Galois groups of co-abelian ball quotient covers

Azniv Kasparian

Abstract

If $X^{\prime}=(\mathbb{B} / \Gamma)^{\prime}$ is a torsion free toroidal compactification of a discrete ball quotient $X_{o}=\mathbb{B} / \Gamma$ and $\xi:\left(X^{\prime}, T=X^{\prime} \backslash X_{o}\right) \rightarrow(X, D=\xi(T))$ is the blow-down of the (-1)-curves to the corresponding minimal model, then $G^{\prime}=\operatorname{Aut}\left(X^{\prime}, T\right)$ coincides with the finite group $G=\operatorname{Aut}(X, D)$. In particular, for an elliptic curve E with endomorphism ring $R=\operatorname{End}(E)$ and a split abelian surface $X=$ $A=E \times E, G$ is a finite subgroup of $\operatorname{Aut}(A)=\mathcal{T}_{A} \lambda G L(2, R)$, where $\left(\mathcal{T}_{A},+\right) \simeq$ $(A,+)$ is the translation group of A and $G L(2, R)=\left\{g \in R_{2 \times 2} \mid \operatorname{det}(g) \in R^{*}\right\}$.

The present work classifies the finite subgroups H of $\operatorname{Aut}(A=E \times E)$ for an arbitrary elliptic curve E. By the means of the geometric invariants theory, it characterizes the Kodaira-Enriques types of $A / H \simeq(\mathbb{B} / \Gamma)^{\prime} / H$, in terms of the fixed point sets of H on A. The abelian and the K3 surfaces A / H are elaborated in [7]. The first section provides necessary and sufficient conditions for A / H to be a hyper-elliptic, ruled with elliptic base, Enriques or a rational surface. In such a way, it depletes the Kodaira-Enriques classification of the finite Galois quotients A / H of a split abelian surface $A=E \times E$. The second section derives a complete list of the conjugacy classes of the linear automorphisms $g \in G L(2, R)$ of A of finite order, by the means of their eigenvalues. The third section classifies the finite subgroups H of $G L(2, R)$. The last section provides explicit generators and relations for the finite subgroups H of $\operatorname{Aut}(A)$ with K3, hyper-elliptic, rules with elliptic base or Enriques quotients $A / H \simeq(\mathbb{B} / \Gamma)^{\prime} / H$.

Let

$$
\mathbb{B}=\left\{z=\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2} \quad| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}<1\right\} \simeq S U_{2,1} / S\left(U_{2} \times U_{1}\right)
$$

be the complex 2-ball. In [4] Holzapfel settled the problem of the characterization of the projective surfaces, which are birational to an eventually singular ball quotient \mathbb{B} / Γ by a lattice Γ of $S U_{2,1}$. Note that if $\gamma \in \Gamma$ is a torsion element with isolated fixed points on \mathbb{B} then \mathbb{B} / Γ has isolated cyclic quotient singularity, which ought to be resolved in order to obtain a smooth open surface. The aforementioned resolution creates smooth rational curves of self-intersection ≤-2, which alter the local differential geometry of \mathbb{B} / Γ, modeled by \mathbb{B}. That is why we split the problem to the description of the minimal models X_{o} of the smooth toroidal compactifications $X_{o}^{\prime}=\left(\mathbb{B} / \Gamma_{o}\right)^{\prime}$ of torsion free Γ_{o} and to the characterization of the birational equivalence classes of
X_{o} / H for appropriate finite automorphism groups H. This reduction is based on the fact that any finitely generated lattice Γ in the simple Lie group $S U_{2,1}$ has a torsion free normal subgroup Γ_{o} of finite index $\left[\Gamma: \Gamma_{o}\right]$. Therefore $\mathbb{B} / \Gamma=\left(\mathbb{B} / \Gamma_{o}\right) /\left(\Gamma / \Gamma_{o}\right)$ and the classification of \mathbb{B} / Γ is attempted by the classification of \mathbb{B} / Γ_{o} and the finite automorphism groups $H=\Gamma / \Gamma_{o}$ of \mathbb{B} / Γ_{o}.

According to the next proposition, for any torsion free ball lattice Γ_{o} and any $\Gamma<S U_{2,1}$, containing Γ_{o} as a normal subgroup of finite index, the quotient group Γ / Γ_{o} acts on the toroidal compactifying divisor $T=\left(\mathbb{B} / \Gamma_{o}\right)^{\prime} \backslash\left(\mathbb{B} / \Gamma_{o}\right)$ and provides a compactification $\overline{\mathbb{B} / \Gamma}=\left(\mathbb{B} / \Gamma_{o}\right)^{\prime} /\left(\Gamma / \Gamma_{o}\right)$ of \mathbb{B} / Γ with at worst isolated cyclic quotient singularities. Therefore $H=\Gamma / \Gamma_{o}$ is a subgroup of $\operatorname{Aut}\left(X_{o}^{\prime}, T\right)$. The birational equivalence classes of $\overline{\mathbb{B} / \Gamma}$ are to be described by the numerical invariants of the minimal resolutions Y of the singularities of $\overline{\mathbb{B}} / \Gamma$. These can be computed by the means of the geometric invariant theory, applied to X_{o} and a finite subgroup H of the biholomorphism group $\operatorname{Aut}\left(X_{o}\right)$.

Proposition 1. Let Γ be a lattice of $S U_{2,1}$ and Γ_{o} be a normal torsion free subgroup of Γ with finite index $\left[\Gamma: \Gamma_{o}\right]$. Then the group $G=\Gamma / \Gamma_{o}$ acts on the toroidal compactifying divisor $T=\left(\mathbb{B} / \Gamma_{o}\right)^{\prime} \backslash\left(\mathbb{B} / \Gamma_{o}\right)$ and the quotient $\left(\mathbb{B} / \Gamma_{o}\right)^{\prime} / G=(\mathbb{B} / \Gamma) \cup$ $(T / G)=\overline{\mathbb{B}} / \Gamma$ is a compactification of \mathbb{B} / Γ with at worst isolated cyclic quotient singularities.

Proof. Recall that $p \in \partial_{\Gamma} \mathbb{B}$ is a Γ-rational boundary point exactly when the intersection $\Gamma \cap S t a b_{S U_{2,1}}(p)$ is a lattice of $\operatorname{Stab}_{S U_{2,1}}(p)$. Since $\left[\Gamma: \Gamma_{o}\right]<\infty$, the quotient

$$
\begin{gathered}
\operatorname{Stab}_{S U_{2,1}}(p) /\left[\Gamma \cap \operatorname{Stab}_{S U_{2,1}}(p)\right]= \\
=\left\{\operatorname{Stab}_{S U_{2,1}}(p) /\left[\Gamma_{o} \cap \operatorname{Stab}_{S U_{2,1}}(p)\right]\right\} /\left\{\left[\Gamma \cap \operatorname{Stab}_{S U_{2,1}}(p) /\left[\Gamma_{o} \cap \operatorname{Stab}_{S U_{2,1}}(p)\right]\right\}\right.
\end{gathered}
$$

has finite invariant volume exactly when $\operatorname{Stab}_{S U_{2,1}}(p) /\left[\Gamma_{o} \cap \operatorname{Stab}_{S U_{2,1}}(p)\right]$ has finite invariant volume. Therefore the Γ-rational boundary points coincide with the $\Gamma_{o^{-}}$ rational boundary points, $\partial_{\Gamma} \mathbb{B}=\partial_{\Gamma_{o}} \mathbb{B}$. It suffices to establish that the Γ-action on \mathbb{B} admits local extensions on neighborhoods of the liftings of T_{i} to complex lines through $p_{i} \in \partial_{\Gamma_{o}} \mathbb{B}$ with $\operatorname{Orb}_{\Gamma_{o}}\left(p_{i}\right)=\kappa_{i}$. According to [?], the cusp κ_{i}, associated with the smooth elliptic curve T_{i} has a neighborhood $N\left(\kappa_{i}\right)=T_{i} \times \Delta^{*}(0, \varepsilon) \subset\left(\mathbb{B} / \Gamma_{o}\right)$ for a sufficiently small punctured disc $\Delta^{*}(0, \varepsilon)=\{z \in \mathbb{C}| | z \mid<\varepsilon\}$. The biholomorphisms $\gamma: \mathbb{B} \rightarrow \mathbb{B}$ from Γ extend to $\gamma: \mathbb{B} \cup \partial_{\Gamma_{o}} \mathbb{B} \rightarrow \mathbb{B} \cup \partial_{\Gamma_{o}} \mathbb{B}$, as far as $\partial_{\Gamma_{o}} \mathbb{B}$ consists of isolated points. If $p_{i} \in \partial_{\Gamma_{o}} \mathbb{B}, \gamma\left(p_{i}\right)=p_{j} \in \partial_{\Gamma_{o}} \mathbb{B}$ and $\kappa_{j}=\operatorname{Orb}_{\Gamma_{o}}\left(p_{j}\right)$ then there is a biholomorphism

$$
\gamma: N\left(\kappa_{i}\right) \cap \gamma^{-1} N\left(\kappa_{j}\right) \longrightarrow \gamma N\left(\kappa_{i}\right) \cap N\left(\kappa_{j}\right) .
$$

For any $q_{i} \in T_{i}$ let $\Delta_{T_{i}}\left(q_{i}, \eta\right)$ be a sufficiently small disc on T_{i}, centered at q_{i}, which is contained in a $\pi_{1}\left(T_{i}\right)$-fundamental domain, centered at q_{i}. One can view $\Delta_{T_{i}}\left(q_{i}, \eta\right)=\Delta_{\widetilde{T_{i}}}\left(q_{i}, \eta\right)$ as a disc on the lifting \widetilde{T}_{i} of T_{i} to a complex line through p_{i}.

Then $N\left(\kappa_{i}, q_{i}\right):=\Delta_{\widetilde{T}_{i}}\left(q_{i}, \eta\right) \times \Delta^{*}(0, \varepsilon)$ is a bounded neighborhood of $q_{i} \in T_{i}$ on \mathbb{B} / Γ_{o} and the holomorphic map
$\gamma: N\left(\kappa_{i}, q_{i}\right) \cap \gamma^{-1} N\left(\kappa_{j}, q_{j}\right) \rightarrow \gamma N\left(\kappa_{i}, q_{i}\right) \cap N\left(\kappa_{j}, q_{j}\right) \subseteq N\left(\kappa_{j}, q_{j}\right)=\Delta_{\widetilde{T_{j}}}\left(q_{j}, \eta\right) \times \Delta^{*}(0, \varepsilon)$
is bounded. Thus, $\gamma: \mathbb{B} \rightarrow \mathbb{B}$ is locally bounded around $\widetilde{T}=\sum_{p_{i} \in \partial_{\Gamma_{o}} \mathbb{B}} \widetilde{T}_{i}\left(p_{i}\right)$ and admits a holomorphic extension $\gamma: \mathbb{B} \cup \widetilde{T} \rightarrow \mathbb{B} \cup \widetilde{T}$. This induces a biholomorphism $\gamma \Gamma_{o}:\left(\mathbb{B} / \Gamma_{o}\right)^{\prime} \rightarrow\left(\mathbb{B} / \Gamma_{o}\right)^{\prime}$.

The next proposition establishes that an arbitrary torsion free toroidal compactification $\left(\mathbb{B} / \Gamma_{o}\right)^{\prime}$ has finitely many Galois quotients $\left(\mathbb{B} / \Gamma_{o}\right)^{\prime} / H=\overline{\mathbb{B}} / \Gamma_{H}$ with $\Gamma_{H} / \Gamma_{o}=$ H. For torsion free $\left(\mathbb{B} / \Gamma_{o}\right)^{\prime}$ with an abelian minimal model $X_{o}=A$, the result is proved in [6]. Note also that [9] constructs an infinite series $\left\{\left(\mathbb{B} / \Gamma_{n}\right)^{\prime}\right\}_{n=1}^{\infty}$ of mutually non-birational torsion free toroidal compactifications with abelian minimal models, which are finite Galois covers of a fixed $\left(\overline{\mathbb{B}} / \Gamma_{H_{1}}, T(1) / H\right)=\left(\left(\mathbb{B} / \Gamma_{n}\right)^{\prime}, T(n)\right) / H_{n}$, $H_{n} \leq A u t\left(\left(\mathbb{B} / \Gamma_{n}\right)^{\prime}, T(n)\right)$.

Proposition 2. Let $X^{\prime}=(\mathbb{B} / \Gamma)^{\prime}=(\mathbb{B} / \Gamma) \cup T$ be a torsion free toroidal compactification and $\xi:\left(X^{\prime}, T\right) \rightarrow\left(X=\xi\left(X^{\prime}\right), D=\xi(T)\right)$ be the blow-down of the (-1)-curves to the minimal model X of X^{\prime}. Then $\operatorname{Aut}\left(X^{\prime}, T\right)$ is a finite group, which coincides with $\operatorname{Aut}(X, D)$.

Proof. Let us denote $G=\operatorname{Aut}(X, D), G^{\prime}=\operatorname{Aut}\left(X^{\prime}, T\right)$ and observe that X^{\prime} is the blow-up of X at the singular locus $D^{\text {sing }}$ of D. Since $D=\sum_{i=1}^{h} D_{i}$ has smooth elliptic irreducible components D_{i}, the singular locus $D^{\text {sing }}=\sum_{1 \leq i<j \leq h} D_{i} \cap D_{j}$ and its complement $X \backslash D^{\text {sing }}$ are G-invariant. We claim that the G-action extends to the exceptional divisor $E=\xi^{-1}\left(D^{\text {sing }}\right)$ of ξ, so that $X^{\prime}=\left(X \backslash D^{\text {sing }}\right) \cup E$ is G-invariant. Indeed, for any $g \in G$ and $p \in D^{\text {sing }}$ with $q=g(p)$, let us choose local holomorphic coordinates $x=\left(x_{1}, x_{2}\right)$, respectively, $y=\left(y_{1}, y_{2}\right)$ on sufficiently small neighborhoods $N(p), N(q)$ of p and q on X with $g N(p) \subseteq N(q)$. Then $g: N(p) \rightarrow N(q) \subset \mathbb{C}^{2}$ consists of two local holomorphic functions $g=\left(g_{1}, g_{2}\right)$ on $N(p)$. By the very definition of a blow-up,

$$
\begin{gathered}
\xi^{-1} N(p)=\left\{\left(x_{1}, x_{2}\right) \times\left[x_{1}: x_{2}\right] \mid \quad\left(x_{1}, x_{2}\right) \in N(p)\right\} \mid \text { and } \\
\xi^{-1} N(q)=\left\{\left(g_{1}(x), g_{2}(x)\right) \times\left[g_{1}(x): g_{2}(x)\right] \mid g(x)=\left(g_{1}(x), g_{2}(x)\right) \in N(q)\right\},
\end{gathered}
$$

so that

$$
\begin{gathered}
g: \xi^{-1} N(p) \rightarrow \xi^{-1} N(q) \\
\left(x_{1}, x_{2}\right) \times\left[x_{1}: x_{2}\right] \mapsto\left(g_{1}(x), g_{2}(x)\right) \times\left[g_{1}(x): g_{2}(x)\right]
\end{gathered}
$$

extends the action of $g \in G$ to $\xi^{-1}\left(D^{\text {sing }}\right)$ and $G \subset A u t\left(X^{\prime}\right)$. Towards the G-invariance of T, note that the birational maps $\xi: T_{i} \rightarrow \xi\left(T_{i}\right)=D_{i}$ of the smooth irreducible components T_{i} of T are biregular. Thus, the G-invariance of $D=\sum_{i=1}^{h} D_{i}$ implies the G-invariance of $T=\sum_{i=1}^{h} T_{i}$ and $G \subseteq G^{\prime}=\operatorname{Aut}\left(X^{\prime}, T\right)$. For the opposite inclusion $G^{\prime}=\operatorname{Aut}\left(X^{\prime}, T\right) \subseteq G=\operatorname{Aut}(X, D)$ observe that an arbitrary $g^{\prime} \in G^{\prime}$ acts on the union E of the (-1)-curves on X^{\prime} and permutes the finite set $\xi(E)=D^{\text {sing }}$. In such a way, g^{\prime} turns to be a biregular morphism of $X=\left(X^{\prime} \backslash E\right) \cup D^{\text {sing }}$. The restriction of g^{\prime} on T_{i} has image $g^{\prime}\left(T_{i}\right)=T_{j}$ for some $1 \leq j \leq h$ and induces a biholomorphism $g^{\prime}: D_{i} \rightarrow D_{j}$. As a result, $g^{\prime} \in G^{\prime}$ acts on D and $g^{\prime} \in G=A u t(X, D)$.

In order to justify that $G=\operatorname{Aut}(X, D)$ is a finite group, let us consider the natural representation

$$
\varphi: G \rightarrow \operatorname{Sym}\left(D_{1}, \ldots, D_{h}\right)
$$

in the permutation group of the irreducible components D_{1}, \ldots, D_{h} of D. As far as the image $\varphi(G)$ is a finite group, it suffices to prove that the kernel $\operatorname{ker} \varphi$ is finite. Fix $p \in D^{\text {sing }}$ and two local irreducible branches U_{o} and V_{o} of D through p. If $U_{o} \subset D_{i}$ and $V_{o} \subset D_{j}$ for $i \neq j$ then consider the natural representation

$$
\varphi_{o}: \operatorname{ker} \varphi \rightarrow \operatorname{Sym}\left(D_{i} \cap D_{j}\right) .
$$

The group homomorphism φ_{o} has a finite image, so that the problem reduces to the finiteness of $G_{o}:=\operatorname{ker}\left(\left.\varphi_{o}\right|_{\text {ker } \varphi}\right)$. By its very definition, $G_{o} \leq \operatorname{Stab}_{G}(p)$. Let us move the origin of D_{i} at p and realize G_{o} as a subgroup of the finite cyclic group $\operatorname{End}^{*}\left(D_{i}\right)$. After an eventual shrinking, U_{o} is contained in a coordinate chart of X. Then $U=\cap_{g_{o} \in G_{o}}\left[g_{o}\left(U_{o}\right)\right]$ is a G_{o}-invariant neighborhood of p on D_{i}. Similarly, pass to a G_{o}-invariant neighborhood $V \subset V_{o}$ of p on D_{j}, intersecting transversally U. Through any point $v \in V$ there is a local complex line $U(v)$, parallel to U. The union $W=\cup_{v \in V} U(v)$ is a neighborhood of p on X, biholomorphic to $U \times V$. In holomorphic coordinates $(u, v) \in W$, one gets $G_{o} \leq \operatorname{End}^{*}(U) \times \operatorname{End}^{*}(V)$. Note that $\operatorname{End}^{*}(U) \subseteq \operatorname{End}^{*}\left(D_{i}\right)$ and $\operatorname{End}^{*}\left(D_{i}\right)$ is a finite cyclic group of order $1,2,3,4$ or 6 , so that $\left|G_{o}\right|<\infty$.

1 Kodaira-Enriques classification of the finite Galois quotients of a split abelian surface

Let $A=E \times E$ be the Cartesian square of an elliptic curve E. For an arbitrary finite automorphism group $H \leq \operatorname{Aut}(A)$, we characterize the Kodaira-Enriques classification type of A / H in terms of the fixed point set $F i x_{A}(H)$ of H on A. Partial results for this problem are provided by [7]. Namely, any A / H is a finite cyclic Galois quotient of a smooth abelian surface A / K or a normal model A / K of a K3 surface. The surface A / K is abelian exactly when $K=\mathcal{T}(H)$ is a translation group. The note [7] specifies that a necessary and sufficient condition for $A /[\mathcal{T}(H)\langle h\rangle]$ to have irregularity $q(Y)=h^{1,0}(Y)=1$ is the presence of an entire elliptic curve in the fixed point set $F i x_{A}(h)$ of h. This result is similar to S. Tokunaga and M. Yoshida's study [11] of the discrete subgroups $\Lambda \leq \mathbb{C}^{n} \lambda U(n)$ with compact quotient \mathbb{C}^{n} / Λ. Namely, [11] establishes that if the linear part $\mathcal{L}(\Lambda)$ of such Λ does not fix pointwise a complex line on \mathbb{C}^{2}, then \mathbb{C}^{n} / Λ has vanishing irregularity. Further, [7] observes that if some $h \in H$ fixes pointwise an entire elliptic curve on A, then the Kodaira dimension $\kappa(A / H)=-\infty$ drops down. Tokunaga and Yoshida prove the same statement for discrete subgroups $\Lambda \leq \mathbb{C}^{n} \lambda U(n)$ with compact quotient \mathbb{C}^{n} / Λ. The note [7] proves also that if A / K is a K 3 double cover of A / H then A / H is birational to an Enriques surface if and only if $A / K \rightarrow A / H$ is unramified.

The present note establishes that an arbitrary cyclic cover $\zeta_{H}^{K}: A / K \rightarrow A / H$ of degree ≥ 3 by a K3 surfaces A / K with isolated cyclic quotient singularities is ramified over a finite set of points and A / H is a rational surface. If a K3 surface A / K is a double cover $\zeta_{H}^{K}: A / K \rightarrow A / H$ of A / H then A / H is birational to an Enriques surface exactly when ζ_{H}^{K} is unramified. The quotients A / H with ramified K 3 double covers $\zeta_{H}^{K}: A / K \rightarrow A / H$ are rational surfaces. If $H=\mathcal{T}(H)\langle h\rangle$ and the fixed points of $\mathcal{L}(h)$ on A contain an elliptic curve then A / H is hyper-elliptic (respectively, ruled with an elliptic base) if and only if H has not a fixed point on A (respectively, H has a fixed point on A, whereas H has a pointwise fixed elliptic curve on A). If $H=\mathcal{T}(H)\langle h\rangle$ and $\mathcal{L}(h)$ has isolated fixed points on A then A / H is a rational surface.

In order to construct the normal subgroup K of H, let us recall that the automorphism group $\operatorname{Aut}(A)=\mathcal{T}_{A}<\operatorname{Aut}_{\check{o}_{A}}(A)$ of A is a semi-direct product of the translation group $\mathcal{T}_{A} \simeq(A,+)$ and the stabilizer Aut $_{\check{o}_{A}}(A)$ of the origin $\check{o}_{A} \in A$. Each $g \in$ $\operatorname{Aut}_{\check{o}_{A}}(A)$ is a linear transformation

$$
g=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \in G L_{2}(\mathbb{C})
$$

leaving invariant the fundamental group $\pi_{1}(A)=\pi_{1}(E) \times \pi_{1}(E)$ of $A=E \times E$. Therefore $a_{i j} \pi_{1}(E) \subseteq \pi_{1}(E)$ for all $1 \leq i, j \leq 2$ and $a_{i j} \in R$ for the endomorphism $\operatorname{ring} R$ of E. The same holds for the entries of the inverse matrix

$$
g^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left(\begin{array}{rr}
a_{22} & -a_{12} \tag{1}\\
-a_{21} & a_{11}
\end{array}\right) \in \operatorname{Aut}_{\check{o}_{A}}(A) .
$$

Now, $\operatorname{det}(g) \in R$ and $\operatorname{det}\left(g^{-1}\right)=(\operatorname{det}(g))^{-1} \in R$ imply that $\operatorname{det}(g) \in R^{*}$ is a unit. Thus, $\operatorname{Aut}_{\check{o}_{A}}(A)$ is contained in

$$
G l(2, R):=\left\{g \in(R)_{2 \times 2} \mid \operatorname{det}(g) \in R^{*}\right\} .
$$

The opposite inclusion $G l(2, R) \subseteq \operatorname{Aut}_{\check{o}_{A}}(A)$ is clear from (1) and $\operatorname{Aut}_{\tilde{o}_{A}}(A)=$ $G l(2, R)$.

The map $\mathcal{L}: \operatorname{Aut}(A) \rightarrow G l(2, R)$, associating to $g \in \operatorname{Aut}(A)$ its linear part $\mathcal{L}(g) \in G l(2, R)$ is a group homomorphism with $\operatorname{kernel} \operatorname{ker}(\mathcal{L})=\mathcal{T}_{A}$. Denote by \mathcal{O}_{-d} the integers ring of an imaginary quadratic number field $\mathbb{Q}(\sqrt{-d})$. The determinant det : $G l(2, R) \rightarrow R^{*}$ is a group homomorphism in the cyclic units group

$$
R^{*}=\left\langle\zeta_{-d}\right\rangle \simeq \begin{cases}\mathbb{C}_{2} & \text { for } R \neq \mathbb{Z}[i], \mathcal{O}_{-3} \\ \mathbb{C}_{4} & \text { for } R=\mathbb{Z}[i]=\mathcal{O}_{-1} \\ \mathbb{C}_{6} & \text { for } R=\mathcal{O}_{-3}\end{cases}
$$

of order $o(R)$. For an arbitrary subgroup H of $\operatorname{Aut}(A)$, let us denote by $K=K_{H}$ the kernel of the group homomorphism $\operatorname{det} \mathcal{L}: H \rightarrow R^{*}$. The image $\operatorname{det} \mathcal{L}(H) \leq\left(R^{*},.\right)$ is a cyclic group of order m, dividing $o\left(R^{*}\right)$, i.e., $\operatorname{det} \mathcal{L}(H)=\left\langle\zeta_{-d}^{k}\right\rangle$ for some natural divisor $k=\frac{o\left(R^{*}\right)}{m}$ of $o\left(R^{*}\right)$. For an arbitrary $h_{0} \in H$ with $\operatorname{det} \mathcal{L}\left(h_{0}\right)=\zeta_{-d}^{k}$ the first homomorphism theorem reads as

$$
\left\{K_{H}, h_{0} K_{H}, \ldots, h_{0}^{m-1} K_{H}\right\}=H / K_{H} \simeq\left\langle\zeta_{-d}^{k}\right\rangle=\left\{1, \zeta_{-d}^{k}, \zeta_{-d}^{2 k}, \ldots, \zeta_{-d}^{(m-1) k}\right\}
$$

Therefore $H=K_{H}\left\langle h_{0}\right\rangle$ is a product of $K_{H}=\operatorname{ker}\left(\left.\operatorname{det} \mathcal{L}\right|_{H}\right)$ and the cyclic subgroup $\left\langle h_{0}\right\rangle$ of H.

Denote by $E_{1}(H)$ the set of $h \in H$, whose linear parts $\mathcal{L}(h) \in G L_{2}(R)$ have eigenvalue 1 of multiplicity 1 . In other words, $h \in E_{1}(H)$ exactly when $\mathcal{L}(h)$ fixes pointwise an elliptic curve on A through the origin \check{o}_{A}. Put $E_{0}(H)$ for the set of $h \in H$, whose linear parts have no eigenvalue 1 . Observe that $h \in E_{0}(H)$ if and only if $\mathcal{L}(h) \in G L(2, R)$ has isolated fixed points on A.

An automorphism $h \in H \backslash\{\operatorname{Id}\}$ is called a reflection if fixes pointwise an elliptic curve on A. We claim that $h \in H$ is a reflection if and only if $h \in E_{1}(H)$ and h has a fixed point on A. Indeed, if h fixes an elliptic curve F on A, then one can move the origin \check{o}_{A} of A on F, in order to represent h by a linear transformation $h=\mathcal{L}(h) \in$ $G L(2, R) \backslash\{\operatorname{Id}\}=E_{1}(G L(2, R)) \cup E_{0}(G L(2, R))$. Any $h=\mathcal{L}(h) \in E_{0}(G L(2, R))$ has isolated fixed points on A, so that $h=\mathcal{L}(h) \in E_{1}(H)$ and Fix $_{A}(h) \neq \emptyset$. Conversely, if $h \in E_{1}(H)$ and Fix $_{A}(h) \neq \emptyset$, then after moving the origin of A at $\check{o}_{A} \in F i x_{A}(h)$, one attains $h=\mathcal{L}(h)$. Thus, h fixes pointwise an elliptic curve on A or h is a reflection.

Towards the complete classification of the Kodaira-Enriques type of A / H, we use the following results from [7]:

Proposition 3. (i) (cf. Corollary 5 from [7]) The quotient A / H of $A=E \times E$ by a finite automorphism group H is an abelian surface if and only if $H=\operatorname{ker}\left(\left.\mathcal{L}\right|_{H}\right)=$ $\mathcal{T}(H)$ is a translation group.
(ii) (Lemma 7 from [7]) The quotient A / H is birational to a $K 3$ surface if and only if $H=\operatorname{ker}\left(\left.\operatorname{det} \mathcal{L}\right|_{H}\right)$ and $H \supsetneq \operatorname{ker}\left(\left.\mathcal{L}\right|_{H}\right)=\mathcal{T}(H)$.

Proposition 4. (i)(cf. Lemma 11 from [7]) If a finite automorphism group $H \leq$ Aut (A) contains a reflection then A / H is of Kodaira dimension $\kappa(A / H)=-\infty$.
(ii) (cf. Proposition 12 from [7]) A smooth model Y of A / H is of irregularity $q(Y)=h^{1,0}(Y)=1$ if and only if $H=\mathcal{T}(H)\langle h\rangle$ is a product of its normal translation subgroup $\mathcal{T}(H)=\operatorname{ker}\left(\left.\mathcal{L}\right|_{H}\right)$ and a cyclic group $\langle h\rangle$, generated by $h \in E_{1}(H)$.

From now on, we consider only subgroups $H \leq \operatorname{Aut}(A, T)$ with $\operatorname{det} \mathcal{L}(H) \neq\{1\}$ and distinguish between translation $K=\operatorname{ker}\left(\left.\operatorname{det} \mathcal{L}\right|_{H}\right)=\operatorname{ker}\left(\left.\mathcal{L}\right|_{H}\right)=\mathcal{T}(H)$ and nontranslation $K=\operatorname{ker}\left(\left.\operatorname{det} \mathcal{L}\right|_{H}\right) \supsetneq \operatorname{ker}\left(\left.\mathcal{L}\right|_{H}\right)=\mathcal{T}(H)$. Any $h \notin K=\operatorname{ker}\left(\left.\operatorname{det} \mathcal{L}\right|_{H}\right)$ belongs to $E_{1}(H)$ or to $E_{0}(H)$.

Proposition 5. Let $H=\mathcal{T}(H)\langle h\rangle$ be a product of its (normal) translation subgroup $\mathcal{T}(H)=\operatorname{ker}\left(\left.\mathcal{L}\right|_{H}\right)$ and a cyclic group $\langle h\rangle$, generated by $h \in E_{1}(H)$. Then:
(i) the fixed point set $F_{i}(H)=\emptyset$ of H on A is empty if and only if A / H is a smooth hyper-elliptic surface;
(ii) the fixed point set Fix $_{A}(H) \neq \emptyset$ is non-empty if and only if A / H is a smooth ruled surface with an elliptic base. If so, then $\mathrm{Fix}_{A}(H)$ is of codimension 1 in A.

Proof. According to Proposition 4 (ii), $H=\mathcal{T}(H)\langle h\rangle$ with $h \in E_{1}(H)$ if and only if any smooth model Y of A / H has irregularity $q(Y)=h^{1,0}(Y)=1$. More precisely, Y is a hyper-elliptic surface or a ruled surface with an elliptic base.

If Fix $_{A}(H)=\emptyset$ then $A \rightarrow A / H$ is an unramified cover and the Kodaira dimension $\kappa(A / H)=\kappa(A)=0$. Therefore A / H is hyper-elliptic.

Suppose that there is an H-fixed point $p \in F i x_{A}(H)$ and move the origin \check{o}_{A} of A at p. For any $h_{1} \in \operatorname{Stab}_{H}\left(\check{o}_{A}\right) \backslash\left\{I d_{A}\right\}$ one has $\check{o}_{A}=h_{1}\left(\check{o}_{A}\right)=\tau\left(h_{1}\right) \mathcal{L}\left(h_{1}\right)\left(\check{o}_{A}\right)=$ $\tau\left(h_{1}\right)\left(\check{o}_{A}\right)$, so that h_{1} has trivial translation part $\tau\left(h_{1}\right)=\tau_{\check{o}_{A}}$. As a result, $h_{1}=$ $\mathcal{L}\left(h_{1}\right) \in E_{1}(H) \backslash\left\{I d_{A}\right\}$ is a reflection and fixes pointwise an elliptic curve on A. In particular, $\operatorname{Fix}_{A}(H)$ is of complex codimension 1. If

$$
\mathcal{L}(h)=\left(\begin{array}{cc}
1 & 0 \\
0 & \lambda_{2}(h)
\end{array}\right) \quad \text { with } \quad \lambda_{2}(h) \neq 1
$$

then

$$
h_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & \lambda_{2}(h)^{i}
\end{array}\right) \quad \text { with } \quad i \in \mathbb{Z}, \quad \lambda_{2}(h)^{i} \neq 1
$$

By Proposition 4 (i), the quotient $A /\left\langle h_{1}\right\rangle$ by the cyclic group $\left\langle h_{1}\right\rangle$, generated by the reflection $h_{1}=\mathcal{L}\left(h_{1}\right) \in E_{1}(H)$ is of Kodaira dimension $\kappa\left(A /\left\langle h_{1}\right\rangle\right)=-\infty$. Along the finite (not necessarily Galois) cover $A /\left\langle h_{1}\right\rangle \rightarrow A / H$, one has $\kappa\left(A /\left\langle h_{1}\right\rangle\right) \geq \kappa(A / H)$,
whereas $\kappa(A / H)=-\infty$ and A / H is birational to a ruled surface with an elliptic base. Note that all $h \in H$ with $\operatorname{Fix}_{A}(h) \neq \emptyset$ are reflections, so that the quotient A / H is a smooth surface by a result of Chevalley [5].

That proves the proposition, as far as the assumption $\operatorname{Fix}_{A}(H) \neq \emptyset$ for a hyperelliptic A / H leads to a contradiction, as well as the assumption $F i x_{A}(H)=\emptyset$ for a $\operatorname{ruled} A / H$ with an elliptic base.

Proposition 6. Let $H=\mathcal{T}(H)\langle h\rangle$ for some

$$
h \in E_{0}(H)=\left\{h \in H \quad \mid \quad \lambda_{j} \mathcal{L}(h) \neq 1, \quad 1 \leq j \leq 2\right\}
$$

with $\operatorname{det} \mathcal{L}(h) \neq 1$. Then A / H is a rational surface .
Proof. We claim that A / H with $A=E \times E$ is simply connected. To this end, let us denote by R the endomorphism ring of E and lift H to a subgroup \widetilde{H} of the affinelinear group $\operatorname{Aff}\left(\mathbb{C}^{2}, R\right)=\left(\mathbb{C}^{2},+\right) \lambda G L(2, R)$, containing $\left(\pi_{1}(A),+\right)$ as a normal subgroup with quotient $\widetilde{H} / \pi_{1}(A)=H$. Then

$$
A / H=\left[\mathbb{C}^{2} / \pi_{1}(A)\right] /\left[\widetilde{H} / \pi_{1}(A)\right] \simeq \mathbb{C}^{2} / \widetilde{H}
$$

The universal cover $\widetilde{A}=\mathbb{C}^{2}$ of A is a path connected, simply connected locally compact metric space and \widetilde{H} is a discontinuous group of homeomorphisms of \mathbb{C}^{2}. That allows to apply Armstrong's result [1] and conclude that

$$
\pi_{1}(A / H)=\pi_{1}\left(\mathbb{C}^{2} / \widetilde{H}\right) \simeq \widetilde{H} / \tilde{N}
$$

where \widetilde{N} is the normal subgroup of \widetilde{H}, generated by $\widetilde{h} \in \widetilde{H}$ with Fix $x_{\mathbb{C}^{2}}(\widetilde{h}) \neq \emptyset$. There remains to be shown the coincidence $\widetilde{H}=\widetilde{N}$. In the case under consideration, let us choose generators $\tau_{\left(P_{i}, Q_{i}\right)}$ of $\mathcal{T}(H), 1 \leq i \leq m$ and fix liftings $\left(p_{i}, q_{i}\right) \in \mathbb{C}^{2}=\widetilde{A}$ of $\left(p_{i}+\pi_{1}(E), q_{i}+\pi_{1}(E)\right)=\left(P_{i}, Q_{i}\right)$. If $\pi_{1}(E)=\lambda_{1} \mathbb{Z}+\lambda_{2} \mathbb{Z}$ for some $\lambda_{1}, \lambda_{2} \in \mathbb{C}^{*}$ with $\frac{\lambda_{2}}{\lambda_{1}} \in \mathbb{C} \backslash \mathbb{R}$, then $\pi_{1}(A)=\pi_{1}(E) \times \pi_{1}(E)$ is generated by

$$
\Lambda_{11}=\left(\lambda_{1}, 0\right), \quad \Lambda_{12}=\left(\lambda_{2}, 0\right), \quad \Lambda_{21}=\left(0, \lambda_{1}\right) \quad \text { and } \quad \Lambda_{22}=\left(0, \lambda_{2}\right)
$$

Let $\widetilde{h}=\tau_{(u, v)} \mathcal{L}(h) \in \widetilde{H}$ be a lifting of $h=\tau_{(U, V)} \mathcal{L}(h) \in H$, i.e., $\left(u+\pi_{1}(E), v+\pi_{1}(E)\right)=$ (U, V). Then \widetilde{H} is generated by its subset

$$
S=\left\{\Lambda_{i j}, \quad \tau_{\left(p_{k}, q_{k}\right)}, \quad \widetilde{h} \mid 1 \leq i, j \leq 2, \quad 1 \leq k \leq m\right\}
$$

Since $\mathcal{L}(h)$ has eigenvalues $\lambda_{1} \mathcal{L}(h) \neq 1, \lambda_{2} \mathcal{L}(h) \neq 1$, for any $(a, b) \in \mathbb{C}^{2}$ the automorphism $\tau_{(a, b)} \mathcal{L}(h) \in \operatorname{Aut}\left(\mathbb{C}^{2}\right)$ has a fixed point on \mathbb{C}^{2}. One can replace the generators $\Lambda_{i j}$ and $\tau_{\left(p_{k}, q_{k}\right)}$ of \widetilde{H} by $\Lambda_{i j} \widetilde{h}$, respectively, $\tau_{\left(p_{k}, q_{k}\right)} \widetilde{h}$, since

$$
\langle S\rangle \supseteq\left\{\Lambda_{i j} \widetilde{h}, \quad \tau_{\left(p_{k}, q_{k}\right)} \widetilde{h}, \quad \widetilde{h} \mid 1 \leq i, j \leq 2, \quad 1 \leq k \leq m\right\}
$$

and $\Lambda_{i j}, \tau_{\left(p_{k}, q_{k}\right)} \in\left\langle\left\{\Lambda_{i j} \widetilde{h}, \quad \tau_{\left(p_{k}, q_{k}\right)} \widetilde{h}, \widetilde{h} \mid 1 \leq i, j \leq 2, \quad 1 \leq k \leq m\right\}\right\rangle$. Thus

$$
\widetilde{H}=\left\langle\Lambda_{i j} \widetilde{h}, \quad \tau_{\left(p_{k}, q_{k}\right)} \widetilde{h}, \widetilde{h} \mid 1 \leq i, j \leq 2, \quad 1 \leq k \leq m\right\rangle
$$

coincides with \widetilde{N}, because \widetilde{H} is generated by elements with fixed points. As a result, $\pi_{1}(A / H)=\{1\}$.

Note that the simply connected surfaces A / H are either rational or K3. According to $\operatorname{det} \mathcal{L}(h) \neq 1$, the quotient A / H is not birational to a K3 surface, so that A / H is a rational surface with isolated cyclic quotient singularities.

Proposition 7. Let $H<\operatorname{Aut}(A)$ be a finite subgroup of the form $H=K\langle h\rangle$ with $\mathcal{L}(K)<S L(2, R)$ and $\operatorname{det} \mathcal{L}(H)=\langle\operatorname{det} \mathcal{L}(h)\rangle \neq\{1\}$.
(i) The complement $H \backslash K$ has fixed points on $A, \operatorname{Fix}_{A}(H \backslash K) \neq \emptyset$ if and only if A / H is a rational surface;
(ii) The complement $H \backslash K$ has no fixed points on $A, F_{i x}(H \backslash K)=\emptyset$ if and only if A / H is birational to an Enriques surface Y. If so, then the $K 3$ universal cover \widetilde{Y} of Y is birational to A / K and the index $[H: K]=2$.

Proof. First of all, the H / K-Galois cover $\zeta: A / K \rightarrow A / H$ is ramified if and only if the complement $H \backslash K$ has a fixed point on A. More precisely, a point $\operatorname{Orb}_{K}(p) \in A / K$, $p \in A$ is fixed by $h K \in H / K \backslash\{K\}$ exactly when $h \operatorname{Orb}_{K}(p)=\operatorname{Orb}_{K}(p)$ or

$$
\begin{equation*}
\{h k(p) \mid k \in K\}=\{k(p) \mid k \in K\} . \tag{2}
\end{equation*}
$$

The condition (2) implies the existence of $k_{o} \in K$ with $h(p)=k_{o}(p)$. Therefore $h_{1}=k_{o}^{-1} h \in \operatorname{Stab}_{H}(p) \backslash K$ has a fixed point and

$$
h_{1} K=\left(k_{o}^{-1} h\right) K=k_{o}^{-1}(h K)=k_{o}^{-1} K h=K h=h K,
$$

as far as K is a normal subgroup of H. Conversely, if $h_{1}(p)=p$ for some $h_{1} \in H \backslash K$ then $K_{p}=K h_{1}(p)=h_{1} K(p)$ and the point $\operatorname{Orb}_{K}(p) \in A / K$ is fixed by $h_{1} K \in H / K$.

Note that the presence of a covering $\zeta: A / K \rightarrow A / H$ by a (singular) K3 model A / K implies the vanishing $q(X)=h^{1,0}(X)$ of the irregularity of any smooth model X of A / H, as far as $q(X) \leq q(Y)=0$ for any smooth H / K-Galois cover Y of X, birational to A / K. The smooth projective surfaces S with irregularity $q(S)=0$ and Kodaira dimension $\kappa(S) \leq 0$ are the rational, K3 and Enriques S. Due to $\mathcal{L}(h) \neq 1$, the smooth model X of A / H is not a K3 surface. Thus, X is either an Enriques or a rational surface.

If $\operatorname{Fix}_{A}(H \backslash K)=\emptyset$ and $\zeta: A / K \rightarrow A / H$ in unramified, then $\kappa(X)=\kappa(Y)=0$ by [10] and X is an Enriques surface.

Let us assume that Fix $_{A}(H \backslash K) \neq \emptyset$ and the minimal resolution Y of the singularities of A / H is an Enriques surface. Consider the minimal resolution $\rho_{1}: Y \rightarrow A / K$
of the singularities of A / K and the resolution $\nu_{2}: X_{2} \rightarrow A / H$ of $\zeta(A / H)^{\text {sing }}$. Then there is a commutative diagram

with H / K-Galois cover ζ_{1}, ramified over the pull-back $\nu_{2}^{-1} B(\zeta)$ of the branch locus $B(\zeta) \subset A / H$ of ζ. The minimal resolution $\mu_{2}: X \rightarrow X_{2}$ of the singularities $X_{2}^{\text {sing }}=$ $(A / H)^{\text {sing }} \backslash \zeta(A / K)^{\text {sing }}$ of X_{2} and $\zeta_{1}: Y \rightarrow X_{2}$ give rise to the fibered product commutative diagram

with ramified H / K-Galois cover ζ_{2} and birational pr_{1}. Note that Z is a smooth surface, since otherwise $\emptyset \neq \operatorname{pr}_{1}\left(Z^{\text {sing }}\right) \subseteq X^{\text {sing }}=\emptyset$. Moreover, Z is of type K 3 . Let us consider the universal double covering $U_{X}: \widetilde{X} \rightarrow X$ of X by a K3 surface \widetilde{X}. Since Z is simply connected and $U_{X}: \widetilde{X} \rightarrow X$ is unramified, the finite cover $\zeta_{2}: Z \rightarrow X$ lifts to a morphism $\widetilde{\zeta}: Z \widetilde{X}$, closing the commutative diagram

The finite ramified morphism $\zeta_{2}=U_{X} \widetilde{\zeta}$ has finite ramified factor $\widetilde{\zeta}$, as far as the universal covering $U_{X}: \widetilde{X} \rightarrow X$ is unramified. If $B(\widetilde{\zeta}) \subset Z$ is the branch locus of $\widetilde{\zeta}$ then the canonical divisor

$$
\mathcal{O}_{Z}=\mathcal{K}_{Z}=\widetilde{\zeta}^{*} \mathcal{K}_{\tilde{X}}+B(\widetilde{\zeta})=\widetilde{\zeta}^{*} \mathcal{O}_{\tilde{X}}+B(\widetilde{\zeta})
$$

which is an absurd. Therefore, $\operatorname{Fix}_{A}(H \backslash K) \neq \emptyset$ implies that A / H is a rational surface.

If $\zeta: A / K \rightarrow A / H$ is unramified and A / H is an Enriques surface then $\zeta_{1}: Y \rightarrow X_{2}$ from diagram (3) and $\zeta_{2}: Z \rightarrow X$ from (4) are unramified. As a result, $\widetilde{\zeta}: Z \rightarrow \widetilde{X}$ from diagram (5) is a finite ramified cover of smooth simply connected surfaces,
whereas $\operatorname{deg}(\widetilde{\zeta})=1$ and Z coincides with the universal cover \widetilde{X} of X. Thus, \widetilde{X} is birational to A / K and

$$
\operatorname{deg}(\zeta)=\operatorname{deg}\left(\zeta_{1}\right)=\operatorname{deg}\left(\zeta_{2}\right)=\operatorname{deg}\left(U_{X}\right)=2
$$

so that $[H: K]=|H / K|=\operatorname{deg}(\zeta)=2$.

By the very construction, the surfaces A / H and $\overline{\mathbb{B} / \Gamma_{H}}=(\mathbb{B} / \Gamma)^{\prime} / H$ are simultaneously singular. The classical work [5] of Chevalley establishes that A / H is singular if and only if there is $h \in H$, whose linear part $\mathcal{L}(h) \in G L(2, R)$ has eigenvalues $\left\{\lambda_{1} \mathcal{L}(h), \lambda_{2} \mathcal{L}(h)\right\} \nexists 1$. Thus, A / H and $\overline{\mathbb{B} / \Gamma_{H}}$ are smooth exactly when birational to a hyper-elliptic or a ruled surface with an elliptic base.

Let T_{i} be an irreducible component of $T=(\mathbb{B} / \Gamma)^{\prime} \backslash(\mathbb{B} / \Gamma)$ of \mathbb{B} / Γ. Then the irreducible component $\operatorname{Orb}_{H}\left(T_{i}\right) / H$ of $T / H=\left(\overline{\mathbb{B} / \Gamma_{H}}\right) \backslash\left(\mathbb{B} / \Gamma_{H}\right)$ is elliptic (respectively, rational) if and only if $\operatorname{Fix}_{A}(H) \cap D_{i}=\emptyset$ (respectively, $\operatorname{Fix}_{A}(H) \cap D_{i} \neq \emptyset$) for the image $D_{i}=\xi\left(T_{i}\right)$ of T_{i} under the blow-down $\xi:(\mathbb{B} / \Gamma)^{\prime} \rightarrow A$ of the (-1)-curves.

2 Linear automorphisms of finite order

Throughout this section, let R be the endomorphism ring of an elliptic curve E. It is well known that $R=\mathbb{Z}+f \mathcal{O}_{-d}$ for a natural number $f \in \mathbb{N}$, called the conductor of E and integers ring \mathcal{O}_{-d} of an imaginary quadratic number field $\mathbb{Q}(\sqrt{-d})$. More precisely, $\mathcal{O}_{-d}=\mathbb{Z}+\omega_{-d} \mathbb{Z}$ with

$$
\omega_{-d}=\left\{\begin{array}{lc}
\sqrt{-d} & \text { for }-d \not \equiv 1(\bmod 4), \\
\frac{1+\sqrt{-d}}{2} & \text { for }-d \equiv 1(\bmod 4)
\end{array}\right.
$$

and $R=\mathbb{Z}+f \omega_{-d} \mathbb{Z}$ for $R \neq \mathbb{Z}$. In particular, R is a subring of $\mathbb{Q}(\sqrt{-d})$. We write $R \subset \mathbb{Q}(\sqrt{-d})$ both, for the case of $R=\mathbb{Z}+f \omega_{-d} \mathbb{Z}$ or $R=\mathbb{Z}$, without specifying the presence of a complex multiplication on E. (For $R=\mathbb{Z}$ one hat $R \subset \mathbb{Q}(\sqrt{-d})$ for $\forall d \in \mathbb{N}$.)

The automorphism group of the abelian surface $A=E \times E$ is a semi-direct product

$$
\operatorname{Aut}(A)=(A,+) \rtimes G L(2, R)
$$

of its translation subgroup $(A,+)$ and the isotropy group

$$
\operatorname{Aut}_{\check{o}_{A}}(A)=G L(2, R)=\left\{g \in R_{2 \times 2} \mid \quad \operatorname{det}(g) \in R^{*}\right\}
$$

of the origin $\check{o}_{A} \in A$.
Lemma 8. Let R be the endomorphism ring of an elliptic curve E. If R is different from $\mathcal{O}_{-1}=\mathbb{Z}[i]$ and \mathcal{O}_{-3} then

$$
R^{*}=\langle-1\rangle=\{ \pm 1\}=\mathbb{C}_{2}
$$

is the cyclic group of the square roots of the unity.
If $R=\mathbb{Z}[i]$ is the ring of the Gaussian integers then

$$
R^{*}=\langle i\rangle=\{ \pm 1, \pm i\}=\mathbb{C}_{4}
$$

is the cyclic group of the roots of unity of order 4.
The units group of Eisensten integers $R=\mathcal{O}_{-3}$ is the cyclic group

$$
R^{*}=\left\langle e^{\frac{2 \pi i}{6}}\right\rangle=\left\{ \pm 1, \quad e^{ \pm \frac{2 \pi i}{3}}, \quad e^{ \pm \frac{\pi i}{3}}\right\}=\mathbb{C}_{6}
$$

of the sixth roots of unity.
Proof. Recall that the units group \mathcal{O}_{-d}^{*} of the integers ring \mathcal{O}_{-d} of an imaginary quadratic number field $\mathbb{Q}(\sqrt{-d})$ is

$$
\mathcal{O}_{-d}^{*}=\langle-1\rangle \simeq \mathbb{C}_{2} \quad \text { for } \quad d \neq 1,3 \text { and }
$$

$$
\begin{gathered}
\mathcal{O}_{-1}^{*}=\mathbb{Z}[i]^{*}=\langle i\rangle=\mathbb{C}_{4} \\
\mathcal{O}_{-3}^{*}=\left\langle e^{\frac{2 \pi i}{6}}\right\rangle=\mathbb{C}_{6}
\end{gathered}
$$

The units group R^{*} of the subring $R=\mathbb{Z}+f \mathcal{O}_{-d}$ of \mathcal{O}_{-d} is a subgroup of \mathcal{O}_{-d}^{*}, so that $R^{*}=\langle-1\rangle \simeq \mathbb{C}_{2}$ for $R=\mathbb{Z}$ or $R=\mathbb{Z}+f \mathcal{O}_{-d}$ with $d \in \mathbb{N} \backslash\{1,3\}, f \in \mathbb{N}$. In the case of $R=\mathbb{Z}+f \mathcal{O}_{-1}$, the assumption $i \in R^{*}$ implies $R=\mathcal{O}_{-1}$ and happens only for the conductor $f=1$. Similarly, the existence of $e^{\frac{2 \pi i}{3}} \in R^{*} \backslash\{ \pm 1\}$ for $R=\mathbb{Z}+f \mathcal{O}_{-3}$ forces

$$
e^{\frac{2 \pi i}{3}}=-\frac{1}{2}+\frac{\sqrt{3} i}{2}=-1+\frac{1+\sqrt{-3}}{2}=-1+\omega_{-3} \in R^{*}
$$

whereas $\omega_{-3} \in R$ and $R=\mathcal{O}_{-3}$.

Towards the description of $g \in G L(2, R)$ of finite order, let us recall that the polynomials

$$
f(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n} \in \mathbb{Z}[x]
$$

with leading coefficient 1 are called monic.
Definition 9. If A is a subring with unity of a ring B then $b \in B$ is integral over A if annihilates a monic polynomial

$$
f(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n} \in A[x]
$$

with coefficients from A.
It is well known (cf. [2]) that $b \in B$ is integral over A if and only if the polynomial ring $A[b]$ is a finitely generated A-module.

Definition 10. The complex numbers $c \in \mathbb{C}$, which are integral over \mathbb{Z} are called algebraic integers.

Any algebraic integer c is algebraic over \mathbb{Q}. If $g(x) \in \mathbb{Q}[x] \backslash \mathbb{Q}$ is a polynomial of minimal degree k with a root c then $g(x)$ divides any $h(x) \in \mathbb{Q}[x] \backslash \mathbb{Q}$ with $h(c)=0$. An arbitrary $g^{\prime}(x) \in \mathbb{Q}[x]$ of degree k with a root c is of the form $g^{\prime}(x)=q g(x)$ for some \mathbb{Q}^{*}. The polynomials $q g(x)$ with arbitrary $q \in \mathbb{Q}^{*}$ are referred to as minimal polynomials of c over \mathbb{Q}. If c is algebraic over \mathbb{Q} then the ring of the polynomials $\mathbb{Q}[c]$ of c with rational coefficients coincides with the field $\mathbb{Q}(c)$ of the rational functions of $c, \mathbb{Q}[c]=\mathbb{Q}(c)$ and the degree $[\mathbb{Q}(c): \mathbb{Q}]$ equals the degree of a minimal polynomial of c over \mathbb{Q}.

Definition 11. If $c \in \mathbb{C}$ is algebraic over \mathbb{Q}, then $[\mathbb{Q}(c): \mathbb{Q}]=\operatorname{dim}_{\mathbb{Q}} \mathbb{Q}(c)$ is called the degree of c over \mathbb{Q}.

Let c be an algebraic integer and $f(x) \in \mathbb{Z}[x] \backslash \mathbb{Z}$ be a monic polynomial of minimal degree with a root c. Then any $h(x) \in \mathbb{Z}[x]$ with $h(c)=0$ is divisible by $f(x)$. Thus, $f(x)$ is unique and referred to as the minimal integral relation of c. If $f(x) \in \mathbb{Z}[x] \backslash \mathbb{Z}$ is the minimal integral relation of $c \in \mathbb{C}$ and $g(x) \in \mathbb{Q}[x] \backslash \mathbb{Q}$ is a minimal polynomial of c over \mathbb{Q}, then $g(x)=q f(x)$ for the leading coefficient $q=L C(g) \in \mathbb{Q}^{*}$ of $g(x)$. More precisely, $g(x)$ divides $f(x)$ and $f(x)$ is indecomposable over \mathbb{Q}, as far as it is indecomposable over \mathbb{Z}. In such a way, one obtains the following

Lemma 12. If $c \in \mathbb{C}$ is an algebraic integer, then the degree $\operatorname{deg}_{\mathbb{Q}}(c)=[\mathbb{Q}(c): \mathbb{Q}]$ of c over \mathbb{Q} equals the degree of the minimal integral relation

$$
f(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n} \in \mathbb{Z}[x] \quad \text { of } c .
$$

Lemma 13. Let E be an elliptic curve, $R=\operatorname{End}(E)$ and $g \in G L(2, R)$. Then any eigenvalue λ_{1} of g is an algebraic integer of degree 1,2 or 4 over \mathbb{Q}.

Proof. It suffices to observe that if $A \subset B$ are subrings with unity of a ring C, A is a Noetherian ring, B is a finitely generated A-module and $c \in C$ is integral over B, then c is integral over A. Indeed, let $f \in \mathbb{N}$ be the conductor of E and

$$
\omega_{-d}= \begin{cases}\sqrt{-d} & \text { for }-d \not \equiv 1(\bmod 4) \tag{6}\\ \frac{1+\sqrt{-d}}{2} & \text { for }-d \equiv 1(\bmod 4)\end{cases}
$$

Then the integers ring \mathbb{Z} is Noetherian and the endomorphism ring

$$
R=\mathbb{Z}+f \mathcal{O}_{-d}=\mathbb{Z}+f \omega_{-d} \mathbb{Z}
$$

of E is a free \mathbb{Z}-module of rank 2 . The eigenvalue $\lambda_{1} \in \mathbb{C}$ of $g \in G L(2, R)$ is a root of the characteristic polynomial

$$
\mathcal{X}_{g}(\lambda)=\lambda^{2}-\operatorname{tr}(g) \lambda+\operatorname{det}(g) \in R[\lambda]
$$

of g, so that λ_{1} is integral over R. According to the claim, λ_{1} is integral over \mathbb{Z} or $\lambda_{1} \in \mathbb{C}$ is an algebraic integer. On one hand, the degree of λ_{1} over $\mathbb{Q}(\sqrt{-d})$ is

$$
\operatorname{deg}_{\mathbb{Q}(\sqrt{-d})}\left(\lambda_{1}\right)=\left[\mathbb{Q}\left(\sqrt{-d}, \lambda_{1}\right): \mathbb{Q}(\sqrt{-d})\right]=1 \quad \text { or } \quad 2,
$$

so that

$$
\left[\mathbb{Q}\left(\sqrt{-d}, \lambda_{1}\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left(\sqrt{-d}, \lambda_{1}\right): \mathbb{Q}(\sqrt{-d})\right][\mathbb{Q}(\sqrt{-d}): \mathbb{Q}]=2 \quad \text { or } \quad 4
$$

On the other hand, the inclusions

$$
\mathbb{Q} \subseteq \mathbb{Q}\left(\lambda_{1}\right) \subseteq \mathbb{Q}\left(\sqrt{-d}, \lambda_{1}\right)
$$

of subfields imply that

$$
\left[\mathbb{Q}\left(\lambda_{1}\right): \mathbb{Q}\right]=\frac{\left[\mathbb{Q}\left(\sqrt{-d}, \lambda_{1}\right): \mathbb{Q}\right]}{\left[\mathbb{Q}\left(\sqrt{-d}, \lambda_{1}\right): \mathbb{Q}\left(\lambda_{1}\right)\right]} .
$$

Therefore, the degree $\operatorname{deg}_{\mathbb{Q}}\left(\lambda_{1}\right)=\left[\mathbb{Q}\left(\lambda_{1}\right): \mathbb{Q}\right]$ of λ_{1} over \mathbb{Q} is a divisor of the degree $\left[\mathbb{Q}\left(\sqrt{-d}, \lambda_{1}\right): \mathbb{Q}\right]$ or $\operatorname{deg}_{\mathbb{Q}}\left(\lambda_{1}\right) \in\{1,2,4\}$.

In order to justify the claim, recall that $c \in C$ is integral over B if and only if the polynomial ring $B[c]=B+B c+\ldots+B c^{n-1}$ is a finitely generated B-module. If $B=A \beta_{1}+\ldots+A \beta_{s}$ is a finitely generated A-module, then

$$
B[c]=\sum_{i=1}^{s} \sum_{j=0}^{n-1} A \beta_{i} c^{j}
$$

is a finitely generated A-module. Since A is a Noetherian ring, the A-submodule $A[c]$ of $B[c]$ is a finitely generated A-module.

