

15


