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Galois groups of co-abelian ball quotient covers

Azniv Kasparian

Abstract

If X ′ = (B/Γ)′ is a torsion free toroidal compactification of a discrete ball
quotient Xo = B/Γ and ξ : (X ′, T = X ′\Xo) → (X,D = ξ(T )) is the blow-down
of the (−1)-curves to the corresponding minimal model, then G′ = Aut(X ′, T )
coincides with the finite group G = Aut(X,D). In particular, for an elliptic
curve E with endomorphism ring R = End(E) and a split abelian surface X =
A = E×E, G is a finite subgroup of Aut(A) = TA⋋GL(2, R), where (TA,+) ≃
(A,+) is the translation group of A and GL(2, R) = {g ∈ R2×2 | det(g) ∈ R∗}.

The present work classifies the finite subgroups H of Aut(A = E×E) for an
arbitrary elliptic curve E. By the means of the geometric invariants theory, it
characterizes the Kodaira-Enriques types of A/H ≃ (B/Γ)′ /H, in terms of the
fixed point sets of H on A. The abelian and the K3 surfaces A/H are elaborated
in [7]. The first section provides necessary and sufficient conditions for A/H to
be a hyper-elliptic, ruled with elliptic base, Enriques or a rational surface. In
such a way, it depletes the Kodaira-Enriques classification of the finite Galois
quotients A/H of a split abelian surface A = E × E. The second section
derives a complete list of the conjugacy classes of the linear automorphisms
g ∈ GL(2, R) of A of finite order, by the means of their eigenvalues. The third
section classifies the finite subgroups H of GL(2, R). The last section provides
explicit generators and relations for the finite subgroups H of Aut(A) with K3,
hyper-elliptic, rules with elliptic base or Enriques quotients A/H ≃ (B/Γ)′ /H.

Let

B = {z = (z1, z2) ∈ C2 | |z1|2 + |z2|2 < 1} ≃ SU2,1/S(U2 × U1).

be the complex 2-ball. In [4] Holzapfel settled the problem of the characterization of
the projective surfaces, which are birational to an eventually singular ball quotient
B/Γ by a lattice Γ of SU2,1. Note that if γ ∈ Γ is a torsion element with isolated
fixed points on B then B/Γ has isolated cyclic quotient singularity, which ought to be
resolved in order to obtain a smooth open surface. The aforementioned resolution cre-
ates smooth rational curves of self-intersection ≤ −2, which alter the local differential
geometry of B/Γ, modeled by B. That is why we split the problem to the description
of the minimal models Xo of the smooth toroidal compactifications X ′

o = (B/Γo)
′

of torsion free Γo and to the characterization of the birational equivalence classes of
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Xo/H for appropriate finite automorphism groups H . This reduction is based on the
fact that any finitely generated lattice Γ in the simple Lie group SU2,1 has a torsion
free normal subgroup Γo of finite index [Γ : Γo]. Therefore B/Γ = (B/Γo) / (Γ/Γo)
and the classification of B/Γ is attempted by the classification of B/Γo and the finite
automorphism groups H = Γ/Γo of B/Γo.

According to the next proposition, for any torsion free ball lattice Γo and any
Γ < SU2,1, containing Γo as a normal subgroup of finite index, the quotient group
Γ/Γo acts on the toroidal compactifying divisor T = (B/Γo)

′ \ (B/Γo) and provides a
compactification B/Γ = (B/Γo)

′ / (Γ/Γo) of B/Γ with at worst isolated cyclic quotient
singularities. Therefore H = Γ/Γo is a subgroup of Aut(X ′

o, T ). The birational
equivalence classes of B/Γ are to be described by the numerical invariants of the
minimal resolutions Y of the singularities of B/Γ. These can be computed by the
means of the geometric invariant theory, applied to Xo and a finite subgroup H of
the biholomorphism group Aut(Xo).

Proposition 1. Let Γ be a lattice of SU2,1 and Γo be a normal torsion free subgroup
of Γ with finite index [Γ : Γo]. Then the group G = Γ/Γo acts on the toroidal
compactifying divisor T = (B/Γo)

′ \ (B/Γo) and the quotient (B/Γo)
′ /G = (B/Γ) ∪

(T/G) = B/Γ is a compactification of B/Γ with at worst isolated cyclic quotient
singularities.

Proof. Recall that p ∈ ∂ΓB is a Γ-rational boundary point exactly when the intersec-
tion Γ ∩ StabSU2,1

(p) is a lattice of StabSU2,1
(p). Since [Γ : Γo] <∞, the quotient

StabSU2,1
(p)/[Γ ∩ StabSU2,1

(p)] =

=
{
StabSU2,1

(p)/
[
Γo ∩ StabSU2,1

(p)
]}
/
{
[Γ ∩ StabSU2,1

(p)/[Γo ∩ StabSU2,1
(p)]
}

has finite invariant volume exactly when StabSU2,1
(p)/[Γo ∩ StabSU2,1

(p)] has finite
invariant volume. Therefore the Γ-rational boundary points coincide with the Γo-
rational boundary points, ∂ΓB = ∂ΓoB. It suffices to establish that the Γ-action on B
admits local extensions on neighborhoods of the liftings of Ti to complex lines through
pi ∈ ∂ΓoB with OrbΓo(pi) = κi. According to [?], the cusp κi, associated with the
smooth elliptic curve Ti has a neighborhood N(κi) = Ti × ∆∗(0, ε) ⊂ (B/Γo) for a
sufficiently small punctured disc ∆∗(0, ε) = {z ∈ C | |z| < ε}. The biholomorphisms
γ : B → B from Γ extend to γ : B ∪ ∂ΓoB → B ∪ ∂ΓoB, as far as ∂ΓoB consists of
isolated points. If pi ∈ ∂ΓoB, γ(pi) = pj ∈ ∂ΓoB and κj = OrbΓo(pj) then there is a
biholomorphism

γ : N(κi) ∩ γ−1N(κj) −→ γN(κi) ∩N(κj).

For any qi ∈ Ti let ∆Ti
(qi, η) be a sufficiently small disc on Ti, centered at qi,

which is contained in a π1(Ti)-fundamental domain, centered at qi. One can view

∆Ti
(qi, η) = ∆T̃i

(qi, η) as a disc on the lifting T̃i of Ti to a complex line through pi.
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Then N(κi, qi) := ∆T̃i
(qi, η)×∆∗(0, ε) is a bounded neighborhood of qi ∈ Ti on B/Γo

and the holomorphic map

γ : N(κi, qi)∩γ−1N(κj , qj) → γN(κi, qi)∩N(κj , qj) ⊆ N(κj , qj) = ∆
T̃j
(qj , η)×∆∗(0, ε)

is bounded. Thus, γ : B → B is locally bounded around T̃ =
∑

pi∈∂ΓoB
T̃i(pi) and

admits a holomorphic extension γ : B ∪ T̃ → B ∪ T̃ . This induces a biholomorphism
γΓo : (B/Γo)

′ → (B/Γo)
′.

The next proposition establishes that an arbitrary torsion free toroidal compactifi-
cation (B/Γo)

′ has finitely many Galois quotients (B/Γo)
′ /H = B/ΓH with ΓH/Γo =

H . For torsion free (B/Γo)
′ with an abelian minimal model Xo = A, the result is

proved in [6]. Note also that [9] constructs an infinite series
{
(B/Γn)

′}∞
n=1

of mutually
non-birational torsion free toroidal compactifications with abelian minimal models,

which are finite Galois covers of a fixed
(
B/ΓH1

, T (1)/H
)

=
(
(B/Γn)

′ , T (n)
)
/Hn,

Hn ≤ Aut
(
(B/Γn)

′ , T (n)
)
.

Proposition 2. Let X ′ = (B/Γ)′ = (B/Γ) ∪ T be a torsion free toroidal compactifi-
cation and ξ : (X ′, T ) → (X = ξ(X ′), D = ξ(T )) be the blow-down of the (−1)-curves
to the minimal model X of X ′. Then Aut(X ′, T ) is a finite group, which coincides
with Aut(X,D).

Proof. Let us denote G = Aut(X,D), G′ = Aut(X ′, T ) and observe that X ′ is the

blow-up of X at the singular locus Dsing of D. Since D =
h∑

i=1

Di has smooth elliptic

irreducible components Di, the singular locus Dsing =
∑

1≤i<j≤h

Di∩Dj and its comple-

ment X\Dsing are G-invariant. We claim that the G-action extends to the exceptional
divisor E = ξ−1(Dsing) of ξ, so that X ′ = (X \Dsing) ∪ E is G-invariant. Indeed, for
any g ∈ G and p ∈ Dsing with q = g(p), let us choose local holomorphic coordinates
x = (x1, x2), respectively, y = (y1, y2) on sufficiently small neighborhoods N(p), N(q)
of p and q on X with gN(p) ⊆ N(q). Then g : N(p) → N(q) ⊂ C2 consists of two
local holomorphic functions g = (g1, g2) on N(p). By the very definition of a blow-up,

ξ−1N(p) = {(x1, x2)× [x1 : x2] | (x1, x2) ∈ N(p)} | and

ξ−1N(q) = {(g1(x), g2(x))× [g1(x) : g2(x)] | g(x) = (g1(x), g2(x)) ∈ N(q)},
so that

g : ξ−1N(p) → ξ−1N(q),

(x1, x2)× [x1 : x2] 7→ (g1(x), g2(x))× [g1(x) : g2(x)]
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extends the action of g ∈ G to ξ−1(Dsing) andG ⊂ Aut(X ′). Towards theG-invariance
of T , note that the birational maps ξ : Ti → ξ(Ti) = Di of the smooth irreducible

components Ti of T are biregular. Thus, the G-invariance of D =
h∑

i=1

Di implies the

G-invariance of T =
h∑

i=1

Ti and G ⊆ G′ = Aut(X ′, T ). For the opposite inclusion

G′ = Aut(X ′, T ) ⊆ G = Aut(X,D) observe that an arbitrary g′ ∈ G′ acts on the
union E of the (−1)-curves on X ′ and permutes the finite set ξ(E) = Dsing. In such
a way, g′ turns to be a biregular morphism of X = (X ′ \ E) ∪Dsing. The restriction
of g′ on Ti has image g′(Ti) = Tj for some 1 ≤ j ≤ h and induces a biholomorphism
g′ : Di → Dj . As a result, g′ ∈ G′ acts on D and g′ ∈ G = Aut(X,D).

In order to justify that G = Aut(X,D) is a finite group, let us consider the natural
representation

ϕ : G→ Sym(D1, . . . , Dh)

in the permutation group of the irreducible components D1, . . . , Dh of D. As far as
the image ϕ(G) is a finite group, it suffices to prove that the kernel kerϕ is finite. Fix
p ∈ Dsing and two local irreducible branches Uo and Vo of D through p. If Uo ⊂ Di

and Vo ⊂ Dj for i 6= j then consider the natural representation

ϕo : kerϕ→ Sym(Di ∩Dj).