Note that if $h=\tau_{(U, V)} \mathcal{L}(h) \in H \leq \operatorname{Aut}(A)$ is an automorphism of $A=E \times E$ of finite order r then

$$
h^{r}=\tau_{s=0}^{\sum_{s=1}^{1} \mathcal{L}(h)^{s}(\underset{V}{U})} \mathcal{L}(h)^{r}=I d
$$

implies that $\sum_{s=0}^{r-1} \mathcal{L}(h)^{s}\left(U_{V}^{U}\right)=\check{o}_{A}$ and $\mathcal{L}(h)^{r}=I_{2}$. In other words, the automorphisms $h \in \operatorname{Aut}(A)$ of finite order have linear parts $\mathcal{L}(h) \in G L(2, R)$ of finite order.

From now on, we concentrate on $g \in G L(2, R)$ of finite order.
Proposition 14. If R is the endomorphism ring of an elliptic curve E and $g \in$ $G L(2, R)$ is of finite order r, then g is diagonalizable and the eigenvalues λ_{j} of g are primitive roots of unity of degree $r_{j}=1,2,3,4,6,8$ or 12 .

Proof. Let us assume that $g \in G L(2, R)$ of finite order r is not diagonalizable. Then there exists $S \in G L(2, \mathbb{C})$, reducing g to its Jordan normal form

$$
J=S^{-1} g S=\left(\begin{array}{cc}
\lambda_{1} & 1 \\
0 & \lambda_{1}
\end{array}\right)
$$

By an induction on n, one verifies that

$$
J^{n}=\left(\begin{array}{cc}
\lambda_{1}^{n} & (n-1) \lambda_{1}^{n-1} \\
0 & \lambda_{1}^{n}
\end{array}\right) \quad \text { for } \quad \forall n \in \mathbb{N} .
$$

In particular,

$$
I_{2}=S^{-1} I_{2} S=S^{-1} g^{r} S=\left(S^{-1} g S\right)^{r}=J^{r}=\left(\begin{array}{cc}
\lambda_{1}^{r} & (r-1) \lambda_{1}^{r-1} \\
0 & \lambda_{1}^{r}
\end{array}\right)
$$

is an absurd, justifying the diagonalizability of g.
If

$$
D=S^{-1} g S=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

is a diagonal form of g then

$$
I_{2}=S^{-1} I_{2} S=S^{-1} g^{r} S=\left(S^{-1} g S\right)^{r}=\left(\begin{array}{cc}
\lambda_{1}^{r} & 0 \\
0 & \lambda_{2}^{r}
\end{array}\right)
$$

reveals that λ_{1} and λ_{2} are r-th roots of unity.
Thus, λ_{j} are of finite order r_{j}, dividing r and the least common multiple $m=$ $\operatorname{LCM}\left(r_{1}, r_{2}\right) \in \mathbb{N}$ divides r. Conversely,

$$
I_{2}=\left(\begin{array}{cc}
\lambda_{1}^{m} & 0 \\
0 & \lambda_{2}^{m}
\end{array}\right)=\left(S^{-1} g S\right)^{m}=S^{-1} g^{m} S
$$

implies that $g^{m}=S I_{2} S^{-1}=I_{2}$, so that $r \in \mathbb{N}$ divides $m \in \mathbb{N}$ and $r=m$.
Let $\lambda_{j} \in \mathbb{C}^{*}$ be a primitive r_{j}-th root of unity. Then the cyclotomic polynomials $\Phi_{r_{j}}(x) \in \mathbb{Z}[x]$ are the minimal integral relations of λ_{j}. More precisely, the minimal integral relations $f_{j}(x) \in \mathbb{Z}[x] \backslash \mathbb{Z}$ of λ_{j} are monic polynomials of degree $\operatorname{deg}_{\mathbb{Q}}\left(\lambda_{j}\right)$. On the other hand, $\Phi_{r_{j}}(x) \in \mathbb{Z}[x] \backslash \mathbb{Z}$ are irreducible over \mathbb{Z} and \mathbb{Q}. Therefore $\Psi_{r_{j}}(x)$ are minimal polynomials of λ_{j} over \mathbb{Q} and $\Psi_{r_{j}}(x)=q f_{j}(x)$ for some $q \in \mathbb{Q}^{*}$. As far as $\Phi_{r_{j}}(x)$ and $f_{j}(x)$ are monic, there follows $q=1$ and $\Phi_{r_{j}}(x) \equiv f_{j}(x) \in \mathbb{Z}[x]$.

Recall Euler's function

$$
\varphi: \mathbb{N} \longrightarrow \mathbb{N}
$$

associating to each $n \in \mathbb{N}$ the number of the residues $0 \leq r \leq n-1$ modulo n, which are relatively prime to n. The degree of $\Phi_{r_{j}}(x)$ is $\varphi\left(r_{j}\right)$. If $r_{j}=p_{1}^{a_{1}} \ldots p_{m}^{a_{m}}$ is the unique factorization of $r_{j} \in \mathbb{N}$ into a product of different prime numbers p_{s}, then

$$
\varphi\left(p_{1}^{a_{1}} \ldots p_{m}^{a_{m}}\right)=\varphi\left(p_{1}^{a_{1}}\right) \ldots \varphi\left(p_{m}^{a_{m}}\right)=p_{1}^{a_{1}-1}\left(p_{1}-1\right) \ldots p_{m}^{a_{m}-1}\left(p_{m}-1\right)
$$

According to Lemma 13, the algebraic integers λ_{j} are of degree

$$
\operatorname{deg}_{\mathbb{Q}}\left(\lambda_{j}\right)=\operatorname{deg} \Phi_{r_{j}}(x)=\varphi\left(r_{j}\right)=1,2, \text { or } 4
$$

If r_{j} has a prime divisor $p \geq 7$ then $\varphi\left(r_{j}\right)$ has a factor $p-1 \geq 6$, so that $\varphi\left(r_{j}\right)>4$. Therefore $r_{j}=2^{a} 3^{b} 5^{c}$ for some non-negative integers a, b, c. If $c \geq 1$ then

$$
\varphi\left(r_{j}\right)=\varphi\left(2^{a} 3^{b}\right) \varphi\left(5^{c}\right)=\varphi\left(2^{a} 3^{b}\right) 5^{c-1} .4 \in\{1,2,4\}
$$

exactly when $\varphi\left(r_{j}\right)=4, c=1$ and $\varphi\left(2^{a} 3^{b}\right)=1$. For $b \geq 1$ one has

$$
\varphi\left(2^{a} 3^{b}\right)=\varphi\left(2^{a}\right) 3^{b-1} .2>1
$$

so that $\varphi\left(2^{a} 3^{b}\right)=1$ requires $b=0$ and $\varphi\left(2^{a}\right)=1$. As a result, $a=0$ or 1 and $r_{j}=5$ or 10 , if 5 divides r_{j}. From now on, let us assume that $r_{j}=2^{a} 3^{b}$ with $a, b \in \mathbb{N} \cup\{0\}$. If $b \geq 2$ then $\varphi\left(r_{j}\right)=\varphi\left(2^{a}\right) .3^{b-1} .2$ with $b-1 \geq 1$ is divisible by 3 and cannot equal 1,2 or 4 . Therefore $r_{j}=2^{a} .3$ or $r_{j}=2^{a}$ with $a \geq 0$. Straightforwardly,

$$
\varphi\left(2^{a} .3\right)=2 \varphi\left(2^{a}\right) \in\{1,2,4\}
$$

exactly when $\varphi\left(2^{a}\right)=1$ or $\varphi\left(2^{a}\right)=2$. These amount to $a \in\{0,1,2\}$ and reveal that $3,6,12$ are possible values for r_{j}. Finally, $\varphi\left(r_{j}\right)=\varphi\left(2^{a}\right) \in\{1,2,4\}$ for $r_{j}=1,2,4$ or 8. Thus, $\varphi\left(r_{j}\right) \in\{1,2,4\}$ if and only if

$$
r_{j} \in\{1,2,3,4,5,6,8,10,12\}
$$

In order to exclude $r_{j}=5$ and $r_{j}=10$ with $\varphi(5)=\varphi(10)=4$, recall that λ_{j} is of degree $\operatorname{deg}_{\mathbb{Q}(\sqrt{-d})}\left(\lambda_{j}\right)=\left[\mathbb{Q}\left(\sqrt{-d}, \lambda_{j}\right): \mathbb{Q}(\sqrt{-d})\right] \leq 2$ over $\mathbb{Q}(\sqrt{-d})$, so that

$$
\left[\mathbb{Q}\left(\sqrt{-d}, \lambda_{j}\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left(\sqrt{-d}, \lambda_{j}\right): \mathbb{Q}(\sqrt{-d})\right][\mathbb{Q}(\sqrt{-d}): \mathbb{Q}] \leq 4
$$

On the other hand,

$$
\mathbb{Q} \subset \mathbb{Q}\left(\lambda_{j}\right) \subseteq \mathbb{Q}\left(\sqrt{-d}, \lambda_{j}\right)
$$

implies that

$$
\left[\mathbb{Q}\left(\sqrt{-d}, \lambda_{j}\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left(\sqrt{-d}, \lambda_{j}\right): \mathbb{Q}\left(\lambda_{j}\right)\right]\left[\mathbb{Q}\left(\lambda_{j}\right): \mathbb{Q}\right]=4\left[\mathbb{Q}\left(\sqrt{-d}, \lambda_{j}\right): \mathbb{Q}\left(\lambda_{j}\right)\right] \geq 4,
$$

whereas $\left[\mathbb{Q}\left(\sqrt{-d}, \lambda_{j}\right): \mathbb{Q}\right]=\left[\mathbb{Q}\left(\lambda_{j}\right): \mathbb{Q}\right]=4$ and $\left[\mathbb{Q}\left(\sqrt{-d}, \lambda_{j}\right): \mathbb{Q}\left(\lambda_{j}\right)\right]=1$. Therefore $\mathbb{Q}\left(\sqrt{-d}, \lambda_{j}\right)=\mathbb{Q}\left(\lambda_{j}\right)$, so that $\sqrt{-d} \in \mathbb{Q}\left(\lambda_{j}\right)$ and $\mathbb{Q}(\sqrt{-d}) \subset \mathbb{Q}\left(\lambda_{j}\right)$ with

$$
\left[\mathbb{Q}\left(\lambda_{j}\right): \mathbb{Q}(\sqrt{-d})\right]=\frac{\left[\mathbb{Q}\left(\lambda_{j}\right): \mathbb{Q}\right]}{[\mathbb{Q}(\sqrt{-d}): \mathbb{Q}]}=\frac{4}{2}=2
$$

As far as $\mathbb{Q}(\sqrt{-d})$ and $\mathbb{Q}\left(\lambda_{j}\right)$ are finite Galois extensions of \mathbb{Q} (i.e., normal and separable), the subfield $\mathbb{Q}(\sqrt{-d})$ of $\mathbb{Q}\left(\lambda_{1}\right)$ of index $\left[\mathbb{Q}\left(\lambda_{1}\right): \mathbb{Q}(\sqrt{-d})\right]=2$ is the fixed point set of a subgroup H of the Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(\lambda_{j}\right) / \mathbb{Q}\right)$ with $|H|=2$. The minimal polynomial of λ_{j} over \mathbb{Q} is the cyclotomic polynomial $\Phi_{r_{j}}(x) \in \mathbb{Z}[x]$ of degree $\operatorname{deg}\left(\Phi_{r_{j}}\right)=\varphi\left(r_{j}\right)=4$ for $r_{j} \in\{5,10\}$ and the Galois group

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\lambda_{j}\right) / \mathbb{Q}\right) \simeq \mathbb{Z}_{r_{j}}^{*}
$$

coincides with the multiplicative group $\mathbb{Z}_{r_{j}}^{*}$ of the congruence ring $\mathbb{Z}_{r_{j}}$ modulo r_{j}. More precisely, the roots of $\Phi_{r_{j}}(x)$ are $\left\{\lambda_{j}^{s} \mid s \in \mathbb{Z}_{r_{j}}^{*}\right\}$ and for any $s \in \mathbb{Z}_{r_{j}}^{*}$ the correspondence $\lambda_{j} \mapsto \lambda_{j}^{s}$ extends to an automorphism of $\mathbb{Q}\left(\lambda_{j}\right)$, fixing \mathbb{Q}. The groups

$$
\mathbb{Z}_{5}^{*}=\{ \pm 1(\bmod 5), \quad \pm 3(\bmod 5)\}=\langle 3(\bmod 5)\rangle=\langle-3(\bmod 5)\rangle \simeq \mathbb{C}_{4}
$$

and

$$
\mathbb{Z}_{10}^{*}=\left\{\{ \pm 1(\bmod 10), \quad \pm 3(\bmod 10)\}=\langle 3(\bmod 10)\rangle=\langle-3(\bmod 10)\rangle \simeq \mathbb{C}_{4}\right.
$$

are cyclic and contain unique subgroups $H_{5}=\langle-1(\bmod 5)\rangle$, respectively, $H_{10}=$ $\langle-1(\bmod 10)\rangle$ or order 2 . Denote by h the generator of H_{5} or H_{10} with $h\left(\lambda_{j}\right)=\lambda_{j}^{-1}$, $h \mid \mathbb{Q}=I d_{\mathbb{Q}}$. In both cases, the degree

$$
\operatorname{deg}_{\mathbb{Q}(\sqrt{-d})}\left(\lambda_{j}\right)=\left[\mathbb{Q}\left(\lambda_{j}, \sqrt{-d}\right): \mathbb{Q}(\sqrt{-d})\right]=\left[\mathbb{Q}\left(\lambda_{j}\right): \mathbb{Q}(\sqrt{-d})\right]=2,
$$

so that the characteristic polynomial

$$
\mathcal{X}_{g}(\lambda)=\lambda^{2}-\operatorname{tr}(g) \lambda+\operatorname{det}(g) \in R[\lambda] \subset \mathbb{Q}(\sqrt{-d})[\lambda]
$$

of g is irreducible over $\mathbb{Q}(\sqrt{-d})$. In fact, $\mathcal{X}_{g}(\lambda)$ is a minimal polynomial of λ_{j} over $\mathbb{Q}(\sqrt{-d})$ and divides the cyclotomic polynomial $\Phi_{r_{j}}(\lambda) \in \mathbb{Z}[\lambda] \subset \mathbb{Q}(\sqrt{-d})[\lambda]$ with $\Phi_{r_{j}}\left(\lambda_{j}\right)=0$. In particular, the other eigenvalue λ_{3-j} of g is a root of $\Phi_{r_{j}}(\lambda)$ or a primitive r_{j}-th root of unity. That allows to express $\lambda_{3-j}=\lambda_{j}^{t}$ by some $t \in \mathbb{Z}_{r_{j}}^{*}$. According to

$$
\lambda_{j}^{t+1}=\lambda_{j} \lambda_{j}^{t}=\lambda_{j} \lambda_{3-j}=\operatorname{det}(g) \in R^{*} \subset \mathbb{Q}(\sqrt{-d})=\mathbb{Q}\left(\lambda_{j}\right)^{\langle h\rangle}
$$

one has

$$
\lambda_{j}^{t+1}=h\left(\lambda_{j}^{t+1}\right)=\lambda_{j}^{-t-1} \quad \text { or } \quad \lambda_{j}^{2(t+1)}=1 .
$$

If λ_{j} is a primitive fifth root of unity then $\lambda_{j}^{2(t+1)}=1$ requires that $2(t+1)$ to be divisible by 5 . Since $G C D(2,5)=1,5$ is to divide $t+1$ or $t \equiv-1(\bmod 5)$. Similarly, if λ_{j} is a primitive tenth root of unity then 10 divides $2(t+1)$, i.e., $2(t+1)=10 z$ for some $z \in \mathbb{Z}$. As a result, 5 divides $t+1$ and $t \equiv-1(\bmod 10)$. Thus, for any $r_{1} \in\{5,10\}$ there follows $\lambda_{3-j}=\lambda_{j}^{t}=\lambda_{j}^{-1}$. Expressing $\lambda_{j}=e^{\frac{2 \pi i s s}{r_{j}}}$ for some natural number $1 \leq s \leq r_{j}-1$, relatively prime to r_{j}, one observes that

$$
\operatorname{tr}(g)=\lambda_{j}+\lambda_{3-j}=\lambda_{j}+\lambda_{j}^{-1}=e^{\frac{2 \pi i s}{r_{j}}}+e^{-\frac{2 \pi i s}{r_{j}}}=2 \cos \left(\frac{2 \pi s}{r_{j}}\right) \in R \cap \mathbb{R} .
$$

We claim that $R \cap \mathbb{R}=\mathbb{Z}$. The inclusion $\mathbb{Z} \subseteq R \cap \mathbb{R}$ is clear. Conversely, let

$$
r \in \mathbb{R} \cap R=\mathbb{R} \cap\left(\mathbb{Z}+f \omega_{-d} \mathbb{Z}\right)
$$

for the conductor $f \in \mathbb{N}$ of E and ω_{-d} from (6). In the case of $-d \not \equiv 1(\bmod 4)$ there exist $a, b \in \mathbb{Z}$ with $r=a+f \sqrt{-d} b$. The complex number $a-r+f \sqrt{-d} b=0$ vanishes exactly when its real part $a-r=0$ and its imaginary part $f \sqrt{d} b=0$ are zero. Therefore $b=0$ and $r=a \in \mathbb{Z}$, i.e., $\mathbb{R} \cap R \subseteq \mathbb{Z}$ for $-d \not \equiv 1(\bmod 4)$.

If $-d \equiv 1(\bmod 4)$ then

$$
r=a+f b \frac{(1+\sqrt{-d})}{2} \text { for some } a, b \in \mathbb{Z}
$$

yields

$$
\left\lvert\, \begin{gathered}
r=a+\frac{f b}{2} \\
\frac{f \sqrt{d}}{2} b=0
\end{gathered}\right.
$$

by comparison of the real and imaginary parts. As a result, again $b=0$ and $r=a \in \mathbb{Z}$, i.e., $\mathbb{R} \cap R \subseteq \mathbb{Z}$ for $-d \equiv 1(\bmod 4)$. That justifies $\mathbb{R} \cap R=\mathbb{Z}$ and implies that $\operatorname{tr}(g)=2 \cos \left(\frac{2 \pi s}{r_{j}}\right) \in \mathbb{Z}$. Bearing in mind the $\cos \left(\frac{2 \pi s}{r_{j}}\right) \in[-1,1]$, one concludes

$$
\begin{gather*}
\operatorname{tr}(g)=2 \cos \left(\frac{2 \pi s}{r_{j}}\right) \in[-2,2] \cap \mathbb{Z}=\{0, \pm 1, \pm 2\} \quad \text { or } \tag{7}\\
\cos \left(\frac{2 \pi s}{r_{j}}\right) \in\left\{0, \pm \frac{1}{2}, \pm 1\right\}
\end{gather*}
$$

For a natural number $1 \leq s \leq r_{j}-1$, one has $\frac{2 \pi s}{r_{1}} \in[0,2 \pi)$. The solutions of $\cos (x)=0$ in $[0,2 \pi)$ are $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$, while $\cos (x)= \pm 1$ holds for $x \in\{0, \pi\}$. Finally, $\cos (x)= \pm \frac{1}{2}$ is satisfied by $x \in\left\{\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\}$, so that (7) implies

$$
\begin{equation*}
\frac{2 \pi s}{r_{j}} \in\left\{0, \quad \frac{\pi}{2}, \pi, \quad \frac{3 \pi}{2}, \quad \frac{\pi}{3}, \quad \frac{2 \pi}{3}, \quad \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\} . \tag{8}
\end{equation*}
$$

For $r_{j}=5$ or 10 this is an absurd, so that

$$
r_{j} \in\{1,2,3,4,6,8,12\}
$$

Now we are ready to describe the elements of $G L(2, R)$ of finite order, by specifying their eigenvalues λ_{1}, λ_{2}. The roots λ_{1}, λ_{2} of the characteristic polynomial

$$
\mathcal{X}_{g}(\lambda)=\lambda^{2}-\operatorname{tr}(g) \lambda+\operatorname{det}(g) \in R[\lambda]
$$

of g are in a bijective correspondence with the trace $\operatorname{tr}(g)=\lambda_{1}+\lambda_{2} \in R$ and the determinant $\operatorname{det}(g)=\lambda_{1} \lambda_{2} \in R^{*}$ of g. Making use of Lemma 8, we subdivide the problem to the description of finite order $g \in G L(2, R)$ with a fixed determinant $\operatorname{det}(g) \in R^{*}$. The traces of such g take finitely many values and allow to list explicitly the eigenvalues of all $g \in G L(2, R)$ of finite order. The classification of the unordered pairs of eigenvalues λ_{1}, λ_{2} of $g \in G L(2, R)$ of finite order is a more specific result than Proposition 14. Note that the next classification of λ_{1}, λ_{2} is derived independently of Proposition 14.

Let us start with the case of $\operatorname{det}(g)=1$. The next proposition puts in a bijective correspondence the traces $\operatorname{tr}(g)$ of $g \in S L(2, R)$ with the orders r of g.

Proposition 15. If $g \in S L(2, R)$ is of finite order r then the trace

$$
\begin{equation*}
\operatorname{tr}(g) \in\{ \pm 2, \quad \pm 1, \quad 0\} \tag{9}
\end{equation*}
$$

The eigenvalues λ_{1}, λ_{2} of g are of order

$$
\begin{equation*}
r_{1}=r_{2}=r \in\{1,2,3,4,6\} . \tag{10}
\end{equation*}
$$

More precisely,
(i) $\operatorname{tr}(g)=2$ or $\lambda_{1}=\lambda_{2}=1, g=I_{2}$ if and only if g is of order 1 ;
(ii) $\operatorname{tr}(g)=-2$ or $\lambda_{1}=\lambda_{2}=-1, g=-I_{2}$ if and only if g is of order 2 ;
(iii) $\operatorname{tr}(g)=1$ or $\lambda_{1}=e^{\frac{\pi i}{3}}, \lambda_{2}=e^{-\frac{\pi i}{3}}$ if and only if g is of order 6 ;
(iv) $\operatorname{tr}(g)=-1$ or $\lambda_{1}=e^{\frac{2 \pi i}{3}}, \lambda_{2}=e^{-\frac{2 \pi i}{3}}$ if and only if g is of order 3 ;
(v) $\operatorname{tr}(g)=0$ or $\lambda_{1}=i, \lambda_{2}=-i$ if and only if g is of order 4 .

Proof. If $g \in S L(2, R)$ is of order r then the eigenvalues λ_{j} of g are of finite order r_{j}, dividing $r=\operatorname{LCM}\left(r_{1}, r_{2}\right)$. According to

$$
1=\operatorname{det}(g)=\lambda_{1} \lambda_{2},
$$

one has $\lambda_{1}=e^{\frac{2 \pi i s}{r_{1}}}, \lambda_{2}=e^{-\frac{2 \pi i s}{r_{1}}}$ for some natural number $1 \leq s \leq r_{1}-1$, relatively prime to r_{1}. Thus, λ_{2} is a primitive r_{1}-th root and $r_{1}=r_{2}=\operatorname{LCM}\left(r_{1}, r_{2}\right)=r$. As in the proof of Proposition 14,

$$
\operatorname{tr}(g)=\lambda_{1}+\lambda_{2}=e^{\frac{2 \pi i s}{r_{1}}}+e^{-\frac{2 \pi i s}{r_{1}}}=2 \cos \left(\frac{2 \pi s}{r_{1}}\right) \in \mathbb{R} \cap R=\mathbb{Z}
$$

and $\cos \left(\frac{2 \pi s}{r_{1}}\right) \in[-1,1]$ specify (9). Consequently,

$$
\begin{gathered}
\cos \left(\frac{2 \pi s}{r_{1}}\right) \in\left\{0, \pm \frac{1}{2}, \quad \pm 1\right\} \text { and } \\
\frac{2 \pi s}{r_{1}} \in\left\{0, \quad \frac{\pi}{2}, \quad \pi, \quad \frac{3 \pi}{2}, \frac{\pi}{3}, \quad \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\},
\end{gathered}
$$

as in (8). Straightforwardly, $\lambda_{1}=e^{0}=1$ is of order $1, \lambda_{1}=e^{\pi i}=-1$ is of order 2, $\lambda_{1} \in\left\{e^{\frac{\pi i}{2}}, e^{\frac{3 \pi i}{2}}\right\}$ are of order $4, \lambda_{1} \in\left\{e^{\frac{2 \pi i}{3}}, e^{\frac{4 \pi i}{3}}\right\}$ are of order 3 and $\lambda_{1} \in\left\{e^{\frac{\pi i}{3}}, e^{\frac{5 \pi i}{3}}\right\}$ are of order 6 . That justifies (10).

If g is of order $r=1$ then $\lambda_{1} \in \mathbb{C}^{*}$ is of order $r_{1}=1$, so that $\lambda_{1}=1$. Consequently, $\lambda_{2}=1$ and $g=I_{2}$, as far as I_{2} is the only conjugate of the scalar matrix I_{2}. The trace $\operatorname{tr}(g)=\operatorname{tr}\left(I_{2}\right)=2$. Conversely, if $\lambda_{1}=\lambda_{2}=1$, then $g=I_{2}$ is of order 1 .

An automorphism $g \in S L(2, R)$ of order $r=2$ has eigenvalues $\lambda_{1}, \lambda_{2} \in \mathbb{C}^{*}$ of order 2 , or $\lambda_{1}=\lambda_{2}=-1$. Consequently, $g=-I_{2}$ and $\operatorname{tr}(g)=-2$. Conversely, for $\lambda_{1}=\lambda_{2}-1$ the matrix $g=-I_{2}$ is of order 2 .

Let us suppose that $g \in S L(2, R)$ is of order 3 . Then the eigenvalues λ_{1}, λ_{2} of g are of order 3 or $\lambda_{1}=e^{\frac{2 \pi i}{3}}, \lambda_{2}=e^{-\frac{2 \pi i}{3}}$, up to a transposition. The trace $\operatorname{tr}(g)=\lambda_{1}+\lambda_{2}=-1$. Conversely, if $\lambda_{1}=e^{\frac{2 \pi i}{3}}, \lambda_{2}=e^{-\frac{2 \pi i}{3}}$ then $r=r_{1}=r_{2}=3$.

For $g \in S L(2, R)$ of order 4 one has $\lambda_{1}, \lambda_{2} \in \mathbb{C}^{*}$ of order 4 or $\lambda_{1}=i, \lambda_{2}=-i$, up to a transposition. The trace $\operatorname{tr}(g)=\lambda_{1}+\lambda_{2}=0$. Conversely, for $\lambda_{1}=i, \lambda_{2}=-i$ there follows $r=r_{1}=r_{2}=4$.

Suppose that $g \in S L(2, R)$ is of order 6 . Then $\lambda_{1}, \lambda_{2} \in \mathbb{C}^{*}$ are of order 6 or $\lambda_{1}=e^{\frac{\pi i}{3}}, \lambda_{2}=e^{-\frac{\pi i}{3}}$, up to a transposition. The trace $\operatorname{tr}(g)=\lambda_{1}+\lambda_{2}=1$. Conversely, the assumption $\lambda_{1}=e^{\frac{\pi i}{3}}, \lambda_{2}=e^{-\frac{\pi i}{3}}$ implies $r=r_{1}=r_{2}=6$.

Note that

$$
g_{1}=\left(\begin{array}{rr}
1 & 1 \\
-3 & -2
\end{array}\right), \quad g_{2}=\left(\begin{array}{ll}
1 & -2 \\
1 & -1
\end{array}\right), \quad g_{3}=\left(\begin{array}{rr}
2 & 1 \\
-3 & -1
\end{array}\right) \in S L(2, \mathbb{Z}) \subseteq S L(2, R)
$$

with $\operatorname{tr}\left(g_{1}\right)=-1, \operatorname{tr}\left(g_{2}\right)=0, \operatorname{tr}\left(g_{3}\right)=1$ realize all the possibilities, listed in the statement of the proposition.

If E is an elliptic curve with complex multiplication by an imaginary quadratic number field $\mathbb{Q}(\sqrt{-d})$ and conductor $f \in \mathbb{N}$ then we denote the endomorphism ring of E by

$$
R_{-d, f}=\mathbb{Z}+f \mathcal{O}_{-d}=\mathbb{Z}+f \omega_{-d} \mathbb{Z}
$$

where ω_{-d} is the non-trivial generator of \mathcal{O}_{-d} as a \mathbb{Z}-module, given in (6). If E has no complex multiplication, we put

$$
R_{0,1}:=\mathbb{Z}
$$

Proposition 16. Let $g \in G L\left(2, R_{-d, f}\right)$ be a linear automorphism of $A=E \times E$ of order r, with $\operatorname{det}(g)=-1$ and eigenvalues $\lambda_{1}(g), \lambda_{2}(g) \in \mathbb{C}^{*}$.
(i) The automorphism g is of order 2 if and only if its trace is $\operatorname{tr}(g)=0$ or, equivalently, $\lambda_{1}(g)=-1, \lambda_{2}(g)=1$.
(ii) If $R_{-d, f} \neq \mathbb{Z}[i], \mathcal{O}_{-2}, \mathcal{O}_{-3}, R_{-3,2}$ then any $g \in G L\left(2, R_{-d, f}\right) \backslash S L(2, R)$ is of order 2.
(iii) If $g \in G L\left(2, \mathcal{O}_{-2}\right)$ is of order $r>2$ and $\operatorname{det}(g)=-1$ then $r=8$ and the trace $\operatorname{tr}(g) \in\{ \pm \sqrt{-2}\}$.

More precisely,
(a) $\operatorname{tr}(g)=\sqrt{-2}$ if and only if $\lambda_{1}(g)=e^{\frac{\pi i}{4}}, \lambda_{2}(g)=e^{\frac{3 \pi i}{4}}$;
(b) $\operatorname{tr}(g)=-\sqrt{-2}$ if and only if $\lambda_{1}(g)=e^{\frac{5 \pi i}{4}}, \lambda_{2}(g)=e^{-\frac{\pi i}{4}}$.
(iv) If $g \in G L(2, \mathbb{Z}[i])$ is of order $r>2$ and $\operatorname{det}(g)=-1$, then $r \in\{4,12\}$ and the trace $\operatorname{tr}(g) \in\{ \pm i, \pm 2 i\}$.

More precisely,
(a) $\operatorname{tr}(g)=2 i$ exactly when $g=i I_{2}$;
(b) $\operatorname{tr}(g)=-2 i$ exactly when $g=-i I_{2}$;
(c) $\operatorname{tr}(g)=i$ exactly when $\lambda_{1}(g)=e^{\frac{\pi i}{6}}, \lambda_{2}(g)=e^{\frac{5 \pi i}{6}}$;
(d) $\operatorname{tr}(g)=-i$ exactly when $\lambda_{1}(g)=e^{\frac{7 \pi i}{6}}, \lambda_{2}(g)=e^{-\frac{\pi i}{6}}$.
(v) If $g \in G L\left(2, R_{-3, f}\right)$ with $R_{-3, f} \in\left\{R_{-3,1}=\mathcal{O}_{-3}, R_{-3,2}=\mathbb{Z}+\sqrt{-3} \mathbb{Z}\right\}$ is of order $r>2$ and $\operatorname{det}(g)=-1$ then $r=6$ and the trace $\operatorname{tr}(g) \in\{ \pm \sqrt{-3}\}$.

More precisely,
(a) $\operatorname{tr}(g)=\sqrt{-3}$ if and only if $\lambda_{1}(g)=e^{\frac{\pi i}{3}}, \lambda_{2}(g)=e^{\frac{2 \pi i}{3}}$;
(b) $\operatorname{tr}(g)=-\sqrt{-3}$ if and only if $\lambda_{1}(g)=e^{-\frac{2 \pi i}{3}}, \lambda_{2}(g)=e^{-\frac{\pi i}{3}}$.

Proof. The eigenvalues $\lambda_{1}(g), \lambda_{2}(g) \in \mathbb{C}^{*}$ of $g \in G L\left(2, R_{-d, f}\right)$ with $\operatorname{det}(g)=-1$ are subject to $\lambda_{2}(g)=-\lambda_{1}(g)^{-1}$. More precisely, if $\lambda_{1}(g)=e^{\frac{2 \pi s i}{r_{1}}}$ is a primitive r_{1}-th root of unity then $\lambda_{2}(g)=-e^{-\frac{2 \pi s i}{r_{1}}}$. The trace

$$
\begin{equation*}
\operatorname{tr}(g)=\lambda_{1}(g)+\lambda_{2}(g)=e^{\frac{2 \pi s i}{r_{1}}}-e^{-\frac{2 \pi s i}{r_{1}}}=2 i \sin \left(\frac{2 \pi s}{r_{1}}\right) \in R_{-d, f} \cap i \mathbb{R} . \tag{11}
\end{equation*}
$$

We claim that

$$
R_{-d, f} \cap i \mathbb{R}= \begin{cases}f \sqrt{-d} \mathbb{Z} & \text { for }-d \not \equiv 1(\bmod 4) \text { or }-d \equiv 1(\bmod 4), f \equiv 1(\bmod 2), \\ \frac{f}{2} \sqrt{-d} \mathbb{Z} & \text { for }-d \equiv 1(\bmod 4), f \equiv 0(\bmod 2)\end{cases}
$$

Indeed, if $-d \not \equiv 1(\bmod 4)$ then $\mathcal{O}_{-d}=\mathbb{Z}+\sqrt{-d} \mathbb{Z}$ and $R_{-d, f}=\mathbb{Z}+f \sqrt{-d} \mathbb{Z}$ contains $f \sqrt{-d}$, i.e., $f \sqrt{-d} \mathbb{Z} \subseteq R_{-d, f} \cap i \mathbb{R}$. Any ir $=a+b f \sqrt{-d} \in i \mathbb{R} \cap R_{-d, f}$ with $r \in \mathbb{R}$, $a, b \in \mathbb{Z}$ has imaginary part $r=b f \sqrt{d}$, so that $i \mathbb{R} \cap R_{-d, f} \subseteq f \sqrt{-d} \mathbb{Z}$ and $i \mathbb{R} \cap R_{-d, f}=$ $f \sqrt{-d} \mathbb{Z}$.

Suppose that $-d \equiv 1(\bmod 4)$ and the conductor $f=2 k+1 \in \mathbb{N}$ is odd. Then $R_{-d, 2 k+1}=\mathbb{Z}+f \frac{(1+\sqrt{-d})}{2} \mathbb{Z}$ contains $f \sqrt{-d}=-f+(2 f) \frac{(1+\sqrt{-d})}{2}$, so that $f \sqrt{-d} \mathbb{Z} \subseteq$ $R_{-d, 2 k+1} \cap i \mathbb{R}$. Any ir $=a+\frac{b f}{2}(1+\sqrt{-d})$ with $r \in \mathbb{R}, a, b \in \mathbb{Z}$ has real part $a+\frac{b f}{2}=0$ and imaginary part $r=\frac{b f}{2} \sqrt{d}$. Note that $\frac{b f}{2}=\frac{b(2 k+1)}{2}=-a \in \mathbb{Z}$ is an integer only for an even $b=2 b_{1}, b_{1} \in \mathbb{Z}$, so that $r=b_{1} f \sqrt{d}$ and $i \mathbb{R} \cap R_{-d, 2 k+1} \subseteq f \sqrt{-d} \mathbb{Z}$. That justifies $i \mathbb{R} \cap R_{-d, 2 k+1}=f \sqrt{-d} \mathbb{Z}$ for $-d \equiv 1(\bmod 4), f \equiv 1(\bmod 2)$.

Finally, for $-d \equiv 1(\bmod 4)$ and an even conductor $f=2 k \in \mathbb{N}$ the endomorphism ring $R_{-d, 2 k}=\mathbb{Z}+k(1+\sqrt{-d}) \mathbb{Z}$ contains $k \sqrt{-d}$, so that $k \sqrt{-d} \mathbb{Z} \subseteq i \mathbb{R} \cap R_{-d, 2 k}$. Note that ir $=a+b k(1+\sqrt{-d})$ with $r \in \mathbb{R}, a, b \in \mathbb{Z}$ has real part $a+b k=0$ and imaginary part $r=b k \sqrt{d}$, so that $i \mathbb{R} \cap R_{-d, 2 k} \subseteq k \sqrt{-d} \mathbb{Z}$ and $i \mathbb{R} \cap R_{-d, 2 k}=k \sqrt{-d} \mathbb{Z}$.

Now, (11) implies that

$$
\begin{gathered}
2 \sin \left(\frac{2 \pi s}{r_{1}}\right) \in[-2,2] \cap i\left(R_{-d, f} \cap i \mathbb{R}\right)= \\
= \begin{cases}{[-2,2] \cap f \sqrt{d} \mathbb{Z}} & \text { for }-d \not \equiv 1(\bmod 4) \text { or }-d \equiv 1(\bmod 4), f \equiv 1(\bmod 2), \\
{[-2,2] \cap \frac{f}{2} \sqrt{d} \mathbb{Z}} & \text { for }-d \equiv 1(\bmod 4), f \equiv 0(\bmod 2) .\end{cases}
\end{gathered}
$$

If $d \geq 5$ then $\sqrt{d} \geq \sqrt{5}>2$ and $[-2,2] \cap f \sqrt{d} \mathbb{Z}=\{0\}$ for $\forall f \in \mathbb{N}$ and $[-2,2] \cap \frac{f}{2} \sqrt{d} \mathbb{Z}=$ $\{0\}$ for $\forall f \in 2 \mathbb{N}$. Note that $\sin \left(\frac{2 \pi s}{r_{1}}\right)=0$ for some natural number $1 \leq s \leq r_{1}-1$ with $G C D\left(s, r_{1}\right)=1$ has unique solution $\frac{2 \pi s}{r_{1}}=\pi$, since $\frac{2 \pi s}{r_{1}} \in(0,2 \pi)$. That implies $2 s=r_{1}$, whereas s divides r_{1} and $s=G C D\left(s, r_{1}\right)=1, r_{1}=2$. Thus, $\lambda_{1}=e^{\frac{2 \pi i}{2}}=$ $e^{\pi i}=-1, \lambda_{2}=-(-1)=1$ and g is conjugate to

$$
D_{2}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

In particular, g is of order 2. Note that the case of $g \in G L(2, R)$ with $\lambda_{1}=-1$, $\lambda_{2}=1$ is realized by the diagonal matrix $D_{2} \in G L(2, \mathbb{Z}) \leq G L\left(2, R_{-d, f}\right)$.

If $d=1$ and $f \geq 3$ then $2 \sin \left(\frac{2 \pi s}{r_{1}}\right) \in[-2,2] \cap f \mathbb{Z}=\{0\}$ and D_{2} is the only diagonal form for g. For $d=2$ and $f \geq 2$ the intersection $[-2,2] \cap f \sqrt{2} \mathbb{Z}=\{0\}$, so that any $g \in G L\left(2, R_{-2, f}\right)$ with $f \geq 2$ and $\operatorname{det}(g)=-1$ is conjugate to D_{2}. If $d=3$ and $f=2 k+1 \geq 3$ then $[-2,2] \cap f \sqrt{3} \mathbb{Z}=\{0\}$. Similarly, for $d=3$ and $f=2 k \geq 4$ one has $[-2,2] \cap k \sqrt{3} \mathbb{Z}=\{0\}$. In such a way, the existence of $g \in G L\left(2, R_{-d, f}\right)$ with $\operatorname{det}(g)=-1, \operatorname{tr}(g) \neq 0$ requires $R_{-d, f}$ to be among

$$
\begin{gathered}
R_{-1,1}=\mathcal{O}_{-1}=\mathbb{Z}[i], \quad R_{-1,2}=\mathbb{Z}+2 i \mathbb{Z}, \quad R_{-2,1}=\mathcal{O}_{-2}=\mathbb{Z}+\sqrt{-2} \mathbb{Z} \\
R_{-3,1}=\mathcal{O}_{-3}=\mathbb{Z}+\frac{1+\sqrt{-3}}{2} \mathbb{Z} \quad \text { or } \quad R_{-3,2}=\mathbb{Z}+2\left(\frac{1+\sqrt{-3}}{2}\right) \mathbb{Z}=\mathbb{Z}+\sqrt{-3} \mathbb{Z}
\end{gathered}
$$

The next considerations exploit the following simple observation: If a, b are relatively prime natural numbers and s, r_{1} are relatively prime natural numbers then $a s=b r_{1}$ if and only if $s=b$ and $r_{1}=a$. Namely, b divides as and $G C D(a, b)=1$ requires b to divide s. Thus, $s=b s_{1}$ for some $s_{1} \in \mathbb{N}$ and $a s_{1}=r_{1}$. Now s_{1} is a natural common divisor of the relatively prime s, r_{1}, so that $s_{1}=1, s=b$ and $r_{1}=a$.

For $d=1$ and $f=2$ one has $2 \sin \left(\frac{2 \pi s}{r_{1}}\right) \in[-2,2] \cap f \mathbb{Z}=\{0, \pm 2\}$. Let $\operatorname{tr}(g)=2 i$ or $\sin \left(\frac{2 \pi s}{r_{1}}\right)=1$ for $r_{1} \in \mathbb{N}$ and some natural number $1 \leq s \leq r_{1}-1, G C D\left(s, r_{1}\right)=1$. Then $\frac{2 \pi s}{r_{1}}=\frac{\pi}{2}$ or $4 s=r_{1}$. As a result, $s=1, r_{1}=4$ and $\lambda_{1}=e^{\frac{\pi i}{2}}=i, \lambda_{2}=-e^{-\frac{\pi i}{2}}=i$. Now $g=i I_{2}$ as the unique matrix, conjugate to the scalar matrix $i I_{2}$. However, $i I_{2} \notin G L\left(2, R_{-1,2}\right)=G L(2, \mathbb{Z}+2 i \mathbb{Z})$, so that $g=i I_{2}$ is not a solution of the problem. For $\operatorname{tr}(g)=-2 i$ one has $\sin \left(\frac{2 \pi s}{r_{1}}\right)=-1$, whereas $\frac{2 \pi s}{r_{1}}=\frac{3 \pi}{2}$ and $4 s=3 r_{1}$. Thus, $s=3, r_{1}=4$ and $\lambda_{1}=e^{\frac{3 \pi i}{3}}=-i, \lambda_{2}=-e^{-\frac{3 \pi i}{3}}=-i$. That determines a unique $g=-i I_{2}$. But $-i I_{2} \notin G L\left(2, R_{-1,2}\right)=G L(2, \mathbb{Z}+2 i \mathbb{Z})$, so that $\lambda_{1}=1, \lambda_{2}=-1$ are the only possible eigenvalues for $g \in G L\left(2, R_{-1,2}\right)$ of finite order with $\operatorname{det}(g)=-1$.

In the case of $d=1$ and $f=1$, note that $2 \sin \left(\frac{2 \pi s}{r_{1}}\right) \in[-2,2] \cap \mathbb{Z}=\{0, \pm 1, \pm 2\}$. Besides $g \in G L(2, \mathbb{Z}[i])$ with $\operatorname{det}(g)=-1, \operatorname{tr}(g)=0$, one has $g=i I_{2} \in G L(2, \mathbb{Z}[i])$ and $g=-i I_{2} \in G L(2, \mathbb{Z}[i])$. The case of $\operatorname{tr}(g)=i$ corresponds to $\sin \left(\frac{2 \pi s}{r_{1}}\right)=\frac{1}{2}$
and holds for $\frac{2 \pi s}{r_{1}}=\frac{\pi}{6}$ or $\frac{2 \pi s}{r_{1}}=\frac{5 \pi}{6}$. Note that $12 s=r_{1}$ implies $s=1, r_{1}=12$ and $\lambda_{1}=e^{\frac{\pi i}{6}}=\frac{\sqrt{3}}{2}+\frac{1}{2} i, \lambda_{2}=-e^{-\frac{\pi i}{6}}=-\frac{\sqrt{3}}{2}+\frac{1}{2} i=e^{\frac{5 \pi i}{6}}$. Thus, g is of order $r=\operatorname{LCM}(12,12)=12$. This possibility is realized, for instance, by

$$
g(i)=\left(\begin{array}{rr}
1 & 1 \\
i & (-1+i)
\end{array}\right) \in G L(2, \mathbb{Z}[i]) \quad \text { with } \quad \operatorname{det}(g(i))=-1, \quad \operatorname{tr}(g(i))=i
$$

If $12 s=5 r_{1}$ then $s=5, r_{1}=12$ and $\lambda_{1}=e^{\frac{5 \pi i}{6}}=-\frac{\sqrt{3}}{2}+\frac{1}{2} i, \lambda_{2}=-e^{-\frac{5 \pi i}{6}}=$ $\frac{\sqrt{3}}{2}+\frac{1}{2} i=e^{\frac{\pi i}{6}}$, which was already obtained. Note that $\operatorname{tr}(g)=-i$ amounts to $\sin \left(\frac{2 \pi s}{r_{1}}\right)=-\frac{1}{2}$ and holds for $\frac{2 \pi s}{r_{1}}=\frac{7 \pi}{6}$ or $\frac{2 \pi s}{r_{1}}=\frac{11 \pi}{6}$. If $12 s=7 r_{1}$ then $s=7$, $r_{1}=12$ and $\lambda_{1}=e^{\frac{7 \pi i}{6}}=-\frac{\sqrt{3}}{2}-\frac{1}{2} i, \lambda_{2}=-e^{-\frac{7 \pi i}{6}}=\frac{\sqrt{3}}{2}-\frac{1}{2} i=e^{-\frac{\pi i}{6}}$ and g is of order $r=\operatorname{LCM}(12,12)=12$. Note that
$g(-i)=\left(\begin{array}{rr}1 & 1 \\ -i & (-1-i)\end{array}\right) \in G L(2, \mathbb{Z}[i]) \quad$ with $\quad \operatorname{det}(g(-i))=-1, \quad \operatorname{tr}(g(-i))=-i$ realizes the aforementioned possibility.

In the case of $12 s=11 r_{1}$ one has $s=11, r_{1}=12$ and $\lambda_{1}=e^{\frac{11 \pi i}{6}}=\frac{\sqrt{3}}{2}-\frac{1}{2} i$, $\lambda_{2}=-e^{\frac{\pi i}{6}}=-\frac{\sqrt{3}}{2}-\frac{1}{2} i$, which is already listed as a solution. That concludes the considerations for $g \in G L(2, \mathbb{Z}[i])$ with $\operatorname{det}(g)=-1$.

If $d=2$ and $f=1$ then $2 \sin \left(\frac{2 \pi s}{r_{1}}\right) \in[-2,2] \cap \sqrt{2} \mathbb{Z}=\{0, \pm \sqrt{2}\}$. Note that $\sin \left(\frac{2 \pi s}{r_{1}}\right)=\frac{\sqrt{2}}{2}$ holds for $\frac{2 \pi s}{r_{1}}=\frac{\pi}{4}$ or $\frac{2 \pi s}{r_{1}}=\frac{3 \pi}{4}$. The equality $r_{1}=8 s$ implies $s=1$ and $r_{1}=8$. As a result, $\lambda_{1}=e^{\frac{\pi i}{4}}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i, \lambda_{2}=-e^{-\frac{\pi i}{4}}=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i=e^{\frac{3 \pi i}{4}}$. Observe that

$$
g(\sqrt{-2})=\left(\begin{array}{rr}
1 & 1 \\
\sqrt{-2} & (-1+\sqrt{-2})
\end{array}\right) \in G L\left(2, \mathcal{O}_{-2}\right), \mathcal{O}_{-2}=\mathbb{Z}+\sqrt{-2} \mathbb{Z}
$$

with $\operatorname{det}(g(\sqrt{-2}))=-1, \operatorname{tr}(g(\sqrt{-2}))=\sqrt{-2}$ realizes the aforementioned possibility. If $8 s=3 r_{1}$ then $s=3, r_{1}=8$ and $\lambda_{1}=e^{\frac{3 \pi i}{4}}=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i, \lambda_{2}=-e^{-\frac{3 \pi i}{4}}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i=$ $e^{\frac{\pi i}{4}}$. These eigenvalues have been already mentioned.

For $\sin \left(\frac{2 \pi s}{r_{1}}\right)=-\frac{\sqrt{2}}{2}$ there follows $\frac{2 \pi s}{r_{1}}=\frac{5 \pi}{4}$ or $\frac{2 \pi s}{r_{1}}=\frac{7 \pi}{4}$. If $8 s=5 r_{1}$ then $s=5, r_{1}=8$ and $\lambda_{1}=e^{\frac{5 \pi i}{4}}=-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i, \lambda_{2}=-e^{-\frac{5 \pi i}{4}}=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i=e^{-\frac{\pi i}{4}}$. The corresponding automorphism g is of order $r=\operatorname{LCM}(8,8)=8$. Note that

$$
g(-\sqrt{-2})=\left(\begin{array}{rr}
1 & 1 \\
-\sqrt{-2} & (-1-\sqrt{-2})
\end{array}\right) \in G L\left(2, \mathcal{O}_{-2}\right)
$$

with $\operatorname{det}(g(-\sqrt{-2}))=-1, \operatorname{tr}(g(-\sqrt{-2}))=-\sqrt{-2}$. realizes this possibility. In the case of $8 s=7 r_{1}$, one has $s=7, r_{1}=8$. The eigenvalues $\lambda_{1}=e^{\frac{7 \pi i}{4}}=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i$,
$\lambda_{2}=-e^{-\frac{7 \pi i}{4}}=-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i$ were already obtained. That concludes the considerations for $d=2$.

If $d=3$ and $f=1$, note that $2 \sin \left(\frac{2 \pi s}{r_{1}}\right) \in[-2,2] \cap \sqrt{3} \mathbb{Z}=\{0, \pm \sqrt{3}\}$. Similarly, for $d=3$ and $f=2$ one has $2 \sin \left(\frac{2 \pi s}{r_{1}}\right) \in[-2,2] \cap \sqrt{3} \mathbb{Z}=\{0, \pm \sqrt{3}\}$. If $\sin \left(\frac{2 \pi s}{r_{1}}\right)=\frac{\sqrt{3}}{2}$ then $\frac{2 \pi s}{r_{1}}=\frac{\pi}{3}$ or $\frac{2 \pi s}{r_{1}}=\frac{2 \pi}{3}$. In the case of $6 s=r_{1}$ there follows $s=1, r_{1}=6$. The eigenvalues $\lambda_{1}=e^{\frac{\pi i}{3}}=\frac{1}{2}+\frac{\sqrt{3}}{2} i, \lambda_{2}=-e^{-\frac{\pi i}{3}}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i=e^{\frac{2 \pi i}{3}}$ and g is of order $r=\operatorname{LCM}(6,3)=6$. The automorphism

$$
g(\sqrt{-3})=\left(\begin{array}{rr}
1 & 1 \\
\sqrt{-3} & (-1+\sqrt{-3})
\end{array}\right) \in G L\left(2, R_{-3,2}\right) \leq G L\left(2, \mathcal{O}_{-3}\right)
$$

with $\operatorname{det}(g(\sqrt{-3}))=-1, \operatorname{tr}(g(\sqrt{-3}))=\sqrt{-3}$ realizes the aforementioned possibility. If $3 s=r_{1}$ then $s=1, r_{1}=3$ and $\lambda_{1}=e^{\frac{2 \pi i}{3}}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i, \lambda_{2}=-e^{-\frac{2 \pi i}{3}}=\frac{1}{2}+\frac{\sqrt{3}}{2} i=e^{\frac{\pi i}{3}}$, which was already obtained.

If $\sin \left(\frac{2 \pi s}{r_{1}}\right)=-\frac{\sqrt{3}}{2}$ then $\frac{2 \pi s}{r_{1}}=\frac{4 \pi}{3}$ or $\frac{2 \pi s}{r_{1}}=\frac{5 \pi}{3}$. In the case of $3 s=2 r_{1}$ note that $s=2, r_{1}=3$ and $\lambda_{1}=e^{\frac{4 \pi i}{3}}=-\frac{1}{2}-\frac{\sqrt{3}}{2} i, \lambda_{2}=-e^{-\frac{4 \pi i}{3}}=\frac{1}{2}-\frac{\sqrt{3}}{2} i=e^{-\frac{\pi i}{3}}$. The automorphisms g with such eigenvalues are of order $r=\operatorname{LCM}(3,6)=6$. In particular,

$$
g(-\sqrt{-3})=\left(\begin{array}{rr}
1 & 1 \\
-\sqrt{-3} & (-1-\sqrt{-3})
\end{array}\right) \in G L\left(2, R_{-3,2}\right) \leq G L\left(2, \mathcal{O}_{-3}\right)
$$

with $\operatorname{det}(g(-\sqrt{-3}))=-1, \operatorname{tr}(g(-\sqrt{-3}))=-\sqrt{-3}$ realizes the aforementioned possibility.

If $6 s=5 r_{1}$ then $s=5, r_{1}=6$ and $\lambda_{1}=e^{\frac{5 \pi i}{3}}=e^{-\frac{\pi i}{3}}=\frac{1}{2}-\frac{\sqrt{3}}{2} i, \lambda_{2}=-e^{\frac{\pi i}{3}}=$ $-\frac{1}{2}-\frac{\sqrt{3}}{2} i=e^{\frac{4 \pi i}{3}}$. These eigenvalues are already obtained. That concludes the considerations for $d=3$ and the description of all $g \in G L\left(2, R_{-d, f}\right)$ with $\operatorname{det}(g)=-1$.

Proposition 17. If $g \in G L(2, \mathbb{Z}[i])$ is of finite order r and $\operatorname{det}(g)=i$ then

$$
\operatorname{tr}(g) \in\{0, \pm(1+i)\}, \quad r \in\{4,8\}
$$

More precisely,
(i) $\operatorname{tr}(g)=0$ or $\lambda_{1}=e^{\frac{3 \pi i}{4}}, \lambda_{2}=e^{-\frac{\pi i}{4}}$ if and only if g is of order 8 ;
(ii) if $\operatorname{tr}(g)=1+i$ or $\lambda_{1}=i, \lambda_{2}=1$ then g is of order 4 ;
(iii) if $\operatorname{tr}(g)=-1-i$ or $\lambda_{1}=-i, \lambda_{2}=-1$ then g is of order 4 .

Proof. If $\lambda_{1}=e^{\frac{2 \pi s i}{r_{1}}}$ for the order $r_{1} \in \mathbb{N}$ of $\lambda_{1} \in \mathbb{C}^{*}$ and some natural number $1 \leq s<r_{1}, G C D\left(s, r_{1}\right)=1$, then $\lambda_{2}=\operatorname{det}(g) \lambda_{1}^{-1}=i e^{-\frac{2 \pi s i}{r_{1}}}$. Therefore, the trace

$$
\operatorname{tr}(g)=\lambda_{1}+\lambda_{2}=\left[\cos \left(\frac{2 \pi s}{r_{1}}\right)+\sin \left(\frac{2 \pi s}{r_{1}}\right)\right](1+i)=
$$

$$
=\sqrt{2} \sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}\right)(1+i) \in \mathbb{Z}[i]=\mathbb{Z}+i \mathbb{Z}
$$

if and only if the real part

$$
\sqrt{2} \sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}\right) \in \mathbb{Z} \cap[-\sqrt{2}, \sqrt{2}]=\{0, \pm 1\}
$$

As a result, $\operatorname{tr}(g) \in\{0, \pm(1+i)\}$. If $\operatorname{tr}(g)=0$ or, equivalently, $\sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}\right)=0$ for $\frac{2 \pi s}{r_{1}}+\frac{\pi}{4} \in\left(\frac{\pi}{4}, \frac{9 \pi}{4}\right)$ then $\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}=\pi$ or $\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}=2 \pi$. For $\frac{2 s}{r_{1}}=\frac{3}{4}$ there follows $8 s=3 r_{1}$ and $s=3, r_{1}=8$. As a result, $\lambda_{1}=e^{\frac{3 \pi i}{4}}=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i, \lambda_{2}=i e^{-\frac{3 \pi i}{4}}=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i=e^{-\frac{\pi i}{4}}$ and g is of order $r=\operatorname{LCM}(8,8)=8$. For instance,

$$
g_{i}(0)=\left(\begin{array}{rr}
i & i \\
(-1-i) & -i
\end{array}\right) \in G L(2, \mathbb{Z}[i])
$$

with $\operatorname{det}\left(g_{i}(0)\right)=i, \operatorname{tr}\left(g_{i}(0)\right)=0$ attains this possibility.
If $\frac{2 s}{r_{1}}=\frac{7}{4}$ then $8 s=7 r_{1}$ and $s=7, r_{1}=8$. The eigenvalues $\lambda_{1}=e^{\frac{7 \pi i}{4}}=e^{-\frac{\pi i}{4}}=$ $\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i, \lambda_{2}=i e^{\frac{\pi i}{4}}=-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i=e^{\frac{3 \pi i}{4}}$ are already obtained.

In the case of $\operatorname{tr}(g)=1+i$, one has $\sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$, which is equivalent to $\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}=\frac{3 \pi}{4}$ for $\frac{2 \pi s}{r_{1}}+\frac{\pi}{4} \in\left(\frac{\pi}{4}, \frac{9 \pi}{4}\right)$. Now, $\frac{2 s}{r_{1}}=\frac{1}{2}$, whereas $4 s=r_{1}$ and $s=1, r_{1}=4$. The eigenvalues are $\lambda_{1}=e^{\frac{\pi i}{2}}=i, \lambda_{2}=i e^{-\frac{\pi i}{2}}=1$ and g is of order $r=\operatorname{LCM}(4,1)=4$. Note that

$$
g_{i}(1+i)=\left(\begin{array}{cc}
i & 0 \\
0 & 1
\end{array}\right) \in G L(2, \mathbb{Z}[i])
$$

with $\operatorname{det}\left(g_{i}(1+i)\right)=i, \operatorname{tr}\left(g_{i}(1+i)\right)=1+i$ realizes this case.
Finally, for $\operatorname{tr}(g)=-1-i$ there follows $\sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}$. Consequently, $\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}=\frac{5 \pi}{4}$ or $\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}=\frac{7 \pi}{4}$ for $\frac{2 \pi s}{r_{1}}+\frac{\pi}{4} \in\left(\frac{\pi}{4}, \frac{9 \pi}{4}\right)$. In the case of $\frac{2 s}{r_{1}}=1$ one has $s=1, r_{1}=2$. The eigenvalues of g are $\lambda_{1}=e^{\pi i}=-1, \lambda_{2}=i e^{-\pi i}=-i$, so that g is of order $r=\operatorname{LCM}(2,4)=4$. This possibility is realized by

$$
g_{i}(-1-i)=\left(\begin{array}{cc}
-i & 0 \\
0 & -1
\end{array}\right) \in G L(2, \mathbb{Z}[i])
$$

with $\operatorname{det}\left(g_{i}(-1-i)\right)=i, \operatorname{tr}\left(g_{i}(-1-i)\right)=-1-i$.
If $\frac{2 s}{r_{1}}=\frac{3}{2}$ then $4 s=3 r_{1}$ and $s=3, r_{1}=4$. The eigenvalues $\lambda_{1}=e^{\frac{3 \pi i}{2}}=-i, \lambda_{2}=$ $i e^{-\frac{3 \pi i}{2}}=-1$ are already obtained. That concludes the description of the eigenvalues of all $g \in G L(2, \mathbb{Z}[i])$ of finite order with $\operatorname{det}(g)=i$.

Proposition 18. If $g \in G L(2, \mathbb{Z}[i])$ is of finite order r and $\operatorname{det}(g)=-i$ then

$$
\operatorname{tr}(g) \in\{0, \pm(1-i)\}, \quad r \in\{4,8\} .
$$

More precisely,
(i) $\operatorname{tr}(g)=0$ or $\lambda_{1}=e^{\frac{\pi i}{4}}, \lambda_{2}=e^{\frac{5 \pi i}{4}}$ if and only if g is of order 8 ;
(ii) if $\operatorname{tr}(g)=1-i$ or $\lambda_{1}=-i, \lambda_{2}=1$ then g is of order 4 ;
(iii) if $\operatorname{tr}(g)=-1+i$ or $\lambda_{1}=i, \lambda_{2}=-1$ then g is of order 4 .

Proof. If one of the eigenvalues of g is $\lambda_{1}=e^{\frac{2 \pi s i}{r_{1}}}$ then the other one is $\lambda_{2}=-i e^{-\frac{2 \pi s i}{r_{1}}}$. Thus, the trace

$$
\operatorname{tr}(g)=\lambda+\lambda_{2}=\left[\cos \left(\frac{2 \pi s}{r_{1}}\right)-\sin \left(\frac{2 \pi s}{r_{1}}\right)\right](1-i)=\sqrt{2} \cos \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}\right)(1-i)
$$

belongs to $\mathbb{Z}[i]=\mathbb{Z}+\mathbb{Z} i$ if and only if $\sqrt{2} \cos \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}\right) \in \mathbb{Z}$. As a result,

$$
\sqrt{2} \cos \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}\right) \in \mathbb{Z} \cap[-\sqrt{2}, \sqrt{2}]=\{0, \pm 1\}
$$

or $\operatorname{tr}(g) \in\{0, \pm(1-i)\}$. Note that $\operatorname{tr}(g)=0$ reduces to $\cos \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}\right)=0$ with solutions $\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}=\frac{\pi}{2}$ or $\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}=\frac{3 \pi}{2}$. If $\frac{2 s}{r_{1}}=\frac{1}{4}$ then $8 s=r_{1}$ and $s=1, r_{1}=8$. The eigenvalues of g are $\lambda_{1}=e^{\frac{\pi i}{4}}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i, \lambda_{2}=-i e^{-\frac{\pi i}{4}}=-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i$ and g is of order $r=\operatorname{LCM}(8,8)=8$. Note that

$$
g_{-i}(0)=\left(\begin{array}{rr}
-i & -i \\
(-1+i) & i
\end{array}\right) \in G L(2, \mathbb{Z}[i])
$$

with $\operatorname{det}\left(g_{-i}(0)\right)=-i, \operatorname{tr}\left(g_{-i}(0)\right)=0$ realizes the aforementioned possibility. In the case of $\frac{2 \pi s}{r_{1}}=\frac{5}{4}$ there holds $8 s=5 r_{1}$, whereas $s=5, r_{1}=8$ and $\lambda_{1}=e^{\frac{5 \pi i}{4}}=-\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2} i$, $\lambda_{2}=-i e^{-\frac{5 \pi i}{4}}=\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i=e^{\frac{\pi i}{4}}$. This case has been already discussed.

For $\operatorname{tr}(g)=1-i$ one has $\cos \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}$, which reduces to $\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}=\frac{7 \pi}{4}$ for $\frac{2 \pi s}{r_{1}}+\frac{\pi}{4} \in\left(\frac{\pi}{4}, \frac{9 \pi}{4}\right)$. Now $\frac{2 s}{r_{1}}=\frac{3}{2}$ reads as $4 s=3 r_{1}$ and determines $s=3, r_{1}=4$. The eigenvalues of g are $\lambda_{1}=e^{\frac{3 \pi i}{2}}=-i, \lambda_{2}=-i e^{-\frac{3 \pi i}{2}}=1$ and g is of order $r=\operatorname{LCM}(4,1)=4$. This possibility is realized by

$$
g_{-i}(1-i)=\left(\begin{array}{rr}
-i & 0 \\
0 & 1
\end{array}\right) \in G L(2, \mathbb{Z}[i])
$$

with $\operatorname{det}\left(g_{-i}(1-i)\right)=-i, \operatorname{tr}\left(g_{-i}(1-i)\right)=1-i$.
Finally, $\operatorname{tr}(g)=-1+i$ is equivalent to $\cos \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}$ and holds for $\frac{2 \pi s}{r_{1}}+$ $\frac{\pi}{4}=\frac{3 \pi}{4}$ or $\frac{2 \pi s}{r_{1}}+\frac{\pi}{4}=\frac{5 \pi}{4}$. In the case of $\frac{2 s}{r_{1}}=\frac{1}{2}$, one has $4 s=r_{1}$ and $s=1$, $r_{1}=4$. The eigenvalues of g are $\lambda_{1}=e^{\frac{\pi i}{2}}=i, \lambda_{2}=-i e^{-\frac{\pi i}{2}}=-1$ and g is of order $r=\operatorname{LCM}(4,2)=4$. The automorphism

$$
g_{-i}(-1+i)=\left(\begin{array}{rr}
i & 0 \\
0 & -1
\end{array}\right) \in G L(2, \mathbb{Z}[i])
$$

realizes the case under discussion. For $\frac{2 s}{r_{1}}=1$ there follow $s=1, r_{1}=2$ and $\lambda_{1}=e^{\pi i}=-1, \lambda_{2}=-i e^{-\pi i}=i$, which was already discussed. That concludes the description of the automorphisms $g \in G L(2, \mathbb{Z}[i])$ with $\operatorname{det}(g)=-i$.

Proposition 19. If $g \in G L\left(2, \mathcal{O}_{-3}\right)$ is of finite order r and $\operatorname{det}(g)=e^{\frac{\pi i}{3}}$ then

$$
r=6 \quad \text { and } \quad \operatorname{tr}(g) \in\left\{0, \pm\left(\frac{3}{2}+\frac{\sqrt{-3}}{2}\right)\right\}
$$

More precisely,
(i) $\operatorname{tr}(g)=0$ exactly when $\lambda_{1}=e^{\frac{2 \pi i}{3}}, \lambda_{2}=e^{-\frac{\pi i}{3}}$;
(ii) $\operatorname{tr}(g)=\frac{3}{2}+\frac{\sqrt{-3}}{2}$ exactly when $\lambda_{1}=e^{\frac{\pi i}{3}}, \lambda_{2}=1$;
(iii) $\operatorname{tr}(g)=-\frac{3}{2}-\frac{\sqrt{-3}}{2}$ exactly when $\lambda_{1}=e^{-\frac{2 \pi i}{3}}, \lambda_{2}=-1$.

Proof. If $\lambda_{1}=e^{\frac{2 \pi s i}{r_{1}}}$ then $\lambda_{2}=e^{\frac{\pi i}{3}} e^{-\frac{2 \pi s i}{r_{1}}}$ and the trace

$$
\operatorname{tr}(g)=\lambda_{1}+\lambda_{2}=(\sqrt{3}+i) \sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{3}\right)
$$

belongs to $\mathcal{O}_{-3}=\mathbb{Z}+\frac{1+\sqrt{-3}}{2} \mathbb{Z}$ if and only if $\sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{3}\right) \in \frac{\sqrt{3}}{2} \mathbb{Z}$. Combining with $\sin \left(\frac{2 \pi s i}{r_{1}}+\frac{\pi}{3}\right) \in[-1,1]$, one gets $\sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{3}\right) \in \frac{\sqrt{3}}{2} \mathbb{Z} \cap[-1,1]=\left\{0, \pm \frac{\sqrt{3}}{2}\right\}$ and, respectively, $\operatorname{tr}(g) \in\left\{0, \pm\left(\frac{3}{2}+\frac{\sqrt{-3}}{2}\right)\right\}$.

If $\sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{3}\right)=0$ then $\frac{2 \pi s}{r_{1}}+\frac{\pi}{3}=\pi$ or $\frac{2 \pi s}{r_{1}}+\frac{\pi}{3}=2 \pi$. For $\frac{2 s}{r_{1}}=\frac{2}{3}$ there follows $s=1, r_{1}=3$ and $\lambda_{1}=e^{\frac{2 \pi i}{3}}=-\frac{1}{2}+\frac{\sqrt{-3}}{2}, \lambda_{2}=e^{\frac{\pi i}{3}} e^{-\frac{2 \pi i}{3}}=e^{-\frac{\pi i}{3}}=\frac{1}{2}-\frac{\sqrt{-3}}{2}$. The automorphisms $g \in G L\left(2, \mathcal{O}_{-3}\right)$ with such eigenvalues are of order $r=\operatorname{LCM}(3,6)=$ 6. For instance,

$$
\left(\begin{array}{rr}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right) \in G L\left(2, \mathcal{O}_{-3}\right)
$$

attains the aforementioned possibility.
In the case of $\frac{2 s}{r_{1}}=\frac{5}{3}$ one has $s=5, r_{1}=6$ and $\lambda_{1}=e^{-\frac{\pi i}{3}}, \lambda_{2}=e^{\frac{\pi i}{3}} e^{\frac{\pi i}{3}}=e^{\frac{2 \pi i}{3}}$, which was already obtained.

Note that $\sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$ for $\frac{2 \pi s}{r_{1}}+\frac{\pi}{3} \in\left(\frac{\pi}{3}, \frac{7 \pi}{3}\right)$ implies $\frac{2 \pi s}{r_{1}}+\frac{\pi}{3}=\frac{2 \pi}{3}$, whereas $6 s=r_{1}$ and $s=1, r_{1}=6$. The corresponding eigenvalues are $\lambda_{1}=e^{\frac{\pi i}{3}}=\frac{1}{2}+\frac{\sqrt{3}}{2} i$, $\lambda_{2}=e^{\frac{\pi i}{3}} e^{-\frac{\pi i}{3}}=1$ and g is of order $r=\operatorname{LCM}(6,1)=6$. Note that

$$
\left(\begin{array}{rr}
e^{\frac{\pi i}{3}} & 0 \\
0 & 1
\end{array}\right) \in G L\left(2, \mathcal{O}_{-3}\right)
$$

realizes this possibility.

The equality $\sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}$ holds for $\frac{2 \pi s}{r_{1}}+\frac{\pi}{3}=\frac{4 \pi}{3}$ or $\frac{2 \pi s}{r_{1}}+\frac{\pi}{3}=\frac{5 \pi}{3}$. If $2 s=r_{1}$ then $s=1, r_{1}=2$ and $\lambda_{1}=e^{\pi i}=-1, \lambda_{2}=e^{\frac{\pi i}{3}} e^{-\pi i}=e^{-\frac{2 \pi i}{3}}=-\frac{1}{2}-\frac{\sqrt{3}}{2} i$. The automorphism g is of order $r=\operatorname{LCM}(2,3)=6$. Note that

$$
\left(\begin{array}{rr}
e^{-\frac{2 \pi i}{3}} & 0 \\
0 & -1
\end{array}\right) \in G L\left(2, \mathcal{O}_{-3}\right)
$$

attains this possibility and concludes the proof of the proposition.

Proposition 20. If $g \in G L\left(2, \mathcal{O}_{-3}\right)$ is of finite order r and $\operatorname{det}(g)=e^{-\frac{\pi i}{3}}$ then

$$
r=6 \quad \text { and } \quad \operatorname{tr}(g) \in\left\{0, \pm\left(\frac{3}{2}-\frac{\sqrt{-3}}{2}\right)\right\}
$$

More precisely,
(i) $\operatorname{tr}(g)=0$ exactly when $\lambda_{1}=e^{\frac{\pi i}{3}}, \lambda_{2}=e^{-\frac{2 \pi i}{3}}$;
(ii) $\operatorname{tr}(g)=\frac{3}{2}-\frac{\sqrt{3}}{2}$ i exactly when $\lambda_{1}=e^{-\frac{\pi i}{3}}, \lambda_{2}=1$;
(iii) $\operatorname{tr}(g)=-\frac{3}{2}+\frac{\sqrt{3}}{2}$ i exactly when $\lambda_{1}=\frac{2 \pi i}{3}, \lambda_{2}=-1$.

Proof. If $\lambda_{1}=e^{\frac{2 \pi s i}{r_{1}}}$ then $\lambda_{2}=e^{-\frac{\pi i}{3}} e^{-\frac{2 \pi s i}{r_{1}}}$ and the trace

$$
\operatorname{tr}(g)=\lambda_{1}+\lambda_{2}=(-\sqrt{3}+i) \sin \left(\frac{2 \pi s}{r_{1}}-\frac{\pi}{3}\right)
$$

belongs to $\mathcal{O}_{-3}=\mathbb{Z}+\frac{1+\sqrt{3} i}{2} \mathbb{Z}$ if and only if $\sin \left(\frac{2 \pi s}{r_{1}}-\frac{\pi}{3}\right) \in \frac{\sqrt{3}}{2} \mathbb{Z}$. As a result, $\sin \left(\frac{2 \pi s}{r_{1}}=\frac{\pi}{3}\right) \in \frac{\sqrt{3}}{2} \mathbb{Z} \cap[-1,1]=\left\{0, \pm \frac{\sqrt{3}}{2}\right\}$ and $\operatorname{tr}(g) \in\left\{0, \pm\left(\frac{3}{2}-\frac{\sqrt{3}}{2} i\right)\right\}$.

The equation $\sin \left(\frac{2 \pi s}{r_{1}}-\frac{\pi}{3}\right)=0$ for $\frac{2 \pi s}{r_{1}}-\frac{\pi}{3} \in\left(-\frac{\pi}{3}, \frac{5 \pi}{3}\right)$ has solutions $\frac{2 \pi s}{r_{1}}-\frac{\pi}{3}=0$ and $\frac{2 \pi s}{r_{1}}-\frac{\pi}{3}=\pi$.

If $6 s=r_{1}$ then $s=1, r_{1}=6$ and $\lambda_{1}=e^{\frac{\pi i}{3}}=\frac{1}{2}+\frac{\sqrt{3}}{2} i, \lambda_{2}=e^{-\frac{\pi i}{3}} e^{-\frac{\pi i}{3}}=$ $-\frac{1}{2}-\frac{\sqrt{3}}{2} i$. The automorphisms $g \in G L\left(2, \mathcal{O}_{-3}\right)$ with such eigenvalues are of order $r=\operatorname{LCM}(6,3)=6$. For instance,

$$
\left(\begin{array}{rr}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{2 \pi i}{3}}
\end{array}\right) \in G L\left(2, \mathcal{O}_{-3}\right)
$$

attains this case.
If $\sin \left(\frac{2 \pi s}{r_{1}}-\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$ then $\frac{2 \pi s}{r_{1}}-\frac{\pi}{3}=\frac{\pi}{3}$ or $\frac{2 \pi s}{r_{1}}-\frac{\pi}{3}=\frac{2 \pi}{3}$. For $3 s=r_{1}$ one has $s=1, r_{1}=3$ and $\lambda_{1}=e^{\frac{2 \pi i}{3}}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i, \lambda_{2}=e^{-\frac{\pi i}{3}} e^{-\frac{2 \pi i}{3}}=e^{-\pi i}=-1$, attained by

$$
\left(\begin{array}{rr}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & -1
\end{array}\right) \in G L\left(2, \mathcal{O}_{-3}\right)
$$

All $g \in G L\left(2, \mathcal{O}_{-3}\right)$ with such eigenvalues are of order $r=\operatorname{LCM}(3,2)=6$.
In the case of $2 s=r_{1}$ there follows $s=1, r_{1}=2$ and $\lambda_{1}=e^{\pi i}=-1, \lambda_{2}=$ $e^{-\frac{\pi i}{3}} e^{-\frac{\pi i}{3}}=e^{-\frac{2 \pi i}{3}}$, which is already discussed.

The equation $\sin \left(\frac{2 \pi s}{r_{1}}-\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}$ for $\frac{2 \pi s}{r_{1}}-\frac{\pi}{3} \in\left(-\frac{\pi}{3}, \frac{5 \pi}{3}\right)$ has solution $\frac{2 \pi s}{r_{1}}-\frac{\pi}{3}=$ $\frac{5 \pi}{3}$. Therefore $6 s=5 r_{1}$ and $s=5, r_{1}=6$, As a result, $\lambda_{1}=e^{\frac{5 \pi i}{3}}=\frac{1}{2}-\frac{\sqrt{3}}{2} i$, $\lambda_{2}=e^{-\frac{\pi i}{3}} e^{\frac{\pi i}{3}}=1$ and g is of order $r=\operatorname{LCM}(6,1)=6$. Note that

$$
\left(\begin{array}{rr}
e^{-\frac{\pi i}{3}} & 0 \\
0 & 1
\end{array}\right) \in G L\left(2, \mathcal{O}_{-3}\right)
$$

attains this possibility and concludes the proof of the proposition.

Proposition 21. If $g \in G L\left(2, \mathcal{O}_{-3}\right)$ is of finite order r and $\operatorname{det}(g)=e^{\frac{2 \pi i}{3}}$ then

$$
\operatorname{tr}(g) \in\left\{0, \pm \frac{(1+\sqrt{-3})}{2}, \pm(1+\sqrt{-3})\right\}, \quad r \in\{3,6,12\}
$$

More precisely,
(i) $\operatorname{tr}(g)=0$ or $\lambda_{1}=e^{\frac{5 \pi i}{6}}, \lambda_{2}=e^{-\frac{\pi i}{6}}$ if and only if g is of order 12 ;
(ii) if $\operatorname{tr}(g)=\frac{1+\sqrt{3} i}{2}$ or $\lambda_{1}=e^{\frac{2 \pi i}{3}}, \lambda_{2}=1$ then g is of order 3 ;
(iii) if $\operatorname{tr}(g)=-1-\sqrt{3} i$ or $g=e^{-\frac{2 \pi i}{3}} I_{2}$ then g is of order 3 ;
(iv) if $\operatorname{tr}(g)=\frac{-1-\sqrt{3} i}{2}$ or $\lambda_{1}=e^{-\frac{\pi i}{3}}, \lambda_{2}=-1$ then g is of order 6 ;
(v) if $\operatorname{tr}(g)=1+\sqrt{3} i$ or $g=e^{\frac{\pi i}{3}} I_{2}$ then g is of order 6 .

Proof. If $\lambda_{1}=e^{\frac{2 \pi s i}{r_{1}}}$ then $\lambda_{2}=e^{\frac{2 \pi i}{3}} e^{-\frac{2 \pi s i}{r_{1}}}$ and the trace

$$
\operatorname{tr}(g)=\lambda_{1}+\lambda_{2}=(1+\sqrt{3} i) \sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}\right)
$$

belongs to $\mathcal{O}_{-3}=\mathbb{Z}+\frac{1+\sqrt{3} i}{2} \mathbb{Z}$ if and only if $2 \sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}\right) \in \mathbb{Z}$. Combining with $\sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}\right) \in[-1,1]$, one obtains $2 \sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}\right) \in \mathbb{Z} \cap[-2,2]=\{0, \pm 1, \pm 2\}$ and, respectively,

$$
\operatorname{tr}(g) \in\left\{0, \pm \frac{(1+\sqrt{3} i)}{2}, \pm(1+\sqrt{3} i)\right\}
$$

If $\sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}\right)=0$ for $\frac{2 \pi s}{r_{1}}+\frac{\pi}{6} \in\left(\frac{\pi}{6}, \frac{13 \pi}{6}\right)$ then $\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}=\pi$ or $\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}=2 \pi$.
For $12 s=5 r_{1}$ one has $s=5, r_{1}=12$ and $\lambda_{1}=e^{\frac{5 \pi i}{6}}=-\frac{\sqrt{3}}{2}+\frac{1}{2} i, \lambda_{2}=e^{\frac{2 \pi i}{3}} e^{-\frac{5 \pi i}{6}}=$ $e^{-\frac{\pi i}{6}}=\frac{\sqrt{3}}{2}-\frac{1}{2} i$. Therefore g is of order $r=\operatorname{LCM}(12,12)=12$. Note that

$$
\left(\begin{array}{rr}
e^{\frac{5 \pi i}{6}} & 0 \\
0 & e^{-\frac{\pi i}{6}}
\end{array}\right) \in G L\left(2, \mathcal{O}_{-3}\right)
$$

attains this possibility.
In the case of $12 s=11 r_{1}$ there follows $s=11, r_{1}=12$. As a result, $\lambda_{1}=e^{\frac{11 \pi i}{6}}=$ $\frac{\sqrt{3}}{2}-\frac{1}{2} i, \lambda_{2}=e^{\frac{2 \pi i}{3}} e^{\frac{\pi i}{6}}=e^{\frac{5 \pi i}{6}}=-\frac{\sqrt{3}}{2}+\frac{1}{2} i$, which was already obtained.

If $\sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}\right)=\frac{1}{2}$ for $\frac{2 \pi s}{r_{1}}+\frac{\pi}{6} \in\left(\frac{\pi}{6}, \frac{13 \pi}{6}\right)$ then $\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}=\frac{5 \pi}{6}$ and $3 s=r_{1}$. Therefore $s=1, r_{1}=3$ and $\lambda_{1}=e^{\frac{2 \pi i}{3}}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i, \lambda_{2}=e^{\frac{2 \pi i}{3}} e^{-\frac{2 \pi i}{3}}=1$. The order of g is $r=\operatorname{LCM}(3,1)=3$. This possibility is attained by

$$
\left(\begin{array}{rr}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & 1
\end{array}\right) \in G L\left(2, \mathcal{O}_{-3}\right)
$$

The equation $\sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}\right)=-\frac{1}{2}$ has solutions $\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}=\frac{7 \pi}{6}$ and $\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}=\frac{11 \pi}{6}$.
If $2 s=r_{1}$ then $s=1, r_{1}=2, \lambda_{1}=e^{\pi i}=-1, \lambda_{2}=e^{\frac{2 \pi i}{3}} e^{-\pi i}=e^{-\frac{\pi i}{3}}=\frac{1}{2}-\frac{\sqrt{3}}{2} i$ and g is of order $r=\operatorname{LCM}(2,6)=6$. For instance,

$$
\left(\begin{array}{rr}
e^{-\frac{\pi i}{3}} & 0 \\
0 & -1
\end{array}\right) \in G L\left(2, \mathcal{O}_{-3}\right)
$$

attains these eigenvalues.
For $6 s=5 r_{1}$ one has $s=5, r_{1}=6 \lambda_{1}=e^{\frac{5 \pi i}{3}}=e^{-\frac{\pi i}{3}}=\frac{1}{2}-\frac{\sqrt{3}}{2} i, \lambda_{2}=e^{\frac{2 \pi i}{3}} e^{\frac{\pi i}{3}}=$ $e^{\pi i}=-1$, which is already obtained.

Note that $\sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}\right)=1$ is equivalent to $\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}=\frac{\pi}{2}$, whereas $6 s=r_{1}$ and $s=1, r_{1}=6$. The eigenvalues $\lambda_{1}=e^{\frac{\pi i}{3}}=\frac{1}{2}+\frac{\sqrt{3}}{2} i, \lambda_{2}=e^{\frac{2 \pi i}{3}} e^{-\frac{\pi i}{3}}=e^{\frac{\pi i}{3}}=\frac{1}{2}+\frac{s q r t 3}{2} i$ are equal, so that $g=e^{\frac{\pi i}{3}} I_{2}$ and $r=\operatorname{LCM}(6,6)=6$.

If $\sin \left(\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}\right)=-1$ then $\frac{2 \pi s}{r_{1}}+\frac{\pi}{6}=\frac{3 \pi}{2}$ and $3 s=2 r_{1}, s=2, r_{1}=3$. Then $\lambda_{1}=e^{\frac{4 \pi i}{3}}=e^{-\frac{2 \pi i}{3}}=-\frac{1}{2}-\frac{\sqrt{3}}{2} i, \lambda_{2}=e^{\frac{2 \pi i}{3}} e^{\frac{2 \pi i}{3}}=e^{-\frac{2 \pi i}{3}}$ determine uniquely $g=e^{-\frac{2 \pi i}{3}} I_{2}$ of order $r=\operatorname{LCM}(3,3)=3$. That concludes the description of $g \in G L\left(2, \mathcal{O}_{-3}\right)$ of finite order and $\operatorname{det}(g)=e^{\frac{2 \pi i}{3}}$.

Proposition 22. If $g \in G L\left(2, \mathcal{O}_{-3}\right)$ is of finite order r and $\operatorname{det}(g)=e^{-\frac{2 \pi i}{3}}$ then

$$
\operatorname{tr}(g) \in\left\{0, \pm \frac{(1-\sqrt{-3})}{2}, \quad \pm(1-\sqrt{-3})\right\}, \quad r \in\{3,6,12\}
$$

More precisely,
(i) $\operatorname{tr}(g)=0$ or $\lambda_{1}=e^{\frac{\pi i}{6}}, \lambda_{2}=e^{-5 \frac{\pi i}{6}}$ if and only if g is of order 12;
(ii) if $\operatorname{tr}(g)=\frac{1-\sqrt{3} i}{2}$ or $\lambda_{1}=e^{\frac{4 \pi i}{3}}, \lambda_{2}=1$ then g is of order 3 ;
(iii) if $\operatorname{tr}(g)=-1+\sqrt{3} i$ or $g=e^{\frac{2 \pi i}{3}} I_{2}$ then g is of order 3 ;
(iv) if $\operatorname{tr}(g)=\frac{-1+\sqrt{3} i}{2}$ or $\lambda_{1}=e^{\frac{\pi i}{3}}, \lambda_{2}=-1$ then g is of order 6 ;
(v) if $\operatorname{tr}(g)=1-\sqrt{3}$ i or $g=e^{-\frac{\pi i}{3}} I_{2}$ then g is of order 6 .

Proof. If $\lambda_{1}=e^{\frac{2 \pi s i}{r_{1}}}$ then $\lambda_{2}=e^{-\frac{2 \pi i}{3}} e^{-\frac{2 \pi s i}{r_{1}}}$ and the trace

$$
\operatorname{tr}(g)=\lambda_{1}+\lambda_{2}=(-1+\sqrt{3} i) \sin \left(\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}\right)
$$

belongs to $\mathcal{O}_{-3}=\mathbb{Z}+\frac{1+\sqrt{3} i}{2} \mathbb{Z}$ if and only if $2 \sin \left(\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}\right) \in \mathbb{Z}$. Combining with $2 \sin \left(\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}\right) \in[-2,2]$, one concludes that $\sin \left(\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}\right) \in\left\{0, \pm \frac{1}{2}, \pm 1\right\}$ and $\operatorname{tr}(g) \in$ $\left\{0, \pm \frac{(1-\sqrt{3} i)}{2}, \pm(1-\sqrt{3} i)\right\}$.

If $\sin \left(\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}\right)=0$ with $\frac{2 \pi s}{r_{1}}-\frac{\pi}{6} \in\left(-\frac{\pi}{6}, \frac{11 \pi}{6}\right)$ then $\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}=0$ or $\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}=\pi$.
For $12 s=r_{1}$ one has $s=1, r_{1}=12, \lambda_{1}=e^{\frac{\pi i}{6}}=\frac{\sqrt{3}}{2}+\frac{1}{2} i, \lambda_{2}=e^{-\frac{2 \pi i}{3}} e^{-\frac{\pi i}{6}}=$ $e^{-\frac{5 \pi i}{6}}=-\frac{\sqrt{3}}{2}-\frac{1}{2} i$, so that g is of order $r=\operatorname{LCM}(12,12)=12$. For instance,

$$
\left(\begin{array}{rr}
e^{\frac{\pi i}{6}} & 0 \\
0 & e^{-\frac{5 \pi i}{6}}
\end{array}\right) \in G L\left(2, \mathcal{O}_{-3}\right)
$$

attains this case.
For $12 s=7 r_{1}$ there follows $s=7, r_{1}=12, \lambda_{1}=e^{\frac{7 \pi i}{6}}=e^{-\frac{5 \pi i}{6}}, \lambda_{2}=e^{-\frac{2 \pi i}{3}} e^{\frac{5 \pi i}{6}}=$ $e^{\frac{\pi i}{6}}$, which is already discussed.

In the case of $\sin \left(\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}\right)=\frac{1}{2}$ note that $\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}=\frac{\pi}{6}$ or $\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}=\frac{5 \pi}{6}$.
If $6 s=r_{1}$ then $s=1, r_{1}=6, \lambda_{1}=e^{\frac{\pi i}{3}}=\frac{1}{2}+\frac{\sqrt{3}}{2} i, \lambda_{2}=e^{-\frac{2 \pi i}{3}} e^{-\frac{\pi i}{3}}=e^{-\pi i}=-1$ and g is of order $r=\operatorname{LCM}(6,2)=6$. Note that

$$
\left(\begin{array}{rr}
e^{\frac{\pi i}{3}} & 0 \\
0 & -1
\end{array}\right) \in G L\left(2, \mathcal{O}_{-3}\right)
$$

attains this case.
For $2 s=r_{1}$ there follows $s=1, r_{1}=2, \lambda_{1}=e^{\pi i}=-1, \lambda_{2}=e^{-\frac{2 \pi i}{3}} e^{-\frac{\pi i}{3}}=e^{-\frac{5 \pi i}{3}}=$ $e^{\frac{\pi i}{3}}$, which is already obtained.

Note that $\sin \left(\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}\right)=-\frac{1}{2}$ for $\frac{2 \pi s}{r_{1}}-\frac{\pi}{6} \in\left(-\frac{\pi}{6}, \frac{11 \pi}{6}\right)$ implies $\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}=\frac{7 \pi}{6}$, whereas $3 s=2 r_{1}, s=2$ and $r_{1}=3$. Then $\lambda_{1}=e^{\frac{4 \pi i}{3}}=-\frac{1}{2}-\frac{\sqrt{3}}{2} i, \lambda_{2}=e^{-\frac{2 \pi i}{3}} e^{-\frac{4 \pi i}{3}}=e^{-2 \pi i}=1$ and g is of order $r=\operatorname{LCM}(3,1)=3$, attained by

$$
\left(\begin{array}{rr}
e^{\frac{4 \pi i}{3}} & 0 \\
0 & 1
\end{array}\right) \in G L\left(2, \mathcal{O}_{-3}\right) .
$$

If $\sin \left(\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}\right)=1$ then $\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}=\frac{\pi}{2}$ or $3 s=r_{1}$. As a result, $s=1, r_{1}=3$, $\lambda_{1}=e^{\frac{2 \pi i}{3}}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i, \lambda_{2}=e^{-\frac{2 \pi i}{3}} e^{-\frac{2 \pi i}{3}}=e^{\frac{2 \pi i}{3}}$, whereas $g=e^{\frac{2 \pi i}{3}} I_{2} \in G L\left(2, \mathcal{O}_{-3}\right)$ is a scalar matrix of order 3 .

Finally, $\sin \left(\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}\right)=-1$ holds for $\frac{2 \pi s}{r_{1}}-\frac{\pi}{6}=\frac{3 \pi}{2}$, i.e., $6 s=5 r_{1}$ and $s=5, r_{1}=6$. Now $\lambda_{1}=e^{-\frac{\pi i}{3}}=\frac{1}{2}-\frac{\sqrt{3}}{2} i, \lambda_{2}=e^{-\frac{2 \pi i}{3}} e^{\frac{\pi i}{3}}=e^{-\frac{\pi i}{3}}$, so that $g=e^{-\frac{\pi i}{3}} I_{2} \in G L\left(2, \mathcal{O}_{-3}\right)$ is a scalar matrix of order 6 . That concludes the proof of the proposition.

3 Finite linear automorphism groups of $E \times E$

The classification of the finite subgroups K of $S L(2, R)$ for an endomorphism ring R of an elliptic curve E starts with a classification of the Sylow subgroups $H_{p^{k}}$ of K.

Proposition 23. If K is a finite subgroup of $S L(2, R)$ then K is of order $|K|=2^{a} 3^{b}$ for some integers $0 \leq a \leq 3,0 \leq b \leq 1$.

If K is of even order then the Sylow 2-subgroup $H_{2^{a}}$ of K is isomorphic to $\mathbb{C}_{2}, \mathbb{C}_{4}$ or the quaternion group

$$
\mathbb{Q}_{8}=\left\langle g_{1}, g_{2} \mid g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}\right\rangle
$$

of order 8 .
If the order of K is divisible by 3 then the Sylow 3-subgroup H_{3} of K is isomorphic to the cyclic group \mathbb{C}_{3} of the third roots of unity.

Proof. According to the First Sylow Theorem, if $|K|=p_{1}^{m_{1}} \ldots p_{s}^{m_{s}}$ for some rational primes $p_{j} \in \mathbb{N}$ and some $m_{j} \in \mathbb{N}$, then for any $1 \leq i \leq k$ there is a subgroup $H_{p_{j}^{i}} \leq K$ of order $\left|H_{p_{j}^{i}}\right|=p_{j}^{i}$. In particular, any $H_{p_{j}}=\left\langle g_{p_{j}}\right\rangle \simeq \mathbb{C}_{p_{j}}$ of prime order p_{j}, dividing $|K|$ is cyclic and there is an element $g_{p_{j}} \in K$ of order p_{j}. By Proposition 15 , the order of an element $g \in S L(2, R)$ is $1,2,3,4,6$ or ∞. As a result, if $g \in S L(2, R)$ is of prime order p then $p=2$ or 3 . In other words, K is of order $|K|=2^{a} 3^{b}$ for some non-negative integers a, b.

Suppose that $b \geq 1$ and consider the Sylow subgroup $H_{3^{b}} \leq K$ of order 3^{b}. Then any $h \in H_{3^{b}} \backslash\left\{I_{2}\right\}$ is of order 3 since there is no $g \in S L(2, R)$, whose order is divisible by 9 . We claim that $H_{3^{b}}=\left\langle h_{1}\right\rangle \simeq \mathbb{C}_{3}$ is a cyclic group of order 3. Otherwise, $b \geq 2$ and there exists $h_{2} \in H_{3^{b}} \backslash\left\langle h_{1}\right\rangle$. Note that $h_{1}^{j} h_{2} \in H_{3^{b}}$ with $1 \leq j \leq 2$ are of order 3, as far as $h_{1}^{j} h_{2}=I_{2}$ implies $h_{2}=h_{1}^{-j} \in\left\langle h_{1}\right\rangle$, contrary to the choice of h_{2}. We are going to show that if $h_{1}, h_{2}, h_{1} h_{2} \in S L(2, R)$ are of order 3 then $h_{1}^{2} h_{2}=I_{2}$, so that there is no $h_{2} \in H_{3^{b}} \backslash\left\langle h_{1}\right\rangle$ and $H_{3^{b}}=\left\langle h_{1}\right\rangle \simeq \mathbb{C}_{3}$. According to Proposition 15, $g \in S L(2, R)$ is of order 3 if and only if $\operatorname{tr}(g)=-1$ and g is conjugate to

$$
D_{g}=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & e^{-\frac{2 \pi i}{3}}
\end{array}\right)
$$

Similarly, $g \in S L(2, R)$ coincides with the identity matrix I_{2} exactly when $\operatorname{tr}(g)=2$. Thus, we have to check that if $h_{1}, h_{2} \in S L(2, R)$ satisfy $\operatorname{tr}\left(h_{1}\right)=\operatorname{tr}\left(h_{2}\right)=\operatorname{tr}\left(h_{1} h_{2}\right)=$ -1 then $\operatorname{tr}\left(h_{1}^{2} h_{2}\right)=2$. Let

$$
D_{1}=S^{-1} h_{1} S=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & e^{-\frac{2 \pi i}{3}}
\end{array}\right)
$$

be a diagonal form of h_{1} for some $S \in G L(2, \mathbb{C})$ and

$$
D_{2}=S^{-1} h_{2} S=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L(2, \mathbb{C})
$$

(More precisely, if $Q(R)=\mathbb{Q}$ or $\mathbb{Q}(\sqrt{-d})$ is the fraction field of R then the eigenvectors of h_{1} have entries from $Q(R)(\sqrt{-3})$, so that $S, D_{2} \in Q(R)(\sqrt{-3})_{2 \times 2}$ have entries from $Q(R)(\sqrt{-3})=\mathbb{Q}(\sqrt{-3})$ or $\mathbb{Q}(\sqrt{-d}, \sqrt{-3})$.) Since the determinant and the trace of a matrix are invariant under conjugation, the statement is equivalent to the fact that if $\operatorname{det}\left(D_{2}\right)=1$ and $\operatorname{tr}\left(D_{2}\right)=\operatorname{tr}\left(D_{1} D_{2}\right)=-1$ then $\operatorname{tr}\left(D_{1}^{2} D_{2}\right)=2$. Indeed, if $d=-a-1$ and $\operatorname{tr}\left(D_{1} D_{2}\right)=e^{\frac{2 \pi i}{3}} a-e^{-\frac{2 \pi i}{3}}(a+1)=-1$ then $a=e^{\frac{2 \pi i}{3}}$, $d=e^{-\frac{2 \pi i}{3}}$, whereas $\operatorname{tr}\left(D_{1}^{2} D_{2}\right)=2$. That proves the non-existence of $h_{2} \in H_{3^{b}} \backslash\left\langle h_{1}\right\rangle$ and $H_{3^{b}}=H_{3}=\left\langle h_{1}\right\rangle \simeq \mathbb{C}_{3}$.

Suppose that K is of even order and denote by $H_{2^{a}}$ the Sylow 2-subgroup of $K<S L(2, R)$ of order $2^{a} \geq 2$. Then any $g \in H_{2^{a}} \backslash\left\{I_{2}\right\}$ is of order

$$
r \in\left\{2^{i} \mid i \in \mathbb{N}\right\} \cap\{1,2,3,4,6\}=\{2,4\} .
$$

Recall from Proposition 15 that there is a unique element $-I_{2}$ of $S L(2, R)$ of order 2 and $g \in S L(2, R)$ is of order 4 if and only if the $\operatorname{trace} \operatorname{tr}(g)=0$. For $a=1$ the Sylow subgroup $H_{2}=\left\langle-I_{2}\right\rangle \simeq \mathbb{C}_{2}$ is cyclic of order 2 . If $a=2$ then $H_{4}=\langle g\rangle \simeq \mathbb{C}_{4}$ is cyclic of order 4 , since $S L(2, R)$ has a unique element $-I_{2}$ of order 2. From now on, let us assume that $a \geq 3$ and fix an element $g_{1} \in H_{2^{a}}$ of order 4. Due to $g_{1}^{2}=-I_{2} \in\left\langle g_{1}\right\rangle$, any $g_{2} \in H_{2^{a}} \backslash\left\langle g_{1}\right\rangle$ is of order 4 and $g_{2}^{2}=-I_{2}$. Moreover, $g_{1} g_{2} \in H_{2^{a}}$ is of order 4, as far as $g_{1} g_{2}= \pm I_{2}$ requires $g_{2}=\mp g_{1} \in\left\langle g_{1}\right\rangle$, contrary to the choice of g_{2}. We claim that if $g_{1}, g_{2} \in S L(2, R)$ of order 4 have product $g_{1} g_{2}$ of order 4 then they generate a quaternion group

$$
\left\langle g_{1}, g_{2} \mid g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}\right\rangle \simeq \mathbb{Q}_{8}
$$

of order 8. In other words, if $g_{1}, g_{2} \in R_{2 \times 2}$ have $\operatorname{det}\left(g_{1}\right)=\operatorname{det}\left(g_{2}\right)=1$ and $\operatorname{tr}\left(g_{1}\right)=$ $\operatorname{tr}\left(g_{2}\right)=\operatorname{tr}\left(g_{1} g_{2}\right)=0$ then $g_{2} g_{1}=-g_{1} g_{2}$. In particular, if $g_{1}, g_{2} \in S L(2, R)$ of order 4 have product $g_{1} g_{2}$ of order 4 then $g_{2} \notin\left\langle g_{1}\right\rangle=\left\{ \pm I_{2}, \pm g_{1}\right\}$. To this end, let

$$
D_{1}=S^{-1} g_{1} S=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)
$$

be the diagonal form of g_{1} and

$$
D_{2}=S^{-1} g_{2} S=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

for appropriate matrices S and D_{2} with entries from $Q(R)(\sqrt{-1})=\mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{d}, \sqrt{-1})$. The determinant and the trace are invariant under conjugation, so that suffices to show that if $\operatorname{det}\left(D_{2}\right)=1$ and $\operatorname{tr}\left(D_{2}\right)=\operatorname{tr}\left(D_{1} D_{2}\right)=0$ then $D_{2} D_{1}=-D_{1} D_{2}$, whereas

$$
\begin{gathered}
g_{2} g_{1}=\left(S D_{2} S^{-1}\right)\left(S D_{1} S^{-1}\right)=S\left(D_{2} D_{1}\right) S^{-1}= \\
=S\left(-D_{1} D_{2}\right) S^{-1}=-\left(S D_{1} S^{-1}\right)\left(S D_{2} S^{-1}\right)=-g_{1} g_{2} .
\end{gathered}
$$

Indeed, $\operatorname{tr}\left(D_{2}\right)=a+d=0$ and $\operatorname{tr}\left(D_{1} D_{2}\right)=i(a-d)=0$ require $a=d=0$. Now, $\operatorname{det}\left(D_{2}\right)=-b c=1$ determines $c=-\frac{1}{b}$ for some $b \in \mathbb{Q}(\sqrt{d}, \sqrt{-1})$ and

$$
D_{2} D_{1}=\left(\begin{array}{cc}
0 & -i b \\
-\frac{i}{b} & 0
\end{array}\right)=-D_{1} D_{2} .
$$

Thus, if $a=3$ then the Sylow 2-subgroup of K is isomorphic to the quaternion group \mathbb{Q}_{8} of order 8,

$$
H_{8}=\left\langle g_{1}, g_{2} \mid g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}\right\rangle \simeq \mathbb{Q}_{8}
$$

There remains to be rejected the case of $a \geq 4$. The assumption $a \geq 4$ implies the existence of $g_{3} \in H_{2^{a}} \backslash\left\langle g_{1}, g_{2}\right\rangle$. Any such g_{3} is of order 4, together with the products $g_{1} g_{3} \in H_{2^{a}}$ for $1 \leq j \leq 2$, since $g_{j} g_{3}= \pm I_{2}$ amounts to $g_{3}= \pm g_{j}^{3} \in\left\langle g_{j}\right\rangle$ and contradicts the choice of g_{3}. Thus, the subgroups

$$
\begin{gathered}
\left\langle g_{1}, g_{3} \mid g_{1}^{2}=g_{3}^{2}=-I_{2}, \quad g_{3} g_{1}=-g_{1} g_{3}\right\rangle \simeq \\
\left\langle g_{2}, g_{3}, \quad \mid g_{2}^{2}=g_{3}^{2}=-I_{2}, \quad g_{3} g_{2}=-g_{2} g_{3}\right\rangle \simeq \mathbb{Q}_{8}
\end{gathered}
$$

are also isomorphic to \mathbb{Q}_{8}. In particular,

$$
D_{3}=S^{-1} g_{3} S=\left(\begin{array}{cc}
0 & b_{3} \\
-\frac{1}{b_{3}} & 0
\end{array}\right)
$$

with $b_{3} \in \mathbb{Q}(\sqrt{d}, \sqrt{-1})^{*}$ is subject to

$$
D_{3} D_{2}=\left(\begin{array}{cc}
-\frac{b_{3}}{b} & 0 \\
0 & -\frac{b}{b_{3}}
\end{array}\right)=\left(\begin{array}{cc}
\frac{b}{b_{3}} & 0 \\
0 & \frac{b_{3}}{b}
\end{array}\right)=-D_{2} D_{3},
$$

whereas $b_{3}^{2}=-b^{2}$ or $b_{3}= \pm i b$. As a result, $D_{3}=D_{1} D_{2}$ and $g_{3}=g_{1} g_{2}$, contrary to the choice of $g_{3} \notin\left\langle g_{1}, g_{2}\right\rangle$. Therefore $a<4$ and the Sylow 2-subgroup of a finite group $K<S L(2, R)$ is $H_{2} \simeq \mathbb{C}_{2}, H_{4} \simeq \mathbb{C}_{4}$ or $H_{8} \simeq \mathbb{Q}_{8}$.

Proposition 24. Any finite subgroup K of $S L(2, R)$ is isomorphic to one of the following:

$$
\begin{gathered}
K_{1}=\left\{I_{2}\right\}, \\
K_{2}=\left\langle-I_{2}\right\rangle \simeq \mathbb{C}_{2}, \\
K_{3}=\left\langle g_{1}\right\rangle \simeq \mathbb{C}_{4} \text { for some } g_{1} \in S L(2, R) \text { with } \operatorname{tr}\left(g_{1}\right)=0, \\
K_{4}=\left\langle g_{1}, g_{2} \mid g_{1}^{2}=g_{2}^{2}=-I_{2}, g_{2} g_{1} g_{2}=g_{1}\right\rangle \simeq \mathbb{Q}_{8}, \\
K_{5}=\left\langle g_{3}\right\rangle \simeq \mathbb{C}_{3} \text { for some } g_{3} \in S L(2, R) \text { with } \operatorname{tr}\left(g_{3}\right)=-1, \\
K_{6}=\left\langle g_{4}\right\rangle \simeq \mathbb{C}_{6} \quad \text { for some } \quad g_{4} \in S L(2, R) \text { with } \operatorname{tr}\left(g_{4}\right)=1,
\end{gathered}
$$

$$
K_{7}=\left\langle g_{1}, g_{4} \mid g_{1}^{2}=g_{4}^{3}=-I_{2}, \quad g_{4} g_{1} g_{4}=g_{1}\right\rangle \simeq \mathbb{Q}_{12}
$$

for some $g_{1}, g_{4} \in S L(2, R)$ with $\operatorname{tr}\left(g_{1}\right)=0, \operatorname{tr}\left(g_{4}\right)=1$,

$$
\begin{gathered}
K_{8}=\left\langle g_{1}, g_{2}, g_{3}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{3}^{3}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}, \\
\left.g_{3} g_{1} g_{3}^{-1}=g_{2}, \quad g_{3} g_{2} g_{3}^{-1}=g_{1} g_{2}\right\rangle \simeq S L\left(2, \mathbb{F}_{3}\right)
\end{gathered}
$$

for some $g_{1}, g_{2}, g_{3} \in S L(2, R), \operatorname{tr}\left(g_{1}\right)=\operatorname{tr}\left(g_{2}\right)=0, \operatorname{tr}\left(g_{3}\right)=-1$, where \mathbb{Q}_{8} denotes the quaternion group of order $8, \mathbb{Q}_{12}$ stands for the dicyclic group of order 12 and $S L\left(2, \mathbb{F}_{3}\right)$ is the special linear group over the field \mathbb{F}_{3} with three elements.

Proof. By Proposition 23, K is of order $1,2,3,6,12$ or 24 . The only subgroup $K<$ $S L(2, R)$ of order 1 is $K=K_{1}=\left\{I_{2}\right\}$. Since $-I_{2}$ is the only element of $S L(2, R)$ of order 2, the group $K=K_{2}=\left\langle-I_{2}\right\rangle \simeq \mathbb{C}_{2}$ is the only cyclic subgroup of $S L(2, R)$ of order 2. Any subgroup $K<S L(2, R)$ of order 4 is cyclic or $K=K_{3}=\left\langle g_{1}\right\rangle$ for some $g_{1} \in S L(2, R)$ with $\operatorname{tr}\left(g_{1}\right)=0$, because $S L(2, R)$ has a unique element $-I_{2}$ of order 2. Proposition 15 has established the existence of elements $g_{1} \in S L(2, \mathbb{Z}) \leq S L(2, R)$ of order 4.

If $K<S L(2, R)$ is a subgroup of order 8 then it coincides with its Sylow 2subgroup

$$
K=H_{8}=\left\langle g_{1}, g_{2} \mid g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}\right\rangle=K_{4} \simeq \mathbb{Q}_{8}
$$

isomorphic to the quaternion group \mathbb{Q}_{8} of order 8. Note that there is a realization

$$
\mathbb{Q}_{8} \simeq\left\langle D_{1}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right), \quad D_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right\rangle<S L(2, \mathbb{Z}[i])
$$

as a subgroup of $S L(2, \mathbb{Z}[i])$. In general,

$$
D_{j}=\left(\begin{array}{cc}
a_{j} & b_{j} \\
c_{j} & -a_{j}
\end{array}\right) \in S L(2, R)
$$

amount to $a_{j}^{2}+b_{j} c_{j}=-1$. The anti-commuting relation $g_{2} g_{1}=-g_{1} g_{2}$ is equivalent to $2 a_{1} a_{2}+b_{1} c_{2}+b_{2} c_{1}=0$. Therefore $K_{4}=\left\langle g_{1}, g_{2}\right\rangle<S L(2, R)$ is a realization of \mathbb{Q}_{8} if and only if $a_{j}, b_{j}, c_{j} \in R$ are subject to

$$
\begin{gather*}
a_{1}^{2}+b_{1} c_{1}=-1 \\
a_{2}^{2}+b_{2} c_{2}=-1 \tag{12}\\
2 a_{1} a_{2}+b_{1} c_{2}+b_{2} c_{1}=0
\end{gather*} .
$$

The existence of a solution of (12) in an arbitrary $R=R_{-d, f}=\mathbb{Z}+f \mathcal{O}_{-d}=\mathbb{Z}+f \omega_{-d} \mathbb{Z}$ is an open problem.

If $|K|=3$ then $K=K_{5}=\left\langle g_{3}\right\rangle \simeq \mathbb{C}_{3}$ for some $g_{3} \in S L(2, R)$ with $\operatorname{tr}\left(g_{3}\right)=-1$.

From now on, let us assume that K is of order $|K|=2^{a} .3$ for some $1 \leq a \leq 3$ and consider some Sylow subgroups $H_{2}, H_{3}=\left\langle g_{4}\right\rangle \simeq \mathbb{C}_{3}$ of K. We claim that the product

$$
H_{2^{a}} H_{3}=\left\{g g_{4}^{i} \mid g \in H_{2^{a}}, \quad 0 \leq i \leq 2\right\}
$$

depletes K. More precisely, $H_{2^{a}} \cap H_{3}=\left\{I_{2}\right\}$, because 2^{a} and 3 are relatively prime. Therefore

$$
H_{2^{a}} H_{3} / H_{2^{a}}=H_{2^{a}} \cup H_{2^{a}} g_{4} \cup H_{2^{a}} g_{4}^{2}
$$

is a right coset decomposition of the subset $H_{2^{a}} H_{3} \subseteq K$ modulo $H_{2^{a}}$. Due to the disjointness of this decomposition, one has $\left|H_{2^{a}} H_{3}\right|=3\left|H_{2^{a}}\right|=3.2^{a}=|K|$. Therefore, the subset $H_{2^{a}} H_{3}$ of K coincides with K and $K=H_{2^{a}} H_{3}$ is a product of its Sylow subgroups.

If $K=H_{2} H_{3}=\left\langle-I_{2}\right\rangle\left\langle g_{3}\right\rangle$ for some $g_{3} \in S L(2, R)$ with $\operatorname{tr}\left(g_{3}\right)=-1$ then $\pm I_{2}$ commute with g_{3}^{j} for all $0 \leq j \leq 2$ and the group K is abelian. Thus, $K=\left\langle-g_{3}\right\rangle \simeq \mathbb{C}_{6}$ is a cyclic group of order 6 , generated by $-g_{3} \in S L(2, R)$ with $\operatorname{tr}\left(-g_{3}\right)=1$.

For $K=H_{4} H_{3}=\left\langle g_{1}\right\rangle\left\langle g_{3}\right\rangle$ with $g_{1}, g_{3} \in S L(2, R)$ of $\operatorname{tr}\left(g_{1}\right)=0, \operatorname{tr}\left(g_{3}\right)=-1$, note that $g_{4}=-g_{3} \in S L(2, R)$ is of order 6. Then $g_{4}^{3}=-I_{2}=g_{1}^{2}$, because $-I_{2} \in S L(2, R)$ is the only element of order 2 . We claim that $g_{1}, g_{4} \in S L(2, R)$ are subject to $g_{4} g_{1} g_{4}=$ g_{1}. To this end, let $\left.\left.S \in Q(R)(\sqrt{-3})\right)\right)_{2 \times 2} \subseteq \mathbb{Q}(\sqrt{-d}, \sqrt{-3})_{2 \times 2}$ be a matrix, whose columns are eigenvectors of g_{1}. Then

$$
\begin{gathered}
D_{4}=S^{-1} g_{4} S=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right) \quad \text { and } \\
D_{1}=S^{-1} g_{1} S=\left(\begin{array}{cc}
a_{1} & b_{1} \\
c_{1} & -a_{1}
\end{array}\right) \quad \text { with } \quad a_{1}^{2}+b_{1} c_{1}=-1
\end{gathered}
$$

generate the subgroup $K^{o}=S^{-1} K S \simeq K$. It suffices to check that $D_{4} D_{1} D_{4}=D_{1}$, because then $g_{4} g_{1} g_{4}=\left(S D_{4} S^{-1}\right)\left(S D_{1} S^{-1}\right)\left(S D_{4} S^{-1}\right)=S\left(D_{4} D_{1} D_{4}\right) S^{-1}=S D_{1} S^{-1}=$ g_{1} and

$$
K=\left\langle g_{1}, g_{3}\right\rangle=\left\langle g_{1}, g_{4}=-g_{3} \mid g_{1}^{2}=g_{4}^{3}=-I_{2}, \quad g_{4} g_{1} g_{4}=g_{1}\right\rangle \simeq \mathbb{Q}_{12}
$$

is isomorphic to the dicyclic group \mathbb{Q}_{12} of order 12 . The group $K^{o}=\left\langle D_{1}, D_{4}\right\rangle \simeq K$ of order 12 has a cyclic subgroup $\left\langle D_{4}\right\rangle \simeq \mathbb{C}_{6}$ of order 6 . The index $\left[K^{o}:\left\langle D_{4}\right\rangle\right]=2$, so that $\left\langle D_{4}\right\rangle$ is a normal subgroup of K^{o} and $D_{1} D_{4} D_{1}^{-1} \in\left\langle D_{4}\right\rangle$ is an element of order 6. More precisely, $D_{1} D_{4} D_{1}^{-1}=D_{4}$ or $D_{1} D_{4} D_{1}^{-1}=D_{4}^{-1}=D_{4}^{5}=-D_{4}^{2}$. If $D_{1} D_{4}=D_{4} D_{1}$ then $D_{1} D_{4} \in K^{o}$ is of order 12, as far as $\left(D_{1} D_{4}\right)^{12}=\left(D_{1}^{4}\right)^{3}\left(D_{4}^{6}\right)^{2}=$ $I_{2}^{3} I_{2}^{2}=I_{1},\left(D_{1} D_{4}\right)^{6}=D_{1}^{2}=-I_{2} \neq I_{2},\left(D_{1} D_{4}\right)^{4}=D_{4}^{4}=-D_{4} \neq I_{2}$, whereas $D_{1} D_{4},\left(D_{1} D_{4}\right)^{2},\left(D_{1} D_{4}\right)^{3} \notin\left\{I_{2}\right\}$. Consequently, $D_{1} D_{4}=-D_{4}^{2} D_{1}$, so that $D_{4} D_{1} D_{4}=$ $-D_{4}^{3} D_{1}=D_{1}$ and $K \simeq K^{o} \simeq \mathbb{Q}_{12}$. For instance, the subgroup

$$
\left\langle D_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad D_{4}=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right) \quad D_{1}^{2}=D_{4}^{3}=-I_{2}, \quad D_{1} D_{4} D_{1}^{-1}=D_{4}^{-1}\right\rangle
$$

of $S L\left(2, \mathcal{O}_{-3}\right)$ realizes \mathbb{Q}_{12} as a subgroup of $S L\left(2, \mathcal{O}_{-3}\right)$. The existence of $\mathbb{Q}_{12} \simeq K<$ $S L(2, R)$ for an arbitrary R is an open problem.

There remains to be shown that any subgroup $K=H_{8} H_{3}=\left\langle g_{1}, g_{2}, g_{3}\right\rangle \simeq \mathbb{Q}_{8} \mathbb{C}_{3}$ of $S L(2, R)$ of order 24 is isomorphic to the special linear group $K_{8} \simeq S L\left(2, \mathbb{F}_{3}\right)$ over \mathbb{F}_{3}. In other words, any $K<S L(2, R)$ of order $|K|=24$ can be generated by such $g_{1}, g_{2}, g_{3} \in S L(2, R)$ that the subgroup $\left\langle g_{1}, g_{2} \mid g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}\right\rangle \simeq \mathbb{Q}_{8}$ is isomorphic to the quaternion group \mathbb{Q}_{8} of order $8, g_{3}$ is of order 3 and $g_{3} g_{1} g_{3}^{-1}=g_{2}$, $g_{3} g_{2} g_{3}^{-1}=g_{1} g_{2}$.

First of all, the Sylow 2-subgroup $H_{8} \simeq \mathbb{Q}_{8}$ of K is normal. More precisely, by the Third Sylow Theorem, the number $n_{2} \in \mathbb{N}$ of the Sylow 2 -subgroups of K (i.e., the number n_{2} of the subgroups of K of order 8$)$ divides $|K|=24$ and $n_{2} \equiv 1(\bmod 2)$. Therefore $n_{2}=1$ or $n_{2}=3$. By Second Sylow Theorem, all Sylow 2-subgroups are conjugate to each other, so that $n_{2}=1$ exactly when $H_{8}=\left\langle g_{1}, g_{2}\right\rangle \simeq \mathbb{Q}_{8}$ is a normal subgroup of K. Let us assume that $n_{2}=3$ and denote by ν_{s} the number of the elements $g \in K$ of order s. Due to $-I_{2} \in H_{8}=\left\langle g_{1}, g_{2}\right\rangle<K$, one has $\nu_{1}=1, \nu_{2}=1$. Note that $g \in K$ is of order 3 if and only if $-g \in K$ is of order 6 , so that $\nu_{6}=\nu_{3}$. By the Third Sylow Theorem, the number $n_{3} \in \mathbb{N}$ of the Sylow 3 -subgroups of K divides $|K|=24$ and $n_{3} \equiv 1(\bmod 3)$. Therefore $n_{3}=1$ or $n_{3}=4$.