The group homomorphism ϕo has a finite image, so that the problem reduces to
the finiteness of Go := ker (ϕo|kerϕ). By its very definition, Go ≤ StabG(p). Let us
move the origin of Di at p and realize Go as a subgroup of the finite cyclic group
End∗(Di). After an eventual shrinking, Uo is contained in a coordinate chart of X.
Then U = ∩go∈Go [go(Uo)] is a Go-invariant neighborhood of p on Di. Similarly, pass
to a Go-invariant neighborhood V ⊂ Vo of p on Dj, intersecting transversally U .
Through any point v ∈ V there is a local complex line U(v), parallel to U . The
union W = ∪v∈V U(v) is a neighborhood of p on X, biholomorphic to U × V . In
holomorphic coordinates (u, v) ∈ W , one gets Go ≤ End∗(U) × End∗(V ). Note that
End∗(U) ⊆ End∗(Di) and End∗(Di) is a finite cyclic group of order 1, 2, 3, 4 or 6, so
that |Go| <∞.
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1 Kodaira-Enriques classification of the finite Galois

quotients of a split abelian surface

Let A = E × E be the Cartesian square of an elliptic curve E. For an arbitrary
finite automorphism group H ≤ Aut(A), we characterize the Kodaira-Enriques clas-
sification type of A/H in terms of the fixed point set FixA(H) of H on A. Partial
results for this problem are provided by [7]. Namely, any A/H is a finite cyclic Galois
quotient of a smooth abelian surface A/K or a normal model A/K of a K3 surface.
The surface A/K is abelian exactly when K = T (H) is a translation group. The
note [7] specifies that a necessary and sufficient condition for A/[T (H)〈h〉] to have
irregularity q(Y ) = h1,0(Y ) = 1 is the presence of an entire elliptic curve in the fixed
point set FixA(h) of h. This result is similar to S. Tokunaga and M. Yoshida’s study
[11] of the discrete subgroups Λ ≤ Cn

⋋ U(n) with compact quotient Cn/Λ. Namely,
[11] establishes that if the linear part L(Λ) of such Λ does not fix pointwise a com-
plex line on C2, then Cn/Λ has vanishing irregularity. Further, [7] observes that if
some h ∈ H fixes pointwise an entire elliptic curve on A, then the Kodaira dimension
κ(A/H) = −∞ drops down. Tokunaga and Yoshida prove the same statement for
discrete subgroups Λ ≤ Cn

⋋U(n) with compact quotient Cn/Λ. The note [7] proves
also that if A/K is a K3 double cover of A/H then A/H is birational to an Enriques
surface if and only if A/K → A/H is unramified.

The present note establishes that an arbitrary cyclic cover ζKH : A/K → A/H of
degree ≥ 3 by a K3 surfaces A/K with isolated cyclic quotient singularities is ramified
over a finite set of points and A/H is a rational surface. If a K3 surface A/K is a
double cover ζKH : A/K → A/H of A/H then A/H is birational to an Enriques surface
exactly when ζKH is unramified. The quotients A/H with ramified K3 double covers
ζKH : A/K → A/H are rational surfaces. If H = T (H)〈h〉 and the fixed points of L(h)
on A contain an elliptic curve then A/H is hyper-elliptic (respectively, ruled with an
elliptic base) if and only if H has not a fixed point on A (respectively, H has a fixed
point on A, whereas H has a pointwise fixed elliptic curve on A). If H = T (H)〈h〉
and L(h) has isolated fixed points on A then A/H is a rational surface.

In order to construct the normal subgroup K of H , let us recall that the automor-
phism group Aut(A) = TA⋌AutǒA(A) of A is a semi-direct product of the translation
group TA ≃ (A,+) and the stabilizer AutǒA(A) of the origin ǒA ∈ A. Each g ∈
AutǒA(A) is a linear transformation

g =

(
a11 a12
a21 a22

)
∈ GL2(C),

leaving invariant the fundamental group π1(A) = π1(E) × π1(E) of A = E × E.
Therefore aijπ1(E) ⊆ π1(E) for all 1 ≤ i, j ≤ 2 and aij ∈ R for the endomorphism
ring R of E. The same holds for the entries of the inverse matrix

g−1 =
1

a11a22 − a12a21

(
a22 −a12

−a21 a11

)
∈ AutǒA(A). (1)
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Now, det(g) ∈ R and det(g−1) = (det(g))−1 ∈ R imply that det(g) ∈ R∗ is a unit.
Thus, AutǒA(A) is contained in

Gl(2, R) := {g ∈ (R)2×2 | det(g) ∈ R∗}.

The opposite inclusion Gl(2, R) ⊆ AutǒA(A) is clear from (1) and AutǒA(A) =
Gl(2, R).

The map L : Aut(A) → Gl(2, R), associating to g ∈ Aut(A) its linear part
L(g) ∈ Gl(2, R) is a group homomorphism with kernel ker(L) = TA. Denote by O−d

the integers ring of an imaginary quadratic number field Q(
√
−d). The determinant

det : Gl(2, R) → R∗ is a group homomorphism in the cyclic units group

R∗ = 〈ζ−d〉 ≃





C2 for R 6= Z[i],O−3,

C4 for R = Z[i] = O−1,

C6 for R = O−3

of order o(R). For an arbitrary subgroup H of Aut(A), let us denote by K = KH the
kernel of the group homomorphism detL : H → R∗. The image detL(H) ≤ (R∗, .)
is a cyclic group of order m, dividing o(R∗), i.e., detL(H) = 〈ζk−d〉 for some natural

divisor k = o(R∗)
m

of o(R∗). For an arbitrary h0 ∈ H with detL(h0) = ζk−d the first
homomorphism theorem reads as

{KH , h0KH , . . . , h
m−1
0 KH} = H/KH ≃ 〈ζk−d〉 = {1, ζk−d, ζ

2k
−d, . . . , ζ

(m−1)k
−d }.

Therefore H = KH〈h0〉 is a product of KH = ker(detL|H) and the cyclic subgroup
〈h0〉 of H .

Denote by E1(H) the set of h ∈ H , whose linear parts L(h) ∈ GL2(R) have
eigenvalue 1 of multiplicity 1. In other words, h ∈ E1(H) exactly when L(h) fixes
pointwise an elliptic curve on A through the origin ǒA. Put E0(H) for the set of
h ∈ H , whose linear parts have no eigenvalue 1. Observe that h ∈ E0(H) if and only
if L(h) ∈ GL(2, R) has isolated fixed points on A.

An automorphism h ∈ H \ {Id} is called a reflection if fixes pointwise an elliptic
curve on A. We claim that h ∈ H is a reflection if and only if h ∈ E1(H) and h has a
fixed point on A. Indeed, if h fixes an elliptic curve F on A, then one can move the
origin ǒA of A on F , in order to represent h by a linear transformation h = L(h) ∈
GL(2, R) \ {Id} = E1(GL(2, R)) ∪ E0(GL(2, R)). Any h = L(h) ∈ E0(GL(2, R)) has
isolated fixed points on A, so that h = L(h) ∈ E1(H) and FixA(h) 6= ∅. Conversely, if
h ∈ E1(H) and FixA(h) 6= ∅, then after moving the origin of A at ǒA ∈ FixA(h), one
attains h = L(h). Thus, h fixes pointwise an elliptic curve on A or h is a reflection.

Towards the complete classification of the Kodaira-Enriques type of A/H , we use
the following results from [7]:
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Proposition 3. (i) (cf. Corollary 5 from [7]) The quotient A/H of A = E × E by
a finite automorphism group H is an abelian surface if and only if H = ker(L|H) =
T (H) is a translation group.

(ii) (Lemma 7 from [7]) The quotient A/H is birational to a K3 surface if and
only if H = ker(detL|H) and H ! ker(L|H) = T (H).

Proposition 4. (i)(cf. Lemma 11 from [7]) If a finite automorphism group H ≤
Aut(A) contains a reflection then A/H is of Kodaira dimension κ(A/H) = −∞.

(ii) (cf. Proposition 12 from [7]) A smooth model Y of A/H is of irregularity
q(Y ) = h1,0(Y ) = 1 if and only if H = T (H)〈h〉 is a product of its normal translation
subgroup T (H) = ker(L|H) and a cyclic group 〈h〉, generated by h ∈ E1(H).

From now on, we consider only subgroups H ≤ Aut(A, T ) with detL(H) 6= {1}
and distinguish between translation K = ker(detL|H) = ker(L|H) = T (H) and non-
translation K = ker(detL|H) ) ker(L|H) = T (H). Any h 6∈ K = ker(detL|H)
belongs to E1(H) or to E0(H).

Proposition 5. Let H = T (H)〈h〉 be a product of its (normal) translation subgroup
T (H) = ker(L|H) and a cyclic group 〈h〉, generated by h ∈ E1(H). Then:

(i) the fixed point set FixA(H) = ∅ of H on A is empty if and only if A/H is a
smooth hyper-elliptic surface;

(ii) the fixed point set FixA(H) 6= ∅ is non-empty if and only if A/H is a smooth
ruled surface with an elliptic base. If so, then FixA(H) is of codimension 1 in A.

Proof. According to Proposition 4 (ii), H = T (H)〈h〉 with h ∈ E1(H) if and only if
any smooth model Y of A/H has irregularity q(Y ) = h1,0(Y ) = 1. More precisely, Y
is a hyper-elliptic surface or a ruled surface with an elliptic base.

If FixA(H) = ∅ then A→ A/H is an unramified cover and the Kodaira dimension
κ(A/H) = κ(A) = 0. Therefore A/H is hyper-elliptic.

Suppose that there is an H-fixed point p ∈ FixA(H) and move the origin ǒA of
A at p. For any h1 ∈ StabH(ǒA) \ {IdA} one has ǒA = h1(ǒA) = τ(h1)L(h1)(ǒA) =
τ(h1)(ǒA), so that h1 has trivial translation part τ(h1) = τǒA. As a result, h1 =
L(h1) ∈ E1(H) \ {IdA} is a reflection and fixes pointwise an elliptic curve on A. In
particular, FixA(H) is of complex codimension 1. If

L(h) =
(

1 0
0 λ2(h)

)
with λ2(h) 6= 1

then

h1 =

(
1 0
0 λ2(h)

i

)
with i ∈ Z, λ2(h)

i 6= 1.

By Proposition 4 (i), the quotient A/〈h1〉 by the cyclic group 〈h1〉, generated by the
reflection h1 = L(h1) ∈ E1(H) is of Kodaira dimension κ(A/〈h1〉) = −∞. Along the
finite (not necessarily Galois) cover A/〈h1〉 → A/H , one has κ(A/〈h1〉) ≥ κ(A/H),

7



whereas κ(A/H) = −∞ and A/H is birational to a ruled surface with an elliptic
base. Note that all h ∈ H with FixA(h) 6= ∅ are reflections, so that the quotient
A/H is a smooth surface by a result of Chevalley [5].