If $n_{3}=1$ and there is a unique normal subgroup $H_{3}=\left\langle g_{3}\right\rangle \simeq \mathbb{C}_{3}$ of K of order 3 , then $g_{j} g_{3} g_{j}^{-1} \in\left\{g_{3}, g_{3}^{2}\right\} \subset\left\langle g_{3}\right\rangle$ for $j=1$ and $j=2$. If $g_{j} g_{3} g_{j}^{-1}=g_{3}$ then $g_{j} g_{3}=g_{3} g_{j}$ for g_{j} of order 4 and g_{3} of order 3, so that $g_{j} g_{3} \in K$ is of order 12, contrary to the non-existence of an element of $S L(2, R)$ of order 12 . Therefore $g_{1} g_{3} g_{1}^{-1}=g_{3}^{2}$, $g_{2} g_{3} g_{2}^{-1}=g_{3}^{2}$, whereas

$$
\left(g_{1} g_{2}\right) g_{3}\left(g_{1} g_{2}\right)^{-1}=g_{1}\left(g_{2} g_{3} g_{2}^{-1}\right) g_{1}^{-1}=g_{1} g_{3}^{2} g_{1}^{-1}=\left(g_{1} g_{3} g_{1}^{-1}\right)^{2}=\left(g_{3}^{2}\right)^{2}=g_{3}
$$

and $g_{1} g_{2}$ of order 4 commutes with g_{3} of order 3 . Thus, $\left(g_{1} g_{2}\right) g_{3} \in K$ is of order 12 , which is an absurd. That rejects the assumption $n_{3}=1$ and proves that $n_{3}=4$.

Let $H_{3, j}=\left\langle g_{3, j}\right\rangle \simeq \mathbb{C}_{3}, 1 \leq j \leq 4$ be the four subgroups of K of order 3. Then $H_{3, i} \cap H_{3, j}=\left\{I_{2}\right\}$ for all $1 \leq i<j \leq 4$, as far as any $g \in H_{3, i} \backslash\left\{I_{2}\right\}$ generates $H_{3, i}$. As a result, $\cup_{i=1}^{4} H_{3, i}$ and K contain 8 different elements $g_{3, i}, g_{3, i}^{2}, 1 \leq i \leq 4$ of order 3 and $\nu_{6}=\nu_{3}=8$. Thus,

$$
24=|K|=\nu_{1}+\nu_{2}+\nu_{3}+\nu_{4}+\nu_{6}=18+\nu_{4},
$$

so that K has $\nu_{4}=6$ elements of order 4. Since any Sylow 2-subgroup

$$
H_{8}=\left\langle g_{1}, g_{2} \mid g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}\right\rangle=\left\{ \pm I_{2}, \pm g_{1}, \pm g_{2}, \pm g_{1} g_{2}\right\} \simeq \mathbb{Q}_{8}
$$

of K contains six elements $\pm g_{1}, \pm g_{2}, \pm g_{1} g_{2}$ of order 4 , there cannot be more than one H_{8}. In other words, $n_{2}=1$ and H_{8} is a normal subgroup of K.

The above considerations show that
$K=H_{8} \rtimes H_{3}=\left\langle g_{1}, g_{2} \mid g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}\right\rangle \rtimes\left\langle g_{3} \mid g_{3}^{3}=I_{2}\right\rangle \simeq \mathbb{Q}_{8} \rtimes \mathbb{C}_{3}$
is a semi-direct product of \mathbb{Q}_{8} and \mathbb{C}_{3}. Up to an isomorphism, K is uniquely determined by the group homomorphism

$$
\begin{gathered}
\varphi_{K}: H_{3} \longrightarrow \operatorname{Aut}\left(H_{8}\right) \\
\varphi_{K}\left(g_{3}^{j}\right)\left(\pm g_{1}^{k} g_{2}^{l}\right)=g_{3}^{j}\left(\pm g_{1}^{k} g_{2}^{l}\right) g_{3}^{-j} \quad \text { for } \quad \forall \pm g_{1}^{k} g_{2}^{l} \in H_{8}, \quad 0 \leq k, l \leq 1
\end{gathered}
$$

Since $H_{3}=\left\langle g_{3}\right\rangle \simeq \mathbb{C}_{3}$ is cyclic, φ_{K} is uniquely determined by $\varphi_{K}\left(g_{3}\right) \in \operatorname{Aut}\left(H_{8}\right)$. On the other hand, H_{8} is generated by g_{1}, g_{2}, so that suffices to specify $\varphi_{K}\left(g_{3}\right)\left(g_{j}\right)=$ $g_{3} g_{j} g_{3}^{-1} \in H_{8}$ for $1 \leq j \leq 2$, in order to determine φ_{K}. If the cyclic group $\left\langle g_{1}\right\rangle \simeq \mathbb{C}_{4}$ is normalized by g_{3} then $g_{3} g_{1} g_{3}^{-1} \in\left\{ \pm g_{1}\right\}$, as an element of order 4 . In the case of $g_{3} g_{1} g_{3}^{-1}=g_{1}$, the element $g_{1} \in K$ of order 4 commutes with the element $g_{3} \in K$ of order 3 and their product $g_{1} g_{3} \in K$ is of order 12 . The lack of $g \in S L(2, R)$ of order 12 requires $g_{3} g_{1} g_{3}^{-1}=-g_{1}$. Now,

$$
g_{3}^{2} g_{1} g_{3}^{-2}=g_{3}\left(g_{3} g_{1} g_{3}^{-1}\right) g_{3}^{-1}=g_{3}\left(-g_{1}\right) g_{3}^{-1}=g_{1}
$$

is equivalent to $g_{3}^{2} g_{1}=g_{1} g_{3}^{2}$ and the product $g_{1} g_{3}^{2} \in K$ of $g_{1} \in K$ of order 4 with $g_{3}^{2} \in K$ of order 3 is an element of order 12. The absurd justifies that neither of the cyclic subgroups $\left\langle g_{1}\right\rangle \simeq\left\langle g_{2}\right\rangle \simeq\left\langle g_{1} g_{2}\right\rangle \simeq \mathbb{C}_{4}$ of order 4 of H_{8} is normalized by g_{3}. Thus, an arbitrary $g_{1} \in H_{8} \simeq \mathbb{Q}_{8}$ of order 4 is completed by $g_{2}:=g_{3} g_{1} g_{3}^{-1} \in H_{8} \backslash\left\langle g_{1}\right\rangle$ of order 4 to a generating set of $H_{8} \simeq \mathbb{Q}_{8}$. Then

$$
g_{3}^{2} g_{1} g_{3}^{-2}=g_{3}\left(g_{3} g_{1} g_{3}^{-1}\right) g_{3}^{-1}=g_{3} g_{2} g_{3}^{-1} \in H_{8} \backslash\left(\left\langle g_{1}\right\rangle \cup\left\langle g_{2}\right\rangle\right)=\left\{g_{1} g_{2}, g_{2} g_{1}\right\}
$$

specifies that either $g_{3} g_{2} g_{3}^{-1}=g_{1} g_{2}$ or $g_{3} g_{2} g_{3}^{-1}=g_{2} g_{1}$. If $g_{3} g_{2} g_{3}^{-1}=g_{2} g_{1}$, we replace the generator g_{3} of K by $h_{3}=g_{3}^{2}$ and note that $h_{3} g_{1} h_{3}^{-1}=g_{2} g_{1}$. Now, $h_{1}:=g_{1}$ and $h_{2}:=g_{2} g_{1}$ generate $H_{8}=\left\langle h_{1}, h_{2} \quad \mid \quad h_{1}^{2}=h_{2}^{2}=-I_{2}, \quad h_{2} h_{1}=-h_{1} h_{2}\right\rangle$ and satisfy $h_{3} h_{1} h_{3}^{-1}=h_{2}$,

$$
\begin{gathered}
h_{3} h_{2} h_{3}^{-1}=g_{3}\left[\left(g_{3} g_{2} g_{3}^{-1}\right)\left(g_{3} g_{1} g_{3}^{-1}\right)\right] g_{3}^{-1}=g_{3}\left(g_{2} g_{1} g_{2}\right) g_{3}^{-1}=g_{3} g_{1} g_{3}^{-1}= \\
=g_{2}=-\left(g_{2} g_{1}\right) g_{1}=-h_{2} h_{1}=h_{1} h_{2}
\end{gathered}
$$

Thus, the group
$K^{\prime}=\left\langle g_{1}, g_{2}, g_{3} \mid g_{1}^{2}=g_{2}^{2}=-I_{2}, g_{2} g_{1}=-g_{1} g_{2}, g_{3}^{3}=I_{2}, g_{3} g_{1} g_{3}^{-1}=g_{2}, g_{3} g_{2} g_{3}^{-1}=g_{2} g_{1}\right\rangle$
is isomorphic ro the group

$$
K=\left\langle g_{1}, g_{2}, g_{3} \mid g_{1}^{2}=g_{2}^{2}=-I_{2}, g_{2} g_{1}=-g_{1} g_{2}, g_{3}^{3}=I_{2}, g_{3} g_{1} g_{3}^{-1}=g_{2}, g_{3} g_{2} g_{3}^{-1}=g_{1} g_{2}\right\rangle
$$

We shall realize $S L\left(2, \mathbb{F}_{3}\right)$ as a subgroup $K_{8}^{o}=\left\langle D_{1}, D_{2}, D_{3}\right\rangle$ of $S L(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3})$. The existence of subgroups $S L\left(2, \mathbb{F}_{3}\right) \simeq K_{8}<S L(2, R)$ is an open problem. Towards the construction of K_{8}^{o}, let us choose

$$
D_{j}=\left(\begin{array}{cc}
a_{j} & b_{j} \\
c_{j} & -a_{j}
\end{array}\right) \quad \text { with } \quad a_{j}^{2}+b_{j} c_{j}=-1 \quad \text { for } \quad 1 \leq j \leq 2 \quad \text { and }
$$

$$
D_{3}=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & e^{-\frac{2 \pi i}{3}}
\end{array}\right)
$$

from $S L(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3}))$. After computing

$$
D_{3} D_{j} D_{3}^{-1}=\left(\begin{array}{cc}
a_{j} & e^{-\frac{2 \pi i}{3}} b_{j} \\
e^{\frac{2 \pi i}{3}} c_{j} & -a_{j}
\end{array}\right) \text { for } 1 \leq j \leq 2
$$

observe that $D_{3} D_{1} D_{3}^{-1}=D_{2}$ reduces to

$$
\left\lvert\, \begin{gathered}
a_{2}=a_{1} \\
b_{2}=e^{-\frac{2 \pi i}{3}} b_{1} \\
c_{2}=e^{\frac{2 \pi i}{3}} c_{1}
\end{gathered}\right.
$$

The relation $D_{2} D_{1}=-D_{1} D_{2}$ is equivalent to $2 a_{1} a_{2}+b_{1} c_{2}+b_{2} c_{1}=0$ and implies that $2 a_{1}^{2}=b_{1} c_{1}$. Now,

$$
D_{3} D_{2} D_{3}^{-1}=\left(\begin{array}{cc}
a_{1} & e^{\frac{2 \pi i}{3}} b_{1} \\
e^{-\frac{2 \pi i}{3}} c_{1} & -a_{1}
\end{array}\right)=\left(\begin{array}{cc}
\sqrt{-3} a_{1}^{2} & \sqrt{-3} e^{\frac{2 \pi i}{3}} a_{1} b_{1} \\
\sqrt{-3} e^{-\frac{2 \pi i}{3}} a_{1} c_{1} & -\sqrt{-3} a_{1}^{2}
\end{array}\right)=D_{1} D_{2}
$$

is tantamount to

$$
\left\lvert\, \begin{aligned}
& a_{1}\left(1-\sqrt{-3} a_{1}\right)=0 \\
& b_{1}\left(1-\sqrt{-3} a_{1}\right)=0 \\
& c_{1}\left(1-\sqrt{-3} a_{1}\right)=0
\end{aligned}\right.
$$

and specifies that $a_{1}=\frac{\sqrt{-3}}{3}$. Namely, the assumption $a_{1} \neq-\frac{\sqrt{-3}}{3}$ forces $a_{1}=b_{1}=$ $c_{1}=0$, whereas $\operatorname{det}\left(D_{1}\right)=0$, contrary to the choice of $D_{1} \in S L(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3}))$. As a result, $b_{1} \neq 0, c_{1}=-\frac{2}{3 b_{1}}$ and

$$
D_{1}=\left(\begin{array}{cc}
-\frac{\sqrt{-3}}{3} & b_{1} \\
-\frac{2}{3 b_{1}} & \frac{\sqrt{-3}}{3}
\end{array}\right), \quad D_{2}=\left(\begin{array}{cc}
-\frac{\sqrt{-3}}{3} & e^{-\frac{2 \pi i}{3}} b_{1} \\
e^{\frac{2 \pi i}{3}} c_{1} & \frac{\sqrt{-3}}{3}
\end{array}\right), \quad D_{3}=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & e^{-\frac{2 \pi i}{3}}
\end{array}\right)
$$

generate a subgroup $S L\left(2, \mathbb{F}_{3}\right) \simeq K_{8}^{o}<S L(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3}))$.

Corollary 25. If the finite subgroup K of $S L(2, R)$ is not isomorphic to the dicyclic group

$$
\begin{gathered}
K_{7}=\left\langle g_{1}, g_{4} \mid g_{1}^{2}=g_{4}^{3}=-I_{2}, \quad g_{4} g_{1} g_{4}=g_{1}\right\rangle= \\
=\left\langle g_{1}, g_{3}=-g_{4} \mid g_{1}^{2}=-I_{2}, \quad g_{3}^{3}=I_{2}, \quad g_{3} g_{1} g_{3}^{-1}=g_{3} g_{1}\right\rangle \simeq \mathbb{Q}_{12}
\end{gathered}
$$

of order 12 then K is isomorphic to a subgroup of the special linear group

$$
\begin{aligned}
K_{8}=\left\langle g_{1}, g_{2}, g_{3}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, g_{3}^{3} & \left.=I_{2}, g_{2} g_{1}=-g_{1} g_{2}, g_{3} g_{1} g_{3}^{-1}=g_{2}, g_{3} g_{2} g_{3}^{-1}=g_{1} g_{2}\right\rangle \\
& \simeq S L\left(2, \mathbb{F}_{3}\right)
\end{aligned}
$$

over the field \mathbb{F}_{3} with three elements.

Proof. According to Proposition 24, any finite subgroup $K<S L(2, R)$ is isomorphic to some of the groups K_{1}, \ldots, K_{8}. Thus, it suffices to establish that any $K_{j}, 1 \leq j \leq 6$ is isomorphic to a subgroup of K_{8}. Note that $K_{1}=\left\{I_{2}\right\} \subset K_{8}$ and $K_{2}=\left\langle-I_{2}\right\rangle \subset K_{8}$ are subgroups of K_{8}. The generator g_{1} of K_{8} is of order 4 , so that any subgroup $K_{3} \simeq \mathbb{C}_{4}$ of $S L(2, R)$ is isomorphic to the subgroup $\left\langle g_{1}\right\rangle$ of K_{8}. In the proof of Proposition 24 we have seen that K_{8} has a normal Sylow 2-subgroup

$$
H_{8}=\left\langle g_{1}, g_{2} \mid g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}\right\rangle \simeq \mathbb{Q}_{8}
$$

isomorphic to the quaternion group $\mathbb{Q}_{8} \simeq K_{4}$ of order 8. The generator g_{3} of K_{8} provides a subgroup $\left\langle g_{3}\right\rangle \simeq \mathbb{C}_{3} \simeq K_{5}$ of K_{8}. The product $\left(-I_{2}\right) g_{3}$ of the commuting elements $-I_{2} \in K_{8}$ or order 2 and $g_{3} \in K_{8}$ of order 3 is an element $-g_{3} \in K_{8}$ of order 6 , so that $K_{6} \simeq \mathbb{C}_{6}$ is isomorphic to the subgroup $\left\langle-g_{3}\right\rangle$ of K_{8}.

Towards the classification of the finite subgroups of $G L(2, R)$, we proceed with the following:

Lemma 26. Let H be a finite subgroup of $G L(2, R)$. Then
(i) $\operatorname{det}(H)$ is a cyclic subgroup of R^{*};
(ii) H is a product $H=[H \cap S L(2, R)]\left\langle h_{o}\right\rangle$ of its normal subgroup $H \cap S L(2, R)$ and any $\mathbb{C}_{r} \simeq\left\langle h_{o}\right\rangle \subseteq H$ with $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle \simeq \mathbb{C}_{s}$;
(iii) the order s of $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle$ divides the order r of $h_{o} \in H$ and

$$
[H \cap S L(2, R)] \cap\left\langle h_{o}\right\rangle=\left\langle h_{o}^{s}\right\rangle \simeq \mathbb{C}_{\frac{r}{s}}
$$

(iv) H is of order $s|H \cap S L(2, R)|$;
(v) $s=r$ if and only if $H=[H \cap S L(2, R)] \lambda\left\langle h_{o}\right\rangle$ is a semi-direct product.

Proof. (i) The image $\operatorname{det}(H)$ of the group homomorphism det : $H \rightarrow R^{*}$ is a subgroup of R^{*}. As far as the units group R^{*} of the endomorphism ring R of E is cyclic, its subgroup $\operatorname{det}(H)$ is cyclic, as well.
(ii) If $\operatorname{det}\left(h_{o}\right)$ is a generator of the cyclic subgroup $\operatorname{det}(H)<R^{*}$ then one can represent $H=[H \cap S L(2, R)]\left\langle h_{o}\right\rangle$. The inclusion $[H \cap S L(2, R)]\left\langle h_{o}\right\rangle \subseteq H$ is clear by the choice of $h_{o} \in H$. For the opposite inclusion, note that any $h \in H$ with $\operatorname{det}(h)=\operatorname{det}\left(h_{o}\right)^{m}$ for some $m \in \mathbb{Z}$ is associated with $h h_{o}^{-m} \in H \cap S L(2, R)$, so that $h=\left(h h_{o}^{-m}\right) h_{o}^{m} \in[H \cap S L(2, R)]\left\langle h_{o}\right\rangle$ and $H \subseteq[H \cap S L(2, R)]\langle$.
(iii) If $h_{o} \in H$ is of order r then $h_{o}^{r}=I_{2}$ and $\operatorname{det}\left(h_{o}\right)^{r}=1$. Therefore the order s of $\operatorname{det}\left(h_{o}\right) \in R^{*}$ divides s. Note that $h_{o}^{s} \in[H \cap S L(2, R)] \cap\left\langle h_{o}\right\rangle$, as far as $\operatorname{det}\left(h_{o}^{s}\right)=$ $\operatorname{det}\left(h_{o}\right)^{s}=1$. Therefore $\left\langle h_{o}^{s}\right\rangle$ is a subgroup of $[H \cap S L(2, R)] \cap\left\langle h_{o}\right\rangle$. Conversely, any $h_{o}^{x} \in[H \cap S L(2, R)] \cap\left\langle h_{o}\right\rangle$ has $\operatorname{det}\left(h_{o}^{x}\right)=\operatorname{det}\left(h_{o}\right)^{x}=1$, so that s divides x and $h_{o}^{x} \in\left\langle h_{o}^{s}\right\rangle$. That justifies $[H \cap S L(2, R)] \cap\left\langle h_{o}\right\rangle \subseteq\left\langle h_{o}^{s}\right\rangle$ and $[H \cap S L(2, R)] \cap\left\langle h_{o}\right\rangle=\left\langle h_{o}^{s}\right\rangle$. The order of $\left\langle h_{o}^{s}\right\rangle$ and h_{o}^{s} is $\frac{r}{s}$, since s divides r.
(iv) It suffices to show that

$$
H=\cup_{i=0}^{s-1}[H \cap S L(2, R)] h_{o}^{j}
$$

is the coset decomposition of H with respect to its normal subgroup $H \cap S L(2, R)$, in order to conclude that the order $|H|$ of H is s times the order $|H \cap S L(2, R)|$ of $H \cap S L(2, R)$. The inclusion $H \supseteq \cup_{i=0}^{s-1}[H \cap S L(2, R)] h_{o}^{j}$ is clear by the choice of $h_{o} \in H$. According to $H=[H \cap S L(2, R)]\left\langle h_{o}\right\rangle$, any element of H is of the form $h=g h_{o}^{m}$ for some $g \in H \cap S L(2, R)$ and $m \in \mathbb{Z}$. If $m=s q+r_{o}$ is the division of m by s with residue $0 \leq r_{o} \leq s-1$ then $h=\left[g\left(h_{o}^{s}\right)^{q}\right] h_{o}^{r_{o}} \in[H \cap S L(2, R)] h_{o}^{r_{o}}$, due to $h_{o}^{s} \in$ $H \cap S L(2, R)$. Therefore $H \subseteq \cup_{j=0}^{s-1}[H \cap S L(2, R)] h_{o}^{j}$ and $H=\cup_{j=0}^{s-1}[H \cap S L(2, R)] h_{o}^{j}$. The cosets $[H \cap S L(2, R)] h_{o}^{i}$ and $[H \cap S L(2, R)] h_{o}^{j}$ are mutually disjoint for any $0 \leq$ $i<j \leq s-1$, because the assumption $g_{1} h_{i}=g_{2} h_{o}^{j}$ for $g_{1}, g_{2} \in H \cap S L(2, R)$ implies that $h_{o}^{j-i}=g_{2}^{-1} g_{1} \in[H \cap S L(2, R)] \cap\left\langle h_{o}\right\rangle=\left\langle h_{o}^{s}\right\rangle$. As a result, s divides $0<j-i<s$, which is an absurd.
(v) According to (iii), the order s of $\operatorname{det}\left(h_{o}\right)$ divides the order r of h_{o}. On the other hand, $h_{o}^{s}=I_{2}$ exactly when r divides s, so that $h_{o}^{s}=I_{2}$ is equivalent to $r=s$. Thus, $r=s$ exactly when

$$
[H \cap S L(2, R)] \cap\left\langle h_{o}\right\rangle=\left\{I_{2}\right\}
$$

As far as the product of the normal subgroup $H \cap S L(2, R)$ and the subgroup $\left\langle h_{o}\right\rangle$ is the entire H, one has a semi-direct product $H=[H \cap S L(2, R)] \rtimes\left\langle h_{o}\right\rangle$ if and only if $r=s$.

Lemma 27. Let $H=[H \cap S L(2, R)]\left\langle h_{o}\right\rangle$ be a finite subgroup of $G L(2, R)$ for $h_{o} \in H$ of order r with $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle \simeq \mathbb{C}_{s}$ and $H \cap S L(2, R)$ be generated by $g_{0}=$ $h_{o}^{s}, g_{1}, \ldots, g_{t}$. Then $H \cap S L(2, R), r$ and

$$
h_{o} g_{i} h_{o}^{-1} \in H \cap S L(2, R) \quad \text { for all } \quad 1 \leq i \leq t
$$

determine H up to an isomorphism.
Proof. By the proof of Lemma 26 (iv), H has a coset decomposition

$$
H=\cup_{j=0}^{s-1}[H \cap S L(2, R)] h_{o}^{j}
$$

with respect to its normal subgroup $H \cap S L(2, R)$. Therefore, the group structures of $H \cap S L(2, R)$ and $\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{r}$, together with the multiplication rule for $h_{1} h_{o}^{i}, h_{2} h_{o}^{j} \in H$ with $h_{1}, h_{2} \in H \cap S L(2, R)$ and $0 \leq i, j \leq s-1$ determine the group H up to an isomorphism. Let us represent $h_{1}=g_{i_{1}}^{a_{1}} g_{i_{2}}^{a_{2}} \ldots g_{i_{k}}^{a_{k}}$ and $h_{2}=g_{j_{1}}^{b_{1}} g_{j_{2}}^{b_{2}} \ldots g_{j_{l}}^{b_{l}}$ as words in the alphabet $g_{0}=h_{o}^{s}, g_{1}, \ldots, g_{t}$ with some integral exponents $a_{p}, b_{q} \in \mathbb{Z}$. (The group H is finite, so that any g_{i} is of finite order r_{i} and one can reduce the exponent of g_{i} to a residue modulo r_{i}.) In order to determine the product $\left(h_{1} h_{o}^{i}\right)\left(h_{2} h_{o}^{j}\right)$ as an element
of $H=\cup_{j=0}^{s-1}\left\langle g_{0}, g_{1}, \ldots, g_{t}\right\rangle h_{o}^{j}$, it suffices to specify $g_{i}^{\prime} \in H \cap S L(2, R)=\left\langle g_{0}, g_{1}, \ldots, g_{t}\right\rangle$ with $h_{o} g_{i}=g_{i}^{\prime} h_{o}$ for all $0 \leq i \leq t$. That allows to move gradually h_{o}^{i} to the end of $\left(h_{1} h_{o} i\right)\left(h_{2} h_{o}^{j}\right)$, producing $h_{1} h_{2}^{\prime} h_{o}^{i+j} \in[H \cap S L(2, R)] h_{o}^{(i+j)(\bmod s)}$ for an appropriate $h_{2}^{\prime} \in$ $H \cap S L(2, R)$. In other words, the group structures of $H \cap S L(2, R)$ and $\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{r}$, together with the conjugates $g_{i}^{\prime}=h_{o} g_{i} h_{o}^{-1}$ of g_{i} determine the group multiplication in H. Note that $h_{o} g_{0} h_{o}^{-1}=g_{0}$, since $g_{0}=h_{o}^{s}$ commutes with h_{o}. The conjugates $g_{i}^{\prime}=h_{o} g_{i} h_{o}^{-1}$ with $1 \leq i \leq t$ belong to the normal subgroup $H \cap S L(2, R) \ni g_{i}$ of H and have the same orders r_{i} as g_{i}.

Any finite subgroup $H=[H \cap S L(2, R)]\left\langle h_{o}\right\rangle$ of $G L(2, R)$ with determinant $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle \simeq \mathbb{C}_{s}$ has a conjugate

$$
S^{-1} H S=\left\{S^{-1}[H \cap S L(2, R)] S\right\}\left\langle S^{-1} h_{o} S\right\rangle=\left[S^{-1} H S \cap S L(2, \mathbb{C})\right]\left\langle S^{-1} h_{o} S\right\rangle
$$

with a diagonal matrix $S^{-1} h_{o} S$. Mote precisely, if R is a subring of the integers ring \mathcal{O}_{-d} of an imaginary quadratic number field $\mathbb{Q}(\sqrt{-d})$ and $\lambda_{1}=\lambda_{1}\left(h_{o}\right), \lambda_{2}=\lambda_{2}\left(h_{o}\right)$ are the eigenvalues of h_{o}, then there exists a basis

$$
v_{1}=\binom{s_{11}}{s_{21}}, \quad v_{2}=\binom{s_{12}}{s_{22}} \quad \text { of } \quad \mathbb{C}^{2},
$$

consisting of eigenvectors v_{j} of h_{o}, associated with the eigenvalues $\lambda_{j}=\lambda_{j}\left(h_{o}\right)$. This is due to the finite order of h_{o}, because the Jordan block

$$
J=\left(\begin{array}{cc}
\lambda_{1} & 1 \\
0 & \lambda_{1}
\end{array}\right) \quad \text { with } \quad \lambda_{1} \in \mathbb{C}^{*}
$$

is of infinite order in $G L(2, \mathbb{C})$. The matrix $S=\left(s_{i j}\right)_{i, j=1}^{2}$ with columns v_{1}, v_{2} is nonsingular and its entries belong to the extension $\mathbb{Q}\left(\sqrt{-d}, \lambda\left(h_{o}\right)\right)=\mathbb{Q}\left(\sqrt{-d}, \lambda_{2}\left(h_{o}\right)\right)$ of $\mathbb{Q}(\sqrt{-d})$ by some of the eigenvalues of h_{o}. Making use of the classification of $h_{o} \in G L(2, R)$ of finite order r and $\operatorname{det}\left(h_{o}\right) \in R^{*}$ of order s, done in section 2 , one determines explicitly the field $F_{-d}^{(s, r)}=\mathbb{Q}\left(\sqrt{-d}, \lambda_{1}\left(h_{o}\right)\right)$, obtained from $\mathbb{Q}(\sqrt{-d})$ by adjoining an eigenvalue $\lambda_{1}\left(h_{o}\right)$ of $h_{o} \in H$. The group

$$
S^{-1} H S=\left[S^{-1} H S \cap S L(2, \mathbb{C})\right]\left\langle S^{-1} h_{o} S\right\rangle
$$

has a diagonal generator $D_{o}=S^{-1} h_{o} S$ and the conjugates

$$
\left(S^{-1} h_{o} S\right)\left(S^{-1} g_{i} S\right)\left(S^{-1} h_{o} S\right)^{-1}=S^{-1}\left(h_{o} g_{i} h_{o}^{-1}\right) S
$$

are easier to be computed.
The next lemma collects the fields $F_{-d}^{(s, r)}$.

Lemma 28. Let $H=[H \cap S L(2, R)]\left\langle h_{o}\right\rangle$ be a finite subgroup of $G L(2, R)$ with $h_{o} \in H$ of order $r, \operatorname{det}\left(h_{o}\right) \in R^{*}$ of order s and $F_{-d}^{(s, r)}$ be the number field

$$
F_{-d}^{(s, r)}= \begin{cases}\mathbb{Q}(\sqrt{-d}) & \text { for } s=r=2, \\ \mathbb{Q}(i) & \text { for } s \in\{2,4\}, r=4, \\ \mathbb{Q}(\sqrt{-3}) & \text { for }(s, r)=(2,6) \text { or } s \in\{3,6\}, \\ \mathbb{Q}(\sqrt{2}, i) & \text { for } s \in\{2,4\}, r=8 \\ \mathbb{Q}(\sqrt{3}, i) & \text { for } s=2, r=12\end{cases}
$$

Then there exists a matrix $S \in G L\left(2, F_{-d}^{(s, r)}\right)$ such that

$$
D_{o}=S^{-1} h_{o} S=\left(\begin{array}{cc}
\lambda_{1}\left(h_{o}\right) & 0 \\
0 & \lambda_{2}\left(h_{o}\right)
\end{array}\right)
$$

is diagonal and

$$
H^{o}=S^{-1} H S=\left[S^{-1} H S \cap S L\left(2, F_{-d}^{(s, r)}\right)\right]\left\langle D_{o}\right\rangle
$$

is a subgroup of $G L\left(2, F_{-d}^{(s, r)}\right)$, isomorphic to H.
Summarizing the results of section 2, one obtains also the following
Corollary 29. If $h_{o} \in G L(2, R) \backslash S L(2, R)$ is of order r with $\operatorname{det}\left(h_{o}\right) \in R^{*}$ of order s and eigenvalues $\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)$, then

$$
\frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)} \in\left\{ \pm 1, \quad \pm i, \quad e^{ \pm \frac{2 \pi i}{3}}, \quad e^{ \pm \frac{\pi i}{3}}\right\}
$$

More precisely,

$$
\text { (i) } \frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}=1 \quad \text { exactly when } \quad h_{o} \in\left\{ \pm i I_{2}, \quad e^{ \pm \frac{2 \pi i}{3}} I_{2}, \quad e^{ \pm \frac{\pi i}{3}} I_{2}\right\}
$$

is a scalar matrix;

$$
\text { (ii) } \frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}=-1 \quad \text { for }
$$

(a) $\quad \lambda_{1}\left(h_{o}\right)=1, \quad \lambda_{2}\left(h_{o}\right)=-1 \quad$ and an arbitrary $\quad R=R_{-d, f}$;
(b) $\quad \lambda_{1}\left(h_{o}\right)=e^{ \pm \frac{3 \pi i}{4}}, \quad \lambda_{2}\left(h_{o}\right)=e^{\mp \frac{\pi i}{4}}, \quad R=\mathbb{Z}[i], \quad s=4 ;$
(c) $\lambda_{1}\left(h_{o}\right)=e^{ \pm \frac{5 \pi i}{6}}, \quad \lambda_{2}\left(h_{o}\right)=e^{\mp \frac{\pi i}{6}}, \quad R=\mathcal{O}_{-3}, \quad s=3$
(d) $\quad \lambda_{1}\left(h_{o}\right)=e^{ \pm \frac{2 \pi i}{3}}, \quad \lambda_{2}\left(h_{o}\right)=e^{\mp \frac{\pi i}{3}}, R=\mathcal{O}_{-3}, \quad s=6$.

$$
\text { (iii) } \frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}= \pm i \quad \text { for }
$$

(a) $\quad \lambda_{1}\left(h_{o}\right)=e^{ \pm \frac{3 \pi i}{4}}, \quad \lambda_{2}\left(h_{o}\right)=e^{ \pm \frac{\pi i}{4}}, \quad R=\mathcal{O}_{-2}, \quad s=2 ;$

$$
\begin{equation*}
\left\{\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)\right\}=\{ \pm i, \pm 1\} \quad \text { or }\{ \pm i, \mp 1\} \quad \text { with } \quad R=\mathbb{Z}[i], \quad s=4 \tag{b}
\end{equation*}
$$

$$
\text { (iv) } \frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}=e^{ \pm \frac{2 \pi i}{3}} \quad \text { for }
$$

(a) $\quad \lambda_{1}\left(h_{o}\right)=e^{ \pm \frac{5 \pi i}{6}}, \quad \lambda_{2}\left(h_{o}\right)=e^{ \pm \frac{\pi i}{6}}, \quad R=\mathbb{Z}[i], \quad s=2$;
(b) $\quad \lambda_{1}\left(h_{o}\right)=e^{ \pm \frac{2 \pi i}{3}}, \quad \lambda_{2}\left(h_{o}\right)=1, \quad R=\mathcal{O}_{-3}, \quad s=3 ;$
(c) $\quad \lambda_{1}\left(h_{o}\right)=e^{ \pm \frac{\pi i}{3}}, \quad \lambda_{2}\left(h_{o}\right)=-1, \quad R=\mathcal{O}_{-3}, \quad s=3$.

$$
\text { (v) } \frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}=e^{ \pm \frac{\pi i}{3}} \quad \text { for }
$$

(a) $\quad \lambda_{1}\left(h_{o}\right)=e^{ \pm \frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=e^{ \pm \frac{\pi i}{3}}, R=\mathcal{O}_{-3}, \quad s=2 ;$
(b) $\lambda_{1}\left(h_{o}\right)=\varepsilon e^{\eta \frac{\pi i}{3}}, \quad \lambda_{2}\left(h_{o}\right)=\varepsilon, \quad R=\mathcal{O}_{-3}, \quad s=6, \quad \varepsilon, \eta \in\{ \pm 1\}$.

Proposition 30. Let H be a finite subgroup of $G L(2, R)$,

$$
H \cap S L(2, R)=\left\{I_{2}\right\}
$$

and $h_{o} \in H$ be an element of order r with $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle \simeq \mathbb{C}_{s}$ and eigenvalues $\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)$. Then $r=s$ and H is isomorphic to $H_{C 1}(j) \simeq \mathbb{C}_{s_{j}}$ for some $1 \leq j \leq 4$, where

$$
\begin{gathered}
H_{C 1}(1)=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{2} \quad \text { with } \quad \lambda_{1}\left(h_{o}\right)=1, \quad \lambda_{2}\left(h_{o}\right)=-1, \\
H_{C 1}(2)=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{3} \quad \text { with } R=\mathcal{O}_{-3}, \quad h_{0}=e^{-\frac{2 \pi i}{3}} I_{2} \quad \text { or } \lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, \quad \lambda_{2}\left(h_{o}\right)=1, \\
H_{C 1}(3)=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{4} \quad \text { with } \quad R=\mathbb{Z}[i], \quad\left\{\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)\right\}=\{i, 1\} \quad \text { or } \quad\{-i,-1\}, \\
H_{C 1}(4)=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{6} \quad \text { with } R=\mathcal{O}_{-3}, \\
\left\{\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)\right\}=\left\{e^{\frac{\pi i}{3}}, 1\right\}, \quad\left\{e^{-\frac{2 \pi i}{3}},-1\right\} \quad \text { or }\left\{e^{\frac{2 \pi i}{3}}, e^{-\frac{\pi i}{3}}\right\} .
\end{gathered}
$$

Proof. By Lemma 26 (ii), the group $H=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{r}$ is cyclic and generated by any $h_{o} \in H$, whose determinant $\operatorname{det}\left(h_{o}\right)$ generates $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle$. Moreover, Lemma 26 (iii) specifies that $\left\{I_{2}\right\}=[H \cap S L(2, R)] \cap\left\langle h_{o}\right\rangle=\left\langle h_{o}^{s}\right\rangle$ or the order r of h_{o} coincides with the order s of $\operatorname{det}\left(h_{o}\right)$. For $s \in\{3,4,6\}$ one can assume that $\operatorname{det}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}$, since the generators of $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle \simeq \mathbb{C}_{s}$ are $e^{\frac{2 \pi i}{s}}$ and $e^{-\frac{2 \pi i}{s}}$. Making use of the classification of the elements $h_{o} \in G L(2, R)$ of order s with $\operatorname{det}\left(h_{o}\right)=e^{\frac{2 \pi i}{s}}$, done in section 2 , one concludes that $H \simeq H_{C 1}(j)$ for some $1 \leq j \leq 4$.

Proposition 31. Let H be a finite subgroup of $G L(2, R)$,

$$
H \cap S L(2, R)=\left\langle-I_{2}\right\rangle \simeq \mathbb{C}_{2}
$$

and $h_{o} \in H$ be an element of order r with $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle \simeq \mathbb{C}_{s}$ and eigenvalues $\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)$. Then H is isomorphic to $H_{C 2}(i)$ for some $1 \leq i \leq 6$, where

$$
\begin{gather*}
H_{C 2}(1)=\left\langle i I_{2}\right\rangle \simeq \mathbb{C}_{4} \quad \text { with } \quad R=\mathbb{Z}[i], \\
H_{C_{2}}(2)=\left\langle-I_{2}\right\rangle \times\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{2} \times \mathbb{C}_{2} \quad \text { with } \quad \lambda_{1}\left(h_{o}\right)=1, \quad \lambda_{2}\left(h_{o}\right)=-1, \\
H_{C 2}(3)=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{6} \quad \text { with } \quad R=\mathcal{O}_{-3}, \quad h_{o}=e^{\frac{\pi i}{3}} I_{2} \quad \text { or } \quad \lambda_{1}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}, \quad \lambda_{2}\left(h_{o}\right)=-1, \\
H_{C 2}(4)=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{8} \quad \text { with } \quad R=\mathbb{Z}[i], \quad \lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}, \quad \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{4}}, \\
H_{C 2}(5)=\left\langle-I_{2}\right\rangle \times\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{2} \times \mathbb{C}_{4} \quad \text { with } \quad R=\mathbb{Z}[i], \quad \lambda_{1}\left(h_{o}\right)=i, \quad \lambda_{2}\left(h_{o}\right)=1, \\
H_{C 2}(6)=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{8} \quad \text { with } \quad R=\mathbb{Z}[i], \quad \lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}, \quad \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{4}}, \\
H_{C 2}(7)=\left\langle-I_{2}\right\rangle \times\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{2} \times \mathbb{C}_{6} \quad \text { with } \quad R=\mathcal{O}_{-3}, \\
\left\{\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)\right\}=\left\{e^{\frac{2 \pi i}{3}}, e^{-\frac{\pi i}{3}}\right\}, \quad\left\{e^{\frac{\pi i}{3}}, 1\right\} \quad \text { or } \quad\left\{e^{-\frac{2 \pi i}{3}},-1\right\} . \tag{13}
\end{gather*}
$$

Proof. By Lemma 26 (iii), one has $h_{o}^{s} \in H \cap S L(2, R)=\left\langle-I_{2}\right\rangle$ for some $s \in\{2,3,4,6\}$. If $h_{o}^{s}=I_{2}$ then $s=r$ and

$$
H=\left\langle-I_{2}\right\rangle \times\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{2} \times \mathbb{C}_{s}
$$

is a direct product, as far as the scalar matrix $-I_{2}$ commutes with h_{o}. When h_{o} is of odd order $s=3$, its opposite matrix $-h_{o} \in H$ is of order 6 and $H=\left\langle-h_{o}\right\rangle \simeq$ \mathbb{C}_{6}. Without loss of generality, $h_{1}:=-h_{o}$ has $\operatorname{det}\left(h_{1}\right)=e^{\frac{2 \pi i}{3}}$ and Proposition 21 specifies that either $h_{1}=e^{\frac{\pi i}{3}} I_{2}$ or $\lambda_{1}\left(h_{1}\right)=e^{-\frac{\pi i}{3}}, \lambda_{2}\left(h_{o}\right)=-1$. For $s=2$ the group $H=\left\langle-I_{2}\right\rangle \times\left\langle h_{o}\right\rangle=H_{C 2}(2) \simeq \mathbb{C}_{2} \times \mathbb{C}_{2}$, where $h_{o} \in H$ has eigenvalues $\lambda_{1}\left(h_{o}\right)=1$, $\lambda_{2}\left(h_{o}\right)=-1$. The case $s=4$ occurs only for $R=\mathbb{Z}[i]$. Assuming $\operatorname{det}\left(h_{o}\right)=i$, one gets $\lambda_{1}\left(h_{o}\right)=\varepsilon i, \lambda_{2}\left(h_{o}\right)=\varepsilon$ for some $\varepsilon \in\{ \pm 1\}$ by Proposition 17. Since $-I_{2} \in H$, one can replace h_{o} by $-h_{o}$ and reduce to the case of $\varepsilon=1$. If $s=6$, then Proposition 19 provides (13).

In the case of $h_{o}^{s}=-I_{2}$, the intersection $\left\langle h_{o}\right\rangle S L(2, R)=\left\langle-I_{2}\right\rangle=H \cap S L(2, R)$ and the group

$$
H=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{2 s}
$$

is cyclic. More precisely, for $s=2$ Proposition 16 implies that $h_{o}= \pm i I_{2}$ and $H \simeq H_{C 2}(1)$. If $s=3$ and $\operatorname{det}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}$ then $H \simeq H_{C 2}(3)$ by Proposition 21. For $s=4$ and $\operatorname{det}\left(h_{o}\right)=i$ one has $H \simeq H_{C 2}(6)$, according to Proposition 17. Making use of Proposition 19, one observes that there are no $h_{o} \in G L(2, R)$ of order 12 with $\operatorname{det}\left(h_{o}\right)=e^{\frac{\pi i}{3}}$ and concludes the proof of the proposition.

Towards the description of the finite subgroups $H=[H \cap S L(2, R)]\left\langle h_{o}\right\rangle$ of $G L(2, R)$ with $H \cap S L(2, R) \simeq \mathbb{C}_{t}$ for some $t \in\{3,4,6\}$, one needs the following

Lemma 32. If $g \in G L(2, \mathbb{C})$ has different eigenvalues $\lambda_{1} \neq \lambda_{2}$ then any $h \in G L(2, \mathbb{C})$ with $h g \neq g h$ and $h^{2} g=g h^{2}$ has vanishing trace $\operatorname{tr}(h)=0$.

Proof. The trace is invariant under conjugation, so that

$$
g=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

can be assumed to be diagonal. If

$$
h=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G L(2, \mathbb{C}),
$$

then $h^{2} g=g h^{2}$ is equivalent to

$$
\left\lvert\, \begin{aligned}
& \left(\lambda_{1}-\lambda_{2}\right) b(a+d)=0 \\
& \left(\lambda_{1}-\lambda_{2}\right) c(a+d)=0
\end{aligned} .\right.
$$

Due to $\lambda_{1} \neq \lambda_{2}$, there follow $b(a+d)=0$ and $c(a+d)=0$. The assumption $\operatorname{tr}(h)=a+d \neq 0$ leads to $b=c=0$. As a result,

$$
h=\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right)
$$

is a diagonal matrix and commutes with g. The contradiction justifies that $\operatorname{tr}(h)=0$.

Lemma 33. Let $H=[H \cap S L(2, R)]\left\langle h_{o}\right\rangle$ be a finite subgroup of $G L(2, R)$ with

$$
\begin{gathered}
H \cap S L(2, R)=\langle g\rangle \simeq \mathbb{C}_{t} \quad \text { for some } \quad t \in\{3,4,6\} \quad \text { and } \\
\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle=\left\langle e^{\frac{2 \pi i}{s}}\right\rangle \simeq \mathbb{C}_{s}, \quad s>1
\end{gathered}
$$

for some $h_{o} \in H$ of order r. Then:

$$
\text { (i) } \frac{r}{s}= \begin{cases}1,2,3,4 \text { or } 6 & \text { for } s=2 \\ 1,2 \text { or } 4 & \text { for } s=3 \\ 1 \text { or } 2 & \text { for } s=4 \\ 1 & \text { for } s=6\end{cases}
$$

divides t;
(ii) $\frac{r}{s}=t$ if and only if $H=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{r}$ is cyclic and $H \cap S L(2, R)=\left\langle h_{o}^{s}\right\rangle$;
(iii) if $\frac{r}{s}<t$ then H is isomorphic to the non-cyclic abelian group

$$
H^{\prime}=\left\langle g, h_{o} \quad \mid \quad g^{t}=h_{o}^{r}=I_{2}, \quad h_{o} g=g h_{o}\right\rangle
$$

or to the non-abelian group

$$
H^{\prime \prime}=\left\langle g, h_{o} \mid \quad g^{t}=h_{o}^{r}=I_{2}, \quad h_{o} g h_{o}^{-1}=g^{-1}\right\rangle ;
$$

(iv) if $\frac{r}{s}<t$ and $H \simeq H^{\prime \prime}$ is non-abelian then h_{o} has eigenvalues $\lambda_{1}\left(h_{o}\right)=i e^{\frac{\pi i}{s}}$, $\lambda_{2}\left(h_{o}\right)=-i e^{\frac{\pi i}{s}}$ and

$$
\begin{gathered}
(r, s) \in\{(2,2), \quad(6,6)\} \quad \text { for } \quad t=3 \\
(r, s) \in\{(2,2), \quad(8,4), \quad(6,6)\} \quad \text { for } \quad t=4 \\
(r, s) \in\{(2,2), \quad(8,4), \quad(6,6)\} \quad \text { for } \quad t=6
\end{gathered}
$$

Proof. (i) Note that if $\operatorname{det}\left(h_{o}\right) \in R^{*}$ is of order s then $\operatorname{det}\left(h_{o}^{s}\right)=\operatorname{det}\left(h_{o}\right)^{s}=1$ and $h_{o}^{s} \in H \cap S L(2, R)=\langle g\rangle$ is an element of order $\frac{r}{s}$. Since $\langle g\rangle \simeq \mathbb{C}_{t}$ is of order t, the ratio $\frac{r}{s} \in \mathbb{N}$ divides t. Proposition 16 provides the list of $\frac{r}{s}=\frac{r}{2}$ for $s=2$. If $s=3$ then the values of $\frac{r}{s}=\frac{r}{3}$ are taken from Propositions 21 and 22. Propositions 17 and 18 supply the range of $\frac{r}{s}=\frac{r}{4}$ for $s=4$, while Propositions 19 and 20 give account for $\frac{r}{s}=\frac{r}{6}$ in the case of $s=6$.
(ii) Note that $h_{o}^{s} \in\langle g\rangle$ is of order $\frac{r}{s}=t$ exactly when $\langle g\rangle=\left\langle h_{o}^{s}\right\rangle$ and $H=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{r}$ is a cyclic group.
(iii) According to Lemma 27, the group $H=[H \cap S L(2, R)]\left\langle h_{o}\right\rangle=\langle g\rangle\left\langle h_{o}\right\rangle$ is completely determined by the order t of g, the order r of h_{o} and the conjugate $x=h_{o} g h_{o}^{-1} \in H \cap S L(2, R)=\langle g\rangle$ of g by h_{o}. The order t of g is invariant under conjugation, so that $x=g^{m}$ for some $m \in \mathbb{Z}_{t}^{*}$. The Euler function $\varphi(t)=2$ for $t \in\{3,4,6\}$ and $\mathbb{Z}_{t}^{*}=\{ \pm 1(\bmod t)\}$. Therefore $x=h_{o} g h_{o}^{-1}=g$ or $x=h_{o} g h_{o}^{-1}=g^{-1}$.
(iv) If $H \simeq H^{\prime \prime}$ is a non-abelian group then

$$
h_{o}^{2} g h_{o}^{-2}=h_{o}\left(h_{o} g h_{o}^{-1}\right) h_{o}^{-1}=h_{o} g^{-1} h_{o}^{-1}=\left(h_{o} g h_{o}^{-1}\right)^{-1}=\left(g^{-1}\right)^{-1}=g,
$$

so that g commutes with h_{o}^{2}, but does not commute with h_{o}. By Lemma 32 there follows $\operatorname{tr}\left(h_{o}\right)=0$. There exists a matrix $S \in G L\left(2, \mathbb{Q}\left(\sqrt{-d}, e^{\frac{2 \pi i}{t}}\right)\right)$, such that

$$
D=S^{-1} g S=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{t}} & 0 \\
0 & e^{-\frac{2 \pi i}{t}}
\end{array}\right) \in S L\left(2, \mathbb{Q}\left(\sqrt{-d}, e^{\frac{2 \pi i}{t}}\right)\right)
$$

is diagonal. Since the trace is invariant under conjugation,

$$
D_{o}:=S^{-1} h_{o} S=\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right) \in G L\left(2, \mathbb{Q}\left(\sqrt{-d}, e^{\frac{2 \pi i}{t}}\right)\right)
$$

The relation $h_{o} g=g^{-1} h_{o}$ implies the vanishing of a. As a result, the characteristic polynomial

$$
\mathcal{X}_{h_{o}}(\lambda)=\lambda^{2}+\operatorname{det}\left(h_{o}\right)=\lambda^{2}+e^{\frac{2 \pi i}{s}}=0
$$

has roots $\lambda_{1}\left(h_{o}\right)=i e^{\frac{\pi i}{s}}, \lambda_{2}\left(h_{o}\right)=-i e^{\frac{\pi i}{s}}$. More precisely, for $s=2$ one has $\lambda_{1}\left(h_{o}\right)=$ $-1, \lambda_{2}\left(h_{o}\right)=1$, so that h_{o} and D_{o} are of order $r=2$. The ratio $\frac{r}{s}=1$ divides any $t \in\{3,4,6\}$. If $s=3$ then $\lambda_{1}\left(h_{o}\right)=e^{\frac{5 \pi i}{6}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{6}}$, so that h_{o} and D_{o} are of order $r=12$. The quotient $\frac{r}{s}=4$ divides only $t=4$. Therefore $\frac{r}{s}=t$ and $H=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{12}$, according to (ii). In the case of $s=4$, one has $\lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}$, $\lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{4}}$, whereas h_{o} and D_{o} are of order $r=8$. The quotient $\frac{r}{s}=2$ divides only $t \in\{4,6\}$. Finally, for $s=6$ the automorphism h_{o} has eigenvalues $\lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}$, $\lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}$. Consequently, h_{o} and D_{o} are of order $r=6$ and $\frac{r}{s}=1$ divides all $t \in\{3,4,6\}$.

Lemma 34. (i) For arbitrary $d \in \mathbb{N}$ and $t \in\{3,4,6\}$ there is a dihedral subgroup

$$
\mathcal{D}_{t}=\left\langle g, h_{o} \mid g^{t}=h_{o}^{2}=I_{2}, \quad h_{o} g h_{o}^{-1}=g^{-1}\right\rangle<G L(2, \mathbb{Q}(\sqrt{-d}))
$$

of order $2 t$ with $\mathcal{D}_{t} \cap S L(2, \mathbb{Q}(\sqrt{-d}))=\langle g\rangle \simeq \mathbb{C}_{t}$, $\operatorname{det}\left(\mathcal{D}_{t}\right)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle=\langle-1\rangle \simeq \mathbb{C}_{2}$ and eigenvalues $\lambda_{1}\left(h_{o}\right)=-1, \lambda_{2}\left(h_{o}\right)=1$ of h_{o}.
(ii) For an arbitrary $t \in\{3,4,6\}$ there is a subgroup

$$
\mathcal{H}_{t}=\left\langle g, h_{o} \mid g^{t}=h_{o}^{6}=I_{2}, \quad h_{o} g h_{o}^{-1}=g^{-1}\right\rangle<G L(2, \mathbb{Q}(\sqrt{-3}))
$$

of order 6t with $\mathcal{H}_{t} \cap S L(2, \mathbb{Q}(\sqrt{-3}))=\langle g\rangle \simeq \mathbb{C}_{t}$, $\operatorname{det}\left(\mathcal{H}_{t}\right)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle=\left\langle e^{\frac{\pi i}{3}}\right\rangle \simeq \mathbb{C}_{6}$ and eigenvalues $\lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}$ of h_{o}.
(iii) For an arbitrary $t \in\{4,6\}$ there is a subgroup

$$
\mathcal{H}_{t}^{\prime}=\left\langle g, h_{o} \left\lvert\, g^{\frac{t}{2}}=h_{o}^{4}=-I_{2}\right., \quad h_{o} g h_{o}^{-1}=g^{-1}\right\rangle<G L(2, \mathbb{Q}(\sqrt{2}, i))
$$

of order $4 t$ with $\mathcal{H}_{t}^{\prime} \cap S L(2, \mathbb{Q}(\sqrt{2}, i))=\langle g\rangle \simeq \mathbb{C}_{t}$, $\operatorname{det}\left(\mathcal{H}_{t}^{\prime}\right)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle=\langle i\rangle \simeq \mathbb{C}_{4}$ and eigenvalues $\lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{4}}$ of h_{o}.

Proof. (i) Let us choose a diagonalizing matrix $S \in G L(2, \mathbb{Q}(\sqrt{-d}))$ of h_{o}, so that

$$
D_{o}=S^{-1} h_{o} S=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Taking into account Proposition 15, one has to show the existence of

$$
D=S^{-1^{\prime}} g S=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Q}(\sqrt{-d})
$$

with

$$
D_{o} D D_{o}^{-1}=\left(\begin{array}{rr}
a & -b \\
-c & d
\end{array}\right)=\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)=D^{-1}
$$

for any trace $\operatorname{tr}(g)=\operatorname{tr}(D)=a+d \in\{0, \pm 1\}$. More precisely, for $a=d=0, b \neq 0$ and $c=-b^{-1}$, then the matrix

$$
D=D_{4}=\left(\begin{array}{rr}
0 & b \\
-b^{-1} & 0
\end{array}\right)
$$

of order 4 and the matrix D_{o} of order 2 generate a dihedral group \mathcal{D}_{4} of order 8. If $a=d=-\frac{1}{2}, b \neq 0$ and $c=-\frac{3}{4} b^{-1}$ then

$$
D=D_{3}=\left(\begin{array}{rr}
-\frac{1}{2} & b \\
-\frac{3}{4} b^{-1} & -\frac{1}{2}
\end{array}\right)
$$

of order 3 and D_{o} of order 2 generate a symmetric group $\mathcal{D}_{3} \simeq S(3)$ of degree 3 . In the case of $a=d=\frac{1}{2}, b \neq 0$ and $c=-\frac{3}{4} b^{-1}$, the matrix

$$
D=D_{6}=\left(\begin{array}{rr}
\frac{1}{2} & b \\
-\frac{3}{4} b^{-1} & \frac{1}{2}
\end{array}\right)
$$

of order 6 and the matrix D_{o} of order 2 generate a dihedral group \mathcal{D}_{6} of order 12 .
(ii) By Proposition 19, if $h_{o} \in G L(2, R)$ has eigenvalues $\lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=$ $e^{-\frac{\pi i}{3}}$ then $R=\mathcal{O}_{-3}$. Let us consider

$$
D_{o}=S^{-1} h_{o} S=\left(\begin{array}{rr}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right) \in G L(2, \mathbb{Q}(\sqrt{-3}))
$$

for some $S \in G L(2, \mathbb{Q}(\sqrt{-3}))$ and

$$
D=S^{-1} g S=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Q}(\sqrt{-3}))
$$

with trace $\operatorname{tr}(g)=\operatorname{tr}(D)=a+d \in\{0, \pm 1\}$. Then

$$
D_{o} D D_{o}^{-1}=\left(\begin{array}{rr}
a & -b \\
-c & d
\end{array}\right)=\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)=D^{-1}
$$

is equivalent to $a=d$. Consequently, D_{3}, D_{4}, D_{6} from the proof of (i) satisfy the required conditions.
(iii) Note that

$$
D_{o}=S^{-1} h_{o} S=\left(\begin{array}{cc}
e^{\frac{3 \pi i}{4}} & 0 \\
0 & e^{-\frac{\pi i}{4}}
\end{array}\right) \in G L(2, \mathbb{Q}(\sqrt{2}, i))
$$

for some $S \in G L(2, \mathbb{Q}(\sqrt{2}, i))$ and

$$
D=S^{-1} g S=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Q}(\sqrt{2}, i))
$$

with trace $\operatorname{tr}(g)=\operatorname{tr}(D)=a+d \in\{0,1\}$ satisfy

$$
D_{o} D D_{o}^{-1}=\left(\begin{array}{rr}
a & -b \\
c & d
\end{array}\right)=\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right)=D^{-1}
$$

exactly when $a=d$. In the notations from the proof of (i), one has $\left\langle D_{4}, D_{o}\right\rangle \simeq \mathcal{H}_{4}^{\prime}$ and $\left\langle D_{6}, D_{o}\right\rangle \simeq \mathcal{H}_{6}^{\prime}$.

Corollary 35. Let H be a finite subgroup of $G L(2, R)$,

$$
H \cap S L(2, R)=\langle g\rangle \simeq \mathbb{C}_{3}
$$

and $h_{o} \in H$ be an element of order r with $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle \simeq \mathbb{C}_{s}$ and eigenvalues $\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)$. Then H is isomorphic to some $H_{C 3}(i), 1 \leq i \leq 5$, where

$$
H_{C 3}(1)=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{6}
$$

with $R=R_{-3, f}, \lambda_{1}\left(h_{o}\right)=e^{\frac{\pi i}{3}}, \lambda_{2}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}$,

$$
H_{C 3}(2)=\left\langle g, h_{o} \quad \mid \quad g^{3}=h_{o}^{2}=I_{2}, \quad h_{o} g h_{o}^{-1}=g^{-1}\right\rangle \simeq S_{3}
$$

is the symmetric group of degree $3, \lambda_{1}\left(h_{o}\right)=-1, \lambda_{2}\left(h_{o}\right)=1$,

$$
H_{C 3}(3)=\langle g\rangle \times\left\langle e^{\frac{2 \pi i}{3}} I_{2}\right\rangle \simeq \mathbb{C}_{3} \times \mathbb{C}_{3}
$$

with $R=\mathcal{O}_{-3}$ and any $g \in S L\left(2, \mathcal{O}_{-3}\right)$ of trace $\operatorname{tr}(g)=-1$,

$$
H_{C 3}(4)=\langle g\rangle \times\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{3} \times \mathbb{C}_{6}
$$

with $R=\mathcal{O}_{-3}, \lambda_{1}\left(h_{o}\right)=e^{\frac{\pi i}{3}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{2 \pi i}{3}}$,

$$
H_{C 3}(5)=\left\langle g, h_{o} \quad \mid \quad g^{3}=h_{o}^{6}=I_{2}, \quad h_{o} g h_{o}^{-1}=g^{-1}\right\rangle
$$

of order 18 with $R=\mathcal{O}_{-3}, \lambda_{1}\left(h_{o}\right)=E^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}$.
There exist subgroups

$$
H_{C 3}(1), H_{C 3}(3), H_{C 3}(4)<G L\left(2, \mathcal{O}_{-3}\right),
$$

as well as subgroups

$$
H_{C 3}^{o}(2)<G L(2, \mathbb{Q}(\sqrt{-d})), \quad H_{C 3}^{o}(5)<G L(2, \mathbb{Q}(\sqrt{-3}))
$$

with $H_{C 3}^{o}(j) \simeq H_{C 3}(j)$ for $j \in\{2,5\}$.

Proof. By Lemma 33 (i), the quotient $\frac{r}{s}$ is a divisor of $t=3$, so that either $r=s$ or $r=3 s=6$.

For $s=2, r=6$ one has a cyclic group $H=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{6}$ with $\operatorname{det}\left(h_{o}\right)=-1$. Up to an inversion $h_{o} \mapsto h_{o}^{-1}$ of the generator, Proposition 16 specifies that $\lambda_{1}\left(h_{o}\right)=e^{\frac{\pi i}{3}}$, $\lambda_{2}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}$ and justifies the realization of $H_{C 3}(1)=\left\langle h_{o}\right\rangle$ over \mathcal{O}_{-3}.

Form now on, let $r=s \in\{2,3,46\}$. According to Lemma 33(iii) and (iv), the group $H=\left\langle g, h_{o}\right\rangle$ is either abelian or isomorphic to some $H_{C 3}(j)$ for $j \in\{2,5\}$.

If $H=\left\langle g, h_{o} \mid g^{3}=h_{o}^{r}=I_{2}, \quad g h_{o}=h_{o} g\right\rangle$ is an abelian group of order $3 r$, then $H=\langle g\rangle \times\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{3} \times \mathbb{C}_{r}$ is a direct product by Lemma 26 (iv). (Here we use that the semi-direct product $H=[H \cap S L(2, R)] \rtimes\left\langle h_{o}\right\rangle=\langle g\rangle \rtimes\left\langle h_{o}\right\rangle$ is a direct product if and only if $g h_{o}=h_{o} g$.)

The order $r=s=2$ of h_{o} is relatively prime to the order 3 of g, so that $g h_{o}$ is an element of order 6 and $\left\langle g, h_{o}\right\rangle=\left\langle g h_{o}\right\rangle \simeq \mathbb{C}_{6} \simeq H_{C 3}(1)$.

The order $r=s=4$ of h_{o} is relatively prime to the order 3 of g and $g h_{o}$ is of order 12 . By the classification of $x \in G L(2, R)$ of finite order, done in section 2 , one has $\operatorname{det}\left(g h_{o}\right)=-1$. Therefore $\operatorname{det}\left(h_{o}\right)=-1$ and $s=2$, contrary to the assumption $s=4$.

For $r=s=3$ one can assume $\operatorname{det}\left(h_{o}\right)=e^{-\frac{2 \pi i}{3}}$, after an eventual inversion $h_{o} \mapsto h_{o}^{-1}$. Then by Proposition 22 one has $h_{o}=e^{\frac{2 \pi i}{3}} I_{2}$ or $\lambda_{1}\left(h_{o}\right)=e^{\frac{4 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=1$. Assume that $\lambda_{1}\left(h_{o}\right)=e^{\frac{4 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=1$ and note that the commuting g and h_{o} can be simultaneously diagonalized by an appropriate $S \in G L(2, \mathbb{C})$. Consequently,

$$
D=S^{-1} g S=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & e^{-\frac{2 \pi i}{3}}
\end{array}\right) \quad \text { and } \quad D_{o}=S^{-1} h_{o} S=\left(\begin{array}{cc}
e^{\frac{4 \pi i}{3}} & 0 \\
0 & 1
\end{array}\right)
$$

are subject to $D^{2} D_{o}=e^{\frac{2 \pi i}{3}} I_{2}$. As a result,

$$
g^{2} h_{o}=\left(S D S^{-1}\right)^{-1}\left(S D_{o} S^{-1}\right)=S\left(D^{2} D_{o}\right) S^{-1}=e^{\frac{2 \pi i}{3}} I_{2}
$$

and $H=\left\langle g, h_{o}\right\rangle=\left\langle g, g^{2} h_{o}\right\rangle \simeq H_{C 3}(3)$.
Finally, for $r=s=6$, let us assume that $\operatorname{det}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}$. Then

$$
\left\{\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)\right\}=\left\{e^{\frac{\pi i}{3}}, e^{-\frac{2 \pi i}{3}}\right\}, \quad\left\{e^{-\frac{\pi i}{3}}, 1\right\} \quad \text { or } \quad\left\{e^{\frac{2 \pi i}{3}},-1\right\} .
$$

Similarly to the case of $r=s=3$, the commuting g and h_{o} admit a simultaneous diagonalization

$$
D=S^{-1} g S=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & e^{-\frac{2 \pi i}{3}}
\end{array}\right), \quad D_{o}=S^{-1} h_{o} S=\left(\begin{array}{cc}
\lambda_{1}\left(h_{o}\right) & 0 \\
0 & \lambda_{2}\left(h_{o}\right)
\end{array}\right)
$$

If $\lambda_{1}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}, \lambda_{2}\left(h_{o}\right)=1$ then

$$
D D_{o}=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{2 \pi i}{3}}
\end{array}\right) \quad \text { and } \quad H \simeq\left\langle D, D_{o}\right\rangle=\left\langle D, D D_{o}\right\rangle \simeq H_{C 3}(4)
$$

For $\lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}$ and $\lambda_{2}\left(h_{o}\right)=-1$ note that

$$
D D_{o}=\left(\begin{array}{cc}
e^{-\frac{2 \pi i}{3}} & 0 \\
0 & e^{\frac{\pi i}{3}}
\end{array}\right), \quad \text { so that again } \quad H \simeq\left\langle D, D_{o}\right\rangle=\left\langle D, D D_{o}\right\rangle \simeq H_{C 3}(4)
$$

Note that

$$
g=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & e^{-\frac{2 \pi i}{3}}
\end{array}\right), \quad h_{o}=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{2 \pi i}{3}}
\end{array}\right) \in G L\left(2, \mathcal{O}_{-3}\right)
$$

generate a group, isomorphic to $H_{C 3}(4)$.

Corollary 36. Let H be a finite subgroup of $G L(2, R)$,

$$
H \cap S L(2, R)=\langle g\rangle \simeq \mathbb{C}_{4}
$$

and $h_{o} \in H$ be an element of order r with $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle \simeq \mathbb{C}_{s}$ and eigenvalues $\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)$. Then H is isomorphic to some $H_{C 4}(i), 1 \leq i \leq 9$, where

$$
H_{C 4}(1)=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{8}
$$

with $R=\mathcal{O}_{-2}, \lambda_{1}\left(h_{o}\right)=e^{\frac{\pi i}{4}}, \lambda_{2}\left(h_{o}\right)=e^{\frac{3 \pi i}{3}}$,

$$
H_{C 4}(2)=\langle g\rangle \times\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{4} \times \mathbb{C}_{2}
$$

with $R=R_{-1, f}, \lambda_{1}\left(h_{o}\right)=-1, \lambda_{2}\left(h_{o}\right)=1$,

$$
H_{C 4}(3)=\left\langle g, h_{o} \quad \mid g^{2}=-I_{2}, \quad h_{o}^{2}=I_{2}, \quad h_{o} g h_{o}^{-1}=g^{-1}\right\rangle \simeq \mathcal{D}_{4}
$$

is the dihedral group of order 8 with $\lambda_{1}\left(h_{o}\right)=-1, \lambda_{2}\left(h_{o}\right)=1$,

$$
H_{C 4}(4)=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{12}
$$

with $R=\mathcal{O}_{-3}, \lambda_{1}\left(h_{o}\right)=e^{\frac{5 \pi i}{6}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{6}}$,

$$
H_{C 4}(5)=\langle g\rangle \times\left\langle e^{\frac{2 \pi i}{3}} I_{2}\right\rangle \simeq \mathbb{C}_{4} \times \mathbb{C}_{3}
$$

for $R=\mathcal{O}_{-3}$ and $\forall g \in S L\left(2, \mathcal{O}_{-3}\right)$ with $\operatorname{tr}(g)=0$,

$$
H_{C 4}(6)=\langle g\rangle \times\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{4} \times \mathbb{C}_{4}
$$

with $R=\mathbb{Z}[i], \lambda_{1}\left(h_{o}\right)=i, \lambda_{2}\left(h_{o}\right)=1$,

$$
H_{C 4}(7)=\langle i g\rangle \times\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{2} \times \mathbb{C}_{8}
$$

with $R=\mathbb{Z}[i], \lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{4}}$,

$$
H_{C 4}(8)=\left\langle g, h_{o} \mid \quad g^{2}=h_{o}^{4}=-I_{2}, \quad h_{o} g h_{o}^{-1}=g^{-1}\right\rangle
$$

of order 16 with $R=\mathbb{Z}[i], \lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{4}}$,

$$
H_{C 4}(9)=\left\langle g, h_{o} \quad \mid \quad g^{2}=-I_{2}, \quad h_{o}^{6}=I_{2}, \quad h_{o} g h_{o}^{-1}=g^{-1}\right\rangle
$$

of order 24 with $R=\mathcal{O}_{-3}, \lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}$.
There exist subgroups

$$
\begin{gathered}
H_{C 4}(1)<G L\left(2, \mathcal{O}_{-2}\right), \quad H_{C 4}(4), H_{C 4}(5)<G L\left(2, \mathcal{O}_{-3}\right), \\
H_{C 4}(2), H_{C 4}(6)<G L(2, \mathbb{Z}[i]),
\end{gathered}
$$

as well as subgroups

$$
\begin{gathered}
H_{C 4}^{o}(7), H_{C 4}^{o}(8)<G L(2, \mathbb{Q}(\sqrt{2}, i)), \quad H_{C 4}^{o}(3)<G L(2, \mathbb{Q}(\sqrt{-d})), \\
H_{C 4}^{o}(9)<G L(2, \mathbb{Q}(\sqrt{-3})),
\end{gathered}
$$

with $H_{C 4}^{o}(j) \simeq H_{C 4}(j)$ for $j \in\{3,7,8,9\}$.
Proof. If $\frac{r}{s}=4$ then either $(s, r)=(2,8)$ and $H \simeq H_{C 4}(1)$ or $(s, r)=(3,12)$ and $H \simeq H_{C 4}(4)$. By Proposition 16 there exists an element $h_{o} \in G L\left(2, \mathcal{O}_{-2}\right)$ of order 8 with $\operatorname{det}\left(h_{o}\right)=-1$. Proposition 21 provides an example of $h_{o} \in G L\left(2, \mathcal{O}_{-3}\right)$ of order 12 with $\operatorname{det}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}$. There remain to be considered the cases with $\frac{r}{s} \in\{1,2\}$. According to Lemma 33, the non-abelian H under consideration are isomorphic to $H_{C 4}(3), H_{C 4}(8)$ or $H_{C 4}(9)$. By Lemma 34 (i) there is a subgroup $H_{C 4}^{o}(3)<G L(2, \mathbb{Q}(\sqrt{-d}))$, conjugate to $H_{C 4}(3)$. Lemma 34 (iii) provides an example of $S^{-1} H_{C 4}(8) S=H_{C 4}^{o}(8)<G L(2, \mathbb{Q}(\sqrt{2}, i))$, while Lemma 34(ii) justifies the existence of $S^{-1} H_{C 4}(9) S=H_{C 4}^{o}(9)<G L(2, \mathbb{Q}(\sqrt{-3}))$.

There remain to be classified the non-cyclic abelian groups $H=[H \cap S L(2, R)]\left\langle h_{o}\right\rangle$ with $H \cap S L(2, R) \simeq \mathbb{C}_{4},\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{r}, \operatorname{det}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}$ for $s \in\{2,3,4,6\}, r \in\{s, 2 s\}$.

If $r=s=2$ then by Proposition 16, the eigenvalues of h_{o} are $\lambda_{1}\left(h_{o}\right)=-1$ and $\lambda_{2}\left(h_{o}\right)=1$. There exists a matrix $S \in G L(2, \mathbb{Q}(\sqrt{-d})$, such that

$$
D_{o}=S^{-1} h_{o} S=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Proposition 15 establishes that $g \in S L(2, R)$ is of order 4 exactly when $\operatorname{tr}(g)=0$. The trace and the determinant are invariant under conjugation, so that

$$
D=S^{-1} g S=\left(\begin{array}{rr}
a & b \\
c & -a
\end{array}\right) \in S L(2, \mathbb{Q}(\sqrt{-d}))
$$

The commutation

$$
D D_{o}=\left(\begin{array}{rr}
-a & b \\
-c & -a
\end{array}\right)=\left(\begin{array}{rr}
-a & -b \\
c & -a
\end{array}\right)=D_{o} D
$$

holds only when $b=c=0$ and

$$
D= \pm\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right) .
$$

Bearing in mind that $D \in S L(2, \mathbb{Q}(\sqrt{-d})$, one concludes that $i \in \mathbb{Q}(\sqrt{-d})$, whereas $d=1$ and $R=R_{-1, f}$. The matirces

$$
g=\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right), \quad h_{o}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right) \in G L(2, \mathbb{Z}[i])
$$

generate a subgroup of $G L(2, \mathbb{Z}[i])$, isomorphic to $H_{C 4}(2)$.
For $s=2$ and $r=4$ one has $R=\mathbb{Z}[i]$ and $h_{o}= \pm I_{2}$. Bearing in mind that $g \in S L(2, R)$ is of order 4 if and only if $\operatorname{tr}(g)=0$, let

$$
g=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z}[o])
$$

Then

$$
g h_{o}= \pm\left(\begin{array}{rr}
a i & b i \\
c i & -a i
\end{array}\right) \in \mathbb{Z}[i]_{2 \times 2}
$$

has determinant $\operatorname{det}\left(g h_{o}\right)=\operatorname{det}(g) \operatorname{det}\left(h_{o}\right)=\operatorname{det}\left(h_{o}\right)=-1$ and trace $\operatorname{tr}\left(g h_{o}\right)=0$. By Proposition 16, $g h_{o}$ has eigenvalues $\lambda_{1}\left(g h_{o}\right)=-1, \lambda_{2}\left(g h_{o}\right)=1$ and $H \simeq H_{C 4}(2)$.

If $s=r=3$ then $R=\mathcal{O}_{-3}$ and either $h_{o}=e^{-\frac{2 \pi i}{3}}$ or $\lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=1$. Replacing $e^{-\frac{2 \pi i}{3}} I_{2}$ by its inverse, one observes that $H_{C 4}(5)=\left\langle g, e^{-\frac{2 \pi i}{3}} I_{2}\right\rangle<G L\left(2, \mathcal{O}_{-3}\right)$. If $\lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=1$, then there exists $S \in G L(2, \mathbb{Q}(\sqrt{-3}))$, such that

$$
D_{o}=S^{-1} h_{o} S=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & 1
\end{array}\right) .
$$

The determinant and the trace are invariant under conjugation, so that

$$
D=S^{-1} g S=\left(\begin{array}{rr}
a & b \\
c & -a
\end{array}\right) \in S L(2, \mathbb{Q}(\sqrt{-3}))
$$

Note that

$$
D D_{o}=\left(\begin{array}{rr}
e^{\frac{2 \pi i}{3}} a & b \\
e^{\frac{2 \pi i}{3}} c & -a
\end{array}\right)=\left(\begin{array}{rr}
e^{\frac{2 \pi i}{3}} a & e^{\frac{2 \pi i}{3}} b \\
c & -a
\end{array}\right)=D_{o} D
$$

is equivalent to $b=c=0$ and $1=\operatorname{det}(g)=\operatorname{det}(D)=-a^{2}$ specifies that

$$
D= \pm\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right)
$$

That contradicts $F \in S L(2, \mathbb{Q}(\sqrt{-3}))$ and justifies the non-existence of H with $s=$ $r=3$.

Let $s=3, r=6$. According to Proposition 21, there follows $R=\mathcal{O}_{-3}$ with $h_{o}=e^{\frac{\pi i}{3}} I_{2}$ or $\lambda_{1}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}, \lambda_{2}\left(h_{o}\right)=1$. If $h_{o}=e^{\frac{\pi i}{3}}$ then $H=\left\langle g, h_{o}\right\rangle=\left\langle g, g^{2} h_{o}=\right.$ $\left.-h_{o}=e^{-\frac{2 \pi i}{3}} I_{2}\right\rangle \simeq H_{C 4}(5)$. In the case of $\lambda_{1}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}, \lambda_{2}\left(h_{o}\right)=1$ let us choose $S \in G L(2, \mathbb{Q}(\sqrt{-3}))$ with

$$
\begin{gathered}
D_{o}=S^{-1} h_{o} S=\left(\begin{array}{cc}
e^{-\frac{\pi i}{3}} & 0 \\
0 & 1
\end{array}\right) \in G L(2, \mathbb{Q}(\sqrt{-3})) \text { and } \\
D=S^{-1} g S=\left(\begin{array}{rr}
a & b \\
c & -a
\end{array}\right) \in S L(2, \mathbb{Q}(\sqrt{-3})) .
\end{gathered}
$$

Then

$$
D D_{o}=\left(\begin{array}{rr}
e^{-\frac{\pi i}{3}} a & b \\
e^{-\frac{\pi i}{3}} c & -a
\end{array}\right)=\left(\begin{array}{rr}
e^{-\frac{\pi i}{3}} a & e^{-\frac{\pi i}{3} b} \\
c & -a
\end{array}\right)=D_{o} D
$$

if and only if

$$
D= \pm\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right) \in S L(2, \mathbb{Q}(\sqrt{-3}))
$$

which is an absurd.
Let us suppose that $s=r=4$. The Proposition 17 specifies that $R=\mathbb{Z}[i]$ and $\lambda_{1}\left(h_{o}\right)=\varepsilon i, \lambda_{2}\left(h_{o}\right)=\varepsilon$ for some $\varepsilon \in\{ \pm 1\}$. As far as $g^{2}=-I_{2} \in H$, there is no loss of generality in assuming that $\lambda_{1}\left(h_{o}\right)=i, \lambda_{2}\left(h_{o}\right)=1$ and $H \simeq H_{C 4}(6)$. Note that

$$
g=\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right), \quad h_{o} \in\left(\begin{array}{rr}
i & 0 \\
0 & 1
\end{array}\right) \in G L(2, \mathbb{Z}[i])
$$

generate a subgroup, isomorphic to $H_{C 4}(6)$.
For $s=4, r=8$, Proposition 17 implies that $R=\mathbb{Z}[i]$ and $\lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}$, $\lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{4}}$. Note that $(i g)^{2}=-g^{2}=I_{2}$, so that $i g \in H=\left\langle g, h_{o}\right\rangle$ is of order 2 and $h_{o}^{6}=i I_{2}$, according to $\lambda_{1}\left(h_{o}^{6}\right)=\lambda_{1}\left(h_{o}\right)^{6}=i, \lambda_{2}\left(h_{o}^{6}\right)=\lambda_{2}\left(h_{o}\right)^{6}=i$. Consequently,

$$
H=\left\langle g, h_{o}\right\rangle=\left\langle h_{o}^{6} g=i g, h_{o}\right\rangle=\langle i g\rangle \times\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{2} \times \mathbb{C}_{8}
$$

as far as $\langle i g\rangle \cap\left\langle h_{o}\right\rangle=\left\{I_{2}\right\}$. More precisely, if $i g=h_{o}^{m}$, then the second eigenvalue

$$
1=-i^{2}=\lambda_{2}(i g)=\lambda_{2}\left(h_{o}^{m}\right)=e^{-\frac{\pi i m}{4}},
$$

whereas $m \in 8 \mathbb{Z}$ and the first eigenvalue

$$
-1=\lambda_{1}(i g)=\lambda_{1}\left(h_{o}^{m}\right)=e^{\frac{3 \pi i m}{4}}=1,
$$

which is an absurd. Thus, $H \simeq H_{C 4}(7)$ and there exists a subgroup

$$
H_{C 4}^{o}(7)=\left\langle\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right), \quad\left(\begin{array}{rr}
e^{\frac{3 \pi i}{4}} & 0 \\
0 & e^{-\frac{\pi i}{4}}
\end{array}\right)\right\rangle<G L(2, \mathbb{Q}(\sqrt{2}, i)),
$$

conjugate to $H_{C 4}(7)$.
Let us assume that $s=r=6$. Then Proposition 19 applies to provide $R=\mathcal{O}_{-3}$ and

$$
\left\{\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)\right\}=\left\{e^{\frac{2 \pi i}{3}}, e^{-\frac{\pi i}{3}}\right\}, \quad\left\{e^{\frac{\pi i}{3}}, 1\right\}, \quad\left\{e^{-\frac{2 \pi i}{3}},-1\right\} .
$$

Choose a matrix $S \in G L(2, \mathbb{Q}(\sqrt{-3}))$ with

$$
\begin{gathered}
D_{o}=S^{-1} h_{o} S=\left(\begin{array}{cc}
\lambda_{1}\left(h_{o}\right) & 0 \\
0 & \lambda_{2}\left(h_{o}\right)
\end{array}\right) \in G L(2, \mathbb{Q}(\sqrt{-3})), \\
D=S^{-1} g S=\left(\begin{array}{rr}
a & b \\
c & -a
\end{array}\right) \in S L(2, \mathbb{Q}(\sqrt{-3})) .
\end{gathered}
$$

If $\lambda_{1}\left(h_{o}\right) \neq \lambda_{2}\left(h_{o}\right)$ then

$$
D D_{o}=\left(\begin{array}{rr}
\lambda_{1}\left(h_{o}\right) a & \lambda_{2}\left(h_{o}\right) b \\
\lambda_{1}\left(h_{o}\right) c & -\lambda_{2}\left(h_{o}\right) a
\end{array}\right)=\left(\begin{array}{rr}
\lambda_{1}\left(h_{o}\right) a & \lambda_{1}\left(h_{o}\right) b \\
\lambda_{2}\left(h_{o}\right) c & -\lambda_{2}\left(h_{o}\right) a
\end{array}\right)=D_{o} D
$$

is tantamount to $b=c=0, a= \pm i$ and

$$
D= \pm\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right) \in S L(2, \mathbb{Q}(\sqrt{-3})
$$

is an absurd.
Similarly, in the case of $s=6, r=12$, Proposition 19 derives that $R=\mathcal{O}_{-3}$ and

$$
\left\{\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)\right\}=\left\{e^{\frac{2 \pi i}{3}}, e^{-\frac{\pi i}{3}}\right\}, \quad\left\{e^{\frac{\pi i}{3}}, 1\right\}, \quad\left\{e^{-\frac{2 \pi i}{3}},-1\right\} .
$$

Note that $\lambda_{1}\left(h_{o}\right) \neq \lambda_{2}\left(h_{o}\right)$ for all the possibilities and apply the considerations for $s=r=6$, in order to exclude the case $s=6, r=12$.

Corollary 37. Let H be a finite subgroup of $G L(2, R)$,

$$
H \cap S L(2, R)=\langle g\rangle \simeq \mathbb{C}_{6}
$$

and $h_{o} \in H$ be an element of order r with $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle \simeq \mathbb{C}_{s}$ and eigenvalues $\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)$. Then H is isomorphic to some $H_{C 6}(i), 1 \leq i \leq 7$, where

$$
H_{C 6}(1)=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{12}
$$

with $R=\mathbb{Z}[i], \lambda_{1}\left(h_{o}\right)=e^{\frac{\pi i}{6}}, \lambda_{2}\left(h_{o}\right)=e^{\frac{5 \pi i}{6}}$,

$$
H_{C 6}(2)=\langle g\rangle \times\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{6} \times \mathbb{C}_{12}
$$

with $R=\mathcal{O}_{-3}$ or $R=R_{-3,2}, \lambda_{1}\left(h_{o}\right)=-1, \lambda_{2}\left(h_{o}\right)=1$,

$$
H_{C 6}(3)=\left\langle g, h_{o} \quad \mid g^{3}=-I_{2}, \quad h_{o}^{2}=I_{2}, \quad h_{o} g h_{o}^{-1}=g^{-1}\right\rangle \simeq \mathcal{D}_{6}
$$

is the dihedral group of order $12, \lambda_{1}\left(h_{o}\right)=-1, \lambda_{2}\left(h_{o}\right)=1$,

$$
H_{C 6}(4)=\langle g\rangle \times\left\langle e^{\frac{2 \pi i}{3}} I_{2}\right\rangle \simeq \mathbb{C}_{6} \times \mathbb{C}_{3}
$$

with $R=\mathcal{O}_{-3}$ and $\forall g \in S L\left(2, \mathcal{O}_{-3}\right)$ of $\operatorname{tr}(g)=1$,

$$
H_{C 6}(5)=\left\langle g, h_{o} \mid g^{3}=h_{o}^{4}=-I_{2}, \quad h_{o} g h_{o}^{-1}=g^{-1}\right\rangle
$$

of order 24 with $R=\mathbb{Z}[i], \lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{4}}$,

$$
H_{C 6}(6)=\left\langle g, h_{o} \mid g^{3}=-I_{2}, \quad h_{o}^{6}=I_{2}, \quad h_{o} g h_{o}^{-1}=g^{-1}\right\rangle
$$

of order 36 with $R=\mathcal{O}_{-3}, \lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}$,

$$
H_{C 6}(7)=\langle g\rangle \times\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{6} \times \mathbb{C}_{6}
$$

of order 36 with $R=\mathcal{O}_{-3}, \lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}$.
There exist subgroups

$$
H_{C 6}(1)<G L(2, \mathbb{Z}[i]), \quad H_{C 6}(2), H_{C 6}(4), H_{C 6}(7)<G L\left(2, \mathcal{O}_{-3}\right),
$$

as well as subgroups

$$
\begin{gathered}
H_{C 6}^{o}(3)<G L(2, \mathbb{Q}(\sqrt{-d})), \quad H_{C 6}^{o}(5)<G L(2, \mathbb{Q}(\sqrt{2}, i)), \\
H_{C 6}^{o}(6)<G L(2, \mathbb{Q}(\sqrt{-3}))
\end{gathered}
$$

with $H_{C 6}^{o}(j) \simeq H_{C 6}(j)$ for $j \in\{3,5,6\}$.
Proof. According to Lemma 33(i), the ratio $\frac{r}{s} \in\{1,2,3,6\}$ is a divisor of $t=6$. If $r=6 s$ then $s=2$ and $H=\left\langle h_{o}\right\rangle \simeq \mathbb{C}_{12} \simeq H_{C 6}(1)$ by Lemma 33 (i), (ii). According to Proposition 16, the existence of $h_{o} \in G L(2, R)$ of order 12 with $\operatorname{det}\left(h_{o}\right)=-1$ requires $R=\mathbb{Z}[i]$ and there exist $h_{o} \in G L(2, \mathbb{Z}[i])$ of order 12 with $\operatorname{det}\left(h_{o}\right)=-1$.

For $r=3 s$ Lemma 33(i) specifies that $s=2$. Combining with Lemma 33(iv), one concludes that

$$
H=\left\langle g, h_{o} \mid g^{3}=-I_{2}, \quad h_{o}^{6}=I_{2}, \quad h_{o} g=g h_{o}\right\rangle
$$

is a non-cyclic abelian group of order st $=12$. By Proposition $16, R=\mathcal{O}_{-3}$ or $R=$ $R_{-3,2}$ and h_{o} has eigenvalues $\lambda_{1}\left(h_{o}\right)=e^{\frac{\varepsilon \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=e^{\frac{\varepsilon 2 \pi i}{3}}$ for some $\varepsilon \in\{ \pm 1\}$. Due to $\left\langle g, h_{o}\right\rangle=\left\langle g, h_{o}^{-1}=h_{o}^{5}\right\rangle$ by $h_{o}=\left(h_{o}^{5}\right)^{5}$, one can assume that $\lambda_{1}\left(h_{o}\right)=e^{\frac{\pi i}{3}}, \lambda_{2}\left(h_{o}\right)=$ $e^{\frac{2 \pi i}{3}}$. The commuting matrices g and h_{o} admit a simultaneous diagonalization

$$
D=S^{-1} g S=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right), \quad D_{o}=S^{-1} h_{o} S=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{\frac{2 \pi i}{3}}
\end{array}\right)
$$

by an appropriate $S \in G L(2, \mathbb{Q}(\sqrt{-3}))$. Then

$$
D^{2} D_{o}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

implies that $\lambda_{1}\left(g^{2} h_{o}\right)=-1, \lambda_{2}\left(g^{2} h_{o}\right)=1$. As a result, $H=\left\langle g, h_{o}\right\rangle=\left\langle g, g^{2} h_{o}\right\rangle$ is a subgroup of $G L\left(2, \mathcal{O}_{-3}\right)$, isomorphic to $H_{C 6}(2)$.

Form now on, $\frac{r}{s} \in\{1,2\}$. In particular, $\frac{r}{s}<t=6$ and the non-abelian

$$
H=\left\langle g, h_{o} \mid g^{6}=h_{o}^{r}=I_{2}, \quad h_{o} g h_{o}^{-1}=g^{-1}\right\rangle
$$

occurs for $(r, s) \in\{(2,2),(8,4),(6,6)\}$, according to Lemma 33(iv). Namely, for $r=s=2$ one has a dihedral group $H \simeq \mathcal{D}_{6} \simeq H_{C 6}(3)$ of order 12 , which is realized as a subgroup of $G L(2, \mathbb{Q}(\sqrt{-d}))$ by Lemma 34(i). In the case of $s=4$ and $r=8$ the group $H \simeq H_{C 6}(5)$ of order 24 is embedded in $G L(2, \mathbb{Q}(\sqrt{2}, i))$ by Lemma 34(iii). In the case of $r=s=6$ one has $H \simeq H_{C 6}(6)$ of order 36, realized as a subgroup of $G L(2, \mathbb{Q}(\sqrt{-3}))$ by Lemma 34(ii).

There remain to be considered the non-cyclic abelian H with $r=2 s, s \in\{2,3,4\}$ or $r=s \in\{2,3,4,6\}$. If $s=2, r=4$ then Proposition 16 requires $R=\mathbb{Z}[i]$ and $h_{o}= \pm i I_{2}$. Up to an inversion of h_{o}, one can assume that $h_{o}=i I_{2}$. Then $H=\left\langle g, i I_{2}\right\rangle=\left\langle-g=\left(i I_{2}\right)^{2} g, i I_{2}\right\rangle$ is generated by the element $-g$ of order 3 and the scalar matrix $i I_{2} \in H$ of order 4 , so that $-i g=\left(i I_{2}\right)(-g) \in H$ of order 12 generates $H, H \simeq H_{C 6}(1) \simeq \mathbb{C}_{12}$. (Note that for $g \in S L(2, \mathbb{Z}[i])$ of order 6 one has $g^{3}=-I_{2}$, whereas $(-g)^{3}=-g^{3}=I_{2}$. The assumptions $-g=I_{2}$ and $(-g)^{2}=g^{2}=I_{2}$ lead to an absurd.)

Let us assume that $s=3$ and $r=6$. Then Proposition 21 implies that $R=\mathcal{O}_{-3}$ with $h_{o}=E^{\frac{\pi i}{3}} I_{2}$ or $\lambda_{1}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}, \lambda_{2}\left(h_{o}\right)=-1$. Note that $H=\left\langle g, e^{\frac{\pi i}{3}} I_{2}\right\rangle=$ $\left\langle g, e^{-\frac{\pi i}{3}} I_{2}\right\rangle$ by $e^{-\frac{\pi i}{3}}=\left(e^{\frac{\pi i}{3}}\right)^{5}, e^{\frac{\pi i}{3}}=\left(e^{-\frac{\pi i}{3}}\right)^{5}$. Further,

$$
g^{3}\left(e^{-\frac{\pi i}{3}} I_{2}\right)=\left(e^{\pi i} I_{2}\right)\left(e^{-\frac{\pi i}{3}} I_{2}\right)=e^{\frac{2 \pi i}{3}} I_{2}
$$

implies that

$$
H=\left\langle g, e^{-\frac{\pi i}{3}} I_{2}\right\rangle=\left\langle g, g^{3}\left(e^{-\frac{\pi i}{3}} I_{2}\right)=e^{\frac{2 \pi i}{3}} I_{2}\right\rangle=\langle g\rangle \times\left\langle e^{\frac{2 \pi i}{3}}\right\rangle \simeq \mathbb{C}_{6} \times \mathbb{C}_{3} \simeq H_{C 6}(4)
$$

For any $g \in S L\left(2, \mathcal{O}_{-3}\right)$ of order 6, there is a subgroup $H_{C 6}(4)=\left\langle g, e^{\frac{2 \pi i}{3}} I_{2}\right\rangle<$ $G L\left(2, \mathcal{O}_{-3}\right)$.

For $s=4, r=8$ there follow $R=\mathbb{Z}[i]$ and $\lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{4}}$, according to Proposition 17. Suppose that $S \in G L(2, \mathbb{Q}(\sqrt{2}, i))$ diagonalizes h_{o},

$$
D_{o}=S^{-1} h_{o} S=\left(\begin{array}{cc}
e^{\frac{3 \pi i}{4}} & 0 \\
0 & e^{-\frac{\pi i}{4}}
\end{array}\right) \in G L(2, \mathbb{Q}(\sqrt{2}, i))
$$

By Proposition $15, g \in S L(2, \mathbb{Z}[i])$ is of order 6 exactly when $\operatorname{tr}(g)=1$. Since the determinant and the trace are invariant under conjugation, one has

$$
D=S^{-1} g S=\left(\begin{array}{cc}
a & b \\
c & 1-a
\end{array}\right) \in S L(2, \mathbb{Q}(\sqrt{2}, i)
$$

However,

$$
D D_{o}=\left(\begin{array}{cc}
e^{\frac{3 \pi i}{4}} a & e^{-\frac{\pi i}{4}} b \\
e^{\frac{3 \pi i}{4}} c & e^{-\frac{\pi i}{4}}(1-a)
\end{array}\right)=\left(\begin{array}{cc}
e^{\frac{3 \pi i}{4} a} & e^{\frac{3 \pi i}{4}} b \\
e^{-\frac{\pi i}{4}} c & e^{-\frac{\pi i}{4}}(1-a)
\end{array}\right)=D_{o} D
$$

if and only if $b=c=0$ and $a=e^{\frac{\varepsilon \pi i}{3}}$ for some $\varepsilon \in\{ \pm 1\}$. Now,

$$
D=\left(\begin{array}{cc}
e^{\frac{\varepsilon \pi i}{3}} & 0 \\
0 & 1-e^{\frac{\varepsilon \pi i}{3}}
\end{array}\right) \in S L(2, \mathbb{Q}(\sqrt{2}, i))
$$

is an absurd, justifying the non-existence of H with $s=4$ and $r=8$.
In the case of $r=s=2$ Proposition 16 implies that $\lambda_{1}\left(h_{o}\right)=-1, \lambda_{2}\left(h_{o}\right)=1$, so that $H \simeq H_{C 6}(2) \simeq \mathbb{C}_{6} \times \mathbb{C}_{2}$.

For $r=s=3$ Proposition 21 reveals that $R=\mathcal{O}_{-3}$ with $h_{o}=e^{-\frac{2 \pi i}{3}} I_{2}$ or $\lambda_{1}\left(h_{o}\right)=$ $e^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=1$. It is clear that

$$
H=\left\langle g, e^{-\frac{2 \pi i}{3}} I_{2}=\left(e^{\frac{2 \pi i}{3}} I_{2}\right)^{2}\right\rangle=\left\langle g, e^{\frac{2 \pi i}{3}} I_{2}=\left(e^{-\frac{2 \pi i}{3}} I_{2}\right)^{2}\right\rangle \simeq H_{C 6}(4) \simeq \mathbb{C}_{3} \times \mathbb{C}_{3}
$$

If $\lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=1$ then the commuting matrices g and h_{o} admit a simultaneous diagonalization

$$
D=S^{-1} g S=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right), \quad D_{o}=S^{-1} h_{o} S=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & 1
\end{array}\right) \in G L(2, \mathbb{Q}(\sqrt{-3}))
$$

by an appropriate $S \in G L(2, \mathbb{Q}(\sqrt{-3}))$. Then $D^{2} D_{o}=e^{-\frac{2 \pi i}{3}} I_{2}$, whereas $g^{2} h_{o}=$ $S\left(e^{-\frac{2 \pi i}{3}} I_{2}\right) S^{-1}=e^{-\frac{2 \pi i}{3}} I_{2}$ and

$$
H=\left\langle g, h_{o}\right\rangle=\left\langle g, g^{2} h_{o}=e^{-\frac{2 \pi i}{3}} I_{2}\right\rangle \simeq H_{C 6}(4) \simeq \mathbb{C}_{6} \times \mathbb{C}_{3} .
$$

The assumption $r=s=4$ implies that $R=\mathbb{Z}[i]$ and $\lambda_{1}\left(h_{o}\right)=\varepsilon i, \lambda_{2}\left(h_{o}\right)=$ ε for some $\varepsilon \in\{ \pm 1\}$, according to Proposition 17. Due to $g^{3}=-I_{2}$, one has $\left\langle g, h_{o}\right\rangle=\left\langle g,-h_{o}=g^{3} h_{o}\right\rangle$, so that there is no loss of generality in assuming $\varepsilon=1$. If $S \in G L(2, \mathbb{Q}(i))$ conjugates h_{o} to its diagonal form

$$
\left.D_{o}=S^{-1} h_{o} S=\left(\begin{array}{cc}
i & 0 \\
0 & 1
\end{array}\right) \in G L(2, \mathbb{Q} 9 i)\right)
$$

then

$$
D=S^{-1} g S=\left(\begin{array}{cc}
a & b \\
c & 1-a
\end{array}\right) \in S L(2, \mathbb{Q}(i))
$$

The relation

$$
D D_{o}=\left(\begin{array}{cc}
i a & b \\
i c & 1-a
\end{array}\right)=\left(\begin{array}{cc}
i a & i b \\
c & 1-a
\end{array}\right)=D_{o} D
$$

implies that

$$
D=\left(\begin{array}{cc}
e^{\frac{\varepsilon \pi i}{3}} & 0 \\
0 & e^{-\frac{\varepsilon \pi i}{3}}
\end{array}\right) \in S L(2, \mathbb{Q}(i)) \quad \text { for some } \quad \varepsilon \in\{ \pm\} .
$$

The contradiction proves the non-existence of H with $r=s=4$.
Finally, for $r=s=6$ Proposition 19 specifies that $R=\mathcal{O}_{-3}$ and

$$
\left\{\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)\right\}=\left\{e^{\frac{2 \pi i}{3}}, e^{-\frac{\pi i}{3}}\right\}, \quad\left\{1, e^{\frac{\pi i}{3}}\right\} \quad \text { or } \quad\left\{e^{-\frac{2 \pi i}{3}},-1\right\} .
$$

The commuting matrices g and h_{o} admit simultaneous diagonalization

$$
\begin{gathered}
D=S^{-1} g S=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right), \\
D_{o}=S^{-1} h_{o} S
\end{gathered}=\left(\begin{array}{cc}
\lambda_{1}\left(h_{o}\right) & 0 \\
0 & \lambda_{2}\left(h_{o}\right)
\end{array}\right) \in G L(2, \mathbb{Q}(\sqrt{-3})
$$

by an appropriate $S \in G L(2, \mathbb{Q}(\sqrt{-3}))$. Let us denote

$$
D_{o}:=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right), \quad D_{o}^{\prime}:=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{\frac{\pi i}{3}}
\end{array}\right), \quad D_{o}^{\prime \prime}:=\left(\begin{array}{cc}
e^{-\frac{2 \pi i}{3}} & 0 \\
0 & -1
\end{array}\right) \in G L\left(2, \mathcal{O}_{-3}\right)
$$

and observe that

$$
D^{2} D_{o}=D_{o}^{\prime \prime}, \quad D 62 D_{o}^{\prime \prime}=D_{o}^{\prime}
$$

By its very definition,

$$
H=\left\langle D, D_{o}\right\rangle<G L\left(2, \mathcal{O}_{-3}\right)
$$

is isomorphic to $H_{C 6}(7)$. The equalities $\left\langle D, D_{o}^{\prime}=D^{2} D_{o}^{\prime \prime}\right\rangle=\left\langle D, D_{o}^{\prime \prime}\right\rangle$ and $\left\langle D, D_{o}^{\prime \prime}=\right.$ $\left.D^{2} D_{o}\right\rangle=\left\langle D, D_{o}\right\rangle$ conclude the proof of the proposition.

Proposition 38. Let H be a finite subgroup of $G L(2, R)$,

$$
H \cap S L(2, R)=\left\langle g_{1}, g_{2} \quad \mid \quad g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}\right\rangle \simeq \mathbb{Q}_{8}
$$

and $h_{o} \in H$ be an element of order r with $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle \simeq \mathbb{C}_{s}$ and eigenvalues $\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)$. Then H is isomorphic to some $H_{\mathbb{Q} 8}(i), 1 \leq i \leq 9$, where

$$
H_{\mathbb{Q} 8}(1)=\left\langle g_{1}, g_{2}, i I_{2} \quad \mid \quad g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}\right\rangle
$$

is of order 16 with $R=\mathbb{Z}[i]$,

$$
\begin{gathered}
H_{\mathbb{Q} 8}(2)=\left\langle g_{1}, g_{2}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad h_{o}^{2}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}, \\
\left.h_{o} g_{1} h_{o}^{-1}=-g_{1}, \quad h_{o} g_{2} h_{o}^{-1}=-g_{2}\right\rangle
\end{gathered}
$$

is of order 16 with $R=\mathbb{Z}[i], \lambda_{1}\left(h_{o}\right)=-1, \lambda_{2}\left(h_{o}\right)=1$,

$$
\begin{gathered}
H_{\mathbb{Q} 8}(3)=\left\langle g_{1}, g_{2}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=h_{o}^{4}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}, \\
\left.h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{2} h_{o}^{-1}=-g_{1}\right\rangle
\end{gathered}
$$

is of order 16 with $R=\mathcal{O}_{-2}, \lambda_{1}\left(h_{o}\right)=e^{\frac{\pi i}{4}}, \lambda_{2}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}, h_{o}^{2}= \pm g_{1} g_{2}$,

$$
\begin{gathered}
H_{\mathbb{Q} 8}(4)=\left\langle g_{1}, g_{2}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad h_{o}^{2}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}, \\
\left.h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{2} h_{o}^{-1}=g_{1}\right\rangle
\end{gathered}
$$

is of order 16 with $R=R_{-2, f}, \lambda_{1}\left(h_{o}\right)=-1, \lambda_{2}\left(h_{o}\right)=1$,

$$
H_{\mathbb{Q} 8}(5)=\left\langle g_{1}, g_{2}\right\rangle \times\left\langle e^{\frac{2 \pi i}{3}}\right\rangle \simeq \mathbb{Q}_{8} \times \mathbb{C}_{3}
$$

is of order 24 with $R=\mathcal{O}_{3}$,

$$
\begin{gathered}
H_{\mathbb{Q} 8}(6)=\left\langle g_{1}, g_{2}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad h_{o}^{3}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}, \\
\left.h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{2} h_{o}^{-1}=g_{1} g_{2}\right\rangle
\end{gathered}
$$

is of order 24 with $R=\mathcal{O}_{-3}, \lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=1$,

$$
\begin{gathered}
H_{\mathbb{Q 8}}(7)=\left\langle g_{1}, g_{2}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=h_{o}^{4}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}, \\
\left.h_{o} g_{1} h_{o}^{-1}=-g_{1}, \quad h_{o} g_{2} h_{o}^{-1}=-g_{2}\right\rangle
\end{gathered}
$$

is of order 32 with $R=\mathbb{Z}[i], \lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{4}}$,

$$
\begin{gathered}
H_{\mathbb{Q} 8}(8)=\left\langle g_{1}, g_{2}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=h_{o}^{4}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}, \\
\left.h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{2} h_{o}^{-1}=g_{1}\right\rangle
\end{gathered}
$$

is of order 32 with $R=\mathbb{Z}[i], \lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{p i i}{4}}$,

$$
\begin{gathered}
H_{\mathbb{Q} 8}(9)=\left\langle g_{1}, g_{2}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad h_{o}^{4}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}, \\
\left.h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{1} h_{0}^{-1}=g_{2}\right\rangle
\end{gathered}
$$

is of order 32 with $R=\mathbb{Z}[i], \lambda_{1}\left(h_{o}\right)=i, \lambda_{2}\left(h_{o}\right)=1$.
There exist subgroups

$$
H_{\mathbb{Q} 8}(1), \quad H_{\mathbb{Q} 8}(2), \quad H_{\mathbb{Q} 8}(9)<G L(2, \mathbb{Z}[i]), \quad \mathbb{Q} 8(5)<G L\left(2, \mathcal{O}_{-3}\right),
$$

as well as subgroups

$$
\begin{gathered}
H_{\mathbb{Q} 8}^{o}(4)<G L(2, \mathbb{Q}(\sqrt{-2})), \quad H_{\mathbb{Q} 8}^{o}(6)<G L(2, \mathbb{Q}(\sqrt{-3})), \\
H_{\mathbb{Q} 8}^{o}(3), \quad H_{\mathbb{Q} 8}^{o}(7), \quad H_{\mathbb{Q} 8}^{o}(8)<G L(2, \mathbb{Q}(\sqrt{2}, i)),
\end{gathered}
$$

such that $H_{\mathbb{Q} 8}^{o}(j) \simeq H_{\mathbb{Q} 8}(j)$ for $j \in\{3,4,6,7,8\}$.

Proof. According to Lemmas 26 and 27, the group $H=\left\langle g_{1}, g_{2}\right\rangle\left\langle h_{o}\right\rangle$ with $\operatorname{det}(H)=$ $\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle \simeq \mathbb{C}_{s}$ is completely determined by the order r of h_{o} and the elements $x_{j}=h_{o} g_{j} h_{o}^{-1} \in\left\langle g_{1}, g_{2}\right\rangle, 1 \leq j \leq 2$ of order 4. Bearing in mind that $\left\langle g_{1}, g_{2}\right\rangle^{(4)}=$ $\left\{ \pm g_{1}, \pm g_{2}, \pm g_{1} g_{2}\right\}$, let us split the considerations into Case A with $x_{j} \in\left\{ \pm g_{j}\right\}$ for $1 \leq j \leq 2$, Case B with $h_{o} g_{1} h_{o}^{-1}=g_{2}, h_{o} g_{2} h_{o}^{-1}=\varepsilon g_{1}$ for some $\varepsilon= \pm 1$ and Case C with $h_{o} g_{1} h_{o}^{-1}=g_{2}, h_{o} g_{2} h_{o}^{-1}=\varepsilon g_{1} g_{2}$ for some $\varepsilon= \pm 1$.

In the case A, let us distinguish between Case A1 with $x_{j}=h_{o} g_{j} h_{o}^{-1}=g_{j}$ for $\forall 1 \leq j \leq 2$ and Case A2 with $x_{k}=h_{o} g_{k} h_{o}^{-1}=-g_{k}$ for some $k \in\{1,2\}$. Note that if $h_{o} g_{j}=g_{j} h_{o}$ for $\forall 1 \leq j \leq 2$ then $h_{o} \in H$ is a scalar matrix. Indeed, if h_{o} has diagonal form

$$
D_{o}=S^{-1} h_{o} S=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

for some $S \in G L\left(2, \mathbb{Q}\left(\sqrt{-d}, \lambda_{1}\right)\right)$ and

$$
\begin{gather*}
D_{j}=S^{-1} g_{j} S=\left(\begin{array}{rr}
a_{j} & b_{j} \\
c_{j} & -a_{j}
\end{array}\right) \in S L\left(2, \mathbb{Q}\left(\sqrt{-d}, \lambda_{1}\right)\right) \text { for } 1 \leq j \leq 2 \text { then } \\
D_{o} D_{j} D_{o}^{-1}=\left(\begin{array}{cc}
a_{j} & \frac{\lambda_{1}}{\lambda_{2}} b_{j} \\
\frac{\lambda_{2}}{\lambda_{1}} c_{j} & -a_{j}
\end{array}\right) \tag{14}
\end{gather*}
$$

coincides with D_{j} if and only if

$$
\left\lvert\, \begin{aligned}
& \left(\frac{\lambda_{1}}{\lambda_{2}}-1\right) b_{j}=0 \\
& \left(\frac{\lambda_{2}}{\lambda_{1}}-1\right) c_{j}=0
\end{aligned} .\right.
$$

The assumption $\lambda_{1}\left(h_{o}\right)=\lambda_{1} \neq \lambda_{2}=\lambda_{2}\left(h_{o}\right)$ implies $b_{j}=c_{j}=0$ for $\forall 1 \leq j \leq 2$, so that

$$
D_{1}= \pm i\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right) \quad \text { and } \quad D_{2}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are diagonal. In particular, D_{1} commutes with D_{2}, contrary to $D_{2} D_{1}=-D_{1} D_{2}$. Thus, in the Case A1 with $h_{o} g_{j}=g_{j} h_{o}$ for $\forall 1 \leq j \leq 2$ the matrix $h_{o} \in H$ is to be scalar. By Propositions 16, 17, 18, 19, 20, 21, 22, the scalar matrices $h_{o} \in$ $G L(2, R) \backslash S L(2, R)$ are

$$
\begin{gathered}
h_{o}=i I_{2} \in G L(2, \mathbb{Z}[i]) \quad \text { of order } \quad 4, \\
h_{o}=e^{ \pm \frac{2 \pi i}{3}} I_{2} \in G L(2, \mathbb{Z}[i]) \quad \text { of order } 3 \text { and } \\
h_{o}=e^{ \pm \frac{\pi i}{3}} I_{2} \in G L(2, \mathbb{Z}[i]) \quad \text { of order } 6 .
\end{gathered}
$$

For any subgroup

$$
\mathbb{Q}_{8} \simeq\left\langle g_{1}, g_{2} \mid g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}\right\rangle<S L(2, \mathbb{Z}[i])
$$

one obtains a group

$$
H_{Q 8}(1)=\left\langle g_{1}, g_{2}, i I_{2} \quad \mid g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}\right\rangle<G L(2, \mathbb{Z}[i])
$$

of order 16. As far as $-I_{2} \in H \cap S L(2, R)$, the group H contains $e^{\frac{2 \pi i}{3}} I_{2}$ if and only if it contains $-e^{\frac{2 \pi i}{3}} I_{2}=e^{-\frac{\pi i}{3}} I_{2}$. Since $\left\langle g_{1}, g_{2}\right\rangle \cap\left\langle e^{\frac{2 \pi i}{3}} I_{2}\right\rangle=\left\{I_{2}\right\}$, any finite group H with $e^{\frac{2 \pi i}{3}} I_{2} \in H$ is a subgroup of $G L\left(, \mathcal{O}_{-3}\right)$ of the form

$$
H_{Q 8}(5)=\left\langle g_{1}, g_{2}\right\rangle \times\left\langle e^{\frac{2 \pi i}{2}} I_{2}\right\rangle \simeq \mathbb{Q}_{8} \times \mathbb{C}_{3} .
$$

These deplete $H=[H \cap S L(2, R)]\left\langle h_{o}\right\rangle=\left\langle g_{1}, g_{2}\right\rangle\left\langle h_{o}\right\rangle \simeq \mathbb{Q}_{8} \mathbb{C}_{s}$ of Case A1.
In the Case A2, one can assume that $h_{o} g_{1} h_{o}^{-1}=-g_{1}$. If $h_{o} g_{2} h_{o}=g_{2}$ then $h_{o}\left(g_{1} g_{2}\right) h_{o}^{-1}=-g_{1} g_{2}$, so that there is no loss of generality in supposing $h_{o} g_{2} h_{o}^{-1}=-g_{2}$. By Lemma 33(iv), $h_{o} g_{1} h_{o}^{-1}=-g_{1}$ requires $\lambda_{1}\left(h_{o}\right)=i e^{\frac{\pi i}{s}}, \lambda\left(h_{o}\right)=-i e^{\frac{\pi i}{s}}$, whereas $\frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}+1=\frac{\lambda_{2}\left(h_{o}\right)}{\lambda_{1}\left(h_{o}\right)}+1=0$. If

$$
D_{o}=S^{-1} h_{o} S=\left(\begin{array}{rr}
i e^{\frac{\pi i}{s}} & 0 \\
0 & -i e^{\frac{\pi i}{s}}
\end{array}\right) \in G L\left(2, \mathbb{Q}\left(\sqrt{-d}, i e^{\frac{\pi i}{s}}\right)\right)
$$

is a diagonal form of $h_{o} \in H$ and

$$
D_{j}=S^{-1} g_{j} S=\left(\begin{array}{rr}
a_{j} & b_{j} \\
c_{j} & -a_{j}
\end{array}\right) \in G L\left(2, \mathbb{Q}\left(\sqrt{-d}, i e^{\frac{\pi i}{s}}\right)\right) \quad \text { for } \quad 1 \leq j \leq 2,
$$

then $D_{o} D_{j} D_{o}^{-1}=-D_{j}$ for $1 \leq j \leq 2$ is equivalent to $a_{1}=a_{2}=0$. As a result, $b_{j} \neq 0$ and $c_{j}=-\frac{1}{b_{j}}$. Straightforwardly, $D_{2} D_{1}=-D_{1} D_{2}$ amounts to $2 a_{1} a_{2}+b_{1} c_{2}+b_{2} c_{1}=0$, whereas $\frac{b_{2}}{b_{1}}+\frac{b_{1}}{b_{2}}=0$. Denoting $\beta:=\frac{b_{2}}{b_{1}} \in \mathbb{Q}\left(\sqrt{-d}, i e^{\frac{\pi i}{s}}\right)$, one computes that $\beta= \pm i \in$ $\mathbb{Q}\left(\sqrt{-d}, i e^{\frac{\pi i}{s}}\right)$. Then by Lemma 28 there follows $s=2$ with $d=1$ or $s=4$. For $s=2$ one has $\lambda_{1}\left(h_{o}\right)=-1, \lambda_{2}\left(h_{o}\right)=1$, so that $h_{o} \in H$ is of order 2 and

$$
\begin{gathered}
H=H_{Q 8}(2)=\left\langle g_{1}, g_{2}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad h_{o}^{2}=I_{2} \\
\left.g_{2} g_{1}=-g_{1} g_{2}, \quad h_{o} g_{1} h_{o}^{-1}=-g_{1}, \quad h_{o} g_{2} h_{o}^{-1}=-g_{2}\right\rangle
\end{gathered}
$$

is a subgroup of $G L\left(2, R_{-1, f}\right)$ of order 16. Note that

$$
h_{o}=\left(\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right), \quad g_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad g_{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

generate a subgroup of $G L(2, \mathbb{Z}[i])$, isomorphic to $H_{Q 8}(2)$. In the case of $s=4$, the element $h_{o} \in H$ with eigenvalues $\lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{4}}$ is of order 8 and

$$
\begin{aligned}
H=H_{Q 8}(7)= & \left\langle g_{1}, g_{2}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=h_{o}^{4}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2} \\
& \left.h_{o} g_{1} h_{o}^{-1}=-g_{1}, \quad h_{o} g_{2} h_{o}^{-1}=-g_{2}\right\rangle
\end{aligned}
$$

is a subgroup of $G L(2, \mathbb{Z}[] i)$ of order 32 . The matrices

$$
D_{o}=\left(\begin{array}{rr}
e^{\frac{3 \pi i}{4}} & 0 \\
0 & e^{-\frac{\pi i}{4}}
\end{array}\right), \quad D_{1}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \quad D_{2}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

generate a subgroup $H_{Q 8}^{o}(7)$ of $G L(2, \mathbb{Q}(\sqrt{2}, i))$, isomorphic to $H_{Q 8}(7)$. That concludes the Case A.

In the Case B, let us observe that $h_{o} g_{1} h_{o}^{-1}=g_{2}$ and $h_{o} g_{2} h_{o}^{-1}=\varepsilon g_{1}$ imply $h_{o}^{2} g_{1} h_{o}^{-2}=$ εg_{1} and $h_{o}^{2} g_{2} h_{o}^{-2}=\varepsilon g_{2}$. If $h_{o}^{2} \in H \cap S L(2, R)$ then $\operatorname{det}\left(h_{o}\right)=\lambda_{1}\left(h_{o}\right) \lambda_{2}\left(h_{o}\right)=-1$. The matrices

$$
D_{o}=S^{-1} h_{o} S=\left(\begin{array}{cc}
\lambda_{1}\left(h_{o}\right) & 0 \\
0 & \lambda_{2}\left(h_{o}\right)
\end{array}\right) \quad \text { and } \quad D_{j}=S^{-1} g_{j} S=\left(\begin{array}{cc}
a_{j} & b_{j} \\
c_{j} & -a_{j}
\end{array}\right)
$$

with $a_{j}^{2}+b_{j} c_{j}=-1,2 a_{1} a_{2}+b_{1} c_{2}+b_{2} c_{1}=0$ satisfy $D_{o} D_{1} D_{o}^{-1}=D_{2}$ if and only if

$$
D_{2}=\left(\begin{array}{rr}
a_{1} & -\lambda_{1}^{2}\left(h_{o}\right) b_{1} \\
-\frac{c_{1}}{\lambda_{1}^{2}\left(h_{o}\right)} & -a_{1}
\end{array}\right)
$$

Then $D_{o} D_{2} D_{o}^{-1}=\varepsilon D_{1}$ is equivalent to

$$
\left\lvert\, \begin{gathered}
(\varepsilon-1) a_{1}=0 \\
\left(\varepsilon-\lambda_{1}^{4}\left(h_{o}\right)\right) b_{1}=0 \\
\left(\varepsilon-\frac{1}{\lambda_{1}^{4}\left(h_{o}\right)}\right) c_{1}=0
\end{gathered} .\right.
$$

According to $\operatorname{det}\left(D_{1}\right)=1 \neq 0$, there follows $(\varepsilon-1)\left(\varepsilon-\lambda_{1}^{4}\left(h_{o}\right)\right)=0$. In the case of $-1=\varepsilon=\lambda_{1}^{4}\left(h_{o}\right)$, Proposition 16 implies that $R=\mathcal{O}_{-2}, h_{o}$ is of order 8 and

$$
D_{o}=S^{-1} h_{o} S=\left(\begin{array}{cc}
e^{\frac{\pi i}{4}} & 0 \\
0 & e^{\frac{3 \pi i}{4}}
\end{array}\right) \in G L(2, \mathbb{Q}(\sqrt{2}, i)) .
$$

Moreover,

$$
D_{1}=\left(\begin{array}{rr}
0 & b_{1} \\
-\frac{1}{b_{1}} & 0
\end{array}\right), \quad D_{2}=\left(\begin{array}{rr}
0 & -i b_{1} \\
-\frac{i}{b_{1}} & 0
\end{array}\right),
$$

so that the subgroup

$$
\begin{gathered}
H_{Q 8}(3)=\left\langle g_{1}, g_{2}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=h_{o}^{4}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}, \\
\left.h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{2} h_{o}^{-1}=-g_{1}\right\rangle<G L\left(2, \mathcal{O}_{-2}\right)
\end{gathered}
$$

of order 16 is conjugate to the subgroup

$$
H_{Q 8}^{o}(3)=\left\langle D_{o}=\left(\begin{array}{rr}
e^{\frac{\pi i}{4}} & 0 \\
0 & e^{\frac{3 \pi i}{4}}
\end{array}\right), \quad D_{1}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right),\right.
$$

$$
\left.D_{2}=\left(\begin{array}{rr}
0 & -i \\
-i & 0
\end{array}\right)\right\rangle<G L(2, \mathbb{Q}(\sqrt{2}, i)) .
$$

For $\varepsilon=1$ and $\lambda_{1}^{4}\left(h_{o}\right) \neq 1$ there follows

$$
D_{2}=D_{1}= \pm\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right)
$$

which contradicts $D_{2} D_{1}=-D_{1} D_{2}$. Therefore $\varepsilon=1$ implies $\lambda_{1}^{4}\left(h_{o}\right)=1$ and

$$
D_{o}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

is of order 2 , since all $h_{o} \in H$ of order 4 with $\operatorname{det}\left(h_{o}\right)=-1$ are scalar matrices and commute with g_{1}, g_{2}. In such a way, one obtains the group

$$
\begin{gathered}
H_{Q 8}(4)=\left\langle g_{1}, g_{2}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad h_{o}^{2}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2} \\
\left.h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{2} h_{o}^{-1}=g_{1}\right\rangle
\end{gathered}
$$

of order 16. The matrices

$$
D_{1}=\left(\begin{array}{rr}
a_{1} & b_{1} \\
c_{1} & -a_{1}
\end{array}\right) \quad \text { and } \quad D_{2}=\left(\begin{array}{rr}
a_{1} & -b_{1} \\
-c_{1} & -a_{1}
\end{array}\right)
$$

generate a subgroup of $G L(2, \mathbb{Q}(\sqrt{-d}))$, isomorphic to \mathbb{Q}_{8} exactly when $a_{1}= \pm \frac{\sqrt{-2}}{2} \in$ $\mathbb{Q}(\sqrt{-d})$ and $c_{1}=-\frac{1}{b_{1}}$ for some $b_{1} \in \mathbb{Q}(\sqrt{-d})^{*}$. Therefore $H_{Q 8}(4)$ occurs only as a subgroup of $G L\left(2, R_{-2, f}\right)$ and

$$
D_{o}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad D_{1}=\left(\begin{array}{rr}
\frac{\sqrt{-2}}{2} & 1 \\
-\frac{1}{2} & -\frac{\sqrt{-2}}{2}
\end{array}\right), \quad D_{2}=\left(\begin{array}{rr}
\frac{\sqrt{-2}}{2} & -1 \\
\frac{1}{2} & -\frac{\sqrt{-2}}{2}
\end{array}\right)
$$

generate a subgroup $H_{Q 8}^{o}(4)$ of $G L(2, \mathbb{Q}(\sqrt{-2}))$, isomorphic to $H_{Q 8}(4)$. That concludes the Case B with $h_{o}^{2} \in H \cap S L(2, R)$.