That proves the proposition, as far as the assumption FixA(H) 6= ∅ for a hyper-
elliptic A/H leads to a contradiction, as well as the assumption FixA(H) = ∅ for a
ruled A/H with an elliptic base.

Proposition 6. Let H = T (H)〈h〉 for some

h ∈ E0(H) = {h ∈ H | λjL(h) 6= 1, 1 ≤ j ≤ 2}

with detL(h) 6= 1. Then A/H is a rational surface.

Proof. We claim that A/H with A = E ×E is simply connected. To this end, let us

denote by R the endomorphism ring of E and lift H to a subgroup H̃ of the affine-
linear group Aff(C2, R) = (C2,+) ⋋ GL(2, R) , containing (π1(A),+) as a normal

subgroup with quotient H̃/π1(A) = H . Then

A/H =
[
C2/π1(A)

]
/
[
H̃/π1(A)

]
≃ C2/H̃.

The universal cover Ã = C2 of A is a path connected, simply connected locally
compact metric space and H̃ is a discontinuous group of homeomorphisms of C2.
That allows to apply Armstrong’s result [1] and conclude that

π1(A/H) = π1

(
C2/H̃

)
≃ H̃/Ñ,

where Ñ is the normal subgroup of H̃, generated by h̃ ∈ H̃ with FixC2(h̃) 6= ∅. There

remains to be shown the coincidence H̃ = Ñ . In the case under consideration, let us
choose generators τ(Pi,Qi) of T (H), 1 ≤ i ≤ m and fix liftings (pi, qi) ∈ C2 = Ã of
(pi + π1(E), qi + π1(E)) = (Pi, Qi). If π1(E) = λ1Z + λ2Z for some λ1, λ2 ∈ C∗ with
λ2

λ1

∈ C \R, then π1(A) = π1(E)× π1(E) is generated by

Λ11 = (λ1, 0), Λ12 = (λ2, 0), Λ21 = (0, λ1) and Λ22 = (0, λ2).

Let h̃ = τ(u,v)L(h) ∈ H̃ be a lifting of h = τ(U,V )L(h) ∈ H , i.e., (u+π1(E), v+π1(E)) =

(U, V ). Then H̃ is generated by its subset

S =
{
Λij , τ(pk ,qk), h̃ | 1 ≤ i, j ≤ 2, 1 ≤ k ≤ m

}
.

Since L(h) has eigenvalues λ1L(h) 6= 1, λ2L(h) 6= 1, for any (a, b) ∈ C2 the automor-
phism τ(a,b)L(h) ∈ Aut(C2) has a fixed point on C2. One can replace the generators

Λij and τ(pk ,qk) of H̃ by Λijh̃, respectively, τ(pk ,qk)h̃, since

〈S〉 ⊇ {Λijh̃, τ(pk,qk)h̃, h̃ | 1 ≤ i, j ≤ 2, 1 ≤ k ≤ m}
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and Λij, τ(pk,qk) ∈ 〈{Λijh̃, τ(pk ,qk)h̃, h̃ | 1 ≤ i, j ≤ 2, 1 ≤ k ≤ m}〉. Thus

H̃ = 〈Λijh̃, τ(pk,qk)h̃, h̃ | 1 ≤ i, j ≤ 2, 1 ≤ k ≤ m〉

coincides with Ñ , because H̃ is generated by elements with fixed points. As a result,
π1(A/H) = {1}.

Note that the simply connected surfaces A/H are either rational or K3. According
to detL(h) 6= 1, the quotient A/H is not birational to a K3 surface, so that A/H is
a rational surface with isolated cyclic quotient singularities.

Proposition 7. Let H < Aut(A) be a finite subgroup of the form H = K〈h〉 with
L(K) < SL(2, R) and detL(H) = 〈detL(h)〉 6= {1}.

(i) The complement H \K has fixed points on A, FixA(H \K) 6= ∅ if and only if
A/H is a rational surface;

(ii) The complement H \K has no fixed points on A, FixA(H \K) = ∅ if and only

if A/H is birational to an Enriques surface Y . If so, then the K3 universal cover Ỹ
of Y is birational to A/K and the index [H : K] = 2.

Proof. First of all, theH/K-Galois cover ζ : A/K → A/H is ramified if and only if the
complement H \K has a fixed point on A. More precisely, a point OrbK(p) ∈ A/K,
p ∈ A is fixed by hK ∈ H/K \ {K} exactly when hOrbK(p) = OrbK(p) or

{hk(p) | k ∈ K} = {k(p) | k ∈ K}. (2)

The condition (2) implies the existence of ko ∈ K with h(p) = ko(p). Therefore
h1 = k−1

o h ∈ StabH(p) \K has a fixed point and

h1K = (k−1
o h)K = k−1

o (hK) = k−1
o Kh = Kh = hK,

as far as K is a normal subgroup of H . Conversely, if h1(p) = p for some h1 ∈ H \K
then Kp = Kh1(p) = h1K(p) and the point OrbK(p) ∈ A/K is fixed by h1K ∈ H/K.

Note that the presence of a covering ζ : A/K → A/H by a (singular) K3 model
A/K implies the vanishing q(X) = h1,0(X) of the irregularity of any smooth model
X of A/H , as far as q(X) ≤ q(Y ) = 0 for any smooth H/K-Galois cover Y of X,
birational to A/K. The smooth projective surfaces S with irregularity q(S) = 0 and
Kodaira dimension κ(S) ≤ 0 are the rational, K3 and Enriques S. Due to L(h) 6= 1,
the smooth model X of A/H is not a K3 surface. Thus, X is either an Enriques or
a rational surface.

If FixA(H \K) = ∅ and ζ : A/K → A/H in unramified, then κ(X) = κ(Y ) = 0
by [10] and X is an Enriques surface.

Let us assume that FixA(H\K) 6= ∅ and the minimal resolution Y of the singular-
ities of A/H is an Enriques surface. Consider the minimal resolution ρ1 : Y → A/K
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of the singularities of A/K and the resolution ν2 : X2 → A/H of ζ(A/H)sing. Then
there is a commutative diagram

A/K Y

A/H X2

❄

ζ

✛ ρ1

❄

ζ1

✛ν2

(3)

with H/K-Galois cover ζ1, ramified over the pull-back ν−1
2 B(ζ) of the branch locus

B(ζ) ⊂ A/H of ζ . The minimal resolution µ2 : X → X2 of the singularities Xsing
2 =

(A/H)sing \ ζ(A/K)sing of X2 and ζ1 : Y → X2 give rise to the fibered product
commutative diagram

Y Z = Y ×X2
X

X2 X
❄

ζ1

✛pr1

❄

ζ2

✛ µ2

, (4)

with ramified H/K-Galois cover ζ2 and birational pr1. Note that Z is a smooth
surface, since otherwise ∅ 6= pr1(Z

sing) ⊆ Xsing = ∅. Moreover, Z is of type K3. Let

us consider the universal double covering UX : X̃ → X of X by a K3 surface X̃. Since
Z is simply connected and UX : X̃ → X is unramified, the finite cover ζ2 : Z → X
lifts to a morphism ζ̃ : ZX̃, closing the commutative diagram

X̃

Z X
❄
UX

�
�
��✒ζ̃

✲ζ2

. (5)

The finite ramified morphism ζ2 = UX ζ̃ has finite ramified factor ζ̃, as far as the
universal covering UX : X̃ → X is unramified. If B(ζ̃) ⊂ Z is the branch locus of ζ̃
then the canonical divisor

OZ = KZ = ζ̃∗K
X̃
+B(ζ̃) = ζ̃∗O

X̃
+B(ζ̃),

which is an absurd. Therefore, FixA(H \ K) 6= ∅ implies that A/H is a rational
surface.

If ζ : A/K → A/H is unramified and A/H is an Enriques surface then ζ1 : Y → X2

from diagram (3) and ζ2 : Z → X from (4) are unramified. As a result, ζ̃ : Z → X̃
from diagram (5) is a finite ramified cover of smooth simply connected surfaces,
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whereas deg(ζ̃) = 1 and Z coincides with the universal cover X̃ of X. Thus, X̃ is
birational to A/K and

deg(ζ) = deg(ζ1) = deg(ζ2) = deg(UX) = 2,

so that [H : K] = |H/K| = deg(ζ) = 2.

By the very construction, the surfaces A/H and B/ΓH = (B/Γ)′ /H are simulta-
neously singular. The classical work [5] of Chevalley establishes that A/H is singular
if and only if there is h ∈ H , whose linear part L(h) ∈ GL(2, R) has eigenvalues
{λ1L(h), λ2L(h)} 6∋ 1. Thus, A/H and B/ΓH are smooth exactly when birational to
a hyper-elliptic or a ruled surface with an elliptic base.

Let Ti be an irreducible component of T = (B/Γ)′ \ (B/Γ) of B/Γ. Then the irre-

ducible component OrbH(Ti)/H of T/H =
(
B/ΓH

)
\ (B/ΓH) is elliptic (respectively,

rational) if and only if FixA(H) ∩ Di = ∅ (respectively, FixA(H) ∩ Di 6= ∅) for the
image Di = ξ(Ti) of Ti under the blow-down ξ : (B/Γ)′ → A of the (−1)-curves.
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2 Linear automorphisms of finite order

Throughout this section, let R be the endomorphism ring of an elliptic curve E. It
is well known that R = Z + fO−d for a natural number f ∈ N, called the conductor
of E and integers ring O−d of an imaginary quadratic number field Q(

√
−d). More

precisely, O−d = Z+ ω−dZ with

ω−d =

{√
−d for −d 6≡ 1(mod 4),

1+
√
−d

2
for −d ≡ 1(mod 4).

and R = Z + fω−dZ for R 6= Z. In particular, R is a subring of Q(
√
−d). We write

R ⊂ Q(
√
−d) both, for the case of R = Z+ fω−dZ or R = Z, without specifying the

presence of a complex multiplication on E. (For R = Z one hat R ⊂ Q(
√
−d) for

∀d ∈ N.)
The automorphism group of the abelian surface A = E×E is a semi-direct product

Aut(A) = (A,+)⋊GL(2, R)

of its translation subgroup (A,+) and the isotropy group

AutǒA(A) = GL(2, R) = {g ∈ R2×2 | det(g) ∈ R∗}

of the origin ǒA ∈ A.

Lemma 8. Let R be the endomorphism ring of an elliptic curve E. If R is different
from O−1 = Z[i] and O−3 then

R∗ = 〈−1〉 = {±1} = C2

is the cyclic group of the square roots of the unity.
If R = Z[i] is the ring of the Gaussian integers then

R∗ = 〈i〉 = {±1,±i} = C4

is the cyclic group of the roots of unity of order 4.
The units group of Eisensten integers R = O−3 is the cyclic group

R∗ = 〈e 2πi
6 〉 = {±1, e±

2πi
3 , e±

πi
3 } = C6

of the sixth roots of unity.