Let us suppose that $h_{o} g_{1} h_{o}^{-1}=g_{2}, h_{o} g_{2} h_{o}^{-1}=\varepsilon g_{1}$ with $\operatorname{det}\left(h_{o}\right) \in R^{*}$ of order $s>2$. Note that $h_{o}^{s} \in H \cap S L(2, R)=\left\langle g_{1}, g_{2}\right\rangle$ implies $h_{o}^{s} g_{j} h_{o}^{-s} \in\left\{ \pm g_{j}\right\}$ for $\forall 1 \leq j \leq 2$, so that $s \in\{4,6\}$ has to be an even natural number. The group

$$
\begin{gathered}
H^{\prime}=\left\langle g_{1}, g_{2}, h_{o}^{2}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad h_{o}^{r}=I_{2}, g_{2} g_{1}=-g_{1} g_{2}, \\
\left.h_{o}^{2} g_{1} h_{o}^{-2}=\varepsilon g_{1}, \quad h_{o}^{2} g_{2} h_{o}^{-2}=\varepsilon g_{2}\right\rangle
\end{gathered}
$$

with $h_{o}^{2} \in G L(2, R) \backslash S L(2, R), H^{\prime} \cap S L(2, R)=\left\langle g_{1}, g_{2}\right\rangle \simeq \mathbb{Q}_{8}$ is of order $8 \frac{s}{2} \in\{16,24\}$ and satisfies the assumptions of Case A. Thus, for $\varepsilon=1$ one has $h_{o}^{2}=i I_{2}$ or $h_{o}^{2}=$ $e^{\frac{2 \pi i}{3}} I_{2}$. If $h_{o}^{2}=i I_{2}$ then $h_{o} \in H$ is of order 8 with $\operatorname{det}\left(h_{o}\right)= \pm i$. Therefore $R=\mathbb{Z}[i]$
and h_{o} has eigenvalues $\lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{4}}$ with $\frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}=\frac{\lambda_{2}\left(h_{o}\right)}{\lambda_{1}\left(h_{o}\right)}=-1$. The relations $D_{o} D_{1} D_{o}^{-1}=D_{2}, D_{o} D_{2} D_{o}^{-1}=D_{1}$ on the diagonal form D_{o} of h_{o} hold for

$$
D_{1}=\left(\begin{array}{rr}
a_{1} & b_{1} \\
c_{1} & -a_{1}
\end{array}\right), \quad D_{2}=\left(\begin{array}{rr}
a_{1} & -b_{1} \\
-c_{1} & -a_{1}
\end{array}\right) \in S L(2, \mathbb{Q}(\sqrt{2}, i)) .
$$

The group $\left\langle D_{1}, D_{2}\right\rangle$ is isomorphic to \mathbb{Q}_{8} if and only if $a_{1}= \pm \frac{\sqrt{-2}}{2}$ and $c_{1}=-\frac{1}{b_{1}}$ for some $b_{1} \in \mathbb{Q}(\sqrt{2}, i)$. In such a way, one obtains the group

$$
\begin{gathered}
H_{Q 8}(8)=\left\langle g_{1}, g_{2}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=h_{o}^{4}=-I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}, \\
\left.h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{2} h_{o}^{-1}=g_{1}\right\rangle
\end{gathered}
$$

for $R=\mathbb{Z}[i]$. Note that $H_{Q 8}(8)$ is of order 32 and has a conjugate $H_{Q 8}^{o}(8)=$ $\left\langle D_{1}, D_{2}, D_{o}\right\rangle<G L(2, \mathbb{Q}(\sqrt{2}, i))$. If $h_{o}^{2}=e^{\frac{2 \pi i}{3}} I_{2}$ then $R=\mathcal{O}_{-3}$ and $h_{o} \in H$ is of order 6 with $\operatorname{det}\left(h_{o}\right)=e^{ \pm \frac{2 \pi i}{3}}$. According to $h_{o} g_{1} h_{o}^{-1}=g_{2} \neq g_{1}, h_{o}$ is not a scalar matrix, so that $\lambda_{1}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}, \lambda_{2}\left(h_{o}\right)=-1$ for $\operatorname{det}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}$. Now, $D_{o} D_{1} D_{o}^{-1}=D_{2}$ is tantamount to

$$
D_{2}=\left(\begin{array}{cc}
a_{1} & e^{\frac{2 \pi i}{3}} b_{1} \\
e^{-\frac{2 \pi i}{3}} c_{1} & -a_{1}
\end{array}\right)
$$

and $D_{o} D_{2} D_{o}^{-1}=D_{1}$ reduces to

$$
\left\lvert\, \begin{gathered}
\left(1-e^{-\frac{2 \pi i}{3}}\right) b_{1}=0 \\
\left(1-e^{\frac{2 \pi i}{3}}\right) c_{1}=0
\end{gathered} .\right.
$$

As a result, $b_{1}=c_{1}$ and

$$
D_{1}=D_{2}= \pm\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right)
$$

commute with each other. Thus, there is no group H of Case B with $h_{o}^{2}=e^{\frac{2 \pi i}{3}} I_{2}$. If $h_{o} g_{1} h_{o}^{-1}=g_{2}, h_{o} g_{2} h_{o}^{-1}=-g_{1}$ and $h_{o}^{2} \notin\left\langle g_{1}, g_{2}\right\rangle$ then

$$
\begin{gathered}
H^{\prime}=\left\langle g_{1}, g_{2}, h_{o}^{2}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad h_{o}^{r}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}, \\
\left.h_{o}^{2} g_{1} h_{o}^{-2}=-g_{1}, \quad h_{o}^{2} g_{2} h_{o}^{-2}=-g_{2}\right\rangle
\end{gathered}
$$

is isomorphic to $H_{Q 8}(2)$ or $H_{Q 8}(7)$, according to the considerations for Case A. More precisely, if $H^{\prime} \simeq H_{Q 8}(2)$ then h_{o} of order 4 has $\operatorname{det}\left(h_{o}\right)= \pm i$ and $R=\mathbb{Z}[i]$. Due to $-I_{2} \in\left\langle g_{1}, g_{2}\right\rangle$, one can assume that

$$
D_{o}=\left(\begin{array}{cc}
i & 0 \\
0 & 1
\end{array}\right)
$$

Then $D_{o} D_{1} D_{o}^{-1}=D_{2}$ requires

$$
D_{2}=\left(\begin{array}{rr}
a_{1} & i b_{1} \\
-i c_{1} & -a_{1}
\end{array}\right)
$$

so that $D_{o} D_{2} D_{o}^{-1}=-D_{1}$ results in $a_{1}=0$. Bearing in mind that $\operatorname{det}\left(D_{1}\right)=$ $\operatorname{det}\left(D_{2}\right)=1$, one concludes that

$$
D_{1}=\left(\begin{array}{rr}
0 & b_{1} \\
-\frac{1}{b_{1}} & 0
\end{array}\right), \quad D_{2}=\left(\begin{array}{rr}
0 & i b_{1} \\
\frac{i}{b_{1}} & 0
\end{array}\right) .
$$

For $b_{1}=1$, one obtains a subgroup $\left\langle D_{1}, D_{2}, D_{o}\right\rangle$ of $G L(2, \mathbb{Z}[i])$, isomorphic to

$$
\begin{gathered}
H_{Q 8}(9)=\left\langle g_{1}, g_{2}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad h_{o}^{4}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}, \\
\left.h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{2} h_{o}^{-1}=-g_{1}\right\rangle<G L(2, \mathbb{Z}[i]) .
\end{gathered}
$$

Since $\operatorname{det}\left(h_{o}\right)=i$ is of order $s=4$, the group $H_{Q 8}(9)$ is of order 32. If $H^{\prime}=$ $\left\langle g_{1}, g_{2}, h_{o}^{2}\right\rangle \simeq H_{Q 8}(7)$ then $h_{o} \in H$ is to be of order 16, since h_{o}^{2} is of order 8. The lack of $h_{o} \in G L(2, R)$ of order 16 reveals that the groups $H_{Q 8}(3), H_{Q 8}(4), H_{Q 8}(8), H_{Q 8}(9)$ deplete Case B.

There remains to be considered Case C with $h_{o} g_{1} h_{o}^{-1}=g_{2}, h_{o} g_{2} h_{o}^{-1}=\varepsilon g_{1} g_{2}$, $h_{o}\left(g_{1} g_{2}\right) h_{o}^{-1}=\varepsilon g_{1}$ for some $\varepsilon= \pm 1$. Note that $h_{o}^{2} g_{1} h_{o}^{-2}=\varepsilon g_{1} g_{2}, h_{o}^{2} g_{2} h_{o}^{-2}=g_{1}$, $h_{o}^{3} g_{1} h_{o}^{-3}=g_{1}, h_{o}^{3} g_{2} h_{o}^{-3}=g_{2}$ require the divisibility of s by 3 , as far as $\left\langle g_{j}\right\rangle$ are normal subgroups of $\left\langle g_{1}, g_{2}\right\rangle$ and $h_{o}^{s} \in\left\langle g_{1}, g_{2}\right\rangle$. In other words, $s \in\{3,6\}$ and $R=$ \mathcal{O}_{-3}. The non-scalar matrices $h_{o} \in G L\left(2, \mathcal{O}_{-3}\right)$ with $\operatorname{det}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}$ have eigenvalues $\left\{\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)\right\}=\left\{e^{\frac{2 \pi i}{3}}, 1\right\},\left\{e^{-\frac{\pi i}{3}},-1\right\}$ or $\left\{e^{\frac{5 \pi i}{6}}, e^{-\frac{\pi i}{6}}\right\}$. If h_{o} is of order 3 or 6 then $\frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}=e^{\frac{2 \pi i}{3}}$ and $D_{o} D_{1} D_{o}^{-1}=D_{2}$ specifies that

$$
D_{2}=\left(\begin{array}{rr}
a_{1} & e^{\frac{2 \pi i}{3}} b_{1} \\
e^{-\frac{2 \pi i}{3}} c_{1} & -a_{1}
\end{array}\right) .
$$

Now, $2 a_{1} a_{2}+b_{1} c_{2}+b_{2} c_{1}=0$ reduces to $2 a_{1}^{2}=b_{1} c_{1}$ and $a_{1}^{2}+b_{1} c_{1}=-1$ requires $a_{1}= \pm \frac{-3}{3}, c_{1}=-\frac{2}{3 b_{1}}$ for some $b_{1} \in \mathbb{Q}(\sqrt{-3})^{*}$. Replacing, eventually, D_{j} by D_{j}^{3}, one has

$$
D_{1}=\left(\begin{array}{rr}
\frac{\sqrt{-3}}{3} & b_{1} \\
-\frac{2}{3 b_{1}} & -\frac{\sqrt{-3}}{3}
\end{array}\right), \quad D_{2}=\left(\begin{array}{rr}
\frac{\sqrt{-3}}{3} & e^{\frac{2 \pi i}{3}} b_{1} \\
-\frac{2 e^{-\frac{2 \pi i}{3}}}{3 b_{1}} & -\frac{\sqrt{-3}}{3}
\end{array}\right) .
$$

Now,

$$
D_{1} D_{2}=\left(\begin{array}{rr}
\frac{\sqrt{-3}}{3} & e^{-\frac{2 \pi i}{3}} b_{1} \\
-\frac{2 e^{\frac{2 \pi i}{3}}}{3 b_{1}} & -\frac{\sqrt{-3}}{3}
\end{array}\right)
$$

and $D_{o} D_{2} D_{o}^{-1}=\varepsilon D_{1} D_{2}$ holds for $\varepsilon=1$. Thus,

$$
H_{Q 8}^{o}(6)=\left\langle D_{1}, D_{2}, D_{o}\right\rangle<G L(2, \mathbb{Q}(\sqrt{-3}))
$$

is conjugate to

$$
\begin{gathered}
H_{Q 8}(6)=\left\langle g_{1}, g_{2}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad h_{o}^{3}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2} \\
\left.h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{2} h_{o}^{-1}=g_{1} g_{2}\right\rangle<G L\left(2, \mathcal{O}_{-3}\right)
\end{gathered}
$$

of order 24 with $\lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=1$ or to

$$
\begin{gather*}
H=\left\langle g_{1}, g_{2}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad h_{o}^{3}=-I_{2}, g_{2} g_{1}=-g_{1} g_{2}, \tag{15}\\
\left.h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{2} h_{o}^{-1}=g_{1} g_{2}\right\rangle<G L\left(2, \mathcal{O}_{-3}\right)
\end{gather*}
$$

of order 24 with $\lambda_{1}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}, \lambda_{2}\left(h_{o}\right)=-1$. Due to $-I_{2} \in\left\langle g_{1}, g_{2}\right\rangle$, the presence of $h_{o} \in H$ of order 6 with $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle \simeq \mathbb{C}_{3}$ is equivalent to the existence of $-h_{o} \in H$ of order 3 with $\operatorname{det}(H)=\left\langle\operatorname{det}\left(-h_{o}\right)\right\rangle \simeq \mathbb{C}_{3}$ and H from (15) is isomorphic to $H_{Q 8}(6)$. If h_{o} has diagonal form

$$
D_{o}=\left(\begin{array}{cc}
e^{\frac{5 \pi i}{6}} & 0 \\
0 & e^{-\frac{\pi i}{6}}
\end{array}\right) \in G L(2, \mathbb{Q}(\sqrt{-3}))
$$

of order 12 with $\operatorname{det}\left(D_{o}\right)=e^{\frac{2 \pi i}{3}}, \frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}=\frac{\lambda_{2}\left(h_{o}\right)}{\lambda_{1}\left(h_{o}\right)}=-1$, then $D_{o} D_{1} D_{o}^{-1}=D_{2}$ implies that

$$
D_{2}=\left(\begin{array}{rr}
a_{1} & -b_{1} \\
-c_{1} & a_{1}
\end{array}\right)
$$

with $a_{1}^{2}=b_{1} c_{1}=-\frac{1}{2}$. Therefore, $a_{1}= \pm \frac{\sqrt{-2}}{2} \in G L(2, \mathbb{Q}(\sqrt{-3}))$, which is an absurd. If $h_{o} g_{1} h_{o}^{-1}=g_{2}, h_{o} g_{2} h_{o}^{-1}=\varepsilon g_{1} g_{2}$ and $s=6$ then $h_{o} \in H$ is of order 6 , according to Proposition 19. Now $H^{\prime \prime}=\left\langle g_{1}, g_{2}, h_{o}^{3}\right\rangle<G L(2, R)$ with $h_{o}^{3} \notin\left\langle g_{1}, g_{2}\right\rangle$ is subject to Case A with a scalar matrix $h_{o} \in H$, according to $h_{o}^{3} g_{1} h_{o}^{-3}=g_{1}, h_{o}^{3} g_{2} h_{o}^{-3}=g_{2}$. If $h_{o}^{3}=i I_{2}$ then h_{o} is of order $r=12$. The assumption $h_{o}^{3}=e^{\frac{2 \pi i}{3}} I_{2}$ holds for h_{o} of order $r=9$. Both contradict to $r=6$ and establish that any subgroup $H<G L(2, R)$ with $H \cap S L(2, R) \simeq \mathbb{Q}_{8}$ is isomorphic to $H_{Q 8}(i)$ for some $1 \leq i \leq 9$.

Proposition 39. Let H be a finite subgroup of $G L(2, R)$,

$$
H \cap S L(2, R)=K_{7}=\left\langle g_{1}, g_{4}, \quad g_{1}^{2}=g_{4}^{3}=-I_{2}, \quad g_{1} g_{4} g_{1}^{-1}=g_{4}^{-1}\right\rangle \simeq \mathbb{Q}_{12}
$$

and $h_{o} \in H$ be an element of order r with $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle \simeq \mathbb{C}_{s}$ and eigenvalues $\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)$. Then H is isomorphic to $H_{Q 12}(i)$ for some $1 \leq i \leq 10$, where

$$
H_{Q 12}(1)=\left\langle g_{1}, g_{4}, h_{o}=i I_{2} \quad \mid \quad g_{1}^{2}=g_{4}^{3}=-I_{2}, \quad g_{1} g_{4} g_{1}^{-1}=g_{4}^{-1}\right\rangle
$$

is of order 24 with $R-\mathbb{Z}[i]$,

$$
\begin{gathered}
H_{Q 12}(2)=\left\langle g_{1}, g_{4}, h_{o}\right| g_{1}^{2}=g_{4}^{3}=-I_{2}, \quad h_{o}^{6}=I_{2}, \quad g_{1} g_{4} g_{1}^{-1}=g_{4}^{-1} \\
\left.h_{o} g_{1} h_{o}^{-1}=g_{1} g_{4}, \quad h_{o} g_{4} h_{o}^{-1}=g_{4}\right\rangle
\end{gathered}
$$

of order 24, with $R=\mathcal{O}_{-3}, \lambda_{1}\left(h_{o}\right)=e^{\frac{\pi i}{3}}, \lambda_{2}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}$,

$$
\begin{gathered}
H_{Q 12}(3)=\left\langle g_{1}, g_{4}, h_{o}\right| g_{1}^{2}=g_{4}^{3}=h_{o}^{6}=-I_{2}, g_{1} g_{4} g_{1}^{-1}=g_{4}^{-1}, \\
\left.h_{o} g_{1} h_{o}^{-1}=g_{1} g_{4}^{2}, \quad h_{o} g_{4} h_{o}^{-1}=g_{4}\right\rangle
\end{gathered}
$$

is of order 24 with $R=\mathcal{O}_{-3}, \lambda_{1}\left(h_{o}\right)=e^{\frac{\pi i}{6}}, \lambda_{2}\left(h_{o}\right)=e^{\frac{5 \pi i}{6}}$,

$$
\begin{gathered}
H_{Q 12}(4)=\left\langle g_{1}, g_{4}, h_{o}\right| g_{1}^{2}=g_{4}^{3}=-I_{2}, \quad h_{o}^{2}=I_{2}, \quad g_{1} g_{4} g_{1}^{-1}=g_{4}^{-1}, \\
\left.h_{o} g_{1} h_{o}^{-1}=-g_{1}, \quad h_{o} g_{4} h_{o}^{-1}=g_{4}\right\rangle
\end{gathered}
$$

is of order 24 with $\lambda_{1}\left(h_{o}\right)=-1, \lambda_{2}\left(h_{o}\right)=1$,

$$
H_{Q 12}(5)=\left\langle g_{1}, g_{4}, \left.h_{o}=e^{\frac{2 \pi i}{3}} I_{2} \quad \right\rvert\, \quad g_{1}^{2}=g_{4}^{3}=-I_{2}, \quad g_{1} g_{4} g_{1}^{-1}=g_{4}^{-1}\right\rangle
$$

is of order 36 with $R=\mathcal{O}_{-3}$,

$$
\begin{gathered}
H_{Q 12}(6)=\left\langle g_{1}, g_{4}, h_{o}\right| g_{1}^{2}=g_{4}^{3}=-I_{2}, \quad h_{o}^{3}=I_{2}, \quad g_{1} g_{4} g_{1}^{-1}=g_{4}^{-1}, \\
\left.h_{o} g_{1} h_{o}^{-1} g_{1} g_{4}^{2}, \quad h_{o} g_{4} h_{o}^{-1}=g_{4}\right\rangle
\end{gathered}
$$

is of order 36 with $R=\mathcal{O}_{-3}, \lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=1$,

$$
\begin{gathered}
H_{Q 12}(7)=\left\langle g_{1}, g_{4}, h_{o}\right| g_{1}^{2}=g_{4}^{3}=h_{o}^{6}=-I_{2}, \quad g_{1} g_{4} g_{1}^{-1}=g_{4}^{-1}, \\
\left.h_{o} g_{1} h_{o}^{-1}=-g_{1}, \quad h_{o} g_{4} h_{o}^{-1}=g_{4}\right\rangle
\end{gathered}
$$

is of order 36 with $R=\mathcal{O}_{-3}, \lambda_{1}\left(h_{o}\right)=e^{-\frac{\pi i}{6}}, \lambda_{2}\left(h_{o}\right)=e^{\frac{5 \pi i}{6}}$,

$$
\begin{gathered}
H_{Q 12}(8)=\left\langle g_{1}, g_{4}, h_{o}\right| g_{1}^{2}=g_{4}^{3}=h_{o}^{4}=-I_{2}, \quad g_{1} g_{4} g_{1}^{-1}=g_{4}^{-1}, \\
\left.h_{o} g_{1} h_{o}^{-1}=-g_{1}, \quad h_{o} g_{4} h_{o}^{-1}=g_{4}\right\rangle
\end{gathered}
$$

is of order 48 with $R=\mathbb{Z}[i], \lambda_{1}\left(h_{o}\right)=e^{\frac{3 p i i}{4}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{4}}$,

$$
\begin{gathered}
H_{Q 12}(9)=\left\langle g_{1}, g_{4}, h_{o}\right| g_{1}^{2}=g_{4}^{3}=-I_{2}, \quad h_{o}^{6}=I_{2}, \quad g_{1} g_{4} g_{1}^{-1}=g_{4}^{-1}, \\
\left.h_{o} g_{1} h_{o}^{-1}=g_{1} g_{4}, \quad h_{o} g_{4} h_{o}^{-1}=g_{4}\right\rangle
\end{gathered}
$$

is of order 72 with $R=\mathcal{O}_{-3}, \lambda_{1}\left(h_{o}\right)=1, \lambda_{2}\left(h_{o}\right)=e^{\frac{\pi i}{3}}$,

$$
H_{Q 12}(10)=\left\langle g_{1}, g_{4}, h_{o}\right| g_{1}^{2}=g_{4}^{3}=-I_{2}, \quad h_{o}^{6}=I_{2}, \quad g_{1} g_{4} g_{1}^{-1}=g_{4}^{-1}
$$

$$
\left.h_{o} g_{1} h_{o}^{-1}=-g_{1}, \quad h_{o} g_{4} h_{o}^{-1}=g_{4}\right\rangle
$$

is of order 72 with $R=\mathcal{O}_{-3}, \lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}$.
There exist subgroups

$$
H_{Q 12}(2), H_{Q 12}(4), H_{Q 12}(5), H_{Q 12}(6), H_{Q 12}(9), H_{Q 12}(10)<G L\left(2, \mathcal{O}_{-3}\right)
$$

as well as subgroups

$$
H_{Q 12}^{o}(1), H_{Q 12}^{o}(3), H_{Q 12}^{o}(7)<G L(2, \mathbb{Q}(\sqrt{3}, i)), \quad H_{Q 12}^{o}(8)<G L(2, \mathbb{Q}(\sqrt{2}, \sqrt{3}, i))
$$

with $H_{Q 12}^{o}(j) \simeq H_{Q 12}(j)$ for $j \in\{1,3,7,8\}$.
Proof. According to Lemma 27, the groups $H=K_{7}\left\langle h_{o}\right\rangle$ with $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle \simeq$ \mathbb{C}_{s} are determined up to an isomorphism by the order r of h_{o}, the element $h_{o} g_{1} h_{o}^{-1} \in$ K_{7} of order 4 and the element $h_{o} g_{4} h_{o}^{-1} \in K_{7}$ of order 6 . Let us denote by $K_{7}^{(m)}$ the set of the elements of K_{7} of order m. Straightforwardly,

$$
K_{7}^{(6)}=\left\{g_{4}, g_{4}^{-1}\right\}, \quad K_{7}^{(4)}=\left\{ \pm g_{1} g_{4} \mid 0 \leq i \leq 3\right\}
$$

Inverting $g_{1} g_{4} g_{1}^{-1}=g_{4}^{-1}$, one obtains $g_{1} g_{4}^{-1} g_{1}^{-1}=g_{4}$. If $h_{o} g_{4} h_{o}^{-1}=g_{4}^{-1}$ then

$$
\left(g_{1} h_{o}\right) g_{4}\left(g_{1} h_{o}^{-1}=g_{1}\left(h_{o} g_{4} h_{o}^{-1}\right) g_{1}^{-1}=g_{1} g_{4}^{-1} g_{1}^{-1}=g_{4}\right.
$$

As far as $K_{7}=\left\langle g_{1}, g_{4}, h_{o}\right\rangle=\left\langle g_{1}, g_{4}, g_{1} h_{o}\right\rangle$, there is no loss of generality in assuming $h_{o} g_{4} h_{o}^{-1}=g_{4}$.

We start the study of H by a realization of K_{7} as a subgroup of the special linear group $S L(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3}))$. Let

$$
D_{4}=S^{-1} g_{4} S=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right)
$$

be a diagonal form of g_{4} for some $S \in G L(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3}))$ and

$$
D_{1}=S^{-1} g_{1} S=\left(\begin{array}{rr}
a_{1} & b_{1} \\
c_{1} & -a_{1}
\end{array}\right) \quad \text { with } \quad a_{1}^{2}+b_{1} c_{1}=-1
$$

Then

$$
D_{1} D_{4} D_{1}^{-1}=\left(\begin{array}{rr}
-\sqrt{-3} a_{1}^{2}+e^{-\frac{\pi i}{3}} & -\sqrt{-3} a_{1} b_{1} \\
-\sqrt{-3} a_{1} c_{1} & \sqrt{-3} a_{1}^{2}+E^{\frac{\pi i}{3}}
\end{array}\right) \in S L(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3}))
$$

coincides with D_{4}^{-1} if and only if

$$
D_{1}=\left(\begin{array}{rr}
0 & b_{1} \\
-b_{1}^{-1} & 0
\end{array}\right) \quad \text { for some } \quad b_{1} \in \mathbb{Q}(\sqrt{-d}, \sqrt{-3})^{*} .
$$

That allows to compute explicitly

$$
\begin{gathered}
K_{7}^{(4)}=\left\{ \pm D_{1}= \pm\left(\begin{array}{rr}
0 & b_{1} \\
-b_{1}^{-1} & 0
\end{array}\right), \pm D_{1} D_{4}= \pm\left(\begin{array}{cc}
0 & e^{-\frac{\pi i}{3}} b_{1} \\
-\left(e^{-\frac{\pi i}{3}} b_{1}\right)^{-1} & 0
\end{array}\right),\right. \\
\left. \pm D_{1} D_{4}^{2}= \pm\left(\begin{array}{cc}
0 & e^{-\frac{2 \pi i}{3}} b_{1} \\
-\left(e^{-\frac{2 \pi i}{3}} b_{1}\right)^{-1} & 0
\end{array}\right)\right\} \\
K_{7}^{(4)}=\left\{\left.D_{1} D_{4}^{j}=\left(\begin{array}{rr}
0 & e^{-\frac{j \pi i}{3}} b_{1} \\
-\left(e^{-\frac{j \pi i}{3}} b_{1}\right)^{-1} & 0
\end{array}\right) \right\rvert\, 0 \leq j \leq 5\right\}
\end{gathered}
$$

Now, $D_{o} D_{4} D_{o}^{-1}=D_{4}$ amounts to

$$
\begin{gathered}
D_{o}=\left(\begin{array}{cc}
\lambda_{1}\left(h_{o}\right) & 0 \\
0 & \lambda_{2}\left(h_{o}\right)
\end{array}\right) \text { and } \\
D_{o} D_{1} D_{o}^{-1}=\left(\begin{array}{cc}
0 & \frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)} b_{1} \\
-\left[\frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)} b_{1}\right]^{-1} & 0
\end{array}\right)=\left(\begin{array}{rr}
0 & e^{-\frac{j \pi i}{3}} b_{1} \\
-\left(e^{-\frac{j \pi i}{3}} b_{1}\right)^{-1} & 0
\end{array}\right)=D_{1} D_{4}^{j}
\end{gathered}
$$

if and only if $\frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}=e^{-\frac{j \pi i}{3}}$. Note that the ratio $\frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}$ of the eigenvalues of h_{o} is determined up to an inversion and

$$
\left\{\left.e^{-\frac{j \pi i}{3}} \right\rvert\, 0 \leq j \leq 5\right\}=\left\{1=e^{0}, \quad e^{\mp \frac{j \pi i}{3}}, \quad-1=e^{\pi i} \mid 1 \leq j \leq 2\right\}
$$

For any $h_{o} \in H$ with $\frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}=e^{\mp \frac{j \pi i}{3}}, 0 \leq j \leq 3$ the group

$$
\begin{gathered}
H=\left\langle g_{1}, g_{4}, h_{o}\right| g_{1}^{2}=g_{4}^{3}=-I_{2}, \quad h_{o}^{r}=I_{2}, \quad g_{1} g_{4} g_{1}^{-1}=g_{4}^{-1}, \\
\left.h_{o} g_{1} h_{o}^{-1}=g_{1} g_{4}^{j}, \quad h_{o} g_{4} h_{o}^{-1}=g_{4}\right\rangle .
\end{gathered}
$$

Note that $\frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}=1$ exactly when $h_{o} \in H \backslash S L(2, R)$ is a scalar matrix. According to Propositions 16, 17, 18, 19, 20, 21, 22, the only scalar matrices $h_{o} \in$ $G L(2, R) \backslash S L(2, R)$ are $h_{o}= \pm i I_{2}$ for $R=\mathbb{Z}[i]$ and $h_{o}=e^{ \pm \frac{2 \pi i}{3}} I_{2}$ or $e^{ \pm \frac{\pi i}{3}} I_{2}$ with $R=\mathcal{O}_{-3}$. Replacing, eventually, $h_{o}=-i I_{2}$ by $h_{o}^{-1}=i I_{2}$, one obtains the group $H_{Q 12}(1)=\left\langle g_{1}, g_{4}, i I_{2}\right\rangle$ with $R=\mathbb{Z}[i]$. Note that $H_{Q 12}^{o}(1)=\left\langle D_{1}, D_{4}, h_{o}=i I_{2}\right\rangle$ is a realization of $H_{Q 12}(1)$ as a subgroup of $G L(2, \mathbb{Q}(\sqrt{3}, i))$. Bearing in mind that $-I_{2} \in K_{7}$, one observes that $e^{-\frac{\pi i}{3}} I_{2} \in H$ if and only if $-e^{-\frac{\pi i}{3}} I_{2}=e^{\frac{2 \pi i}{3}} I_{2} \in H$. Replacing, eventually, $e^{\frac{\pi i}{3}} I_{2}$ and $e^{-\frac{2 \pi i}{3}} I_{2}$ by their inverse matrices, one observes that $h_{o}=e^{\frac{2 \pi i}{3}} I_{2} \in H$ whenever H contains a scalar matrix of order 3 or 6 . That provides the group $H_{Q 12}(5)=\left\langle g_{1}, g_{4}, e^{\frac{2 \pi i}{3}} I_{2}\right\rangle$. Note that

$$
\left\langle D_{1}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \quad D_{4}=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & E^{-\frac{\pi i}{3}}
\end{array}\right), \quad D_{o}=e^{\frac{2 \pi i}{3}} I_{2}\right\rangle<G L\left(2, \mathcal{O}_{-3}\right)
$$

is a realization of $H_{Q 12}(5)$ as a subgroup of $G L\left(2, \mathcal{O}_{-3}\right)$.
For $\frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}=e^{\mp \frac{\pi i}{3}}$, Corollary 29 specifies that either $R=\mathcal{O}_{-3}, s=2, r=6$, $\lambda_{1}\left(h_{o}\right)=e^{\frac{\pi i}{3}}, \lambda_{2}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}$ and $H \simeq H_{Q 12}(2)$ or $R=\mathcal{O}_{-3}, s=6, r=6, \lambda_{1}\left(h_{o}\right)=$ $\varepsilon e^{\frac{\eta \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=\varepsilon$. In the second case, one can restrict to $\varepsilon=1$, due to $-I_{2} \in K_{7} \subset H$. The corresponding group $H \simeq H_{Q 12}(9)$. Both, $H_{Q 12}(2)$ and $H_{Q 12}(9)$ can be realized as subgroups of $G L\left(2, \mathcal{O}_{-3}\right)$, setting

$$
\begin{gathered}
g_{1}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), g_{4}=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right) \\
h_{o}=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{\frac{2 \pi i}{3}}
\end{array}\right) \quad \text { or, respectively, } h_{o}=\left(\begin{array}{cc}
e^{-\frac{\pi i}{3}} & 0 \\
0 & 1
\end{array}\right) .
\end{gathered}
$$

If $\frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}=e^{\mp \frac{2 \pi i}{3}}$ then, eventually, replacing h_{o} by h_{o}^{-1}, one has $\lambda_{1}\left(h_{o}\right)=e^{\frac{\pi i}{6}}$, $\lambda_{2}\left(h_{o}\right)=e^{\frac{5 \pi i}{6}}, s=2, r=12, R=\mathbb{Z}[i]$ and $H \simeq H_{Q 12}(3)$ or $\lambda_{1}\left(h_{o}\right)=\varepsilon, \lambda_{2}\left(h_{o}\right)=\varepsilon e^{\frac{2 \pi i}{3}}$, $s=3, R=\mathcal{O}_{-3}$, by Corollary 29. Note that $-I_{2} \in K_{7} \subset H$ reduces the second case to $\lambda_{1}\left(h_{o}\right)=1, \lambda_{2}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, s=3, r=3, R=\mathcal{O}_{-3}$ and $H \simeq H_{Q 12}(6)$. Note that

$$
g_{1}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \quad g_{4}=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right), \quad h_{o}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{\frac{2 \pi i}{3}}
\end{array}\right)
$$

generate a subgroup of $G L\left(2, \mathcal{O}_{-3}\right)$, isomorphic to $H_{Q 12}(6)$. In the case of $H \simeq$ $H_{Q 12}(3)$ the eigenvalues of h_{o} are primitive twelfth roots of unity, so that

$$
D_{1}=\left(\begin{array}{rr}
0 & b_{1} \\
-b_{1}^{-1} & 0
\end{array}\right), \quad D_{4}=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right), \quad D_{o}=\left(\begin{array}{cc}
e^{\frac{\pi i}{6}} & 0 \\
0 & e^{\frac{5 \pi i}{6}}
\end{array}\right)
$$

generate a subgroup $H_{Q 12}^{o}(3)<G L(2, \mathbb{Q}(\sqrt{3}, i))$, isomorphic to $H_{Q 12}(3)$.
For $\frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}=-1$ there are four non-equivalent possibilities for the eigenvalues $\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)$ of h_{o}. The first one is $\lambda_{1}\left(h_{o}\right)=1, \lambda_{2}\left(h_{o}\right)=-1$ with $s=2, r=2$ for any $R=R_{-d, f}$ and $H \simeq H_{Q 12}(4)$ of order 24. Note that

$$
D_{1}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \quad D_{4}=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right), \quad h_{o}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

realizes $H_{Q 12}(4)$ as a subgroup of $G L\left(2, \mathcal{O}_{-3}\right)$. The second one is $\lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}$, $\lambda_{2}\left(h_{o}\right)=E^{-\frac{\pi i}{4}}$ with $s=4, r=8, R=\mathbb{Z}[i]$ and $H \simeq H_{Q 12}(8)$ of order 48. Observe that

$$
D_{1}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \quad D_{4}=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right), \quad D_{o}=\left(\begin{array}{cc}
e^{\frac{3 \pi i}{4}} & 0 \\
0 & e^{-\frac{\pi i}{4}}
\end{array}\right)
$$

generate a subgroup of $G L(2, \mathbb{Q}(\sqrt{2}, \sqrt{3}, i))$, isomorphic to $H_{Q 12}(8)$. In the third case, $\lambda_{1}\left(h_{o}\right)=e^{-\frac{\pi i}{6}}, \lambda_{2}\left(h_{o}\right)=e^{\frac{5 \pi i}{6}}$ with $s=3, r=12, R=\mathcal{O}_{-3}$ and $H \simeq H_{Q 12}(7)$ of order 36 , realized by

$$
D_{1}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \quad D_{4}=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right), \quad D_{o}=\left(\begin{array}{cc}
e^{-\frac{\pi i}{6}} & 0 \\
0 & e^{\frac{5 \pi i}{6}}
\end{array}\right)
$$

as a subgroup of $G L(2, \mathbb{Q}(\sqrt{3}, i))$. In the fourth case, $\lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{3}}$ with $s=6, r=6, R=\mathcal{O}_{-3}$ and $H \simeq H_{Q 12}(10)$ of order 72. The matrices

$$
g_{1}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \quad g_{4}=\left(\begin{array}{cc}
e^{\frac{\pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right), \quad h_{o}=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & e^{-\frac{\pi i}{3}}
\end{array}\right)
$$

generate a subgroup of $G L\left(2, \mathcal{O}_{-3}\right)$, isomorphic to $H_{Q 12}(10)$. The groups $H_{Q 12}(4)$, $H_{Q 12}(7), H_{Q 12}(8), H_{Q 12}(10)$ with $\frac{\lambda_{1}\left(h_{o}\right)}{\lambda_{2}\left(h_{o}\right)}=-1$ are non-isomorphic, as far as they are of different orders.

Proposition 40. Let H be a finite subgroup of $G L(2, R)$,

$$
\begin{gathered}
H \cap S L(2, R)=K_{8}=\left\langle g_{1}, g_{2}, g_{3}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{3}^{3}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2} \\
\left.g_{3} g_{1} g_{3}^{-1}=g_{2}, \quad g_{3} g_{2} g_{3}^{-1}=g_{1} g_{2}\right\rangle \simeq S L\left(2, \mathbb{F}_{3}\right)
\end{gathered}
$$

and $h_{o} \in H$ be an element of order r with $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle \simeq \mathbb{C}_{s}$ and eigenvalues $\lambda_{1}\left(h_{o}\right), \lambda_{2}\left(h_{o}\right)$. Then H is isomorphic to $H_{S L(2,3)}(i)$ for some $1 \leq i \leq 9$, where

$$
\begin{gathered}
H_{S L(2,3)}(1)=\left\langle g_{1}, g_{2}, g_{3}, i I_{2} \quad\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{3}^{3}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2} \\
\left.g_{3} g_{1} g_{3}^{-1}=g_{2}, \quad g_{3} g_{2} g_{3}^{-1}=g_{1} g_{2},\right\rangle
\end{gathered}
$$

of order 48 with $R=\mathbb{Z}[i]$,

$$
\begin{gathered}
H_{S L(2,3)}(2)=\left\langle g_{1}, g_{2}, g_{3}, h_{o}\right| \quad g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{3}^{3}=I_{2}, \quad h_{o}^{2}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2} \\
\left.g_{3} g_{1} g_{3}^{-1}=g_{2}, \quad g_{3} g_{2} g_{3}^{-1}=g_{1} g_{2}, \quad h_{o} g_{1} h_{o}^{-1}=-g_{1}, \quad h_{o} g_{2} h_{o}^{-1}=-g_{2}, \quad h_{o} g_{3} h_{o}^{-1}=-g_{2} g_{3}\right\rangle
\end{gathered}
$$ of order 48 with $R=\mathbb{Z}[i], \lambda_{1}\left(h_{o}\right)=-1, \lambda_{2}\left(h_{o}\right)=1$,

$$
\begin{aligned}
& H_{S L(2,3)}(3)=\left\langle g_{1}, g_{2}, g_{3}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=h_{o}^{4}=-I_{2}, \quad g_{3}^{3}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}, \\
& \left.g_{3} g_{1} g_{3}^{-1}=g_{2}, \quad g_{3} g_{2} g_{3}^{-1}=g_{1} g_{2}, \quad h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{2} h_{o}^{-1}=-g_{1}, \quad h_{o} g_{3} h_{o}^{-1}=g_{2} g_{3}^{2}\right\rangle \\
& \text { of order } 48 \text { with } R=\mathcal{O}_{-2}, \lambda_{1}\left(h_{o}\right)=e^{\frac{\pi i}{4}}, \lambda_{2}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}} \text {, }
\end{aligned}
$$

$$
H_{S L(2,3)}(4)=\left\langle g_{1}, g_{2}, g_{3}, h_{o} \quad\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{3}^{3}=I_{2}, \quad h_{o}^{2}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}
$$

$$
\left.g_{3} g_{1} g_{3}^{-1}=g_{2}, \quad g_{3} g_{2} g_{3}^{-1}=g_{1} g_{2}, \quad h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{2} h_{o}^{-1}=g_{1}, \quad h_{o} g_{3} h_{o}^{-1}=g_{1} g_{3}^{2}\right\rangle
$$

of order 48 with $R=R_{-2, f}, \lambda_{1}\left(h_{o}\right)=-1, \lambda_{2}\left(h_{o}\right)=1$,

$$
H_{S L(2,3)}(5)=K_{8} \times\left\langle e^{\frac{2 \pi i}{3}} I_{2}\right\rangle \simeq S L\left(2, \mathbb{F}_{3}\right) \times \mathbb{C}_{3}
$$

of order 72 with $R=\mathcal{O}_{-3}$,

$$
\begin{aligned}
& H_{S L(2,3)}(6)=\left\langle g_{1}, g_{2}, g_{3}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{3}^{3}=I_{2}, \quad h_{o}^{3}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}, \\
& \left.g_{3} g_{1} g_{3}^{-1}=g_{2}, \quad g_{3} g_{2} g_{3}^{-1}=g_{1} g_{2}, \quad h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{2} h_{o}^{-1}=g_{1} g_{2}, \quad h_{o} g_{3} h_{o}^{-1}=g_{3}\right\rangle
\end{aligned}
$$ of order 72 with $R=\mathcal{O}_{-3}, \lambda_{1}\left(h_{o}\right)=e^{\frac{2 \pi i}{3}}, \lambda_{2}\left(h_{o}\right)=1$,

$$
H_{S L(2,3)}(7)=\left\langle g_{1}, g_{2}, g_{3}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=h_{o}^{4}=-I_{2}, \quad g_{3}^{3}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}
$$

$$
\left.g_{3} g_{1} g_{3}^{-1}=g_{2}, \quad g_{3} g_{2} g_{3}^{-1}=g_{1} g_{2}, \quad h_{o} g_{1} h_{o}^{-1}=-g_{1}, \quad h_{o} g_{2} h_{o}^{-1}=-g_{2}, \quad h_{o} g_{3} h_{o}^{-1}=-g_{2} g_{3}\right\rangle
$$ of order 96 with $R=\mathbb{Z}[i], \lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{4}}$,

$$
\begin{gathered}
H_{S L(2,3)}(8)=\left\langle g_{1}, g_{2}, g_{3}, h_{o}\right| \quad g_{1}^{2}=g_{2}^{2}=h_{o}^{4}=-I_{2}, \quad g_{3}^{3}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2}^{\prime} \\
\left.g_{3} g_{1} g_{3}^{-1}=g_{2}, \quad g_{3} g_{2} g_{3}^{-1}=g_{1} g_{2}, \quad h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{2} h_{o}^{-1}=g_{1}, \quad h_{o} g_{3} h_{o}^{-1}=g_{1} g_{3}^{2}\right\rangle
\end{gathered}
$$ of order 96 with $R=\mathbb{Z}[i], \lambda_{1}\left(h_{o}\right)=e^{\frac{3 \pi i}{4}}, \lambda_{2}\left(h_{o}\right)=e^{-\frac{\pi i}{4}}$,

$$
\begin{aligned}
& H_{S L(2,3)}(9)=\left\langle g_{1}, g_{2}, g_{3}, h_{o}\right| g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{3}^{3}=I_{2}, \quad h_{o}^{4}=I_{2}, \quad g_{2} g_{1}=-g_{1} g_{2} \\
& \left.g_{3} g_{1} g_{3}^{-1}=g_{2}, \quad g_{3} g_{2} g_{3}^{-1}=g_{1} g_{2}, \quad h_{o} g_{1} h_{o}^{-1}=g_{2}, \quad h_{o} g_{2} h_{o}^{-1}=-g_{1}, \quad h_{o} g_{3} h_{o}^{-1}=g_{2} g_{3}^{2}\right\rangle
\end{aligned}
$$

$$
\text { of order } 96 \text { with } R=\mathbb{Z}[i], \lambda_{1}\left(h_{o}\right)=i, \lambda_{2}\left(h_{o}\right)=1
$$

There exists a subgroup

$$
H_{S L(2,3)}(5)<G L\left(2, \mathcal{O}_{-3}\right),
$$

as well as subgroups

$$
\begin{gathered}
H_{S L(2,3)}^{o}(1), H_{S L(2,3)}^{o}(2), H_{S L(2,3)}^{o}(9)<G L(2, \mathbb{Q}(\sqrt{3}, i)), \\
H_{S L(2,3)}^{o}(4)<G L(2, \mathbb{Q}(\sqrt{-2}, \sqrt{-3})), \\
H_{S L(2,3)}^{o}(3), H_{S L(2,3)}^{o}(7), H_{S L(2,3)}^{o}(8)<G L(2, \mathbb{Q}(\sqrt{2}, \sqrt{3}, i))
\end{gathered}
$$

with $H_{S L(2,3)}^{o}(j) \simeq H_{S L(2,3)}(j)$ for $1^{\prime} \leq j \leq 4$ or $6 \leq j \leq 9$.

Proof. According to Lemma 27, the groups H under consideration are uniquely determined up to an isomorphism by the order r of h_{o} and by the elements $h_{o} g_{j} h_{o}^{-1} \in K_{8}^{(4)}$, $1 \leq j \leq 2, x_{3}:=h_{o} g_{3} h_{o}^{-1} \in K_{8}^{(3)}$. (Throughout, $G^{(\nu)}$ denotes the set of the elements of order ν from a group G.) Recall by Proposition 24 the realization of $K_{8} \simeq S L\left(2, \mathbb{F}_{3}\right)$ as a subgroup \mathcal{K}_{8} of $G L(2, \mathbb{Q}(\sqrt{-d}, \sqrt{-3}))$, generated by the matrices

$$
D_{1}=\left(\begin{array}{cc}
-\frac{\sqrt{-3}}{3} & b_{1} \\
-\frac{2}{3 b_{1}} & \frac{\sqrt{-3}}{3}
\end{array}\right), \quad D_{2}=\left(\begin{array}{cc}
-\frac{\sqrt{-3}}{3} & e^{-\frac{2 \pi i}{3}} b_{1} \\
-\frac{2 e^{\frac{2 \pi i}{3}}}{3 b_{1}} & \frac{\sqrt{-3}}{3}
\end{array}\right), \quad D_{3}=\left(\begin{array}{rr}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & e^{-\frac{2 \pi i}{3}}
\end{array}\right)
$$

with some $b_{1} \in \mathbb{Q}(\sqrt{-d}, \sqrt{-3})^{*}$. After computing

$$
D_{1} D_{2}=\left(\begin{array}{cc}
-\frac{\sqrt{-3}}{3} & e^{-\frac{4 \pi i}{3} b_{1}} \\
-\frac{2 e^{\frac{4 \pi i}{3}}}{3 b_{1}} & \frac{\sqrt{-3}}{3}
\end{array}\right)
$$

one puts

$$
\delta_{j}:=\left(\begin{array}{rr}
-\frac{\sqrt{-3}}{3} & e^{-\frac{2 j \pi i}{3}} b_{1} \\
-\frac{2 e^{\frac{2 j \pi i}{3}}}{3 b_{1}} & \frac{\sqrt{-3}}{3}
\end{array}\right) \quad \text { for } \quad 0 \leq j \leq 2
$$

and observes that $\delta_{0}=D_{1}, \delta_{1}=D_{2}, \delta_{2}=D_{1} D_{2}$. The elements of \mathcal{K}_{8} of order 4 constitute the subset

$$
\mathcal{K}_{8}^{(4)}=\left\{ \pm \delta_{j} \quad \mid 0 \leq j \leq 2\right\} .
$$

In order to list the elements of \mathcal{K}_{8} of order 3, let us note that $D_{3} D_{1} D_{3}^{-1}=D_{2}$ and $D_{3} D_{2} D_{3}^{-1}=D_{1} D_{2}$ imply $D_{3}\left(D_{1} D_{2}\right) D_{3}^{-1}=D_{1}$. Thus, for any even permutation j, l, m of $0,1,2$, one has

$$
\begin{array}{|ll|l}
D_{3} \delta_{j} D_{3}^{-1}=\delta_{l} & & D_{3} \delta_{j}=\delta_{l} D_{3} \tag{16}\\
D_{3} \delta_{l} D_{3}^{-1}=\delta_{m} \\
D_{3} \delta_{m} D_{3}^{-1}=\delta_{j} & \text { or, equivalently, } & D_{3} \delta_{l}=\delta_{m} D_{3} \\
D_{3} \delta_{m}=\delta_{j} D_{3}
\end{array} .
$$

Making use of (16, one computes that

$$
\left(-\delta_{j} D_{3}\right)^{2}=\delta_{m} D_{3}^{2}, \quad\left(-\delta_{j} D_{3}\right)^{3}=\left(-\delta_{j} D_{3}\right)\left(-\delta_{j} D_{3}\right)^{2}=I_{2} \quad \text { for all } \quad 0 \leq j \leq 2,
$$

so that $-\delta_{j} D_{3} \in \mathcal{K}_{8}^{(3)}$. As a result, $\delta_{j} D_{3}^{2}=\left(-\delta_{l} D_{m}\right)^{2} \in \mathcal{K}_{8}^{(3)}$ for all $0 \leq j \leq 2$ and

$$
\mathcal{K}_{8}^{(3)}=\left\{D_{3}, \quad-\delta_{j} D_{3}, \quad D_{3}^{2}, \quad \delta_{j} D_{3}^{2} \mid 0 \leq j \leq 2\right\}
$$

Proposition 24 has established that \mathcal{K}_{8} has a unique Sylow 2-subgroup

$$
\mathcal{H}_{8}=\left\langle\delta_{0}, \delta_{1} \mid \quad \delta_{0}^{2}=\delta_{1}^{2}=-I_{2}, \quad \delta_{1} \delta_{0}=-\delta_{0} \delta_{1}\right\rangle=\left\{ \pm I_{2}, \pm \delta_{j} \quad \mid \quad 0 \leq j \leq 2\right\}
$$

so that the set $\mathcal{K}_{8}^{(4)}=\mathcal{H}_{8}^{(4)}$ of the elements of \mathcal{K}_{8} of order 4 are contained in $\mathcal{H}_{8} \simeq \mathbb{Q}_{8}$. In other words, $x_{j}:=h_{o} \delta_{j} h_{o}^{-1} \in \mathcal{H}_{8}$ and $H^{\prime}=\left\langle g_{1}, g_{2}, h_{o}\right\rangle \simeq \mathcal{H}^{\prime}=\left\langle\delta_{0}, \delta_{1}, D_{o}\right\rangle$ is a subgroup of H with $H \cap S L(2, R) \simeq \mathbb{Q}_{8}$. Proposition 38 establishes that any such H^{\prime} is isomorphic to $H_{Q 8}(i)$ for some $1 \leq i \leq 9$.

We claim that for any $1 \leq i \leq 9$ there is (at most) a unique finite subgroup $H=$ $\left\langle g_{1}, g_{2}, g_{3}, h_{o}\right\rangle$ of $G L(2, R)$ with $\left\langle g_{1}, g_{2}, h_{o}\right\rangle \simeq H_{Q 8}(i), H \cap S L(2, R)=\left\langle g_{1}, g_{2}, g_{3}\right\rangle \simeq$ $S L\left(2, \mathbb{F}_{3}\right)$ and $\operatorname{det}(H)=\left\langle\operatorname{det}\left(h_{o}\right)\right\rangle$. To this end, let us consider the adjoint representation

$$
\begin{gathered}
\operatorname{Ad}: \mathcal{K}_{8} \longrightarrow S\left(\mathcal{K}_{8}^{(4)}\right) \simeq S_{6} \\
\operatorname{Ad}_{x}(y)=x y x^{-1} \quad \text { for } \quad \forall x \in \mathcal{K}_{8}, \quad \forall y \in \mathcal{K}_{8}^{(4)}
\end{gathered}
$$

and its restriction

$$
\operatorname{Ad}: \mathcal{K}_{8}^{(3)} \longrightarrow S\left(\mathcal{K}_{8}^{(4)}\right) \simeq S_{6}
$$

to the elements of \mathcal{K}_{8} of order 3. Note that

$$
\left\langle x_{0}, x_{1}\right\rangle=h_{o}\left\langle\delta_{0}, \delta_{1}\right\rangle h_{o}^{-1}=h_{o} \mathcal{H}_{8} h_{o}^{-1}=\mathcal{H}_{8}
$$

as far as $\mathcal{H}_{8} \simeq \mathbb{Q}_{8}$ is normal subgroup of $\mathcal{H}^{\prime}=\mathcal{H}_{8}\left\langle h_{o}\right\rangle$. The adjoint action

$$
\operatorname{Ad}_{h_{o}}: \mathcal{K}_{8} \longrightarrow \mathcal{K}_{8}
$$

$$
\operatorname{Ad}_{h_{o}}(x)=h_{o} x h_{o}^{-1} \quad \text { for } \quad \forall x \in \mathcal{K}_{8}
$$

of h_{o} is a group homomorphism and transforms the relations $D_{3} \delta_{s} D_{3}^{-1}=\delta_{s+1}$ for $0 \leq s \leq 1$ into the relations $x_{3} x_{s} x_{3}^{-1}=x_{s+1}$ for $0 \leq s \leq 1$. For any $1 \leq i \leq 9$ the subgroup $\mathcal{H}^{\prime} \simeq H_{Q 8}(i)$ of \mathcal{H} determines uniquely $x_{0}, x_{1} \in \mathcal{H}_{8}$. We claim that for any such x_{0}, x_{1} there is a unique $x_{3} \in \mathcal{K}_{8}^{(3)}$ with

$$
\begin{equation*}
\operatorname{Ad}_{x_{3}}\left(x_{0}\right)=x_{1}, \quad \operatorname{Ad}_{x_{3}}\left(x_{1}\right)=x_{0} x_{1} . \tag{17}
\end{equation*}
$$

Indeed, Proposition 38 specifies the following five possibilities:

$$
\text { Case } 1 x_{0}=\delta_{0}, \quad x_{1}=\delta_{1} ;
$$

Case $2 x_{0}=-\delta_{0}, \quad x_{1}=-\delta_{1} ;$
Case $3 x_{0}=\delta_{1}, \quad x_{1}=-\delta_{0} ;$
Case $4 x_{0}=\delta_{1}, \quad x_{1}=\delta_{0}$;
Case $5 x_{0}=\delta_{1}, \quad x_{1}=\delta_{2}$.
For any $0 \leq s \neq t \leq 2$ and $\varepsilon, \eta \in\{ \pm 1\}$ note that

$$
\operatorname{Ad}_{\varepsilon \delta_{s}}\left(\eta \delta_{s}\right)=\eta \delta_{s}, \quad \operatorname{Ad}_{\varepsilon \delta_{s}}\left(\eta \delta_{t}\right)=-\eta \delta_{t}
$$

Combining with (14), one concludes that

$$
\begin{aligned}
& \operatorname{Ad}_{D_{3}}\left(\left\langle\delta_{j}\right\rangle\right)=\operatorname{Ad}_{\left(-\delta_{s} D_{3}\right)}\left(\left\langle\delta_{j}\right\rangle\right)=\left\langle\delta_{l}\right\rangle, \\
& \operatorname{Ad}_{D_{3}}\left(\left\langle\delta_{l}\right\rangle\right)=\operatorname{Ad}_{\left(-\delta_{s} D_{3}\right)}\left(\left\langle\delta_{l}\right\rangle\right)=\left\langle\delta_{m}\right\rangle, \\
& \operatorname{Ad}_{D_{3}}\left(\left\langle\delta_{m}\right\rangle\right)=\operatorname{Ad}_{\left(-\delta_{s} D_{3}\right)}\left(\left\langle\delta_{m}\right\rangle\right)=\left\langle\delta_{j}\right\rangle
\end{aligned}
$$

for any $0 \leq s \leq 2$ and any even permutation j, l, m of $0,1,2$. Similarly,

$$
\begin{gathered}
\operatorname{Ad}_{D_{3}^{2}}\left(\left\langle\delta_{j}\right\rangle\right)=\operatorname{Ad}_{\delta_{s} D_{3}^{2}}\left(\left\langle\delta_{j}\right\rangle\right)=\left\langle\delta_{m}\right\rangle, \\
\operatorname{Ad}_{D_{3}^{2}}\left(\left\langle\delta_{l}\right\rangle\right)=\operatorname{Ad}_{\delta_{s} D_{3}^{2}}\left(\left\langle\delta_{l}\right\rangle\right)=\left\langle\delta_{j}\right\rangle, \\
\operatorname{Ad}_{D_{3}^{2}}\left(\left\langle\delta_{m}\right\rangle\right)=\operatorname{Ad}_{\delta_{s} D_{3}^{2}}\left(\left\langle\delta_{m}\right\rangle\right)=\left\langle\delta_{l}\right\rangle
\end{gathered}
$$

for any $0 \leq s \leq 2$ and any even permutation j, l, m of $0,1,2$. In the case 1 , (17) read as $\operatorname{Ad}_{x_{3}}\left(\delta_{0}\right)=\delta_{1}, \operatorname{Ad}_{x_{3}}\left(\delta_{1}\right)=\delta_{2}$ and imply that $x_{3}=D_{3}$, according to (16) and $\operatorname{Ad}_{\left(-\delta_{s}\right)} \not \equiv I d_{\mathcal{K}_{8}}$ for all $0 \leq s \leq 2$. In the Case 2, $\operatorname{Ad}_{x_{3}}\left(\delta_{0}\right)=\delta_{1}$ and $\operatorname{Ad}_{x_{3}}\left(\delta_{1}\right)=-\delta_{2}$ specify that $x_{3}=-\delta_{1} D_{3}=-D_{2} D_{3}$. In the next Case 3, the relations $\operatorname{Ad}_{x_{3}}\left(\delta_{1}\right)=-\delta_{0}$, $\operatorname{Ad}_{x_{3}}\left(\delta_{0}=\delta_{2}\right.$ hold if and only if $x_{3}=\delta_{1} D_{3}^{2}=D_{2} D_{3}^{2}$. Further, $\operatorname{Ad}_{x_{3}}\left(\delta_{1}\right)=\delta_{0}$, $\operatorname{Ad}_{x_{3}}\left(\delta_{0}\right)=-\delta_{2}$ in Case 4 are satisfied by $x_{3}=\delta_{0} D_{3}^{2}=D_{1} D_{3}^{2}$ and $\operatorname{Ad}_{x_{3}}\left(\delta_{1}\right)=\delta_{2}$, $\operatorname{Ad}_{x_{3}}\left(\delta_{2}\right)=\delta_{0}$ in Case 5 are valid for $x_{3}=D_{3}$. Given a presentation of $H^{\prime} \simeq H_{Q 8}(i)$ with generators g_{1}, g_{2}, h_{o}, one adjoins a generator $g_{3} \in S L(2, R)$ of order 3 and the relation $h_{o} g_{3} h_{o}^{-1}=x_{3}$, in order to obtain a presentation of $H \simeq H_{S L(2,3)}(i), 1 \leq i \leq 9$.