Proof. Recall that the units group O∗
−d of the integers ring O−d of an imaginary

quadratic number field Q(
√
−d) is

O∗
−d = 〈−1〉 ≃ C2 for d 6= 1, 3 and

12



O∗
−1 = Z[i]∗ = 〈i〉 = C4,

O∗
−3 = 〈e 2πi

6 〉 = C6.

The units group R∗ of the subring R = Z + fO−d of O−d is a subgroup of O∗
−d, so

that R∗ = 〈−1〉 ≃ C2 for R = Z or R = Z+ fO−d with d ∈ N \ {1, 3}, f ∈ N. In the
case of R = Z+ fO−1, the assumption i ∈ R∗ implies R = O−1 and happens only for
the conductor f = 1. Similarly, the existence of e

2πi
3 ∈ R∗ \ {±1} for R = Z+ fO−3

forces

e
2πi
3 = −1

2
+

√
3i

2
= −1 +

1 +
√
−3

2
= −1 + ω−3 ∈ R∗,

whereas ω−3 ∈ R and R = O−3.

Towards the description of g ∈ GL(2, R) of finite order, let us recall that the
polynomials

f(x) = xn + a1x
n−1 + . . .+ an−1x+ an ∈ Z[x]

with leading coefficient 1 are called monic.

Definition 9. If A is a subring with unity of a ring B then b ∈ B is integral over A
if annihilates a monic polynomial

f(x) = xn + a1x
n−1 + . . .+ an−1x+ an ∈ A[x]

with coefficients from A.

It is well known (cf. [2]) that b ∈ B is integral over A if and only if the polynomial
ring A[b] is a finitely generated A-module.

Definition 10. The complex numbers c ∈ C, which are integral over Z are called
algebraic integers.

Any algebraic integer c is algebraic over Q. If g(x) ∈ Q[x] \Q is a polynomial of
minimal degree k with a root c then g(x) divides any h(x) ∈ Q[x] \Q with h(c) = 0.
An arbitrary g′(x) ∈ Q[x] of degree k with a root c is of the form g′(x) = qg(x) for
some Q∗. The polynomials qg(x) with arbitrary q ∈ Q∗ are referred to as minimal
polynomials of c over Q. If c is algebraic over Q then the ring of the polynomials Q[c]
of c with rational coefficients coincides with the field Q(c) of the rational functions of
c, Q[c] = Q(c) and the degree [Q(c) : Q] equals the degree of a minimal polynomial
of c over Q.

Definition 11. If c ∈ C is algebraic over Q, then [Q(c) : Q] = dimQ Q(c) is called
the degree of c over Q.

13



Let c be an algebraic integer and f(x) ∈ Z[x]\Z be a monic polynomial of minimal
degree with a root c. Then any h(x) ∈ Z[x] with h(c) = 0 is divisible by f(x). Thus,
f(x) is unique and referred to as the minimal integral relation of c. If f(x) ∈ Z[x] \Z
is the minimal integral relation of c ∈ C and g(x) ∈ Q[x] \Q is a minimal polynomial
of c over Q, then g(x) = qf(x) for the leading coefficient q = LC(g) ∈ Q∗ of g(x).
More precisely, g(x) divides f(x) and f(x) is indecomposable over Q, as far as it is
indecomposable over Z. In such a way, one obtains the following

Lemma 12. If c ∈ C is an algebraic integer, then the degree degQ(c) = [Q(c) : Q] of
c over Q equals the degree of the minimal integral relation

f(x) = xn + a1x
n−1 + . . .+ an−1x+ an ∈ Z[x] of c.

Lemma 13. Let E be an elliptic curve, R = End(E) and g ∈ GL(2, R). Then any
eigenvalue λ1 of g is an algebraic integer of degree 1, 2 or 4 over Q.

Proof. It suffices to observe that if A ⊂ B are subrings with unity of a ring C, A is
a Noetherian ring, B is a finitely generated A-module and c ∈ C is integral over B,
then c is integral over A. Indeed, let f ∈ N be the conductor of E and

ω−d =

{√
−d for −d 6≡ 1(mod4),

1+
√
−d

2
for −d ≡ 1(mod4).

(6)

Then the integers ring Z is Noetherian and the endomorphism ring

R = Z+ fO−d = Z+ fω−dZ

of E is a free Z-module of rank 2. The eigenvalue λ1 ∈ C of g ∈ GL(2, R) is a root
of the characteristic polynomial

Xg(λ) = λ2 − tr(g)λ+ det(g) ∈ R[λ]

of g, so that λ1 is integral over R. According to the claim, λ1 is integral over Z or
λ1 ∈ C is an algebraic integer. On one hand, the degree of λ1 over Q(

√
−d) is

degQ(
√
−d)(λ1) = [Q(

√
−d, λ1) : Q(

√
−d)] = 1 or 2,

so that

[Q(
√
−d, λ1) : Q] = [Q(

√
−d, λ1) : Q(

√
−d)][Q(

√
−d) : Q] = 2 or 4.

On the other hand, the inclusions

Q ⊆ Q(λ1) ⊆ Q(
√
−d, λ1)
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of subfields imply that

[Q(λ1) : Q] =
[Q(

√
−d, λ1) : Q]

[Q(
√
−d, λ1) : Q(λ1)]

.

Therefore, the degree degQ(λ1) = [Q(λ1) : Q] of λ1 over Q is a divisor of the degree

[Q(
√
−d, λ1) : Q] or degQ(λ1) ∈ {1, 2, 4}.

In order to justify the claim, recall that c ∈ C is integral over B if and only if the
polynomial ring B[c] = B + Bc + . . . + Bcn−1 is a finitely generated B-module. If
B = Aβ1 + . . .+ Aβs is a finitely generated A-module, then

B[c] =

s∑

i=1

n−1∑

j=0

Aβic
j

is a finitely generated A-module. Since A is a Noetherian ring, the A-submodule A[c]
of B[c] is a finitely generated A-module.

Note that if h = τ(U,V )L(h) ∈ H ≤ Aut(A) is an automorphism of A = E × E of
finite order r then

hr = τr−1∑
s=0

L(h)s(UV )
L(h)r = Id

implies that
r−1∑
s=0

L(h)s ( U
V ) = ǒA and L(h)r = I2. In other words, the automorphisms

h ∈ Aut(A) of finite order have linear parts L(h) ∈ GL(2, R) of finite order.
From now on, we concentrate on g ∈ GL(2, R) of finite order.

Proposition 14. If R is the endomorphism ring of an elliptic curve E and g ∈
GL(2, R) is of finite order r, then g is diagonalizable and the eigenvalues λj of g are
primitive roots of unity of degree rj = 1, 2, 3, 4, 6, 8 or 12.

Proof. Let us assume that g ∈ GL(2, R) of finite order r is not diagonalizable. Then
there exists S ∈ GL(2,C), reducing g to its Jordan normal form

J = S−1gS =

(
λ1 1
0 λ1

)
.

By an induction on n, one verifies that

Jn =

(
λn1 (n− 1)λn−1

1

0 λn1

)
for ∀n ∈ N.

In particular,

I2 = S−1I2S = S−1grS = (S−1gS)r = Jr =

(
λr1 (r − 1)λr−1

1

0 λr1

)
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is an absurd, justifying the diagonalizability of g.
If

D = S−1gS =

(
λ1 0
0 λ2

)

is a diagonal form of g then

I2 = S−1I2S = S−1grS = (S−1gS)r =

(
λr1 0
0 λr2

)

reveals that λ1 and λ2 are r-th roots of unity.
Thus, λj are of finite order rj , dividing r and the least common multiple m =

LCM(r1, r2) ∈ N divides r. Conversely,

I2 =

(
λm1 0
0 λm2

)
= (S−1gS)m = S−1gmS

implies that gm = SI2S
−1 = I2, so that r ∈ N divides m ∈ N and r = m.

Let λj ∈ C∗ be a primitive rj-th root of unity. Then the cyclotomic polynomials
Φrj (x) ∈ Z[x] are the minimal integral relations of λj. More precisely, the minimal
integral relations fj(x) ∈ Z[x] \ Z of λj are monic polynomials of degree degQ(λj).
On the other hand, Φrj (x) ∈ Z[x] \Z are irreducible over Z and Q. Therefore Ψrj (x)
are minimal polynomials of λj over Q and Ψrj(x) = qfj(x) for some q ∈ Q∗. As far
as Φrj (x) and fj(x) are monic, there follows q = 1 and Φrj (x) ≡ fj(x) ∈ Z[x].

Recall Euler’s function
ϕ : N −→ N,

associating to each n ∈ N the number of the residues 0 ≤ r ≤ n− 1 modulo n, which
are relatively prime to n. The degree of Φrj (x) is ϕ(rj). If rj = pa11 . . . pamm is the
unique factorization of rj ∈ N into a product of different prime numbers ps, then

ϕ (pa11 . . . pamm ) = ϕ (pa11 ) . . . ϕ (pamm ) = pa1−1
1 (p1 − 1) . . . pam−1

m (pm − 1).

According to Lemma 13, the algebraic integers λj are of degree

degQ(λj) = deg Φrj (x) = ϕ(rj) = 1, 2, or 4.

If rj has a prime divisor p ≥ 7 then ϕ(rj) has a factor p− 1 ≥ 6, so that ϕ(rj) > 4.
Therefore rj = 2a3b5c for some non-negative integers a, b, c. If c ≥ 1 then

ϕ(rj) = ϕ(2a3b)ϕ(5c) = ϕ(2a3b)5c−1.4 ∈ {1, 2, 4}

exactly when ϕ(rj) = 4, c = 1 and ϕ(2a3b) = 1. For b ≥ 1 one has

ϕ(2a3b) = ϕ(2a)3b−1.2 > 1,
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so that ϕ(2a3b) = 1 requires b = 0 and ϕ(2a) = 1. As a result, a = 0 or 1 and rj = 5
or 10, if 5 divides rj . From now on, let us assume that rj = 2a3b with a, b ∈ N ∪ {0}.
If b ≥ 2 then ϕ(rj) = ϕ(2a).3b−1.2 with b − 1 ≥ 1 is divisible by 3 and cannot equal
1, 2 or 4. Therefore rj = 2a.3 or rj = 2a with a ≥ 0. Straightforwardly,

ϕ(2a.3) = 2ϕ(2a) ∈ {1, 2, 4}

exactly when ϕ(2a) = 1 or ϕ(2a) = 2. These amount to a ∈ {0, 1, 2} and reveal that
3, 6, 12 are possible values for rj. Finally, ϕ(rj) = ϕ(2a) ∈ {1, 2, 4} for rj = 1, 2, 4 or
8. Thus, ϕ(rj) ∈ {1, 2, 4} if and only if

rj ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}.

In order to exclude rj = 5 and rj = 10 with ϕ(5) = ϕ(10) = 4, recall that λj is of
degree degQ(

√
−d)(λj) = [Q(

√
−d, λj) : Q(

√
−d)] ≤ 2 over Q(

√
−d), so that

[Q(
√
−d, λj) : Q] = [Q(

√
−d, λj) : Q(

√
−d)][Q(

√
−d) : Q] ≤ 4.

On the other hand,
Q ⊂ Q(λj) ⊆ Q(

√
−d, λj)

implies that

[Q(
√
−d, λj) : Q] = [Q(

√
−d, λj) : Q(λj)][Q(λj) : Q] = 4[Q(

√
−d, λj) : Q(λj)] ≥ 4,

whereas [Q(
√
−d, λj) : Q] = [Q(λj) : Q] = 4 and [Q(

√
−d, λj) : Q(λj)] = 1. Therefore

Q(
√
−d, λj) = Q(λj), so that

√
−d ∈ Q(λj) and Q(

√
−d) ⊂ Q(λj) with

[Q(λj) : Q(
√
−d)] = [Q(λj) : Q]

[Q(
√
−d) : Q]

=
4

2
= 2.

As far as Q(
√
−d) and Q(λj) are finite Galois extensions of Q (i.e., normal and

separable), the subfield Q(
√
−d) of Q(λ1) of index [Q(λ1) : Q(

√
−d)] = 2 is the

fixed point set of a subgroup H of the Galois group Gal(Q(λj)/Q) with |H| = 2.
The minimal polynomial of λj over Q is the cyclotomic polynomial Φrj (x) ∈ Z[x] of
degree deg(Φrj ) = ϕ(rj) = 4 for rj ∈ {5, 10} and the Galois group

Gal(Q(λj)/Q) ≃ Z∗
rj

coincides with the multiplicative group Z∗
rj

of the congruence ring Zrj modulo rj .
More precisely, the roots of Φrj (x) are {λsj | s ∈ Z∗

rj
} and for any s ∈ Z∗

rj
the

correspondence λj 7→ λsj extends to an automorphism of Q(λj), fixing Q. The groups

Z∗
5 = {±1(mod5), ±3(mod5)} = 〈3(mod5)〉 = 〈−3(mod5)〉 ≃ C4
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and

Z∗
10 = {{±1(mod10), ±3(mod10)} = 〈3(mod10)〉 = 〈−3(mod10)〉 ≃ C4

are cyclic and contain unique subgroups H5 = 〈−1(mod5)〉, respectively, H10 =
〈−1(mod10)〉 or order 2. Denote by h the generator of H5 or H10 with h(λj) = λ−1

j ,
h|Q = IdQ. In both cases, the degree

degQ(
√
−d)(λj) = [Q(λj ,

√
−d) : Q(

√
−d)] = [Q(λj) : Q(

√
−d)] = 2,

so that the characteristic polynomial

Xg(λ) = λ2 − tr(g)λ+ det(g) ∈ R[λ] ⊂ Q(
√
−d)[λ]

of g is irreducible over Q(
√
−d). In fact, Xg(λ) is a minimal polynomial of λj over

Q(
√
−d) and divides the cyclotomic polynomial Φrj (λ) ∈ Z[λ] ⊂ Q(

√
−d)[λ] with

Φrj (λj) = 0. In particular, the other eigenvalue λ3−j of g is a root of Φrj (λ) or a
primitive rj-th root of unity. That allows to express λ3−j = λtj by some t ∈ Z∗

rj
.

According to

λt+1
j = λjλ

t
j = λjλ3−j = det(g) ∈ R∗ ⊂ Q(

√
−d) = Q(λj)

〈h〉,

one has
λt+1
j = h(λt+1

j ) = λ−t−1
j or λ

2(t+1)
j = 1.

If λj is a primitive fifth root of unity then λ
2(t+1)
j = 1 requires that 2(t + 1) to be

divisible by 5. Since GCD(2, 5) = 1, 5 is to divide t+ 1 or t ≡ −1(mod5). Similarly,
if λj is a primitive tenth root of unity then 10 divides 2(t + 1), i.e., 2(t + 1) = 10z
for some z ∈ Z. As a result, 5 divides t + 1 and t ≡ −1(mod10). Thus, for any

r1 ∈ {5, 10} there follows λ3−j = λtj = λ−1
j . Expressing λj = e

2πis
rj for some natural

number 1 ≤ s ≤ rj − 1, relatively prime to rj, one observes that

tr(g) = λj + λ3−j = λj + λ−1
j = e

2πis
rj + e

− 2πis
rj = 2 cos

(
2πs

rj

)
∈ R ∩ R.

We claim that R ∩ R = Z. The inclusion Z ⊆ R ∩ R is clear. Conversely, let

r ∈ R ∩R = R ∩ (Z+ fω−dZ)

for the conductor f ∈ N of E and ω−d from (6). In the case of −d 6≡ 1(mod4) there
exist a, b ∈ Z with r = a+f

√
−db. The complex number a−r+f

√
−db = 0 vanishes

exactly when its real part a − r = 0 and its imaginary part f
√
db = 0 are zero.

Therefore b = 0 and r = a ∈ Z, i.e., R ∩ R ⊆ Z for −d 6≡ 1(mod4).
If −d ≡ 1(mod4) then

r = a + fb
(1 +

√
−d)

2
for some a, b ∈ Z
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yields ∣∣∣∣∣
r = a + fb

2
f
√
d

2
b = 0

by comparison of the real and imaginary parts. As a result, again b = 0 and r = a ∈ Z,
i.e., R ∩ R ⊆ Z for −d ≡ 1(mod4). That justifies R ∩ R = Z and implies that

tr(g) = 2 cos
(

2πs
rj

)
∈ Z. Bearing in mind the cos

(
2πs
rj

)
∈ [−1, 1], one concludes

tr(g) = 2 cos

(
2πs

rj

)
∈ [−2, 2] ∩ Z = {0,±1,±2} or (7)

cos

(
2πs

rj

)
∈
{
0,±1

2
,±1

}
.

For a natural number 1 ≤ s ≤ rj−1, one has 2πs
r1

∈ [0, 2π). The solutions of cos(x) = 0

in [0, 2π) are π
2

and 3π
2

, while cos(x) = ±1 holds for x ∈ {0, π}. Finally, cos(x) = ±1
2

is satisfied by x ∈
{

π
3
, 2π

3
, 4π

3
, 5π

3

}
, so that (7) implies

2πs

rj
∈
{
0,

π

2
, π,

3π

2
,
π

3
,

2π

3
,

4π

3
,
5π

3

}
. (8)

For rj = 5 or 10 this is an absurd, so that

rj ∈ {1, 2, 3, 4, 6, 8, 12}.

Now we are ready to describe the elements ofGL(2, R) of finite order, by specifying
their eigenvalues λ1, λ2. The roots λ1, λ2 of the characteristic polynomial

Xg(λ) = λ2 − tr(g)λ+ det(g) ∈ R[λ]

of g are in a bijective correspondence with the trace tr(g) = λ1 + λ2 ∈ R and the
determinant det(g) = λ1λ2 ∈ R∗ of g. Making use of Lemma 8, we subdivide the
problem to the description of finite order g ∈ GL(2, R) with a fixed determinant
det(g) ∈ R∗. The traces of such g take finitely many values and allow to list explicitly
the eigenvalues of all g ∈ GL(2, R) of finite order. The classification of the unordered
pairs of eigenvalues λ1, λ2 of g ∈ GL(2, R) of finite order is a more specific result than
Proposition 14. Note that the next classification of λ1, λ2 is derived independently of
Proposition 14.

Let us start with the case of det(g) = 1. The next proposition puts in a bijective
correspondence the traces tr(g) of g ∈ SL(2, R) with the orders r of g.
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Proposition 15. If g ∈ SL(2, R) is of finite order r then the trace

tr(g) ∈ {±2, ±1, 0}. (9)

The eigenvalues λ1, λ2 of g are of order

r1 = r2 = r ∈ {1, 2, 3, 4, 6}. (10)

More precisely,
(i) tr(g) = 2 or λ1 = λ2 = 1, g = I2 if and only if g is of order 1;
(ii) tr(g) = −2 or λ1 = λ2 = −1, g = −I2 if and only if g is of order 2;

(iii) tr(g) = 1 or λ1 = e
πi
3 , λ2 = e−

πi
3 if and only if g is of order 6;

(iv) tr(g) = −1 or λ1 = e
2πi
3 , λ2 = e−

2πi
3 if and only if g is of order 3;

(v) tr(g) = 0 or λ1 = i, λ2 = −i if and only if g is of order 4.

Proof. If g ∈ SL(2, R) is of order r then the eigenvalues λj of g are of finite order rj ,
dividing r = LCM(r1, r2). According to

1 = det(g) = λ1λ2,

one has λ1 = e
2πis
r1 , λ2 = e

− 2πis
r1 for some natural number 1 ≤ s ≤ r1 − 1, relatively

prime to r1. Thus, λ2 is a primitive r1-th root and r1 = r2 = LCM(r1, r2) = r. As in
the proof of Proposition 14,

tr(g) = λ1 + λ2 = e
2πis
r1 + e

− 2πis
r1 = 2 cos

(
2πs

r1

)
∈ R ∩R = Z

and cos
(

2πs
r1

)
∈ [−1, 1] specify (9). Consequently,

cos

(
2πs

r1

)
∈
{
0, ±1

2
, ±1

}
and

2πs

r1
∈
{
0,

π

2
, π,

3π

2
,
π

3
,

2π

3
,

4π

3
,

5π

3

}
,

as in (8). Straightforwardly, λ1 = e0 = 1 is of order 1, λ1 = eπi = −1 is of order 2,

λ1 ∈
{
e

πi
2 , e

3πi
2

}
are of order 4, λ1 ∈

{
e

2πi
3 , e

4πi
3

}
are of order 3 and λ1 ∈

{
e

πi
3 , e

5πi
3

}

are of order 6. That justifies (10).
If g is of order r = 1 then λ1 ∈ C∗ is of order r1 = 1, so that λ1 = 1. Consequently,

λ2 = 1 and g = I2, as far as I2 is the only conjugate of the scalar matrix I2. The
trace tr(g) = tr(I2) = 2. Conversely, if λ1 = λ2 = 1, then g = I2 is of order 1.

An automorphism g ∈ SL(2, R) of order r = 2 has eigenvalues λ1, λ2 ∈ C∗ of
order 2, or λ1 = λ2 = −1. Consequently, g = −I2 and tr(g) = −2. Conversely, for
λ1 = λ2 − 1 the matrix g = −I2 is of order 2.
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Let us suppose that g ∈ SL(2, R) is of order 3. Then the eigenvalues λ1, λ2
of g are of order 3 or λ1 = e

2πi
3 , λ2 = e−

2πi
3 , up to a transposition. The trace

tr(g) = λ1 + λ2 = −1. Conversely, if λ1 = e
2πi
3 , λ2 = e−

2πi
3 then r = r1 = r2 = 3.