4 Explicit Galois groups for A / H of fixed KodairaEnriques type

In order to classify the finite subgroups H of $\operatorname{Aut}(A)$, for which A / H is of a fixed Kodaira-Enriques classification type, one needs to describe the finite subgroups H of $\operatorname{Aut}(A)$ for $A=E \times E$. Making use of the classification of the finite subgroups $\mathcal{L}(H)$ of $G L(2, R)$, done in section 3, let $\operatorname{det} \mathcal{L}(H)=\left\langle\operatorname{det} \mathcal{L}\left(h_{o}\right)=e^{\frac{2 \pi i}{s}}\right\rangle \simeq \mathbb{C}_{s}$ for some $s \in\{1,2,3,4,6\}, h_{o} \in H$. (In the case of $s=1$, we choose $h_{o}=I d_{A}$.) By Proposition 24 one has $\mathcal{L}(H) \cap S L(2, R)=\left\langle\mathcal{L}\left(h_{1}\right), \ldots, \mathcal{L}\left(h_{t}\right)\right\rangle$ for some $0 \leq t \leq 3$. (Assume $\mathcal{L}(H) \cap S L(2, R)=\left\{I_{2}\right\}$ for $t=0$.) The linear part

$$
\mathcal{L}(H)=[\mathcal{L}(h) \cap S L(2, R)]\left\langle\mathcal{L}\left(h_{o}\right)\right\rangle=\left\langle\mathcal{L}\left(h_{1}\right), \ldots, \mathcal{L}\left(h_{t}\right)\right\rangle\left\langle\mathcal{L}\left(h_{o}\right)\right\rangle
$$

of H is a product of its normal subgroup $\left\langle\mathcal{L}\left(h_{1}\right), \ldots, \mathcal{L}\left(h_{t}\right)\right\rangle$ and the cyclic group $\left\langle\mathcal{L}\left(h_{o}\right)\right\rangle$. The translation part $\mathcal{T}(H)=\operatorname{ker}\left(\left.\mathcal{L}\right|_{H}\right)$ of H is a finite subgroup of $\left(\mathcal{T}_{A},+\right) \simeq$ $(A,+)$. The lifting $\left(\widetilde{\mathcal{T}_{A}},+\right)<\left(\widetilde{A}=\mathbb{C}^{2},+\right)$ of $\mathcal{T}(H)$ is a free \mathbb{Z}-module of rank 4 . Therefore $(\widetilde{\mathcal{T}(H)},+)$ has at most four generators and

$$
\mathcal{T}(H)=\left\langle\tau_{\left(P_{i}, Q_{i}\right)} \mid 1 \leq i \leq m\right\rangle \quad \text { for some } \quad 0 \leq m \leq 4
$$

(In the case of $m=0$ one has $\mathcal{T}(H)=\left\{I d_{A}\right\}$.) We claim that

$$
H=\mathcal{T}(H)\left\langle h_{1}, \ldots, h_{t}, h_{o}\right\rangle=\left\langle\tau_{\left(P_{i}, Q_{i}\right)}, h_{j}, h_{o} \quad \mid \quad 1 \leq i \leq m, \quad 1 \leq j \leq t\right\rangle
$$

for some $0 \leq m \leq 4,0 \leq t \leq 3$. The choice of $\tau_{\left(P_{i}, Q_{i}\right)}, h_{j}, h_{o} \in H$ justifies the inclusion $\left\langle\tau_{\left(P_{i}, Q_{i}\right)}, h_{j}, h_{o} \mid 1 \leq i \leq m, 1 \leq j \leq t\right\rangle \subseteq H$. For the opposite inclusion, an arbitrary element $h \in H$ with $\mathcal{L}(h)=\mathcal{L}\left(h_{1}\right)^{k_{1}} \ldots \mathcal{L}\left(h_{t}\right)^{k_{t}} \mathcal{L}\left(h_{o}\right)^{k_{o}}$ for some $k_{j} \in \mathbb{Z}$ produces a translation $\tau_{(U, V)}:=h h_{o}^{-k_{o}} h_{t}^{-k_{t}} \ldots h_{1}^{-k_{1}} \in \operatorname{ker}\left(\left.\mathcal{L}\right|_{H}\right)=\mathcal{T}(H)=\left\langle\tau_{\left(P_{i}, Q_{i}\right)} \mid 1 \leq i \leq m\right\rangle$, so that $h=\tau_{(U, V)} h_{1}^{k_{1}} \ldots h_{t}^{k_{t}} h_{o}^{k_{o}} \in\left\langle\tau_{\left(P_{i}, Q_{i}\right)}, h_{j}, h_{o} \mid 1 \leq i \leq m, \quad 1 \leq j \leq t\right\rangle$ and $H \subseteq\left\langle\tau_{\left(P_{i}, Q_{i}\right)}, h_{j}, h_{o} \mid 1 \leq i \leq m, \quad 1 \leq j \leq t\right\rangle$. In such a way, we have derived the following

Lemma 41. If H is a finite subgroup of $\operatorname{Aut}(A), A=E \times E$ with

$$
\begin{gathered}
\operatorname{det} \mathcal{L}(H)=\left\langle\operatorname{det} \mathcal{L}\left(h_{o}\right)=e^{\frac{2 \pi i}{s}}\right\rangle \simeq \mathbb{C}_{s} \quad \text { and } \\
\mathcal{L}(H) \cap S L(2, R)=\left\langle\mathcal{L}\left(h_{1}\right), \ldots, \mathcal{L}\left(h_{t}\right)\right\rangle \quad \text { for some } \quad 0 \leq t \leq 3 \quad \text { then } \\
H=\left\langle\tau_{\left(P_{i}, Q_{i}\right)}, h_{j} h_{o} \mid 1 \leq i \leq m, \quad 1 \leq j \leq t\right\rangle
\end{gathered}
$$

is generated by $0 \leq m \leq 3$ translations and at most four non-translation elements.
Bearing in mind that A / H is birational to a K 3 surface exactly when $\mathcal{L}(H)$ is a subgroup of $S L(2, R)$, one obtains the following

Corollary 42. The quotient A / H by a finite subgroup H of $A u t(A)$ has a smooth K3 model if and only if H is isomorphic to some $H^{K 3}(j, m)$ with $1 \leq j \leq 8,0 \leq m \leq 3$, where

$$
\begin{gathered}
H^{K 3}(1 . m)=\left\langle\tau_{\left(P_{i}, Q_{i}\right)}, \quad \tau_{\left(U_{1}, V_{1}\right)}\left(-I_{2}\right) \quad \mid 1 \leq i \leq m\right\rangle \\
H^{K 3}(2, m)=\left\langle\tau_{\left(P_{i}, Q_{i}\right)}, \quad h_{1} \mid 1 \leq i \leq m\right\rangle
\end{gathered}
$$

for $\mathcal{L}\left(h_{1}\right) \in S L(2, R), \operatorname{tr} \mathcal{L}\left(h_{1}\right)=0$,

$$
H^{K 3}(3, m)=\left\langle\tau_{\left(P_{i}, Q_{i}\right)}, \quad h_{1}, \quad h_{2} \quad \mid \quad 1 \leq i \leq m\right\rangle
$$

for $\mathcal{L}\left(h_{1}\right), \mathcal{L}\left(h_{2}\right) \in S L(2, R), \operatorname{tr} \mathcal{L}\left(h_{1}\right)=\operatorname{tr} \mathcal{L}\left(h_{2}\right)=0, \mathcal{L}\left(h_{2}\right) \mathcal{L}\left(h_{1}\right)=-\mathcal{L}\left(h_{1}\right) \mathcal{L}\left(h_{2}\right)$,

$$
H^{K 3}(4, m)=\left\langle\tau_{\left(P_{i}, Q_{i}\right)}, \quad h_{3} \quad \mid \quad 1 \leq i \leq m\right\rangle
$$

for $\mathcal{L}\left(h_{3}\right) \in S L(2, R), \operatorname{tr} \mathcal{L}\left(h_{3}\right)=-1$,

$$
H^{K 3}(5, m)=\left\langle\tau_{\left(P_{i}, Q_{i}\right)}, \quad h_{4} \quad \mid \quad 1 \leq i \leq m\right\rangle
$$

for $\mathcal{L}\left(h_{4}\right) \in S L(2, R), \operatorname{tr} \mathcal{L}\left(h_{4}\right)=1$,

$$
H^{K 3}(6, m)=\left\langle\tau_{\left(P_{i}, Q_{i}\right)}, \quad h_{1}, \quad h_{4} \quad \mid \quad 1 \leq i \leq m\right\rangle
$$

for $\mathcal{L}\left(h_{1}\right), \mathcal{L}\left(h_{4}\right) \in S L(2, R), \operatorname{tr} \mathcal{L}\left(h_{1}\right)=0, \operatorname{tr} \mathcal{L}\left(h_{4}\right)=1, \mathcal{L}\left(h_{1}\right) \mathcal{L}\left(h_{4}\right)\left[\mathcal{L}\left(h_{1}\right)\right]^{-1}=$ $\left[\mathcal{L}\left(h_{4}\right)\right]^{-1}$,

$$
H^{K 3}(7, m)=\left\langle\tau_{\left(P_{i}, Q_{i}\right)}, \quad h_{1}, h_{2}, h_{3} \quad \mid \quad 1 \leq i \leq m\right\rangle
$$

for $\mathcal{L}\left(h_{1}\right), \mathcal{L}\left(h_{2}\right), \mathcal{L}\left(h_{3}\right) \in S L(2, R), \operatorname{tr} \mathcal{L}\left(h_{1}\right)=\operatorname{tr} \mathcal{L}\left(h_{2}\right)=0, \operatorname{tr} \mathcal{L}\left(h_{3}\right)=-1$,

$$
\begin{gathered}
\mathcal{L}\left(h_{2}\right) \mathcal{L}\left(h_{1}\right)=-\mathcal{L}\left(h_{1}\right) \mathcal{L}\left(h_{2}\right), \\
\mathcal{L}\left(h_{3}\right) \mathcal{L}\left(h_{1}\right)\left[\mathcal{L}\left(h_{3}\right)\right]^{-1}=\mathcal{L}\left(h_{2}\right) \quad \mathcal{L}\left(h_{3}\right) \mathcal{L}\left(h_{2}\right)\left[\mathcal{L}\left(h_{3}\right)\right]^{-1}=\mathcal{L}\left(h_{1}\right) \mathcal{L}\left(h_{2}\right), \\
H^{K 3}(8, m)=\left\langle\tau_{\left(P_{i}, Q_{i}\right)}, \quad h_{1}, h_{2}, h_{3} \quad 1 \leq i \leq m\right\rangle
\end{gathered}
$$

for $\mathcal{L}\left(h_{1}\right), \mathcal{L}\left(h_{2}\right), \mathcal{L}\left(h_{3}\right) \in S L(2, R), \operatorname{tr} \mathcal{L}\left(h_{1}\right)=\operatorname{tr} \mathcal{L}\left(h_{2}\right)=0, \operatorname{tr} \mathcal{L}\left(h_{3}\right)=-1$,

$$
\begin{gathered}
\mathcal{L}\left(h_{2}\right) \mathcal{L}\left(h_{1}\right)=-\mathcal{L}\left(h_{1}\right) \mathcal{L}\left(h_{2}\right), \\
\mathcal{L}\left(h_{3}\right) \mathcal{L}\left(h_{1}\right)\left[\mathcal{L}\left(h_{3}\right)\right]^{-1}=\mathcal{L}\left(h_{2}\right), \quad \mathcal{L}\left(h_{3}\right) \mathcal{L}\left(h_{2}\right)\left[\mathcal{L}\left(h_{3}\right)\right]^{-1}=\mathcal{L}\left(h_{1}\right) \mathcal{L}\left(h_{2}\right) .
\end{gathered}
$$

We are going to show that for an arbitrary finite subgroup $H<\operatorname{Aut}(A)$ with an abelian linear part $\mathcal{L}(H)<G L(2, R)$, there exist an isomorphic model $F_{1} \times F_{2}$ of A and a normal subgroup N_{1} of H, embedded in $\operatorname{Aut}\left(F_{1}\right)$, such that the quotient group H / N_{1} is an automorphism group of F_{2}. This result can be viewed as a generalization of Bombieri-Mumford's classification [3] of the hyper-elliptic surfaces. More precisely, if $H=\mathcal{T}(H)\left\langle h_{o}\right\rangle$ for some $h_{o} \in H$ with eigenvalues $\lambda_{1} \mathcal{L}\left(h_{o}\right)=1$, $\lambda_{2} \mathcal{L}\left(h_{o}\right)=\operatorname{det} \mathcal{L}\left(h_{o}\right)=e^{\frac{2 \pi i}{s}}, s \in\{2,3,4,6\}$, then there is a translation subgroup N_{1} of $\operatorname{Aut}\left(F_{1}\right)$, such that $G \simeq H / N_{1}$ is a non-translation group, acting on the split abelian surface $F_{1}^{\prime} \times F_{2}=\left(F_{1} / N_{1}\right) \times F_{2}$. According to Proposition 5, the quotient A / H is hyper-elliptic (respectively, ruled with elliptic base) exactly when the finite Galois covering $A \rightarrow A / H$ is unramified (respectively, ramified). Since $F_{1} \rightarrow F_{1} / N_{1}=F_{1}^{\prime}$ is unramified for a translation subgroup $N_{1} \mathcal{T}_{F_{1}}<\operatorname{Aut}\left(F_{1}\right)$, the covering $A \rightarrow A / H$ is unramified is and only if the covering $F_{1}^{\prime} \times F_{2} \rightarrow\left(F_{1}^{\prime} \times F_{2}\right) / G$ is unramified for $G=H / N_{1}$. In particular, the first canonical projection $\mathrm{pr}_{1}: G \rightarrow \operatorname{Aut}\left(F_{1}^{\prime}\right)$ is a group monomorphism and G is an abelian group with at most two generators, according to the classification of the finite translation groups of F_{1}^{\prime}. Thus, Bombieri-Mumford's classification of the hyper-elliptic surfaces $\left(F_{1}^{\prime} \times F_{2}\right) / G$ reduces to the classification of the split, fixed point free abelian subgroups $G<\operatorname{Aut}\left(F_{1}^{\prime} \times F_{2}\right)$ with at most two generators, for which the canonical projections $\mathrm{pr}_{1}: G \rightarrow \operatorname{Aut}\left(F_{1}^{\prime}\right)$ and $\mathrm{pr}_{2}: G \rightarrow \operatorname{Aut}\left(F_{2}\right)$ are injective group homomorphisms.

Towards the classification of the finite subgroups of $\operatorname{Aut}(E)$, let us recall that the semi-direct products $\langle a\rangle \rtimes\langle b\rangle \simeq \mathbb{C}_{m} \rtimes \mathbb{C}_{s}$ of cyclic groups are completely determined by the adjoint action of b on a. Namely, $\operatorname{Ad}_{b}(a)=b a b^{-1}=a^{j}$ for some residue $j \in \mathbb{Z}_{m}^{*}$ modulo m, relatively prime to m. Now $\operatorname{Ad}_{b^{s}}(a)=a^{j^{s}}=a$ requires $j^{s} \equiv 1(\bmod m)$. In other words, $j \in \mathbb{Z}_{m}^{*}$ is of order r, dividing s and $\langle a\rangle \lambda\langle b\rangle$ is isomorphic to

$$
\begin{equation*}
G_{s}^{(j)}(m):=\mathbb{C}_{m} \rtimes_{j} \mathbb{C}_{s}=\left\langle a, \quad b \mid a^{m}=1, \quad b^{s}=1, \quad b a b^{-1}=a^{j}\right\rangle \tag{18}
\end{equation*}
$$

for some $j \in \mathbb{Z}_{m}^{*}$ of order r, dividing s. Form now on, we use the notation (18) without further reference. Note that the only $j \in \mathbb{Z}_{m}^{*}$ of order 1 is $j \equiv 1(\bmod m)$ and $G_{s}^{(1)}(m)=\langle a\rangle \times\langle b\rangle \simeq \mathbb{C}_{m} \times \mathbb{C}_{s}$ is the direct product of $\langle a\rangle=\mathbb{C}_{m}$ and $\langle b\rangle=\mathbb{C}_{s}$.

Lemma 43. Let G be a finite subgroup of the automorphism group Aut (E) of an elliptic curve E with endomorphism ring $\operatorname{End}(E)=R$. Then G is isomorphic to some of the groups $G_{1}(m, n), G_{2}^{(-1,-1)}(m, n), G_{s}^{(j)}(m), s \in\{3,4,6\}$, where

$$
G_{1}(m, n)=\left\langle\tau_{P_{1}}, \quad \tau_{P_{2}}\right\rangle \simeq \mathbb{C}_{m} \times \mathbb{C}_{n}, \quad m, n \in \mathbb{N}
$$

is a translation group with at most two generators,

$$
\begin{gathered}
G_{2}^{(-1,-1)}(m, n)=\left\langle\tau_{P_{1}}, \quad \tau_{P_{2}}\right\rangle \rtimes\langle-1\rangle \simeq\left(\mathbb{C}_{m} \times \mathbb{C}_{n}\right) \rtimes_{(-1,-1)} \mathbb{C}_{2}=(\langle a\rangle \times\langle b\rangle) \rtimes_{(-1,-1)}\langle c\rangle= \\
=\left\langle a, \quad b, \quad c \mid a^{m}=1, \quad b^{n}=1, \quad c^{2}=1, \quad c a c^{-1}=a, \quad c b c^{-1}=b^{-1}\right\rangle \\
G_{3}^{(j)}(m)=\left\langle\tau_{P_{1}}\right\rangle \rtimes_{j}\left\langle e^{\frac{2 \pi i}{3}}\right\rangle \simeq \mathbb{C}_{m} \rtimes_{j} \mathbb{C}_{3}=\langle a\rangle \rtimes_{j}\langle c\rangle= \\
=\left\langle a, \quad c \mid \quad a^{m}=1, \quad c^{3}=1, \quad c a c^{-1}=a^{j}\right\rangle
\end{gathered}
$$

for some $j \in \mathbb{Z}_{m}^{*}$ of order 1 or $3, R=\mathcal{O}_{-3}$,

$$
\begin{aligned}
& G_{4}^{(j)}(m)=\left\langle\tau_{P_{1}}\right\rangle \rtimes_{j}\langle i\rangle \simeq \mathbb{C}_{m} \rtimes_{j} \mathbb{C}_{4}=\langle a\rangle \rtimes_{j}\langle c\rangle= \\
& =\left\langle a, \quad c \mid a^{m}=1, \quad c^{4}=1, \quad c a c^{-1}=a^{j}\right\rangle
\end{aligned}
$$

for some $j \in \mathbb{Z}_{m}^{*}$ of order 1,2 or $4, R=\mathbb{Z}[i]$,

$$
\begin{gathered}
G_{6}^{(j)}(m)=\left\langle\tau_{P_{1}}\right\rangle \rtimes_{j}\left\langle e^{\frac{\pi i}{3}}\right\rangle \simeq \mathbb{C}_{m} \rtimes_{j} \mathbb{C}_{6}=\langle a\rangle \rtimes_{j}\langle c\rangle= \\
=\left\langle a, \quad c \mid a^{m}=1, \quad c^{6}=1, \quad c a c^{-1}=a^{j}\right\rangle
\end{gathered}
$$

for some $j \in \mathbb{Z}_{m}^{*}$ of order $1,2,3$ or 6 .
Proof. Any finite translation group $G<\left(\mathcal{L}_{E},+\right)$ lifts to a lattice $\widetilde{G}<(\widetilde{E}=\mathbb{C},+)$ of rank 2, containing $\pi_{1}(E)$. By the Structure Theorem for finitely generated modules over the principal ideal domain \mathbb{Z}, there exists a \mathbb{Z}-basis λ_{1}, λ_{2} of \widetilde{G} and natural numbers $m, n \in \mathbb{N}$, such that

$$
\widetilde{G}=\lambda_{1} \mathbb{Z}+\lambda_{2} \mathbb{Z}, \quad \pi_{1}(E)=m \lambda_{1} \mathbb{Z}+m n \lambda_{2} \mathbb{Z}
$$

As a result, $P_{1}=\lambda_{1}+\pi_{1}(E) \in(E,+)$ of order m and $P_{2}=\lambda_{2}+\pi_{1}(E) \in(E,+)$ of order $m n$ generate the finite translation group $G=\widetilde{G} / \pi_{1}(E) \simeq \mathbb{C}_{m} \times \mathbb{C}_{m n}$.

If G is a finite non-translation subgroup of $\operatorname{Aut}(E)$ then the linear part $\mathcal{L}(G)$ of G is a non-trivial subgroup of the units group R^{*}. Bearing in mind that

$$
R^{*}= \begin{cases}\langle-1\rangle \simeq \mathbb{C}_{2} & \text { for } R \neq \mathbb{Z}[i], \mathcal{O}_{-3} \\ \langle i\rangle \simeq \mathbb{C}_{4} & \text { for } R=\mathbb{Z}[i] \\ \left\langle e^{\frac{\pi i}{3}}\right\rangle & \text { for } R=\mathcal{O}_{-3}\end{cases}
$$

one concludes that $\mathcal{G}=\left\langle e^{\frac{2 \pi i}{s}}\right\rangle \simeq \mathbb{C}_{s}$ for some $s \in\{2,3,4,6\}$. Any lifting $g_{0}=\tau_{U} e^{\frac{2 \pi i}{s}} \in$ G of $\mathcal{L}\left(g_{0}\right)=e^{\frac{2 \pi i}{s}}$ has a fixed point $P_{0} \in E$. After moving the origin of E at P_{0}, one can assume that $g_{0}=e^{\frac{2 \pi i}{s}}$. Bearing in mind that the translation part $\mathcal{T}(G)=\operatorname{ker}\left(\left.\right|_{G}\right)$, one observes that $G=\mathcal{T}(G)\left\langle e^{\frac{2 \pi i}{s}}\right\rangle$. The inclusion $\mathcal{T}(G)\left\langle e^{\frac{2 \pi i}{s}}\right\rangle \subseteq G$ is clear. For any $g \in G$ with $\mathcal{L}(g)=e^{\frac{2 \pi i j}{s}}$ for some $0 \leq j \leq s-1$, one has $g\left(e^{\frac{2 \pi i}{s}}\right)^{-j} \in \operatorname{ker}\left(\left.\mathcal{L}\right|_{G}\right)=\mathcal{T}(G)$, so that $G \subseteq \mathcal{T}(G)\left\langle e^{\frac{2 \pi i}{s}}\right\rangle$ and $G=\mathcal{T}(G)\left\langle e^{\frac{2 \pi i}{s}}\right\rangle$. Note that $\mathcal{T}(G)$ is a normal subgroup of G with $\mathcal{T}(G) \cap\left\langle e^{\frac{2 \pi i}{s}}\right\rangle=\left\{I d_{E}\right\}$, so that

$$
G=\mathcal{T}(G) \rtimes\left\langle e^{\frac{2 \pi i}{s}}\right\rangle
$$

is a semi-direct product. As a result, there is an adjoint action

$$
\begin{gathered}
\operatorname{Ad}:\left\langle e^{\frac{2 \pi i}{s}}\right\rangle \longrightarrow \operatorname{Aut}(\mathcal{T}(G)), \\
\operatorname{Ad}_{e^{\frac{2 \pi i j}{s}}}\left(\tau_{P_{1}}\right)=e^{\frac{2 \pi i j}{s}} \tau_{P_{1}} e^{-\frac{2 \pi i j}{s}}=\tau_{s}^{\frac{2 \pi i j}{s}} P_{1}
\end{gathered}
$$

of $\left\langle e^{\frac{2 \pi i}{s}}\right\rangle$ on $\mathcal{T}(G)$, which is equivalent to the invariance of $\mathcal{T}(G)$ under a multiplication by $e^{\frac{2 \pi i}{s}} \in R^{*}$. The translation group ${ }^{\prime} \mathcal{T}(G)=\left\langle\tau_{P_{1}}, \quad \tau_{P_{2}}\right\rangle$ has at most two generators, so that

$$
G=\left\langle\tau_{P_{1}}, \quad \tau_{P_{2}}\right\rangle \rtimes\left\langle e^{\frac{2 \pi i}{s}}\right\rangle
$$

for some $s \in\{2,3,4,6\}$. If $s=2$ and $\left\langle\tau_{P_{1}}, \tau_{P_{2}}\right\rangle \simeq \mathbb{C}_{m} \times \mathbb{C}_{n}=\left\langle\tau_{Q_{1}}\right\rangle \times\left\langle\tau_{Q_{2}}\right\rangle$, then $\operatorname{Ad}_{-1}\left(\tau_{Q_{1}}\right)=\tau_{-Q_{k}}$ for $1 \leq k \leq 2$. The residue classes $-1(\bmod m) \in \mathbb{Z}_{m}^{*}$ and $-1(\bmod n) \in \mathbb{Z}_{n}^{*}$ are order 1 or 2 .

We claim that $G=\left\langle\tau_{P_{1}}\right\rangle \rtimes\left\langle e^{\frac{2 \pi i}{s}}\right\rangle$ has at most two generators for $s \in\{3,4,6\}$. Indeed, $\tau_{P_{1}} \in \mathcal{T}(G)$ implies that $\operatorname{Ad}_{e^{\frac{2 \pi i}{s}}}\left(\tau_{P_{1}}\right)=\tau_{e^{\frac{2 \pi i}{s} P_{1}}} \in \mathcal{T}(G)$. For $s \in\{3,4,6\}$ the points $P_{1}, e^{\frac{2 \pi i}{s}} P_{1}$ have \mathbb{Z}-linearly independent liftings from $\widetilde{\mathcal{T}(G)}$, so that $\mathcal{T}(G)=$ $\left\langle\tau_{P_{1}}, \quad \tau_{P_{2}}\right\rangle=\left\langle\begin{array}{cc}\tau_{P_{1}} & \left.\tau_{e^{\frac{2 \pi i}{s} P_{1}}}\right\rangle \text {. As a result, }, ~ \text {, }\end{array}\right.$

$$
\begin{gathered}
G==\left\langle\tau_{P_{1}}, \quad e^{\frac{2 \pi i}{s}} \tau_{P_{1}} e^{-\frac{2 \pi i}{s}}\right\rangle \rtimes\left\langle e^{\frac{2 \pi i}{s}}\right\rangle=\left\langle\tau_{P_{1}}\right\rangle \rtimes\left\langle e^{\frac{2 \pi i}{s}}\right\rangle \simeq{ }_{m} \rtimes_{j} \mathbb{C}_{s}=\langle a\rangle \rtimes_{j}\langle c\rangle= \\
\left\langle a, \quad c \mid a^{m}=1, \quad c^{s}=1, \quad c a c^{-1}=a^{j}\right\rangle
\end{gathered}
$$

for some $j \in \mathbb{Z}_{m}^{*}$ of order r, dividing $s \in\{3,4,6\}$.

Let us put $G_{1}^{(1,1)}(m, n):=G_{1}(m, n)$, in order to list the finite subgroups of $\operatorname{Aut}(E)$ as $G_{s}^{\left(j_{1}, j_{2}\right)}(m, n)$ with $s \in\{1,2\}$ and $G_{s}^{(j)}(m)$ with $s \in\{3,4,6\}$.

Lemma 44. Let H be a finite subgroup of $\operatorname{Aut}(A)$ with abelian linear part $\mathcal{L}(H)$. Then:
(i) there exists $S \in G L(2, \mathbb{C})$, such that all the elements of

$$
S^{-1} H S=\left\{S^{-1} h S=\left(\tau_{U_{1}} \lambda_{1} \mathcal{L}(h), \tau_{U_{2}} \lambda_{2} \mathcal{L}\right) \quad \mid \quad h \in H\right\}<\operatorname{Aut}\left(S^{-1} A\right)
$$

have diagonal linear parts;
(ii) if $F_{1}=S^{-1}\left(E \times \check{o}_{E}\right), F_{2}=S^{-1}\left(\check{o}_{E} \times E\right)$ then $S^{-1} A=F_{1} \times F_{2}$ and the canonical projections

$$
\begin{gathered}
\operatorname{pr}_{k}: S^{-1} H S \longrightarrow A u t\left(F_{k}\right), \\
\operatorname{pr}_{k}\left(\tau_{U_{1}} \lambda_{1} \mathcal{L}(h), \tau_{U_{2}} \lambda_{2} \mathcal{L}(h)\right)=\tau_{U_{k}} \lambda_{k} \mathcal{L}(h),
\end{gathered}
$$

are group homomorphisms with $\operatorname{pr}_{k}\left(S^{-1} H S\right) \simeq G_{s}^{\left(j_{1}, j_{2}\right)}(m, n), s \in\{1,2\}$ or $G_{s}^{(j)}$, $s \in\{3,4,6\}$;
(iii) $S^{-1} H S=\operatorname{ker}\left(\operatorname{pr}_{2}\right)\left\langle h_{1}, \ldots, h_{t}\right\rangle$ for any liftings $h_{j}=\left(\alpha_{j}, \beta_{j}\right) \in S^{-1} H S$ of the generators $\beta_{1}, \ldots, \beta_{t}$ of $\operatorname{pr}_{2}\left(S^{-1} H S\right), 1 \leq t \leq 3$;
(iv) $S^{-1} A / \operatorname{ker}\left(\operatorname{pr}_{2}\right)=C_{1} \times F_{2}$, where C_{1} is an elliptic curve for a translation subgroup $\operatorname{ker}\left(\operatorname{pr}_{2}\right)<\left(\mathcal{T}_{F_{1}},+\right)<\operatorname{Aut}\left(F_{1}\right)$ or a rational curve for a non-translation subgroup $\operatorname{ker}\left(\operatorname{pr}_{2}\right)<\operatorname{Aut}\left(F_{1}\right)$, $\operatorname{ker}\left(\operatorname{pr}_{2}\right) \backslash\left(\mathcal{T}_{F_{1}},+\right) \neq \emptyset$;
(v) $A / H \simeq\left(C_{1} \times F_{2}\right) / G$ for ${ }^{\prime}$

$$
G:=\left\langle h_{1}, \ldots, h_{t}\right\rangle /\left(\left\langle h_{1}, \ldots, h_{t}\right\rangle \cap \operatorname{ker}\left(\operatorname{pr}_{2}\right)\right)
$$

with isomorphic second projection

$$
\overline{\operatorname{pr}_{2}}: G \longrightarrow \operatorname{pr}_{2}\left(S^{-1} H S\right)
$$

and first projection

$$
\overline{\mathrm{pr}_{1}}: G \rightarrow \overline{\mathrm{pr}_{1}}(G)<\operatorname{Aut}\left(C_{1}\right)
$$

with kernel $\operatorname{ker}\left(\left.\overline{\operatorname{pr}_{1}}\right|_{G}\right) \simeq \operatorname{ker}\left(\left.\operatorname{pr}_{1}\right|_{S^{-1} H S}\right)$.
Proof. (i) It is well known that for any finite set $\{\mathcal{L}(h) \mid h \in H\}$ of commuting matrices, there exists $S \in G L(2, \mathbb{C})$, such that

$$
S^{-1} \mathcal{L}(h) S=\mathcal{L}\left(S^{-1} h S\right)=\left(\begin{array}{cc}
\lambda_{1} \mathcal{L}(h) & 0 \\
0 & \lambda_{2} \mathcal{L}(h)
\end{array}\right)
$$

are diagonal for all $h \in H$. Namely, if there is $h_{o} \in H$, whose linear part $\mathcal{L}\left(h_{o}\right)$ has two different eigenvalues $\lambda_{1} \mathcal{L}\left(h_{o}\right) \neq \lambda_{2} \mathcal{L}\left(h_{o}\right)$, then one takes the j-th column of $S \in \mathbb{Q}(\sqrt{-1})_{2 \times 2}$ to be an eigenvector, associated with $\lambda_{j} \mathcal{L}\left(h_{o}\right), 1 \leq j \leq 2$. The conjugate $S^{-1} \mathcal{L}\left(h_{o}\right) S$ is a diagonal matrix. It suffices to show that v_{j} are eigenvectors of all $\mathcal{L}(h)$, in order to conclude that $S^{-1} \mathcal{L}(h) S$ are diagonal, as the matrices of $\mathcal{L}(h)$ with respect to the basis v_{1}, v_{2} of \mathbb{C}^{2}. Indeed, for any $h \in H$ the relation $\mathcal{L}(h) \mathcal{L}\left(h_{o}\right)=\mathcal{L}\left(h_{o}\right) \mathcal{L}(h)$ implies that

$$
\lambda_{j} \mathcal{L}\left(h_{o}\right)\left[\mathcal{L}(h) v_{j}\right]=\mathcal{L}(h) \mathcal{L}\left(h_{o}\right) v_{j}=\mathcal{L}\left(h_{o}\right)\left[\mathcal{L}(h) v_{j} .\right.
$$

Therefore $\mathcal{L}(h) v_{j}$ is an eigenvector of $\mathcal{L}\left(h_{o}\right)$ with associated eigenvalue $\lambda_{j} \mathcal{L}\left(h_{o}\right.$, so that $\mathcal{L}(h) v_{j}$ is proportional to v_{j}, i.e., $\mathcal{L}(h) v_{j}=c_{h} v_{j}$ for some $c_{h} \in \mathbb{C}$, which turns to be an eigenvalue $c_{h}=\lambda_{j} \mathcal{L}(h)$ of $\mathcal{L}(h)$. If $\lambda_{1} \mathcal{L}(h)=\lambda_{2} \mathcal{L}(h)$ for $\forall h \in H$ then all $\mathcal{L}(h)$ are scalar matrices. In particular, $\mathcal{L}(h)$ are diagonal.
(ii) Note that the direct product $A=E \times E$ of elliptic curves coincides with their direct sum. If

$$
S^{-1} A:=S^{-1} \widetilde{A} / S^{-1} \pi_{1}(A)=\mathbb{C}^{2} / S^{-1} \pi_{1}(A),
$$

then $S^{-1} A \rightarrow S^{-1} A$ is an isomorphism of abelian surfaces and

$$
\begin{gathered}
S^{-1}(A)=S^{-1}(E \times E)=S^{-1}\left[\left(E \times \check{o}_{E}\right) \times\left(\check{o}_{E} \times E\right)\right]= \\
=S^{-1}\left(E \times \check{o}_{E}\right) \times S^{-1}\left(\check{o}_{E} \times E\right)=F_{1} \times F_{2} .
\end{gathered}
$$

The canonical projections $\operatorname{pr}_{k}: S^{-1} H S \rightarrow \operatorname{Aut}\left(F_{k}\right)$ are group homomorphisms, according to

$$
\begin{gathered}
\quad \operatorname{pr}_{k}\left(\left(\tau_{V_{1}} \lambda_{1} \mathcal{L}(g), \tau_{V_{2}} \lambda_{2} \mathcal{L}(g)\right)\left(\tau_{U_{1}} \lambda_{1} \mathcal{L}(h), \tau_{U_{2}} \lambda_{2} \mathcal{L}(h)\right)=\right. \\
=\operatorname{pr}_{k}\left(\tau_{V_{1}+\lambda_{1} \mathcal{L}(g) U_{1}}\left(\lambda \mathcal{L}(g) \cdot \lambda_{1} \mathcal{L}(h)\right), \tau_{V_{2}+\lambda_{2} \mathcal{L}(g) U_{2}}\left(\lambda_{2} \mathcal{L}(g) \cdot \lambda_{2} \mathcal{L}(h)\right)\right)= \\
=\tau_{V_{k} \lambda_{k} \mathcal{L}(g) U_{k}}\left(\lambda_{k} \mathcal{L}(g) \cdot \lambda_{k} \mathcal{L}(h)\right)=\left(\tau_{V_{k}} \lambda_{k} \mathcal{L}(g)\right)\left(\tau_{U_{k}} \lambda_{j} \mathcal{L}(h)\right)= \\
=\operatorname{pr}_{k}\left(\tau_{V_{1}} \lambda_{1} \mathcal{L}(g), \tau_{V_{2}} \lambda_{2} \mathcal{L}(h)\right) \cdot\left(\operatorname{pr}_{k}\left(\tau_{U_{1}} \lambda_{1} \mathcal{L}(h), \tau_{U_{2}} \lambda_{2} \mathcal{L}(h)\right)\right.
\end{gathered}
$$

for $\forall g, h \in H$ with $S^{-1} g S=\tau_{\left(V_{1}, V_{2}\right)} \mathcal{L}\left(S^{-1} g S\right), S^{-1} h S=\tau_{\left(U_{1}, U_{2}\right)} \mathcal{L}\left(S^{-1} h S\right)$. The image $\operatorname{pr}_{k}\left(S^{-1} H S\right)$ of $S^{-1} H S$ is a finite subgroup of $\operatorname{Aut}\left(F_{k}\right)$ for $1 \leq k \leq 2$.
(iii) If $h_{j}=\left(\alpha_{j}, \beta_{j}\right) \in S^{-1} H S$ are liftings of the generators β_{j} of $\operatorname{pr}_{2}\left(S^{-1} H S\right)$, then $\operatorname{ker}\left(\operatorname{pr}_{2}\right)\left\langle h_{1}, \ldots, h_{t}\right\rangle$ is a subgroup of $S^{-1} H S$, as far as $\operatorname{ker}\left(\operatorname{pr}_{2}\right)$ is a normal subgroup of $S^{-1} H S$. For any $\operatorname{pr}_{2}\left(S^{-1} h S\right)=\beta_{1}^{m_{1}} \ldots \beta_{t}^{m_{t}}$ for some $m_{i} \in \mathbb{Z}$, one has $\left(S^{-1} H S\right)\left(h_{1}^{m_{1}} \ldots h_{t}^{m_{t}}\right) \in \operatorname{ker}\left(\mathrm{pr}_{2}\right)$, so that $S^{-1} h S \in \operatorname{ker}\left(\mathrm{pr}_{2}\right)\left\langle h_{1}, \ldots, h_{t}\right\rangle$ and $S^{-1} H S=$ $\operatorname{ker}\left(\operatorname{pr}_{2}\right)\left\langle h_{1}, \ldots, h_{t}\right\rangle$.
(iv) The subgroup $\operatorname{ker}\left(\mathrm{pr}_{2}\right)$ of $S^{-1} H S$ acts identically on F_{2} and can be thought of as a subgroup of $\operatorname{Aut}\left(F_{1}\right), \operatorname{pr}_{1}\left(\operatorname{ker}\left(\operatorname{pr}_{2}\right)\right) \simeq \operatorname{ker}\left(\mathrm{pr}_{2}\right)$. Thus,

$$
S^{-1} A / \operatorname{ker}\left(\operatorname{pr}_{2}\right) \simeq\left[F_{1} / \operatorname{pr}_{1}\left(\operatorname{ker}\left(\operatorname{pr}_{2}\right)\right] \times F_{2}=C_{1} \times F_{2}\right.
$$

with an elliptic curve C_{1} exactly when $\operatorname{pr}_{1}\left(\operatorname{ker}\left(\operatorname{pr}_{2}\right)\right)$ is a translation subgroup of $\operatorname{Aut}\left(F_{1}\right)$ or a rational curve C_{1} for a non-translation subgroup $\operatorname{pr}_{1}\left(\operatorname{ker}\left(\operatorname{pr}_{2}\right)\right)$ of the automorphism group $\operatorname{Aut}\left(F_{1}\right)$ of F_{1}.
(v) Since $\operatorname{ker}\left(\mathrm{pr}_{2}\right)$ is a normal subgroup of $S^{-1} H S$ with quotient

$$
\begin{gathered}
S^{-1} H S / \operatorname{ker}\left(\operatorname{pr}_{2}\right)=\left[\operatorname{ker}\left(\operatorname{pr}_{2}\right)\left\langle h_{1}, \ldots, h_{t}\right\rangle\right] / \operatorname{ker}\left(\operatorname{pr}_{2}\right)= \\
=\left\langle h_{1}, \ldots, h_{t}\right\rangle /\left(\left\langle h_{1}, \ldots, h_{t}\right\rangle \cap \operatorname{ker}\left(\operatorname{pr}_{2}\right)\right)=G
\end{gathered}
$$

one has

$$
A / H \simeq\left(S^{-1} A\right) /\left(S^{-1} H S\right) \simeq\left[S^{-1} A / \operatorname{ker}\left(\operatorname{pr}_{2}\right)\right] /\left[S^{-1} H S / \operatorname{ker}\left(\operatorname{pr}_{2}\right)\right]=\left(C_{1} \times F_{2}\right) / G
$$

By the First Isomorphism Theorem, the epimorphism $\mathrm{pr}_{2}: S^{-1} H S \rightarrow \mathrm{pr}_{2}\left(S^{-1} H S\right)$ gives rise to an isomorphism

$$
\overline{\mathrm{pr}_{2}}: S^{-1} H S / \operatorname{ker}\left(\mathrm{pr}_{2}\right)=G \longrightarrow \operatorname{pr}_{2}\left(S^{-1} H S\right)
$$

The homomorphism $\mathrm{pr}_{1}: S^{-1} H S \rightarrow \operatorname{Aut}\left(F_{1}\right)$ induces a homomorphism

$$
\overline{\operatorname{pr}_{1}}: S^{-1} H S / \operatorname{ker}\left(\operatorname{pr}_{2}\right)=G \longrightarrow A u t\left(F_{1}\right) / \operatorname{pr}_{1}\left(\operatorname{ker}\left(\operatorname{pr}_{2}\right)\right) \simeq A u t\left(C_{1}\right) .
$$

in the automorphism group of $C_{1}=F_{1} / \operatorname{pr}_{1}\left(\operatorname{ker}\left(\mathrm{pr}_{2}\right)\right)$. It suffices to show that the kernel

$$
\begin{gathered}
\operatorname{ker}\left(\overline{\operatorname{pr}_{1}}\right)=\left\{S^{-1} h S \operatorname{ker}\left(\operatorname{pr}_{2}\right) \mid \operatorname{pr}_{1}\left(S^{-1} h S\right) \in \operatorname{pr}_{1} \operatorname{ker}\left(\operatorname{pr}_{2}\right)\right\}= \\
{\left[\operatorname{ker}\left(\operatorname{pr}_{2}\right) \operatorname{ker}\left(\operatorname{pr}_{1}\right)\right] / \operatorname{ker}\left(\mathrm{pr}_{2}\right)}
\end{gathered}
$$

since

$$
\left[\operatorname{ker}\left(\operatorname{pr}_{2}\right) \operatorname{ker}\left(\operatorname{pr}_{1}\right)\right] / \operatorname{ker}\left(\operatorname{pr}_{2}\right) \simeq \operatorname{ker}\left(\operatorname{pr}_{1}\right) /\left[\operatorname{ker}\left(\operatorname{pi}_{2}\right) \cap \operatorname{ker}\left(\operatorname{pr}_{1}\right)\right]=\operatorname{ker}\left(\operatorname{pr}_{1}\right)
$$

Indeed, if there exists $S^{-1} h_{1} S\left(\operatorname{pr}_{1}\left(S^{-1} h S\right), I d_{F_{2}}\right) \in \operatorname{ker}\left(\operatorname{pr}_{2}\right)$ then

$$
S^{-1}\left(h_{1}^{-1} h\right) S=\left(I d_{F_{1}}, \operatorname{pr}_{2}\left(S^{-1} h S\right)\right) \in S^{-1} H S \cap \operatorname{ker}\left(\operatorname{pr}_{1}\right),
$$

so that $S^{-1} h S \in S^{-1} h_{1} S \operatorname{ker}\left(\operatorname{pr}_{1}\right) \subset \operatorname{ker}\left(\operatorname{pr}_{2}\right) \operatorname{ker}\left(\operatorname{pr}_{1}\right)$ for $\forall S^{-1} h S \operatorname{ker}\left(\operatorname{pr}_{2}\right) \in \operatorname{ker}\left(\overline{\operatorname{pr}_{1}}\right)$. Conversely, any element of $\left[\operatorname{ker}\left(\operatorname{pr}_{2}\right) \operatorname{ker}\left(\operatorname{pr}_{1}\right)\right] / \operatorname{ker}\left(\operatorname{pr}_{2}\right)$ is of the form

$$
\left(g_{1}, I d_{F_{2}}\right)\left(I d_{F_{1}}, g_{2}\right) \operatorname{ker}\left(\mathrm{pr}_{2}\right)=\left(g_{1}, g_{2}\right) \operatorname{ker}\left(\mathrm{pr}_{2}\right)
$$

for some $\left(g_{1}, I d_{F_{2}}\right),\left(I d_{F_{1}}, g_{2}\right) \in S^{-1} H S \cap\left[\operatorname{Aut}\left(F_{1}\right) \times \operatorname{Aut}\left(F_{2}\right)\right]$, so that

$$
\operatorname{pr}_{1}\left(g_{1}, g_{2}\right)=g_{1}=\operatorname{pr}_{1}\left(\left(g_{1}, I d_{F_{2}}\right)\right) \in \operatorname{pr}_{1} \operatorname{ker}\left(\operatorname{pr}_{2}\right)
$$

reveals that $\left(g_{1}, g_{2}\right) \operatorname{ker}\left(\operatorname{pr}_{2}\right) \in \operatorname{ker}\left(\overline{\operatorname{pr}_{1}}\right)$.

According to Lemma 43, the finite automorphism groups of elliptic curves have at most three generators. Combining with Lemma 44(iii), one concludes that the finite subgroups H of $\operatorname{Aut}(E \times E)$ with abelian linear part $\mathcal{L}(H)$ have at most six generators. Their linear parts $\mathcal{L}(H)$ have at most two generators.

Lemma 45. Let $h=\tau_{(U, V)} \mathcal{L}(h)$ be an automorphism of $A=E \times E$ and $w=(u, v) \in$ $\mathbb{C}^{2}=\widetilde{A}$ be a lifting of $(u, v)+\pi_{1}(A)=(U, V) \in A$. Then h has no fixed points on A if and only if for any $\mu=\left(\mu_{1}, \mu_{2}\right) \in \pi_{1}(A)$ the affine-linear transformation

$$
\widetilde{h}(w, \mu)=\tau_{w+\mu} \mathcal{L}(h) \in \operatorname{Aff}\left(\mathbb{C}^{2}, R\right):=\left(\mathbb{C}^{2},+\right) \lambda G L(2, R)
$$

has no fixed points on \mathbb{C}^{2}.
Proof. The statement of the lemma is equivalent to the fact that Fix $_{A}(h) \neq q \emptyset$ exactly when Fix $_{\mathbb{C}^{2}}(\widetilde{h}(w, \mu)) \neq \emptyset$ for some $\mu \in \pi_{1}(A)$. Indeed, if $(p, q) \in \operatorname{Fix}_{\mathbb{C}^{2}}(\widetilde{h}(w, \mu))$ then $(P, Q)=\left(p+\pi_{1}(E), q+\pi_{1}(E)\right) \in A$ is a fixed point of h, according to
$h(P, Q)=\mathcal{L}(h)\binom{P}{Q}+\binom{U}{V}=\mathcal{L}(h)\binom{p}{q}+\binom{u}{v}+\binom{\mu_{1}}{\mu_{2}}+\binom{\pi_{1}(E)}{\pi_{1}(E)}=$

$$
=\binom{p}{q}+\binom{\pi_{1}(E)}{\pi_{1}(E)}=\binom{P}{Q} .
$$

Conversely, if

$$
\mathcal{L}(h)\binom{P}{Q}+\binom{U}{V}=\binom{P}{Q}
$$

then for any lifting $(p, q) \in \mathbb{C}^{2}$ of $(P, Q)=\left(p+\pi_{1}(E), q+\pi_{1}(E)\right)$, one has

$$
\mathcal{L}(h)\binom{p}{q}+\binom{U}{V}+\binom{\pi_{1}(E)}{\pi_{1}(E)}=\binom{p}{q}+\binom{\pi_{1}(E)}{\pi_{1}(E)} .
$$

In other words,

$$
\mu=\binom{\mu_{1}}{\mu_{2}}:=\mathcal{L}(h)\binom{p}{q}+\binom{u}{v}-\binom{p}{q} \in\binom{\pi_{1}(E)}{\pi_{1}(E)}
$$

and $(p, q) \in \operatorname{Fix}_{\mathbb{C}^{2}}(\widetilde{h}(w,-\mu))$.

Now we are ready to characterize the automorphisms $h \in A u t(A)$ without fixed points

Lemma 46. An automorphism $h=\tau_{(U, V)} \mathcal{L}(h) \in \operatorname{Aut}(A) \backslash\left(\mathcal{T}_{A},+\right)$ acts without fixed points on $A=E \times E$ if and only if its linear part $\mathcal{L}(h)$ has eigenvalues $\lambda_{1} \mathcal{L}(h)=1$, $\lambda_{2} \mathcal{L}(h) \neq 1$ and

$$
\mathcal{L}(h)\binom{u}{v} \neq \lambda_{2}\binom{u}{v}
$$

for any lifting $(u, v) \in \mathbb{C}^{2}$ of $\left(u+\pi_{1}(E), v+\pi_{1}(E)\right)=(U, V)$.
Proof. The fixed points $(P, Q) \in A$ of $h=\tau_{(U, V)} \mathcal{L}(h)$ are described by the equality

$$
\begin{equation*}
\left(\mathcal{L}(h)-I_{2}\right)\binom{P}{Q}=\binom{-U}{-V} \tag{19}
\end{equation*}
$$

If $\operatorname{det}\left(\mathcal{L}(h)-I_{2}\right) \neq 0$ or $1 \in \mathbb{C}$ is not an eigenvalues of $\mathcal{L}(h)$, then consider the adjoint matrix

$$
\begin{gathered}
\left(\mathcal{L}(h)-I_{2}\right)^{*}=\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right) \in R_{2 \times 2} \quad \text { of } \\
\mathcal{L}(h)-I_{2}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in R_{2 \times 2}
\end{gathered}
$$

According to $\left(\mathcal{L}(h)-I_{2}\right)^{*}\left(\mathcal{L}(h)-I_{2}\right)=\operatorname{det}\left(\mathcal{L}(h)-I_{2}\right) I_{2}=\left(\mathcal{L}(h)-I_{2}\right)\left(\mathcal{L}(h)-I_{2}\right)^{*}$, one obtains

$$
\begin{equation*}
\operatorname{det}\left(\mathcal{L}(h)-I_{2}\right)\binom{P}{Q}=\left(\mathcal{L}(h)-I_{2}\right)^{*}\left(\mathcal{L}(h)-I_{2}\right)\binom{u}{v}=-\left(\mathcal{L}(h)-I_{2}\right)^{*}\binom{U}{V} \tag{20}
\end{equation*}
$$

Then for an arbitrary lifting $\left(u_{1}, v_{1}\right) \in \mathbb{C}^{2}$ of

$$
\binom{u_{1}+\pi_{1}(E)}{v_{1}+\pi_{1}(E)}=\binom{U_{1}}{V_{1}}:=-\left(\mathcal{L}(h)-I_{2}\right)^{*}\binom{U}{V},
$$

the point

$$
(p, q)=\left(\frac{u_{1}}{\operatorname{det}\left(\mathcal{L}(h)-I_{2}\right)}, \frac{v_{1}}{\operatorname{det}\left(\mathcal{L}(h)-I_{2}\right)}\right) \in^{2}
$$

descends to $(P, Q)=\left(p+\pi_{1}(E), q+\pi_{1}(E)\right)$, subject to (20). As a result,

$$
\begin{gathered}
\left(\mathcal{L}(h)-I_{2}\right)\binom{P}{Q}=\frac{1}{\operatorname{det}\left(\mathcal{L}(h)-I_{2}\right)}\left(\mathcal{L}(h)-I_{2}\right)\binom{u_{1}}{v_{1}}+\binom{\pi_{1}(E)}{\pi_{1}(E)}= \\
=\binom{u}{v}+\binom{\pi_{1}(E)}{\pi_{1}(E)}
\end{gathered}
$$

and $(P, Q) \in \operatorname{Fix}_{A}(h)$.
From now on, let us suppose that the linear part $\mathcal{L}(h) \in G L(2, R)$ of $h \in \operatorname{Aut}(A) \backslash$ $\left(\mathcal{T}_{A},+\right)$ has eigenvalues $\lambda_{1} \mathcal{L}(h)=1$ and $\lambda_{2} \mathcal{L}(h)=\operatorname{det} \mathcal{L}(h) \in R^{*} \backslash\{1\}$. We claim that a lifting $(u, v) \in{ }^{2}$ of $\left(u+\pi_{1}(E), v+\pi_{1}(E)\right)=(U, V) \in A$ satisfies

$$
\mathcal{L}(h)\binom{u}{v}=\lambda_{2} \mathcal{L}(h)\binom{u}{v}
$$

if and only if there exists $(p, q) \in \mathbb{C}^{2}$ with

$$
\left(\mathcal{L}(h)-I_{2}\right)\binom{p}{q}=\binom{-u}{-v},
$$

which amounts to $(p, q) \in \operatorname{Fix}_{\mathbb{C}^{2}}\left(\tau_{(u, v)} \mathcal{L}(h)\right)$. To this end, let us view $\mathcal{L}(h): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ as a linear operator in \mathbb{C}^{2} and reduce the claim to the equivalence of $(-u,-v) \in$ $\operatorname{ker}\left(\mathcal{L}(h)-\lambda_{2} \mathcal{L}(h) I_{2}\right)$ with $(-u,-v) \in \operatorname{Im}\left(\mathcal{L}(h)-I_{2}\right)$. In other word, the statement of the lemma reads as $\operatorname{ker}\left(\mathcal{L}(h)-\lambda_{2} \mathcal{L}(h) I_{2}\right)=\operatorname{Im}\left(\mathcal{L}(h)-I_{2}\right)$ for the linear operators $\mathcal{L}(h)-\lambda_{2} \mathcal{L}(h) I_{2}$ and $\mathcal{L}(h)-I_{2}$ in \mathbb{C}^{2}. By Hamilton -Cayley Theorem, $\mathcal{L}(h) \in \mathbb{C}_{2 \times 2}$ is a root of its characteristic polynomial

$$
\mathcal{X}_{\mathcal{L}(h)}(\lambda)=\left(\lambda-\lambda_{1} \mathcal{L}(h)\right)(\lambda-1) .
$$

Thus,

$$
\left(\mathcal{L}(h)-\lambda_{2} \mathcal{L}(h) I_{2}\right) \operatorname{Im}\left(\mathcal{L}(h)-I_{2}\right)=\{(0,0)\}
$$

is the zero subspace of \mathbb{C}^{2} and $\operatorname{Im}\left(\mathcal{L}(h)-I_{2}\right) \subseteq \operatorname{ker}\left(\mathcal{L}(h)-\lambda_{2} \mathcal{L}(h) I_{2}\right)$. However, $\operatorname{dim} \operatorname{Im}\left(\mathcal{L}(h)-I_{2}\right)=\operatorname{rk}\left(\mathcal{L}(h)-I_{2}\right)=1$ and

$$
\operatorname{dim} \operatorname{ker}\left(\mathcal{L}(h)-\lambda_{2} \mathcal{L}(h)\right)=2-\operatorname{rk}\left(\mathcal{L}(h)-\lambda_{2} \mathcal{L}(h) I_{2}\right)=2-1=1
$$

so that $\operatorname{Im}\left(\mathcal{L}(h)-I_{2}\right)=\operatorname{ker}\left(\mathcal{L}(h)-\lambda_{2} \mathcal{L}(h) I_{2}\right)$.