For g ∈ SL(2, R) of order 4 one has λ1, λ2 ∈ C∗ of order 4 or λ1 = i, λ2 = −i, up
to a transposition. The trace tr(g) = λ1 + λ2 = 0. Conversely, for λ1 = i, λ2 = −i
there follows r = r1 = r2 = 4.

Suppose that g ∈ SL(2, R) is of order 6. Then λ1, λ2 ∈ C∗ are of order 6 or

λ1 = e
πi
3 , λ2 = e−

πi
3 , up to a transposition. The trace tr(g) = λ1+λ2 = 1. Conversely,

the assumption λ1 = e
πi
3 , λ2 = e−

πi
3 implies r = r1 = r2 = 6.

Note that

g1 =

(
1 1

−3 −2

)
, g2 =

(
1 −2
1 −1

)
, g3 =

(
2 1

−3 −1

)
∈ SL(2,Z) ⊆ SL(2, R)

with tr(g1) = −1, tr(g2) = 0, tr(g3) = 1 realize all the possibilities, listed in the
statement of the proposition.

If E is an elliptic curve with complex multiplication by an imaginary quadratic
number field Q(

√
−d) and conductor f ∈ N then we denote the endomorphism ring

of E by
R−d,f = Z+ fO−d = Z+ fω−dZ,

where ω−d is the non-trivial generator of O−d as a Z-module, given in (6). If E has
no complex multiplication, we put

R0,1 := Z.

Proposition 16. Let g ∈ GL(2, R−d,f ) be a linear automorphism of A = E × E of
order r, with det(g) = −1 and eigenvalues λ1(g), λ2(g) ∈ C∗.

(i) The automorphism g is of order 2 if and only if its trace is tr(g) = 0 or,
equivalently, λ1(g) = −1, λ2(g) = 1.

(ii) If R−d,f 6= Z[i],O−2,O−3, R−3,2 then any g ∈ GL(2, R−d,f) \ SL(2, R) is of
order 2.

(iii) If g ∈ GL(2,O−2) is of order r > 2 and det(g) = −1 then r = 8 and the trace
tr(g) ∈ {±

√
−2}.

More precisely,
(a) tr(g) =

√
−2 if and only if λ1(g) = e

πi
4 , λ2(g) = e

3πi
4 ;

(b) tr(g) = −
√
−2 if and only if λ1(g) = e

5πi
4 , λ2(g) = e−

πi
4 .

(iv) If g ∈ GL(2,Z[i]) is of order r > 2 and det(g) = −1, then r ∈ {4, 12} and
the trace tr(g) ∈ {±i,±2i}.

More precisely,
(a) tr(g) = 2i exactly when g = iI2;
(b) tr(g) = −2i exactly when g = −iI2;
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(c) tr(g) = i exactly when λ1(g) = e
πi
6 , λ2(g) = e

5πi
6 ;

(d) tr(g) = −i exactly when λ1(g) = e
7πi
6 , λ2(g) = e−

πi
6 .

(v) If g ∈ GL(2, R−3,f ) with R−3,f ∈ {R−3,1 = O−3, R−3,2 = Z +
√
−3Z} is of

order r > 2 and det(g) = −1 then r = 6 and the trace tr(g) ∈ {±
√
−3}.

More precisely,
(a) tr(g) =

√
−3 if and only if λ1(g) = e

πi
3 , λ2(g) = e

2πi
3 ;

(b) tr(g) = −
√
−3 if and only if λ1(g) = e−

2πi
3 , λ2(g) = e−

πi
3 .

Proof. The eigenvalues λ1(g), λ2(g) ∈ C∗ of g ∈ GL(2, R−d,f) with det(g) = −1 are

subject to λ2(g) = −λ1(g)−1. More precisely, if λ1(g) = e
2πsi
r1 is a primitive r1-th root

of unity then λ2(g) = −e−
2πsi
r1 . The trace

tr(g) = λ1(g) + λ2(g) = e
2πsi
r1 − e

− 2πsi
r1 = 2i sin

(
2πs

r1

)
∈ R−d,f ∩ iR. (11)

We claim that

R−d,f ∩ iR =

{
f
√
−dZ for −d 6≡ 1(mod4) or −d ≡ 1(mod4), f ≡ 1(mod2),

f

2

√
−dZ for −d ≡ 1(mod4), f ≡ 0(mod2).

Indeed, if −d 6≡ 1(mod4) then O−d = Z +
√
−dZ and R−d,f = Z + f

√
−dZ contains

f
√
−d, i.e., f

√
−dZ ⊆ R−d,f ∩ iR. Any ir = a + bf

√
−d ∈ iR ∩ R−d,f with r ∈ R,

a, b ∈ Z has imaginary part r = bf
√
d, so that iR∩R−d,f ⊆ f

√
−dZ and iR∩R−d,f =

f
√
−dZ.
Suppose that −d ≡ 1(mod4) and the conductor f = 2k + 1 ∈ N is odd. Then

R−d,2k+1 = Z + f (1+
√
−d)

2
Z contains f

√
−d = −f + (2f) (1+

√
−d)

2
, so that f

√
−dZ ⊆

R−d,2k+1∩ iR. Any ir = a+ bf

2
(1+

√
−d) with r ∈ R, a, b ∈ Z has real part a+ bf

2
= 0

and imaginary part r = bf

2

√
d. Note that bf

2
= b(2k+1)

2
= −a ∈ Z is an integer only

for an even b = 2b1, b1 ∈ Z, so that r = b1f
√
d and iR ∩ R−d,2k+1 ⊆ f

√
−dZ. That

justifies iR ∩ R−d,2k+1 = f
√
−dZ for −d ≡ 1(mod4), f ≡ 1(mod2).

Finally, for −d ≡ 1(mod4) and an even conductor f = 2k ∈ N the endomorphism
ring R−d,2k = Z+ k(1+

√
−d)Z contains k

√
−d, so that k

√
−dZ ⊆ iR∩R−d,2k. Note

that ir = a+bk(1+
√
−d) with r ∈ R, a, b ∈ Z has real part a+bk = 0 and imaginary

part r = bk
√
d, so that iR ∩ R−d,2k ⊆ k

√
−dZ and iR ∩ R−d,2k = k

√
−dZ.

Now, (11) implies that

2 sin

(
2πs

r1

)
∈ [−2, 2] ∩ i(R−d,f ∩ iR) =

=

{
[−2, 2] ∩ f

√
dZ for −d 6≡ 1(mod4) or −d ≡ 1(mod4), f ≡ 1(mod2),

[−2, 2] ∩ f

2

√
dZ for −d ≡ 1(mod4), f ≡ 0(mod2).
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If d ≥ 5 then
√
d ≥

√
5 > 2 and [−2, 2]∩f

√
dZ = {0} for ∀f ∈ N and [−2, 2]∩ f

2

√
dZ =

{0} for ∀f ∈ 2N. Note that sin
(

2πs
r1

)
= 0 for some natural number 1 ≤ s ≤ r1 − 1

with GCD(s, r1) = 1 has unique solution 2πs
r1

= π, since 2πs
r1

∈ (0, 2π). That implies

2s = r1, whereas s divides r1 and s = GCD(s, r1) = 1, r1 = 2. Thus, λ1 = e
2πi
2 =

eπi = −1, λ2 = −(−1) = 1 and g is conjugate to

D2 =

(
−1 0
0 1

)
.

In particular, g is of order 2. Note that the case of g ∈ GL(2, R) with λ1 = −1,
λ2 = 1 is realized by the diagonal matrix D2 ∈ GL(2,Z) ≤ GL(2, R−d,f).

If d = 1 and f ≥ 3 then 2 sin
(

2πs
r1

)
∈ [−2, 2] ∩ fZ = {0} and D2 is the only

diagonal form for g. For d = 2 and f ≥ 2 the intersection [−2, 2] ∩ f
√
2Z = {0}, so

that any g ∈ GL(2, R−2,f) with f ≥ 2 and det(g) = −1 is conjugate to D2. If d = 3
and f = 2k + 1 ≥ 3 then [−2, 2] ∩ f

√
3Z = {0}. Similarly, for d = 3 and f = 2k ≥ 4

one has [−2, 2] ∩ k
√
3Z = {0}. In such a way, the existence of g ∈ GL(2, R−d,f ) with

det(g) = −1, tr(g) 6= 0 requires R−d,f to be among

R−1,1 = O−1 = Z[i], R−1,2 = Z+ 2iZ, R−2,1 = O−2 = Z+
√
−2Z,

R−3,1 = O−3 = Z+
1 +

√
−3

2
Z or R−3,2 = Z+ 2

(
1 +

√
−3

2

)
Z = Z+

√
−3Z.

The next considerations exploit the following simple observation: If a, b are rel-
atively prime natural numbers and s, r1 are relatively prime natural numbers then
as = br1 if and only if s = b and r1 = a. Namely, b divides as and GCD(a, b) = 1
requires b to divide s. Thus, s = bs1 for some s1 ∈ N and as1 = r1. Now s1 is a
natural common divisor of the relatively prime s, r1, so that s1 = 1, s = b and r1 = a.

For d = 1 and f = 2 one has 2 sin
(

2πs
r1

)
∈ [−2, 2] ∩ fZ = {0,±2}. Let tr(g) = 2i

or sin
(

2πs
r1

)
= 1 for r1 ∈ N and some natural number 1 ≤ s ≤ r1−1, GCD(s, r1) = 1.

Then 2πs
r1

= π
2

or 4s = r1. As a result, s = 1, r1 = 4 and λ1 = e
πi
2 = i, λ2 = −e−πi

2 = i.
Now g = iI2 as the unique matrix, conjugate to the scalar matrix iI2. However,
iI2 6∈ GL(2, R−1,2) = GL(2,Z+2iZ), so that g = iI2 is not a solution of the problem.

For tr(g) = −2i one has sin
(

2πs
r1

)
= −1, whereas 2πs

r1
= 3π

2
and 4s = 3r1. Thus,

s = 3, r1 = 4 and λ1 = e
3πi
3 = −i, λ2 = −e− 3πi

3 = −i. That determines a unique
g = −iI2. But −iI2 6∈ GL(2, R−1,2) = GL(2,Z + 2iZ), so that λ1 = 1, λ2 = −1 are
the only possible eigenvalues for g ∈ GL(2, R−1,2) of finite order with det(g) = −1.

In the case of d = 1 and f = 1, note that 2 sin
(

2πs
r1

)
∈ [−2, 2] ∩ Z = {0,±1,±2}.

Besides g ∈ GL(2,Z[i]) with det(g) = −1, tr(g) = 0, one has g = iI2 ∈ GL(2,Z[i])

and g = −iI2 ∈ GL(2,Z[i]). The case of tr(g) = i corresponds to sin
(

2πs
r1

)
= 1

2
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and holds for 2πs
r1

= π
6

or 2πs
r1

= 5π
6

. Note that 12s = r1 implies s = 1, r1 = 12

and λ1 = e
πi
6 =

√
3
2

+ 1
2
i, λ2 = −e−πi

6 = −
√
3
2

+ 1
2
i = e

5πi
6 . Thus, g is of order

r = LCM(12, 12) = 12. This possibility is realized, for instance, by

g(i) =

(
1 1
i (−1 + i)

)
∈ GL(2,Z[i]) with det(g(i)) = −1, tr(g(i)) = i.

If 12s = 5r1 then s = 5, r1 = 12 and λ1 = e
5πi
6 = −

√
3
2

+ 1
2
i, λ2 = −e− 5πi

6 =√
3
2

+ 1
2
i = e

πi
6 , which was already obtained. Note that tr(g) = −i amounts to

sin
(

2πs
r1

)
= −1

2
and holds for 2πs

r1
= 7π

6
or 2πs

r1
= 11π

6
. If 12s = 7r1 then s = 7,

r1 = 12 and λ1 = e
7πi
6 = −

√
3
2
− 1

2
i, λ2 = −e− 7πi

6 =
√
3
2
− 1

2
i = e−

πi
6 and g is of order

r = LCM(12, 12) = 12. Note that

g(−i) =
(

1 1
−i (−1− i)

)
∈ GL(2,Z[i]) with det(g(−i)) = −1, tr(g(−i)) = −i

realizes the aforementioned possibility.
In the case of 12s = 11r1 one has s = 11, r1 = 12 and λ1 = e

11πi
6 =

√
3
2

− 1
2
i,

λ2 = −eπi
6 = −

√
3
2

− 1
2
i, which is already listed as a solution. That concludes the

considerations for g ∈ GL(2,Z[i]) with det(g) = −1.

If d = 2 and f = 1 then 2 sin
(

2πs
r1

)
∈ [−2, 2] ∩

√
2Z = {0,±

√
2}. Note that

sin
(

2πs
r1

)
=

√
2
2

holds for 2πs
r1

= π
4

or 2πs
r1

= 3π
4

. The equality r1 = 8s implies s = 1 and

r1 = 8. As a result, λ1 = e
πi
4 =

√
2
2
+

√
2
2
i, λ2 = −e−πi

4 = −
√
2
2
+

√
2
2
i = e

3πi
4 . Observe

that

g(
√
−2) =

(
1 1√

−2 (−1 +
√
−2)

)
∈ GL(2,O−2),O−2 = Z+

√
−2Z

with det(g(
√
−2)) = −1, tr(g(

√
−2)) =

√
−2 realizes the aforementioned possibility.

If 8s = 3r1 then s = 3, r1 = 8 and λ1 = e
3πi
4 = −

√
2
2
+

√
2
2
i, λ2 = −e− 3πi

4 =
√
2
2
+

√
2
2
i =

e
πi
4 . These eigenvalues have been already mentioned.

For sin
(

2πs
r1

)
= −

√
2
2

there follows 2πs
r1

= 5π
4

or 2πs
r1

= 7π
4

. If 8s = 5r1 then

s = 5, r1 = 8 and λ1 = e
5πi
4 = −

√
2
2

−
√
2
2
i, λ2 = −e− 5πi

4 =
√
2
2

−
√
2
2
i = e−

πi
4 . The

corresponding automorphism g is of order r = LCM(8, 8) = 8. Note that

g(−
√
−2) =

(
1 1

−
√
−2 (−1−

√
−2)

)
∈ GL(2,O−2)

with det(g(−
√
−2)) = −1, tr(g(−

√
−2)) = −

√
−2. realizes this possibility. In the

case of 8s = 7r1, one has s = 7, r1 = 8. The eigenvalues λ1 = e
7πi
4 =

√
2
2

−
√
2
2
i,
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λ2 = −e− 7πi
4 = −

√
2
2
−

√
2
2
i were already obtained. That concludes the considerations

for d = 2.
If d = 3 and f = 1, note that 2 sin

(
2πs
r1

)
∈ [−2, 2] ∩

√
3Z = {0,±

√
3}. Similarly,

for d = 3 and f = 2 one has 2 sin
(

2πs
r1

)
∈ [−2, 2]∩

√
3Z = {0,±

√
3}. If sin

(
2πs
r1

)
=

√
3
2

then 2πs
r1

= π
3

or 2πs
r1

= 2π
3

. In the case of 6s = r1 there follows s = 1, r1 = 6. The

eigenvalues λ1 = e
πi
3 = 1

2
+

√
3
2
i, λ2 = −e−πi

3 = −1
2
+

√
3
2
i = e

2πi
3 and g is of order

r = LCM(6, 3) = 6. The automorphism

g(
√
−3) =

(
1 1√

−3 (−1 +
√
−3)

)
∈ GL(2, R−3,2) ≤ GL(2,O−3)

with det(g(
√
−3)) = −1, tr(g(

√
−3)) =

√
−3 realizes the aforementioned possibility.

If 3s = r1 then s = 1, r1 = 3 and λ1 = e
2πi
3 = −1

2
+

√
3
2
i, λ2 = −e− 2πi

3 = 1
2
+

√
3
2
i = e

πi
3 ,

which was already obtained.

If sin
(

2πs
r1

)
= −

√
3
2

then 2πs
r1

= 4π
3

or 2πs
r1

= 5π
3

. In the case of 3s = 2r1 note

that s = 2, r1 = 3 and λ1 = e
4πi
3 = −1

2
−

√
3
2
i, λ2 = −e− 4πi

3 = 1
2
−

√
3
2
i = e−

πi
3 .

The automorphisms g with such eigenvalues are of order r = LCM(3, 6) = 6. In
particular,

g(−
√
−3) =

(
1 1

−
√
−3 (−1−

√
−3)

)
∈ GL(2, R−3,2) ≤ GL(2,O−3)

with det(g(−
√
−3)) = −1, tr(g(−

√
−3)) = −

√
−3 realizes the aforementioned possi-

bility.
If 6s = 5r1 then s = 5, r1 = 6 and λ1 = e

5πi
3 = e−

πi
3 = 1

2
−

√
3
2
i, λ2 = −eπi

3 =

−1
2
−

√
3
2
i = e

4πi
3 . These eigenvalues are already obtained. That concludes the con-

siderations for d = 3 and the description of all g ∈ GL(2, R−d,f) with det(g) = −1.

Proposition 17. If g ∈ GL(2,Z[i]) is of finite order r and det(g) = i then

tr(g) ∈ {0,±(1 + i)}, r ∈ {4, 8}.

More precisely,
(i) tr(g) = 0 or λ1 = e

3πi
4 , λ2 = e−

πi
4 if and only if g is of order 8;

(ii) if tr(g) = 1 + i or λ1 = i, λ2 = 1 then g is of order 4;
(iii) if tr(g) = −1 − i or λ1 = −i, λ2 = −1 then g is of order 4.

Proof. If λ1 = e
2πsi
r1 for the order r1 ∈ N of λ1 ∈ C∗ and some natural number

1 ≤ s < r1, GCD(s, r1) = 1, then λ2 = det(g)λ−1
1 = ie

− 2πsi
r1 . Therefore, the trace

tr(g) = λ1 + λ2 =

[
cos

(
2πs

r1

)
+ sin

(
2πs

r1

)]
(1 + i) =
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=
√
2 sin

(
2πs

r1
+
π

4

)
(1 + i) ∈ Z[i] = Z+ iZ

if and only if the real part

√
2 sin

(
2πs

r1
+
π

4

)
∈ Z ∩ [−

√
2,
√
2] = {0,±1}.

As a result, tr(g) ∈ {0,±(1 + i)}. If tr(g) = 0 or, equivalently, sin
(

2πs
r1

+ π
4

)
= 0 for

2πs
r1

+ π
4
∈
(
π
4
, 9π

4

)
then 2πs

r1
+ π

4
= π or 2πs

r1
+ π

4
= 2π. For 2s

r1
= 3

4
there follows 8s = 3r1

and s = 3, r1 = 8. As a result, λ1 = e
3πi
4 = −

√
2
2
+

√
2
2
i, λ2 = ie−

3πi
4 =

√
2
2
−

√
2
2
i = e−

πi
4

and g is of order r = LCM(8, 8) = 8. For instance,

gi(0) =

(
i i

(−1 − i) −i

)
∈ GL(2,Z[i])

with det(gi(0)) = i, tr(gi(0)) = 0 attains this possibility.

If 2s
r1

= 7
4

then 8s = 7r1 and s = 7, r1 = 8. The eigenvalues λ1 = e
7πi
4 = e−

πi
4 =

√
2
2
−

√
2
2
i, λ2 = ie

πi
4 = −

√
2
2
+

√
2
2
i = e

3πi
4 are already obtained.

In the case of tr(g) = 1 + i, one has sin
(

2πs
r1

+ π
4

)
=

√
2
2

, which is equivalent to
2πs
r1

+ π
4
= 3π

4
for 2πs

r1
+ π

4
∈
(
π
4
, 9π

4

)
. Now, 2s

r1
= 1

2
, whereas 4s = r1 and s = 1, r1 = 4.

The eigenvalues are λ1 = e
πi
2 = i, λ2 = ie−

πi
2 = 1 and g is of order r = LCM(4, 1) = 4.

Note that

gi(1 + i) =

(
i 0
0 1

)
∈ GL(2,Z[i])

with det(gi(1 + i)) = i, tr(gi(1 + i)) = 1 + i realizes this case.

Finally, for tr(g) = −1 − i there follows sin
(

2πs
r1

+ π
4

)
= −

√
2
2

. Consequently,
2πs
r1

+ π
4
= 5π

4
or 2πs

r1
+ π

4
= 7π

4
for 2πs

r1
+ π

4
∈
(
π
4
, 9π

4

)
. In the case of 2s

r1
= 1 one has

s = 1, r1 = 2. The eigenvalues of g are λ1 = eπi = −1, λ2 = ie−πi = −i, so that g is
of order r = LCM(2, 4) = 4. This possibility is realized by

gi(−1− i) =

(
−i 0
0 −1

)
∈ GL(2,Z[i])

with det(gi(−1 − i)) = i, tr(gi(−1 − i)) = −1− i.

If 2s
r1

= 3
2

then 4s = 3r1 and s = 3, r1 = 4. The eigenvalues λ1 = e
3πi
2 = −i, λ2 =

ie−
3πi
2 = −1 are already obtained. That concludes the description of the eigenvalues

of all g ∈ GL(2,Z[i]) of finite order with det(g) = i.