Corollary 47. Let $H=\mathcal{T}(h)\left\langle h_{o}\right\rangle$ be a finite subgroup of $\operatorname{Aut}(A)$ for some $h_{o} \in H$ with

$$
\lambda_{1} \mathcal{L}\left(h_{o}\right)=1, \quad \lambda_{2} \mathcal{L}\left(h_{o}\right)=e^{\frac{2 \pi i}{s}}, \quad s \in\{2,3,4,6\}
$$

$S \in G L(2, \mathbb{Q}(\sqrt{-d}))$ be a diagonalizing matrix for h_{o} and

$$
S^{-1} h_{o} S=\left(\tau_{W}, e^{\frac{2 \pi i}{s}}\right)
$$

after appropriate choice of an origin of $S^{-1} A=F_{1} \times F_{2}, F_{1}=S^{-1}\left(E \times \check{o}_{E}\right), F_{2}=$ $S^{-1}\left(\check{o}_{E} \times E\right)$. Then A / H is a hyper-elliptic surface if and only if the kernel $\operatorname{ker}\left(\operatorname{pr}_{1}\right)$ of the first canonical projection $\mathrm{pr}_{1}: S^{-1} H S \rightarrow A u t\left(F_{1}\right)$ is a translation subgroup of Aut $\left(F_{2}\right)$. If so, then

$$
S^{-1} A /\left[\operatorname{ker}\left(\operatorname{pr}_{2}\right) \operatorname{ker}\left(\operatorname{pr}_{1}\right)\right] \simeq C_{1} \times C_{2}
$$

for some elliptic curves C_{1}, C_{2} and

$$
A / H \simeq\left(C_{1} \times C_{2}\right) / G
$$

where the group G is isomorphic to some of the groups

$$
G_{2}^{H E}=\left\langle\left(\tau_{U_{1}},-1\right)\right\rangle \simeq \mathbb{C}_{2}
$$

with $U_{1} \in C_{1}^{2-\text { tor }} \backslash\left\{\check{o}_{C_{1}}\right\}$,

$$
G_{2,2}^{H E}=\left\langle\tau_{\left(P_{1}, Q_{1}\right)}\right\rangle \times\left\langle\left(\tau_{U_{1}},-1\right)\right\rangle \simeq \mathbb{C}_{2} \times \mathbb{C}_{2}
$$

with $P_{1}, U_{1} \in C_{1}^{2-\text { tor }} \backslash\left\{\check{o}_{C_{1}}\right\}, Q_{1} \in C_{2}^{2-\text { tor }}$,

$$
G_{3}^{H E}=\left\langle\left(\tau_{U_{1}}, e^{\frac{2 \pi i}{3}}\right)\right\rangle \simeq \mathbb{C}_{3}
$$

with $R=\mathcal{O}_{-3}, U_{1} \in C_{1}^{3-\text { tor }} \backslash C_{1}^{2-\text { tor }}$,

$$
G_{3,3}^{H E}=\left\langle\tau_{\left(P_{1}, Q_{1}\right)}\right\rangle \times\left\langle\left(\tau_{U_{1}}, e^{\frac{2 \pi i}{3}}\right)\right\rangle \simeq \mathbb{C}_{3} \times \mathbb{C}_{3}
$$

with $R=\mathcal{O}_{-3}, P_{1}, U_{1} \in C_{1}^{3-\text { tor }} \backslash C_{1}^{2-\text { tor }}, Q \in C_{2}^{3-\text { tor }} \backslash\left\{\check{o}_{C_{2}}\right\}$,

$$
G_{4}^{H E}=\left\langle\left(\tau_{U_{1}}, i\right)\right\rangle \simeq \mathbb{C}_{4}
$$

with $R=\mathbb{Z}[i], U_{1} \in C_{1}^{4 \text {-tor }} \backslash\left(C_{1}^{2-\text { tor }} \cup C_{1}^{3 \text {-tor }}\right)$,

$$
G_{4,4}^{H E}=\left\langle\tau_{\left(P_{1}, Q_{1}\right)}\right\rangle \times\left\langle\left(\tau_{U_{1}}, i\right)\right\rangle \simeq \mathbb{C}_{2} \times \mathbb{C}_{4}
$$

with $R=\mathbb{Z}[i], P_{1} \in C_{1}^{2-\text { tor }} \backslash\left\{\check{o}_{C_{1}}\right\}, Q_{1} \in C_{2}^{\left(1_{i}\right) \text {-tor }} \backslash\left\{\check{o}_{C_{2}}\right\}, U_{1} \in C_{1}^{4 \text {-tor }} \backslash\left(C_{1}^{2-\text { tor }} \cup\right.$ $C_{1}^{3-\text { tor }}$),

$$
G_{6}^{H E}=\left\langle\left(\tau_{U_{1}}, e^{\frac{\pi i}{3}}\right)\right\rangle \simeq \mathbb{C}_{6}
$$

with $R=\mathcal{O}_{-3}, U_{1} \in C_{1}^{6-\text { tor }} \backslash\left(C_{1}^{3-\text { tor }} \cup C_{1}^{4-\text { tor }} \cup C_{1}^{5-\text { tor }}\right)$.
In the notations from Proposition 30, A / H is a hyper-elliptic surface exactly when $H \simeq S^{-1} H S$ is isomorphic to some of the groups:

$$
H_{2}^{H E}(m, n)=\left\langle\left(\tau_{M_{j}}, I d_{F_{2}}\right),\left(I d_{F_{1}}, \tau_{N_{k}}\right),\left(\tau_{W},-1\right) \quad \mid \quad 1 \leq j \leq m, \quad 1 \leq k \leq n\right\rangle
$$

with $W \notin \operatorname{ker}\left(\operatorname{pr}_{2}\right), 2 W \in \operatorname{ker}\left(\operatorname{pr}_{2}\right), \mathcal{L}\left(H_{2}^{H E}(m, n)\right) \simeq H_{C 1}(1) \simeq \mathbb{C}_{2}$,
$H_{2,2}^{H E}(m, n)=\left\langle\left(\tau_{M_{j}}, I d_{F_{2}}\right), \quad\left(I d_{F_{1}}, \tau_{N_{k}}\right), \quad \tau_{(X, Y)}, \quad\left(\tau_{W},-1\right) \mid 1 \leq j \leq m, \quad 1 \leq k \leq n\right\rangle$
with $2 X .2 W \in \operatorname{ker}\left(\operatorname{pr}_{2}\right), X, W \notin \operatorname{ker}\left(\operatorname{pr}_{2}\right), 2 Y \in \operatorname{ker}\left(\operatorname{pr}_{1}\right), Y \notin \operatorname{ker}\left(\operatorname{pr}_{1}\right)$, $\mathcal{L}\left(H_{2,2}^{H E}(m, n)\right) \simeq H_{C 1}(1) \simeq \mathbb{C}_{2}$

$$
H_{3}^{H E}(m, n)=\left\langle\left(\tau_{M_{j}}, I f_{F_{2}}\right), \quad\left(I d_{F_{1}}, \tau_{N_{k}}\right), \left.\quad\left(\tau_{W}, e^{\frac{2 \pi i}{3}}\right) \quad \right\rvert\, 1 \leq j \leq m, \quad 1 \leq k \leq n\right\rangle
$$

with $R=\mathcal{O}_{-3}, 3 W \in \operatorname{ker}\left(\operatorname{pr}_{2}\right), 2 W \notin \operatorname{ker}\left(\operatorname{pr}_{2}\right), \mathcal{L}\left(H_{3}^{H E}(m, n)\right) \simeq H_{C 1}(2) \simeq \mathbb{C}_{3}$,

$$
H_{3,3}^{H E}(m, n)=\left\langle\left(\tau_{M_{j}}, I d_{F_{2}}\right),\left(I d_{F_{1}}, \tau_{N_{k}}\right), \tau_{(X, Y)}, \left.\left(\tau_{W}, e^{\frac{2 \pi i}{3}}\right) \right\rvert\, 1 \leq j \leq m, 1 \leq k \leq n\right\rangle
$$

with $R=\mathcal{O}_{-3}, 3 X, 3 W \in \operatorname{ker}\left(\operatorname{pr}_{2}\right), 2 X, 2 W \notin \operatorname{ker}\left(\operatorname{pr}_{2}\right), 3 Y \in \operatorname{ker}\left(\operatorname{pr}_{1}\right), Y \notin \operatorname{ker}\left(\operatorname{pr}_{1}\right)$, $\mathcal{L}\left(H_{3,3}^{H E}(m, n)\right) \simeq H_{C 1}(2) \simeq \mathbb{C}_{3}$,

$$
H_{4}^{H E}(m, n)=\left\langle\left(\tau_{M_{j}}, I d_{F_{2}}\right), \quad\left(I d_{F_{1}}, \tau_{N_{k}}\right), \quad\left(\tau_{W}, i\right) \quad \mid \quad 1 \leq j \leq m, \quad 1 \leq k \leq n\right\rangle
$$

with $R=\mathbb{Z}[i], 4 W \in \operatorname{ker}\left(\operatorname{pr}_{2}\right), 2 W, 3 W \notin \operatorname{ker}\left(\operatorname{pr}_{2}\right), \mathcal{L}\left(H_{4}^{H E}(m, n)\right) \simeq H_{C 1}(e) \simeq \mathbb{C}_{4}$,
$H_{4,4}^{H E}(m, n)=\left\langle\left(\tau_{M_{j}}, I d_{F_{2}}\right), \quad\left(I d_{F_{1}}, \tau_{N_{k}}\right), \quad \tau_{(X, Y)}, \quad\left(\tau_{W}, i\right) \mid 1 \leq j \leq m, \quad 1 \leq k \leq n\right\rangle$
with $R=\mathbb{Z}[i], 2 X \in \operatorname{ker}\left(\operatorname{pr}_{2}\right), X \notin \operatorname{ker}\left(\operatorname{pr}_{2}\right),\left(1_{i}\right) Y \in \operatorname{ker}\left(\operatorname{pr}_{1}\right), Y \notin \operatorname{ker}\left(\operatorname{pr}_{1}\right)$, $4 W \in \operatorname{ker}\left(\operatorname{pr}_{2}\right), 2 W, 3 W \notin \operatorname{ker}\left(\operatorname{pr}_{2}\right), \mathcal{L}\left(H_{4,4}^{H E}(m, n) \simeq H_{C 1}(3) \simeq \mathbb{C}_{4}\right.$,

$$
H_{6}^{H E}(m, n)=\left\langle\left(\tau_{M_{j}}, I d_{F_{2}}\right), \quad\left(I d_{F_{1}}, \tau_{N_{k}}\right), \left.\left(\tau_{W}, e^{\frac{\pi i}{3}}\right) \quad \right\rvert\, 1 \leq j \leq m, \quad 1 \leq k \leq n\right\rangle
$$

with $R=\mathcal{O}_{-3}, 6 W \in \operatorname{ker}\left(\operatorname{pr}_{2}\right), 3 W, 4 W, 5 W \notin \operatorname{ker}\left(\operatorname{pr}_{2}\right)$, where $m, n \in\{0,1,2\}$.
Proof. In the notations from Lemma 44, the kernel $\operatorname{ker}\left(\mathrm{pr}_{2}\right)$ of the second canonical projection $\mathrm{pr}_{2}: S^{-1} H S \rightarrow \operatorname{Aut}\left(F_{2}\right)$ is a translation group, so that

$$
S^{-1} A \rightarrow S^{-1} A / \operatorname{ker}\left(\operatorname{pr}_{2}\right)=C_{1} \times F_{2}
$$

is unramified and C_{1} is an elliptic curve. Thus, the covering $A \rightarrow A / H$ is unramified if and only if $C_{1} \times F_{2} \rightarrow\left(C_{1} \times F_{2}\right) / G \simeq A / H$ is unramified. In other words, A / H is a hyper-elliptic surface exactly when the group G has no fixed point on $C_{1} \times F_{2}$. For any $g \in G$ with $\mathcal{L}(g) \neq I_{2}$ the second component $\overline{\mathrm{pr}_{2}}(g)=\tau_{V_{2}} e^{\frac{2 \pi i j}{s}}$ for some $1 \leq$ $j \leq s-1, V_{2} \in F_{2}$ has a fixed point on F_{2}. Towards $F i x_{C_{1} \times F_{2}}(g)=\emptyset$ one has to have
$\overline{\operatorname{pr}_{1}}(g) \neq I d_{C_{1}}$, so that $\operatorname{ker}\left(\overline{\operatorname{pr}_{1}}\right) \subseteq \mathcal{T}(G)=G \cap \operatorname{ker}(\mathcal{L})$ and $\operatorname{ker}\left(\operatorname{pr}_{1}\right) \subseteq \mathcal{H}=H \cap \operatorname{ker}(\mathcal{L})$ are translation groups. The covering $C_{1} \times F_{2} \rightarrow\left(C_{1} \times F_{2}\right) / \operatorname{ker}\left(\overline{\mathrm{pr}_{1}}\right)=C_{1} \times C_{2}$ is unramified, C_{2} is an elliptic curve and A / H is a hyper-elliptic surface exactly when $G_{o}=G / \operatorname{ker}\left(\overline{\operatorname{pr}_{1}}\right)$ has no fixed points on $\left(C_{1} \times F_{2}\right) / \operatorname{ker}\left(\overline{\operatorname{pr}_{1}}\right)$. The canonical projections

$$
\overline{\operatorname{pr}_{1}}: G_{o} \longrightarrow \operatorname{Aut}\left(C_{1}\right) \text { and } \overline{\operatorname{pr}_{2}}: G_{o} \longrightarrow \operatorname{Aut}\left(C_{2}\right)
$$

are injective. Since $\overline{\mathrm{pr}_{1}}\left(G_{o}\right)$ is a translation subgroup of $\operatorname{Aut}\left(C_{1}\right)$, the group $G_{o} \simeq$ $\overline{\mathrm{pr}_{1}}$ is abelian and has at most two generators. As a result, $\overline{\mathrm{pr}_{2}}\left(G_{o}\right) \simeq G_{o}$ is an abelian subgroup of $\operatorname{Aut}\left(C_{2}\right)$ with at most two generators and non-trivial linear part $\mathcal{L}\left(\overline{\operatorname{pr}_{2}}\left(G_{o}\right)\right)=\left\langle e^{\frac{2 \pi i}{s}}\right\rangle \simeq \mathbb{C}_{s}$ for some $s \in\{2,3,4,6\}$. According to Lemma 43,

$$
\overline{\operatorname{pr}_{2}}\left(G_{o}\right) \simeq\left\langle\tau_{Q_{1}}\right\rangle \times\left\langle e^{\frac{2 \pi i}{s}}\right\rangle \simeq \mathbb{C}_{m} \times \mathbb{C}_{s}
$$

for some $Q_{1} \in C_{2}$ with $\tau_{Q_{1}}=\operatorname{Ad}_{e^{\frac{2 \pi i}{s}}}\left(\tau_{Q_{1}}\right)=\tau_{e^{\frac{2 \pi i}{s}} Q_{1}}$. In other words, the point
 $Q_{1} \in\left(C_{2},+\right)$ is $m=2$.

For $s=3$ note that the endomorphism ring of C_{2} is $\operatorname{End}\left(C_{2}\right)=\mathcal{O}_{-3}$. Therefore the fundamental group $\pi_{1}\left(C_{2}\right)=c(\mathbb{Z}+\tau \mathbb{Z})$ for some $\tau \in \mathbb{Q}(\sqrt{-3})$ and $c \in \mathbb{C}^{*}$. By $c \in \pi_{1}\left(C_{2}\right)$ and $e^{\frac{\pi i}{3}} \in \operatorname{End}\left(C_{2}\right)$ one has $e^{\frac{\pi i}{3}} c \in \pi_{1}\left(C_{2}\right)$. Due to the linear independence of c and $e^{\frac{\pi i}{3}}$ over \mathbb{Z}, one has $\pi_{1}\left(C_{2}\right)=c \mathbb{Z}+e^{\frac{\pi i}{3}} c \mathbb{Z}=c \mathcal{O}_{-3}$. For $\alpha=e^{\frac{2 \pi i}{3}}-1=-\frac{3}{2}+\frac{\sqrt{3}}{2} i$ the equation

$$
\alpha\left(x+e^{\frac{\pi i}{3}} y\right)=\left(a+e^{\frac{\pi i}{3}} b\right) c \quad \text { for some } \quad a, b \in \mathbb{Z}
$$

has a solution $x=\frac{-a+b}{3}, y=\frac{-a-2 b}{3}$. Note that $x(\bmod \mathbb{Z}) \equiv y(\bmod \mathbb{Z})$ and

$$
\begin{gathered}
\left(x+e^{\frac{\pi i}{3}} y\right) c\left(\bmod \mathbb{Z}+e^{\frac{\pi i}{3}} \mathbb{Z}\right)=\left(x+e^{\frac{\pi i}{3}}\right)\left(\bmod \pi_{1}\left(C_{2}\right)\right) \in \\
\left\{\check{o}_{C_{2}}, \quad \pm\left(1+e^{\frac{\pi i}{3}}\right)\left(\bmod \pi_{1}\left(C_{2}\right)\right)\right\}=C_{2}^{3-\text { tor }}
\end{gathered}
$$

whereas $C_{2}^{\alpha-\text { tor }}=C_{2}^{3-\text { tor }}$ and $m=3$. Thus, $Q_{1} \in C_{2}^{3-\text { tor }} \backslash\left\{\check{o}_{C_{2}}\right\}$ in the case of $s=3$.
If $s=4$ then $\operatorname{End}\left(C_{2}\right)=\mathbb{Z}[i]$ and $\pi_{1}\left(C_{2}\right)=c \mathbb{Z}[i]$ for some $c \in \mathbb{C}^{*}$. The equation $(i-1)(x+i y) c=(a+b i) c$ for some $a, b \in \mathbb{Z}$ has a solution $x=\frac{-a+b}{2}, y=\frac{-a-b}{2}$ with

$$
\begin{aligned}
& (x+i y) c(\bmod \mathbb{Z}[i])=x+i y\left(\bmod \pi_{1}\left(C_{2}\right)\right) \in \\
& \left\{\check{o}_{C_{2}},\left(\frac{1+i}{2}\right) c\left(\bmod \pi_{1}\left(C_{2}\right)\right)\right\}=C_{2}^{(i+1)-\text { tor }},
\end{aligned}
$$

so that $m=4$ and $Q_{1} \in C_{2}^{(i+1) \text {-tor }} \backslash\left\{\check{o}_{C_{2}}\right\}$.
For $s=6$ one has $e^{\frac{\pi i}{3}}-1=e^{\frac{2 \pi i}{3}}$ and $C_{2}^{e^{\frac{2 \pi i}{3}}-\text { tor }}=\left\{\check{o}_{C_{2}}\right\}$, Therefore $\overline{\operatorname{pr}_{2}}\left(G_{o}\right)=$ $\left\langle e^{\frac{\pi i}{3}}\right\rangle \simeq \mathbb{C}_{6}$ in this case.

The restrictions on $P_{1}, U_{1} \in C_{1}$ arise from the isomorphism $G_{o} \simeq \overline{\operatorname{pr}_{1}}\left(G_{o}\right) \simeq$ $\overline{\operatorname{pr}_{2}}\left(G_{o}\right)$. Namely, $\left(\tau_{U_{1}}, e^{\frac{2 \pi i}{s}}\right) \in G_{o}$ with $\overline{\mathrm{pr}_{2}}\left(\tau_{U_{1}}, e^{\frac{2 \pi i}{s}}\right)=E^{\frac{2 \pi i}{s}}$ of order $s \in\{2,34,6\}$ has to have $\tau_{U_{1}}=\overline{\operatorname{pr}_{1}}\left(\tau_{U_{1}}, e^{\frac{2 \pi i}{s}}\right) \in\left(C_{1},+\right)$ of order s. That amounts to $U_{1} \in C_{1}^{s-\text { tor }}$ and $U_{1} \notin C_{1}^{t-\text { tor }}$ for all $1 \leq t<s$. If $\overline{\mathrm{pr}_{2}}\left(G_{o}\right)=\left\langle\tau_{Q_{1}}\right\rangle \times\left\langle e^{\frac{2 \pi i}{s}}\right\rangle$ with $Q_{1} \neq \check{o}_{C_{2}}$ then the order m of $Q_{1} \in C_{2}$ has to coincide with the order of $P_{1} \in C_{1}$.

In order to relate the classification $G_{s}^{H E}, G_{m, s}^{H E}$ of G_{o} with the classification of the groups $H_{s}^{H E}(m, n), H_{s, s}^{H E}(m, n)$ of $H \simeq S^{-1} H S$, note that $P_{1}, U_{1} \in C_{1}^{p-\text { tor }} \backslash C_{1}^{q-\text { tor }}$ for some natural numbers $p>q$ exactly when the corresponding liftings $X, W \in F_{1}$ are subject to $p X, p Q \in \operatorname{ker}\left(\operatorname{pr}_{2}\right), q X, q W \notin \operatorname{ker}\left(\mathrm{pr}_{2}\right)$. Similarly, $Q_{1} \in C_{2}^{p \text {-tor }} \backslash C_{2}^{q-\text { tor }}$ for $p, q \in \mathbb{N}, P>q$ if and only if an arbitrary lifting $Y \in F_{2}$ satisfies $p Y \in \operatorname{ker}\left(\operatorname{pr}_{1}\right)$, $q Y \notin \operatorname{ker}\left(\operatorname{pr}_{1}\right)$.

Bearing in mind that A / H with $H=\mathcal{T}(H)\left\langle h_{o}\right\rangle, \lambda_{1} \mathcal{L}\left(h_{o}\right)=1, \lambda_{2} \mathcal{L}\left(h_{o}\right) \in R^{*} \backslash\{1\}$ is either hyper-elliptic or a ruled surface with an elliptic base, one obtains the following

Corollary 48. Let $H=\mathcal{T}(H)\left\langle h_{o}\right\rangle$ be a finite subgroup of $\operatorname{Aut}(A)$ for some $h_{o} \in$ H with $\lambda_{1} \mathcal{L}\left(h_{o}\right)=1, \lambda_{2} \mathcal{L}\left(h_{o}\right)=e^{\frac{2 \pi i}{s}}, s \in\{2,3,4,6\}, S \in G L(2, \mathbb{Q}(\sqrt{-d}))$ be a diagonalizing matrix for h_{o} and

$$
S^{-1} h_{o} S=\left(\tau_{U_{1}}, e^{\frac{2 \pi i}{s}}\right)
$$

after an appropriate choice of an origin of $S^{-1}(A)=F_{1} \times F_{2}, F_{1}=S^{-1}\left(E \times \check{o}_{E}\right)$, $F_{2}=S^{-1}\left(\check{o}_{E} \times E\right)$. Then A / H is a ruled surface with an elliptic base if and only if the kernel $\operatorname{ker}\left(\operatorname{pr}_{1}\right)$ of the first canonical projection $\mathrm{pr}_{1}: S^{-1} H S \rightarrow$ Aut $\left(F_{1}\right)$ contains a non-translation element $S^{-1} h S=\left(I d_{F_{1}}, \tau_{V_{2}} e^{\frac{2 \pi i k}{s}}\right)$ for some $1 \leq k \leq s-1, V_{2} \in F_{2}$.

In the notations from Lemma 44, the quotient $A / H \simeq\left(C_{1} \times F_{2}\right) / G$ of the split abelian surface $C_{1} \times F_{2}=S^{-1} A / \operatorname{ker}\left(\mathrm{pr}_{2}\right)$ by its finite automorphism group $G=$ $S^{-1} H S / \operatorname{ker}\left(\operatorname{pr}_{2}\right)$ is a ruled surface with an elliptic base exactly when G is isomorphic to some of the groups

$$
\begin{aligned}
& \quad G_{2}^{R E}(m, n)=\left\langle\tau_{\left(P_{1}, Q_{1}\right)}, \quad \tau_{\left(P_{2}, Q_{2}\right)}, \quad\right\rangle \rtimes\left\langle\left(\tau_{U_{1}},-1\right)\right\rangle \simeq\left(\mathbb{C}_{m} \times \mathbb{C}_{n}\right) \rtimes_{(-1,-1)} \mathbb{C}_{2}= \\
& =(\langle a\rangle \times\langle b\rangle) \rtimes_{(-1,-1)}\langle c\rangle=\left\langle a, \quad b, \quad c \mid a^{m}=1, \quad b^{n}=1, \quad c a c^{-1}=a^{-1}, \quad c b c^{-1}=b^{-1}\right\rangle \\
& \text { with } \tau_{U_{1}} \in\left(\left\langle\tau_{P_{1}}, \tau_{P_{2}}\right\rangle,+\right) \simeq \mathbb{C}_{m} \times \mathbb{C}_{n} \text { for some } m, n \in \mathbb{N} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& G_{3}^{R E}(m, j)=\left\langle\tau_{\left(P_{1}, Q_{1}\right)}\right\rangle \rtimes\left\langle\left(\tau_{U_{1}}, e^{\frac{2 \pi i}{3}}\right)\right\rangle \simeq \mathbb{C}_{m} \rtimes_{j} \mathbb{C}_{3}= \\
= & \langle a\rangle \rtimes_{j}\langle c\rangle=\left\langle a, \quad c \mid a^{m}=1, \quad c^{3}=1, \quad c a c^{-1}=a^{j}\right\rangle
\end{aligned}
$$

with $R=\mathcal{O}_{-3}, 2 U_{1} \in\left(\left\langle\tau_{P_{1}}\right\rangle,+\right) \simeq \mathbb{C}_{m}$ for some $j \in \mathbb{Z}_{m}^{*}$ of order 1 or 3 ,

$$
G_{4}^{R E}(m, j)=\left\langle\tau_{\left(P_{1}, Q_{1}\right)}\right\rangle \rtimes\left\langle\left(\tau_{U_{1}}, i\right)\right\rangle \simeq \mathbb{C}_{m} \rtimes_{j} \mathbb{C}_{4}=
$$

$$
=\langle a\rangle \rtimes_{j}\langle c\rangle=\left\langle a, \quad c \quad \mid \quad a^{m}=1, \quad c^{4}=1, \quad c a c^{-1}=a^{j}\right\rangle
$$

with $R=\mathbb{Z}[i]$ for some $j \in \mathbb{Z}_{m}^{*}$ or order 1,2 or 4 ,

$$
\begin{aligned}
& G_{6}^{R E}(m, j)=\left\langle\tau_{\left(P_{1}, Q_{1}\right)}\right\rangle \rtimes\left\langle\left(\tau_{U_{1}}, e^{\frac{\pi i}{3}}\right)\right\rangle \simeq \mathbb{C}_{m} \rtimes_{j} \mathbb{C}_{6}= \\
= & \langle a\rangle \rtimes_{j}\langle c\rangle=\left\langle a, \quad c \mid a^{m}=1, \quad c^{6}=1, \quad c a c^{-1}=a^{j}\right\rangle
\end{aligned}
$$

with $R=\mathcal{O}_{-3}$ and at least one of $3 U_{1}, 4 U_{1}$ or $5 U_{1}$ from $\left(\left\langle\tau_{P_{1}}\right\rangle,+\right)$ for some $j \in \mathbb{Z}_{m}^{*}$ of order $1,2,3$ or 6 .

The classification of G is an immediate application of the group isomorphism $\overline{\mathrm{pr}_{2}}: G \rightarrow \operatorname{pr}_{2}\left(S^{-1} H S\right)$ from Lemma $44(\mathrm{v})$ and the classification of $\operatorname{Aut}\left(F_{2}\right)$, given in Lemma 43.

Lemma 49. Let G be a finite subgroup of $G L(2, R)$ with $G \cap S L(2, R) \neq\left\{I_{2}\right\}$, such that any $g \in G \backslash S L(2, R) \neq \emptyset$ has an eigenvalue $\lambda_{1}(g)=1$. Then:
(i) $G=G_{s}=\left\langle g_{s}, g_{o}\right\rangle$ is generated by $g_{s} \in S L(2, R)$ of order $s \in\{2,3,4,6\}$ and $g_{o} \in G L(2, R)$ with $\operatorname{det}\left(g_{o}\right)=-1, \operatorname{tr}\left(g_{o}\right)=0$, subject to $g_{o} g_{s} g_{o}^{-1}=g_{s}^{-1}$;
(ii) and $g \in G \backslash S L(2, R)$ has eigenvalues $\lambda_{1}(g)=1$ and $\lambda_{2}(g)=-1$;
(iii) the group

$$
G_{s}=\left\langle g_{s}, \quad g_{o} \mid g_{s}^{s}=I_{2}, \quad g_{o}^{2}=I_{2}, \quad g_{o} g_{s} g_{o}^{-1}=g_{s}^{-1}\right\rangle \simeq \mathcal{D}_{s}
$$

is dihedral of order $2 s$ for $s \in\{3,4,6\}$ or the Klein group $G_{2} \simeq \mathbb{C}_{2} \times \mathbb{C}_{2}$ for $s=2$.
Proof. Note that $g \in G \backslash S L(2, R)$ has an eigenvalue 1 exactly when the characteristic polynomial $\mathcal{X}_{g}(\lambda)=\lambda^{2}-\operatorname{tr}(g) \lambda+\operatorname{det}(g) \in R[\lambda]$ of g vanishes at $\lambda=1$. This is equivalent to

$$
\operatorname{tr}(g)=\operatorname{det}(g)+1
$$

If $-I_{2} \notin G$, then Proposition 24 specifies that $G \cap S L(2, R)=\left\langle g_{3}\right\rangle \simeq \mathbb{C}_{3}$. In the notations from Proposition 35, all the finite subgroups $H_{C 3}(i)=\left[H_{C 3}(i) \cap S L(2, R)\right]\left\langle g_{o}\right\rangle$ of $G L(2, R)$ with $H_{C 3}(i) \cap S L(2, R) \simeq \mathbb{C}_{3}$, such that g_{o} has an eigenvalue $\lambda_{1}\left(g_{o}\right)=1$ are isomorphic to

$$
H_{C 3}(4)=\left\langle g, \quad g_{o} g^{3}=g_{o}^{3}=I_{2}, \quad g_{o} g g_{o}^{-1}=g^{-1}\right\rangle \simeq S_{3} \simeq \mathcal{D}_{3}
$$

for some $g \in S L(2, R)$ with $\operatorname{tr}(g)=-1$ and $\lambda_{1}\left(g_{o}\right)=1, \lambda_{2}\left(g_{o}\right)=-1$. Since g_{o} is of order 2 , the complement

$$
H_{C 3}(4) \backslash S L(2, R)=\langle g\rangle g_{o}=\left\{g^{j} g_{o} \mid \quad 0 \leq j \leq 2\right\}
$$

consists of matrices $g^{j} g_{o}$ of determinant $\operatorname{det}\left(g^{j} g_{o}\right)=\operatorname{det}\left(g_{o}\right)=-1$ and $g \in H_{C 3}(4) \backslash$ $S L(2, R)$ has as eigenvalue 1 exactly when $\operatorname{tr}\left(g^{j} g_{o}\right)=0$. Bearing in mind the invariance of the trace under conjugation, one can consider

$$
g=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{3}} & 0 \\
0 & e^{-\frac{2 \pi i}{3}}
\end{array}\right) \quad \text { and } \quad g_{o}=\left(\begin{array}{rr}
a_{o} & b_{o} \\
c_{o} & -a_{o}
\end{array}\right)
$$

with $a_{o}^{2}+b_{o} c_{o}=1$. Then

$$
g_{o} g g_{o}^{-1}=g_{o} g g_{o}=\left(\begin{array}{cc}
e^{-\frac{2 \pi i}{3}}+\sqrt{-3} a_{o}^{2} & \sqrt{-3} a_{o} b_{o} \\
\sqrt{-3} a_{o} c_{o} & e^{\frac{2 \pi i}{3}}+\sqrt{-3} a_{o}^{2}
\end{array}\right)=\left(\begin{array}{cc}
e^{-\frac{2 \pi i}{3}} & 0 \\
0 & e^{\frac{2 \pi i}{3}}
\end{array}\right)=g^{-1}
$$

is equivalent to $a_{o}=0$ and

$$
g^{j} g_{o}=\left(\begin{array}{cc}
e^{\frac{2 \pi i j}{3}} & 0 \\
0 & e^{-\frac{2 \pi i j}{3}}
\end{array}\right)\left(\begin{array}{cc}
0 & b_{o} \\
\frac{1}{b_{o}} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & e^{\frac{2 \pi i j}{3}} b_{o} \\
\frac{e^{-\frac{2 \pi i j}{3}}}{b_{o}} & 0
\end{array}\right)
$$

have $\operatorname{tr}\left(g^{j} g_{o}\right)=0$ for all $0 \leq j \leq 2$. Thus, any $g \in H_{C 3}(4) \backslash S L(2, R)$ has an eigenvalue $\lambda_{1}(g)=1$.

If $-I_{2} \in G$, then for any $g \in G \backslash S L(2, R)$ with $\lambda_{1}(g)=1, \lambda_{2}(g)=\operatorname{det}(g) \in$ $R^{*} \backslash\{1\}$, one has $-g \in G \backslash S L(2, R)$ with $\lambda_{1}(-g)=-1, \lambda_{2}(-g)=-\operatorname{det}(g)$. Thus, $-g$ has an eigenvalue 1 exactly when $\lambda_{2}(-g)=-\operatorname{det}(g)=1$ or $\lambda_{2}(g)=\operatorname{det}(g)=-1$. In particular,

$$
G=[G \cap S L(2, R)]\left\langle g_{o}\right\rangle
$$

for some $g_{o} \in G$ with $\operatorname{det}\left(g_{o}\right)=-1, \operatorname{tr}\left(g_{o}\right)=0$ and $G \backslash S L(2, R)=[G \cap S L(2, R)] g_{o}$. Thus, for any $g \in G \backslash S L(2, R)$ has $\operatorname{det}(g)=-1$ and g has an eigenvalue $\lambda_{1}(g)=1$ exactly when $\operatorname{tr}(g)=0$.

We claim that $\operatorname{tr}\left(g_{1} g_{o}\right)=0$ for all $g_{1} \in G \cap S L(2, R)$ and some $g_{o} \in G$ with $\operatorname{det}\left(g_{o}\right)=-1, \operatorname{tr}\left(g_{o}\right)=-1$ requires $G \cap S L(2, R)$ to be a cyclic group. Assume the opposite. Then by Proposition 24, either $G \cap S L(2, R)$ contains a subgroup

$$
K_{4}=\left\langle g_{1}, g_{2} \mid g_{1}^{2}=g_{2}^{2}=-I_{2}, \quad g_{1} g_{2} g_{1}^{-1}=g_{2}^{-1}\right\rangle \simeq \mathbb{Q}_{8}
$$

isomorphic to the quaternion group \mathbb{Q}_{8} of order 8 , or

$$
G \cap S L(2, R)=K_{7}=\left\langle g_{1}, \quad g_{4} \mid g_{1}^{2}=g_{4}^{3}=-I_{2}, \quad g_{1} g_{4} g_{1}^{-1}=g_{4}^{-1}\right\rangle \simeq \mathbb{Q}_{12}
$$

is isomorphic to the dicyclic group \mathbb{Q}_{12} of order 12. In either case, one has $h_{1}, h_{2} \in$ $S L(2, R)$ with $\operatorname{tr}\left(h_{1}\right)=0$ and h_{2} of order $s \in\{4,6\}$, such that $h_{1} h_{2} h_{1}^{-1}=h_{2}^{-1}$. Let us consider

$$
\begin{gathered}
D_{1}=S^{-1} h_{1} S=\left(\begin{array}{rr}
a_{1} & b_{1} \\
c_{1} & -a_{1}
\end{array}\right) \in S L\left(2, \mathbb{Q}\left(\sqrt{-d}, E^{\frac{2 \pi i}{s}}\right)\right), \\
D_{2}=S^{-1} h_{2} S=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{s}} & 0 \\
0 & e^{-\frac{2 \pi i}{s}}
\end{array}\right) \text { and } \\
D_{o}=S^{-1} g_{o} S=\left(\begin{array}{rr}
a_{o} & b_{o} \\
c_{o} & -a_{o}
\end{array}\right) \in G L\left(2, \mathbb{Q}\left(\sqrt{-d}, e^{\frac{2 \pi i}{s}}\right)\right)
\end{gathered}
$$

with $a_{o}^{2}+b_{o} c_{o}=1$. The relation

$$
\begin{aligned}
D_{1} D_{2} D_{1}^{-1}=-D_{1} D_{2} D_{1}= & \left(\begin{array}{cc}
e^{-\frac{2 \pi i}{s}}-2 i \operatorname{Im}\left(e^{\frac{2 \pi i}{s}}\right) a_{1}^{2} & -2 i \operatorname{Im}\left(e^{\frac{2 \pi i}{s}}\right) a_{1} b_{1} \\
-2 i \operatorname{Im}\left(e^{\frac{2 \pi i}{s}}\right) a_{1} c_{1} & e^{\frac{2 \pi i}{s}}+2 i \operatorname{Im}\left(e^{\frac{2 \pi i}{s}}\right) a_{1}^{2}
\end{array}\right)= \\
& =\left(\begin{array}{cc}
e^{-\frac{2 \pi i}{s}} & 0 \\
0 & e^{\frac{2 \pi i}{s}}
\end{array}\right)=D_{2}^{-1}
\end{aligned}
$$

requires $a_{1}=0$ and

$$
D_{1}=\left(\begin{array}{cc}
0 & b_{1} \\
-\frac{1}{b_{1}} & 0
\end{array}\right) \quad \text { for some } \quad b_{1} \in \mathbb{Q}\left(\sqrt{-d}, e^{\frac{2 \pi i}{s}}\right)
$$

Now,

$$
\operatorname{tr}\left(D_{2} D_{o}\right)=\operatorname{tr}\left(\begin{array}{cc}
e^{\frac{2 \pi i}{s}} a_{o} & e^{\frac{2 \pi i}{s}} b_{o} \\
e^{-\frac{2 \pi i}{s}} c_{o} & -e^{-\frac{2 \pi i}{s}} a_{o}
\end{array}\right)=2 i \operatorname{Im}\left(e^{\frac{2 \pi i}{s}}\right) a_{o}=0
$$

specifies the vanishing of a_{o}, whereas

$$
D_{o}=\left(\begin{array}{cc}
0 & b_{o} \\
\frac{1}{b_{o}} & 0
\end{array}\right) \quad \text { for some } \quad b_{o} \in \mathbb{Q}\left(\sqrt{-d} e^{\frac{2 \pi i}{s}}\right)
$$

The condition

$$
\operatorname{tr}\left(D_{1} D_{o}\right)=\operatorname{tr}\left(\begin{array}{cc}
\frac{b_{1}}{b_{o}} & 0 \\
0 & -\frac{b_{o}}{b_{1}}
\end{array}\right)=\frac{b_{1}}{b_{o}}-\frac{b_{o}}{b_{1}}=0
$$

requires $b_{1}=\varepsilon b_{o}$ for some $\varepsilon \in\{ \pm\}$ and

$$
\operatorname{tr}\left(D_{1} D_{2} D_{o}\right)=\operatorname{tr}\left(\begin{array}{rr}
\varepsilon e^{-\frac{2 \pi i}{s}} & 0 \\
m b o x & \\
0 & -\varepsilon e^{\frac{2 \pi i}{s}}
\end{array}\right)=-\varepsilon\left(e^{\frac{2 \pi i}{s}}-e^{-\frac{2 \pi i}{s}}\right)=-2 i \operatorname{Im}\left(e^{\frac{2 \pi i}{s}}\right) \varepsilon \neq 0
$$

contradicts the assumption. Therefore $G \cap S L(2, R)=\langle g\rangle \simeq \mathbb{C}_{s}$ is cyclic group of order $s \in\{2,4,6\}$. If $G=[G \cap S L(2, R)]\left\langle g_{o}\right\rangle$ has a normal subgroup $G \cap S L(2, R)=$ $\langle g\rangle \simeq \mathbb{C}_{2}$ then $g=-I_{2}$ and $g_{o}\left(-I_{2}\right)=\left(-I_{2}\right) g_{o}$, as far as $-I_{2}$ is a scalar matrix. As a result, $G=\langle g\rangle \times\left\langle g_{o}\right\rangle \simeq \mathbb{C}_{2} \times \mathbb{C}_{2}$. For $G=[G \cap S L(2, R)]\left\langle g_{o}\right\rangle$ with a normal subgroup $G \cap S L(2, R)=\langle g\rangle \simeq \mathbb{C}_{s}$ of order $\{4,6\}$ note that the element $g_{o} g g_{o}^{-1}$ of $\langle g\rangle$ is of order s, so that either $g_{o} g g_{o}^{-1}=g$ or $g_{o} g g_{o}^{-1}=g^{-1}$, according to $\mathbb{Z}_{4}^{*}=\{ \pm 1(\bmod 4)\}, \mathbb{Z}_{6}^{*}=$ $\{ \pm 1(\bmod 6)\}$. If $g_{o} g=g g_{o}$ then there exists a matrix $S \in G L\left(2, \mathbb{Q}\left(\sqrt{-d}, e^{\frac{2 \pi i}{s}}\right)\right)$, such that

$$
D=S^{-1} g S=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{s}} & 0 \\
0 & e^{-\frac{2 \pi i}{s}}
\end{array}\right) \quad \text { and } \quad D_{o}=S^{-1} g_{o} S=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are diagonal. Then $\operatorname{tr}\left(g g_{o}\right)=\operatorname{tr}\left(D D_{o}\right)=e^{\frac{2 \pi i}{s}}-e^{-\frac{2 \pi i}{s}}=2 i \operatorname{Im}\left(e^{\frac{2 \pi i}{s}}\right) \neq 0$ and 1 is not an eigenvalue of $g g_{o}$. Therefore $g_{o} g g_{o}^{-1}=g^{-1}$. If

$$
\begin{gathered}
D=S^{-1} g S=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{s}} & 0 \\
0 & e^{-\frac{2 \pi i}{s}}
\end{array}\right) \quad \text { and } \\
D_{o}=S^{-1} g_{o} S=\left(\begin{array}{rr}
a_{o} & b_{o} \\
C_{o} & -a_{o}
\end{array}\right) \in G L\left(2, \mathbb{Q}\left(\sqrt{-d}, e^{\frac{2 \pi i}{s}}\right)\right) \quad \text { with } \quad a_{o}^{2}+b_{o} c_{o}=1,
\end{gathered}
$$

then the relation

$$
\left.\begin{array}{rl}
D_{o} D D_{o}^{-1}=D_{o} D D_{o}=(& 2 i \operatorname{Im}\left(e^{\frac{2 \pi i}{s}}\right) a_{o} b_{o} \\
2 i \operatorname{Im}\left(e^{\frac{2 \pi i}{s}}\right) a_{o} c_{o} & e^{\frac{2 \pi i}{s}}-2 i \operatorname{Im}\left(e^{\frac{2 \pi i}{s}}\right) a_{o}^{2} \\
\left.\frac{2 \pi i}{s}\right) a_{o}^{2}
\end{array}\right)=\left\{\begin{array}{cc}
e^{-\frac{2 \pi i}{s}} & 0 \\
0 & e^{\frac{2 \pi i}{s}}
\end{array}\right)=D^{-1} .
$$

specifies that $a_{o}=0$ and

$$
D_{o}=\left(\begin{array}{cc}
0 & b_{o} \\
\frac{1}{b_{o}} & 0
\end{array}\right) \quad \text { for some } \quad b_{o} \in \mathbb{Q}\left(\sqrt{-d}, e^{\frac{2 \pi i}{s}}\right)
$$

The non-trivial coset

$$
S^{-1} G S \backslash S L\left(2, \mathbb{Q}\left(\sqrt{-d}, e^{\frac{2 \pi i}{s}}\right)\right)=\langle D\rangle D_{o}=\left\{D^{j} D_{o} \mid 0 \leq j \leq s-1\right\}
$$

consists of elements of trace

$$
\operatorname{tr}\left(D^{j} D_{o}\right)=\operatorname{tr}\left(\begin{array}{cc}
0 & e^{\frac{2 \pi i j}{s}} b_{o} \\
\frac{e^{-\frac{2 \pi i j}{s}}}{b_{o}} & 0
\end{array}\right)=0,
$$

so that any $\Delta \in S^{-1} G S \backslash S L\left(2, \mathbb{Q}\left(\sqrt{-d}, e^{\frac{2 \pi i}{s}}\right)\right)$ has an eigenvalue 1 and any $g=$ $S \Delta S^{-1} \in G \backslash S L(2, R)$ has an eigenvalue 1.

Proposition 50. The quotient A / H of $A=E \times E$ is an Enriques surface if and only if H is generated by $h \in H$ of order $s \in\{2,3,4,6\}$ with $\mathcal{L}(h) \in S L(2, R)$ and $h_{o} \in H$ with $\lambda_{1} \mathcal{L}\left(h_{o}\right)=1, \lambda_{2} \mathcal{L}\left(h_{o}\right)=-1, \tau\left(h_{o}\right)=h_{o} \mathcal{L}\left(h_{o}\right)^{-1}=\tau_{\left(U_{o}, V_{o}\right)}$, subject to $h_{o} h h_{o}^{-1}=h_{o} h h_{o}=h^{-1}$ and

$$
\begin{equation*}
\mathcal{L}\left(h_{o}\right)\binom{U_{o}}{V_{o}} \neq-\binom{U_{o}}{V_{o}} . \tag{21}
\end{equation*}
$$

In particular, for $s=2$ the group

$$
H \simeq \mathcal{L}(H) \simeq \mathbb{C}_{2} \times \mathbb{C}_{2}
$$

is isomorphic to the Klein group of order 4 , while for $s \in\{3,4,6\}$ one has a dihedral group

$$
H \simeq \mathcal{L}(H) \simeq \mathcal{D}_{s}=\left\langle a, \quad b \quad \mid \quad a^{s}=1, \quad b^{2}=1, \quad b a b^{-1}=a^{-1}\right\rangle
$$

of order $2 s$.
Proof. According to Lemmas 41 and 49, the finite subgroups H of $A u t(E \times E)$ with Enriques quotient A / H are of the form

$$
H=\left\langle\tau_{\left(P_{i}, Q_{i}\right)}, \quad h, \quad h_{o} \mid 1 \leq i \leq m\right\rangle
$$

with $0 \leq m \leq 3$ and
$\mathcal{L}(H)=\left\langle\mathcal{L}(h), \quad \mathcal{L}\left(h_{o}\right) \quad \mathcal{L}(h)^{s}=I_{2}, \quad \mathcal{L}\left(h_{o}\right)^{2}=I_{2}, \quad \mathcal{L}\left(h_{o}\right) \mathcal{L}(h) \mathcal{L}\left(h_{o}\right)^{-1}=\mathcal{L}\left(h^{-1} \simeq \mathcal{D}_{s}\right.\right.$
for some $\mathcal{L}(h) \in S L(2, R), \mathcal{L}\left(h_{o}\right) \in G L(2, R), \lambda_{1} \mathcal{L}\left(h_{o}\right)=1, \lambda_{2} \mathcal{L}\left(h_{o}\right)=-1$. Note that

$$
K:=\mathcal{L}^{-1}(\mathcal{L}(H) \cap S L(2, R))=\left\langle\tau_{\left(P_{i}, Q_{i}\right)} \mid 1 \leq i \leq m\right\rangle\langle h\rangle
$$

is a normal subgroup of H with a single non-trivial coset

$$
H \backslash K=K h_{o}=\left\{\tau_{h(z, j)=\sum_{i=1}^{m} z_{i}\left(P_{i}, Q_{i}\right)} h^{j} h_{o} \mid z_{i} \in \mathbb{Z}, \quad 0 \leq j \leq s-1\right\} .
$$

The automorphism h, whose linear part $\mathcal{L}(h)$ has eigenvalues $\lambda_{1} \mathcal{L}(h)=e^{\frac{2 \pi i}{s}}, \lambda_{2} \mathcal{L}(h)=$ $e^{-\frac{2 \pi i}{s}}$, different from 1 has always a fixed point on A. Without loss of generality, one can assume that $h=\mathcal{L}(h) \in G L(2, R)$, after moving the origin of A at a fixed point of h. If $h_{o}=\tau_{\left(U_{o}, V_{o}\right)} \mathcal{L}\left(h_{o}\right)$ for some $\left(U_{o}, V_{o}\right) \in A$ then the translation parts

$$
\tau(h(z, j))=h(z, j) \mathcal{L}(h(z, j))^{-1}=\tau_{i=1}^{m} z_{i}\left(P_{i}, Q_{i}\right)+h^{j}\left(U_{o}, V_{o}\right) \quad \text { for } \quad \forall z=\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{Z}^{m}
$$

and $0 \leq j \leq s-1$. The linear parts $\mathcal{L}(h(z, j))=\mathcal{L}\left(h^{j} h_{o}\right)=h^{j} \mathcal{L}\left(h_{o}\right)$ have eigenvalues $\lambda_{1}\left(h^{j} \mathcal{L}\left(h_{o}\right)\right)=1, \lambda_{2}\left(h^{j} \mathcal{L}\left(h_{o}\right)\right)=-1$ for all $0 \leq j \leq s-1$. Applying Lemma 46, one concludes that $\operatorname{Fix}_{A}(h(z, j))=\emptyset$ if and only if no one lifting $(x(z, j), y(z, j)) \in \mathbb{C}^{2}$ of $\tau(h(z, j))$ is in the kernel of the linear operator $\psi_{j}=h^{j} \mathcal{L}\left(h_{o}\right)+I_{2}: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$. For any fixed $0 \leq j \leq s-1$, note that $(x(z, j), y(z, j)) \notin \operatorname{ker}\left(\phi_{j}\right)$ for all $z=\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{Z}^{m}$ implies that the lifting of the \mathbb{R}-span of $\left\langle\tau_{\left(P_{i}, Q_{i}\right)} \mid 1 \leq i \leq m\right\rangle$ to \mathbb{C}^{2} is parallel to $\operatorname{ker}\left(\psi_{j}\right)$. It suffices to establish that $\operatorname{ker}\left(\psi_{0}\right) \cap \operatorname{ker}\left(\psi_{1}\right)=\{(0,0)\}$, in order to conclude that $m=0$ and $H=\left\langle h, \quad h_{o}\right\rangle=\left\langle h_{o}, h\right\rangle$. Since the claim $\operatorname{ker}\left(\psi_{0}\right) \cap \operatorname{ker}\left(\psi_{1}\right)=\{(0,0)\}$
is independent on the choice of a coordinate system on \mathbb{C}^{2}, one can use Lemma 49 to assume that

$$
\mathcal{L}\left(h_{o}\right)=D_{o}=\left(\begin{array}{cc}
0 & b_{o} \\
\frac{1}{b_{o}} & 0
\end{array}\right) \quad \text { and } \quad h=\mathcal{L}(h)=\left(\begin{array}{cc}
e^{\frac{2 \pi i}{s}} & 0 \\
0 & e^{-\frac{2 \pi i}{s}}
\end{array}\right)
$$

for some $s \in\{2,3,4,6\}$. Then $\psi_{0}=\mathcal{L}\left(h_{o}\right)+I_{2}$ has kernel $\operatorname{ker}\left(\psi_{0}\right)=\operatorname{Span}_{\mathbb{C}}\left(b_{o},-1\right)$, while

$$
\psi_{1}=h \mathcal{L}\left(h_{o}\right)+I_{2}=\left(\begin{array}{cc}
1 & e^{\frac{2 \pi i}{s}} b_{o} \\
e^{-\frac{2 \pi i}{s}} b_{o}^{-1} & 1
\end{array}\right)
$$

has kernel $\operatorname{ker}\left(\psi_{1}\right)=\operatorname{Span}_{\mathbb{C}}\left(e^{\frac{2 \pi i}{s}} b_{o},-1\right)$. For $s \in\{2,, 34,6\}$ the vectors $\left(b_{o},-1\right)$ and $\left(e^{\frac{2 \pi i}{s}} b_{o},-1\right)$ are linearly independent over \mathbb{C}, so that $\operatorname{ker}\left(\psi_{0}\right) \cap \operatorname{ker}\left(\psi_{1}\right)=\{(0,0)\}$. Now, $\mathcal{L}\left(h^{j} h_{o}\right)=h^{j} \mathcal{L}\left(h_{o}\right) \neq I_{2}$ for any $0 \leq j \leq s-1$, as far as $\mathcal{L}\left(h_{o}\right) \notin\langle h\rangle<S L(2, R)$. On the other hand, the subgroup $\langle h=\mathcal{L}(h)\rangle$ of H is contained in $S L(2, R)$, so that the translation part $\mathcal{T}(H)=\operatorname{ker}\left(\left.\mathcal{L}\right|_{H}\right)=I d_{A}$ is trivial. As a result, $\mathcal{L}: H \rightarrow \mathcal{L}(H)$ is a group isomorphism and the relation $\mathcal{L}\left(h_{o}\right) h \mathcal{L}\left(h_{o}\right)^{-1}=h^{-1}$ implies that

$$
\begin{gathered}
h_{o} h h_{o}^{-1}=\left(\tau_{\left(U_{o}, V_{o}\right)} \mathcal{L}\left(h_{o}\right)\right) h\left(\tau_{-\mathcal{L}\left(h_{o}\right)^{-1}\left(U_{o}, V_{o}\right)} \mathcal{L}\left(h_{o}\right)^{-1}\right)= \\
=\tau_{\left(U_{o}, V_{o}\right)-\mathcal{L}\left(h_{o}\right) h \mathcal{L}\left(h_{o}\right)^{-1}\left(U_{o}, V_{o}\right)}\left[\mathcal{L}\left(H_{o}\right) h \mathcal{L}\left(h_{o}\right)^{-1}\right]=\tau_{\left(U_{o}, V_{o}\right)-h^{-1}\left(U_{o}, V_{o}\right)} h^{-1}=h^{-1} .
\end{gathered}
$$

After acting by h on $\left(U_{o}, V_{o}\right)=h^{-1}\left(U_{o}, V_{o}\right)$, one obtains that $h\left(U_{o}, V_{o}\right)=\left(U_{o}, V_{o}\right)$, or $\left(U_{o}, V_{o}\right) \in A$ is a fixed point of h. Bearing in mind that $K=\langle h\rangle \simeq\langle\mathcal{L}(h)\rangle=$ $\mathcal{L}(H) \cap S L(2, R)$ is a normal subgroup of $H \simeq \mathcal{L}(H)=[\mathcal{L}(H) \cap S L(2, R)]\left\langle\mathcal{L}\left(h_{o}\right)\right\rangle$, let us represent the complement $H \backslash K$ as the set of the entries of the left coset

$$
H \backslash K=h_{o} K=\left\{h_{o} h^{j} \quad \mid \quad 0 \leq j \leq s-1\right\} .
$$

Then $h_{o} h^{j}=\tau_{\left(U_{o}, V_{o}\right)}\left(\mathcal{L}\left(h_{o}\right) h^{j}\right)$ have translation parts

$$
\tau\left(h_{o} h^{j}\right)=h_{o} h^{j} \mathcal{L}\left(h_{o} h^{j}\right)^{-1}=h_{o} \mathcal{L}\left(h_{o}\right)^{-1}=\tau\left(h_{o}\right)=\tau_{\left(U_{o}, V_{o}\right)}
$$

and linear parts $\mathcal{L}\left(h_{o}\right) h^{j}$ with eigenvalues $\lambda_{1}\left(\mathcal{L}\left(h_{o}\right) h^{j}\right)=1, \lambda_{2}\left(\mathcal{L}\left(h_{o}\right) h^{j}\right)=-1$. According to Lemma 46, the automorphism $h_{o} h^{j} \in \operatorname{Aut}(A)$ has no fixed point on A if and only if no one lifting $\left(u_{o}, v_{o}\right) \in \mathbb{C}^{2}$ of $\left(u_{o}+\pi_{1}(E), v_{o}+\pi_{1}(E)\right)=\left(U_{o}, V_{o}\right)$ is in the kernel of $\varphi_{j}=\mathcal{L}\left(h_{o}\right) h^{j}+I_{2}$. We claim that if

$$
h\binom{u_{o}}{v_{o}}=\binom{u_{o}}{v_{o}}+\binom{\mu_{1}}{\mu_{2}} \quad \text { for some } \quad\left(\mu_{1}, \mu_{2}\right) \in \pi_{1}(A)
$$

then $\varphi_{j}\left(u_{o}, v_{o}\right)-\varphi_{0}\left(u_{o}, v_{o}\right) \in \pi_{1}(A)$. Indeed, by an induction on j, one has

$$
h^{j}\binom{u_{o}}{v_{o}}-\binom{u_{o}}{v_{o}} \in \pi_{1}(A),
$$

whereas

$$
\varphi_{j}\left(u_{o}, v_{o}\right)-\varphi_{0}\left(u_{o}, v_{o}\right)=\mathcal{L}\left(h_{o}\right) h^{j}\binom{u_{o}}{v_{o}}-\mathcal{L}\left(h_{o}\right)\binom{u_{o}}{v_{o}} \in \pi_{1}(A) .
$$

Thus, the assumption $\left(u_{o}, v_{o}\right) \in \operatorname{ker}\left(\varphi_{j}\right)$ implies that

$$
\varphi_{0}\left(u_{o}, v_{o}\right)=\mathcal{L}\left(h_{o}\right)\left(u_{o}, v_{o}\right)+\left(u_{o}, v_{o}\right)=\left(\mu_{1}^{\prime}, \mu_{2}^{\prime}\right) \in \pi_{1}(A),
$$

whereas

$$
\mathcal{L}\left(h_{o}\right)\binom{U_{o}}{V_{o}}=-\binom{U_{o}}{V_{o}}
$$

contrary to the assumption (21). Note that (21) is equivalent to $\varphi_{0}\left(u_{o}, v_{o}\right) \notin \pi_{1}(A)$ for all liftings $\left(u_{o}, v_{o}\right) \in \mathbb{C}^{2}$ of $\left(u_{o}+\pi_{1}(E), v_{o}+\pi_{1}(E)\right)=\left(U_{o}, V_{o}\right)$ and is slightly stronger than $\operatorname{Fix}_{A}\left(h_{o}\right)=\emptyset$, which amounts to $\varphi_{0}\left(u_{o}, v_{o}\right) \neq 0$ for $\forall\left(u_{o}, v_{o}\right) \in \mathbb{C}^{2}$ with $\left(u_{o}+\pi_{1}(E), v_{o}+\pi_{1}(E)\right)=\left(U_{o}, V_{o}\right)$.

References

[1] Armstrong M., On the fundamental group of an orbit space of a discontinuos group, Proc. Cambridge Phil. Soc 64 (1968), 299-301.
[2] Atiyah M. F., I. G. Macdonald, Introduction to Commutative Algebra, AddisonWesley Publ. Co., 1969.
[3] Bombieri E., D. Mumford, Enriques'classification of surfaces in char p - II, in Complex Analysis and Algebraic Geometry, Iwanami-Shoten, Tokyo (1977), 2342.
[4] Holzaprel R.-P., Ball and Surface Arithmetic, Aspects vol. E29, Vieweg, Braunschweig, 1998.
[5] Chevalley C., Invariants of finite groups generated by reflections, Amer. Jour. Math 77 (1955), 778-782.
[6] Kasparian A., B. Kotzev, Weak form of Holzapfel's Conjecture, Proc. Eleventh Int. Conf. Geometry, Integrability and Quantization, Avangard Prima, 2009, pp. 134-145.
[7] Kasparian A., L. Nikolova, Ball quotients of non-positive Kodaira dimension, C. R. Bulg. Acad. Sci. 64 (2011), 195-200.
[8] Kasparian A., Elliptic configurations, Preprint.
[9] Kasparian A., Applications of principal isogenies to construction of ball quotient surfaces, Preprint.
[10] Peters C., Classification of complex algebraic surfaces from the point of view of Mori theory, Preprint.
[11] Tokunaga S., M. Yoshida's, Complex crystalographic groups II, Jour. Math. Soc. Japan 34 (1982), 595-605.