Proposition 18. If g ∈ GL(2,Z[i]) is of finite order r and det(g) = −i then

tr(g) ∈ {0,±(1− i)}, r ∈ {4, 8}.
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More precisely,
(i) tr(g) = 0 or λ1 = e

πi
4 , λ2 = e

5πi
4 if and only if g is of order 8;

(ii) if tr(g) = 1− i or λ1 = −i, λ2 = 1 then g is of order 4;
(iii) if tr(g) = −1 + i or λ1 = i, λ2 = −1 then g is of order 4.

Proof. If one of the eigenvalues of g is λ1 = e
2πsi
r1 then the other one is λ2 = −ie−

2πsi
r1 .

Thus, the trace

tr(g) = λ+ λ2 =

[
cos

(
2πs

r1

)
− sin

(
2πs

r1

)]
(1− i) =

√
2 cos

(
2πs

r1
+
π

4

)
(1− i)

belongs to Z[i] = Z+ Zi if and only if
√
2 cos

(
2πs
r1

+ π
4

)
∈ Z. As a result,

√
2 cos

(
2πs

r1
+
π

4

)
∈ Z ∩ [−

√
2,
√
2] = {0,±1}

or tr(g) ∈ {0,±(1 − i)}. Note that tr(g) = 0 reduces to cos
(

2πs
r1

+ π
4

)
= 0 with

solutions 2πs
r1

+ π
4
= π

2
or 2πs

r1
+ π

4
= 3π

2
. If 2s

r1
= 1

4
then 8s = r1 and s = 1, r1 = 8. The

eigenvalues of g are λ1 = e
πi
4 =

√
2
2
+

√
2
2
i, λ2 = −ie−πi

4 = −
√
2
2
−

√
2
2
i and g is of order

r = LCM(8, 8) = 8. Note that

g−i(0) =

(
−i −i

(−1 + i) i

)
∈ GL(2,Z[i])

with det(g−i(0)) = −i, tr(g−i(0)) = 0 realizes the aforementioned possibility. In the

case of 2πs
r1

= 5
4

there holds 8s = 5r1, whereas s = 5, r1 = 8 and λ1 = e
5πi
4 = −

√
2
2
−

√
2
2
i,

λ2 = −ie− 5πi
4 =

√
2
2
+

√
2
2
i = e

πi
4 . This case has been already discussed.

For tr(g) = 1 − i one has cos
(

2πs
r1

+ π
4

)
=

√
2
2

, which reduces to 2πs
r1

+ π
4
= 7π

4
for

2πs
r1

+ π
4
∈
(
π
4
, 9π

4

)
. Now 2s

r1
= 3

2
reads as 4s = 3r1 and determines s = 3, r1 = 4.

The eigenvalues of g are λ1 = e
3πi
2 = −i, λ2 = −ie− 3πi

2 = 1 and g is of order
r = LCM(4, 1) = 4. This possibility is realized by

g−i(1− i) =

(
−i 0
0 1

)
∈ GL(2,Z[i])

with det(g−i(1− i)) = −i, tr(g−i(1− i)) = 1− i.

Finally, tr(g) = −1 + i is equivalent to cos
(

2πs
r1

+ π
4

)
= −

√
2
2

and holds for 2πs
r1

+
π
4

= 3π
4

or 2πs
r1

+ π
4

= 5π
4

. In the case of 2s
r1

= 1
2
, one has 4s = r1 and s = 1,

r1 = 4. The eigenvalues of g are λ1 = e
πi
2 = i, λ2 = −ie−πi

2 = −1 and g is of order
r = LCM(4, 2) = 4. The automorphism

g−i(−1 + i) =

(
i 0
0 −1

)
∈ GL(2,Z[i])
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realizes the case under discussion. For 2s
r1

= 1 there follow s = 1, r1 = 2 and

λ1 = eπi = −1, λ2 = −ie−πi = i, which was already discussed. That concludes the
description of the automorphisms g ∈ GL(2,Z[i]) with det(g) = −i.

Proposition 19. If g ∈ GL(2,O−3) is of finite order r and det(g) = e
πi
3 then

r = 6 and tr(g) ∈
{
0,±

(
3

2
+

√
−3

2

)}
.

More precisely,
(i) tr(g) = 0 exactly when λ1 = e

2πi
3 , λ2 = e−

πi
3 ;

(ii) tr(g) = 3
2
+

√
−3
2

exactly when λ1 = e
πi
3 , λ2 = 1;

(iii) tr(g) = −3
2
−

√
−3
2

exactly when λ1 = e−
2πi
3 , λ2 = −1.

Proof. If λ1 = e
2πsi
r1 then λ2 = e

πi
3 e

− 2πsi
r1 and the trace

tr(g) = λ1 + λ2 = (
√
3 + i) sin

(
2πs

r1
+
π

3

)

belongs to O−3 = Z + 1+
√
−3

2
Z if and only if sin

(
2πs
r1

+ π
3

)
∈

√
3
2
Z. Combining with

sin
(

2πsi
r1

+ π
3

)
∈ [−1, 1], one gets sin

(
2πs
r1

+ π
3

)
∈

√
3
2
Z ∩ [−1, 1] =

{
0,±

√
3
2

}
and,

respectively, tr(g) ∈
{
0,±

(
3
2
+

√
−3
2

)}
.

If sin
(

2πs
r1

+ π
3

)
= 0 then 2πs

r1
+ π

3
= π or 2πs

r1
+ π

3
= 2π. For 2s

r1
= 2

3
there follows

s = 1, r1 = 3 and λ1 = e
2πi
3 = −1

2
+

√
−3
2

, λ2 = e
πi
3 e−

2πi
3 = e−

πi
3 = 1

2
−

√
−3
2

. The
automorphisms g ∈ GL(2,O−3) with such eigenvalues are of order r = LCM(3, 6) =
6. For instance, (

e
2πi
3 0

0 e−
πi
3

)
∈ GL(2,O−3)

attains the aforementioned possibility.
In the case of 2s

r1
= 5

3
one has s = 5, r1 = 6 and λ1 = e−

πi
3 , λ2 = e

πi
3 e

πi
3 = e

2πi
3 ,

which was already obtained.

Note that sin
(

2πs
r1

+ π
3

)
=

√
3
2

for 2πs
r1

+ π
3
∈
(
π
3
, 7π

3

)
implies 2πs

r1
+ π

3
= 2π

3
, whereas

6s = r1 and s = 1, r1 = 6. The corresponding eigenvalues are λ1 = e
πi
3 = 1

2
+

√
3
2
i,

λ2 = e
πi
3 e−

πi
3 = 1 and g is of order r = LCM(6, 1) = 6. Note that

(
e

πi
3 0
0 1

)
∈ GL(2,O−3)

realizes this possibility.
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The equality sin
(

2πs
r1

+ π
3

)
= −

√
3
2

holds for 2πs
r1

+ π
3
= 4π

3
or 2πs

r1
+ π

3
= 5π

3
. If

2s = r1 then s = 1, r1 = 2 and λ1 = eπi = −1, λ2 = e
πi
3 e−πi = e−

2πi
3 = −1

2
−

√
3
2
i.

The automorphism g is of order r = LCM(2, 3) = 6. Note that

(
e−

2πi
3 0
0 −1

)
∈ GL(2,O−3)

attains this possibility and concludes the proof of the proposition.

Proposition 20. If g ∈ GL(2,O−3) is of finite order r and det(g) = e−
πi
3 then

r = 6 and tr(g) ∈
{
0,±

(
3

2
−

√
−3

2

)}
.

More precisely,
(i) tr(g) = 0 exactly when λ1 = e

πi
3 , λ2 = e−

2πi
3 ;

(ii) tr(g) = 3
2
−

√
3
2
i exactly when λ1 = e−

πi
3 , λ2 = 1;

(iii) tr(g) = −3
2
+

√
3
2
i exactly when λ1 =

2πi
3 , λ2 = −1.

Proof. If λ1 = e
2πsi
r1 then λ2 = e−

πi
3 e

− 2πsi
r1 and the trace

tr(g) = λ1 + λ2 = (−
√
3 + i) sin

(
2πs

r1
− π

3

)

belongs to O−3 = Z + 1+
√
3i

2
Z if and only if sin

(
2πs
r1

− π
3

)
∈

√
3
2
Z. As a result,

sin
(

2πs
r1

= π
3

)
∈

√
3
2
Z ∩ [−1, 1] =

{
0,±

√
3
2

}
and tr(g) ∈

{
0,±

(
3
2
−

√
3
2
i
)}

.

The equation sin
(

2πs
r1

− π
3

)
= 0 for 2πs

r1
− π

3
∈
(
−π

3
, 5π

3

)
has solutions 2πs

r1
− π

3
= 0

and 2πs
r1

− π
3
= π.

If 6s = r1 then s = 1, r1 = 6 and λ1 = e
πi
3 = 1

2
+

√
3
2
i, λ2 = e−

πi
3 e−

πi
3 =

−1
2
−

√
3
2
i. The automorphisms g ∈ GL(2,O−3) with such eigenvalues are of order

r = LCM(6, 3) = 6. For instance,
(
e

πi
3 0

0 e−
2πi
3

)
∈ GL(2,O−3)

attains this case.
If sin

(
2πs
r1

− π
3

)
=

√
3
2

then 2πs
r1

− π
3
= π

3
or 2πs

r1
− π

3
= 2π

3
. For 3s = r1 one has

s = 1, r1 = 3 and λ1 = e
2πi
3 = −1

2
+

√
3
2
i, λ2 = e−

πi
3 e−

2πi
3 = e−πi = −1, attained by

(
e

2πi
3 0
0 −1

)
∈ GL(2,O−3).
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All g ∈ GL(2,O−3) with such eigenvalues are of order r = LCM(3, 2) = 6.
In the case of 2s = r1 there follows s = 1, r1 = 2 and λ1 = eπi = −1, λ2 =

e−
πi
3 e−

πi
3 = e−

2πi
3 , which is already discussed.

The equation sin
(

2πs
r1

− π
3

)
= −

√
3
2

for 2πs
r1

− π
3
∈
(
−π

3
, 5π

3

)
has solution 2πs

r1
− π

3
=

5π
3

. Therefore 6s = 5r1 and s = 5, r1 = 6, As a result, λ1 = e
5πi
3 = 1

2
−

√
3
2
i,

λ2 = e−
πi
3 e

πi
3 = 1 and g is of order r = LCM(6, 1) = 6. Note that

(
e−

πi
3 0
0 1

)
∈ GL(2,O−3)

attains this possibility and concludes the proof of the proposition.

Proposition 21. If g ∈ GL(2,O−3) is of finite order r and det(g) = e
2πi
3 then

tr(g) ∈
{
0,±(1 +

√
−3)

2
,±(1 +

√
−3)

}
, r ∈ {3, 6, 12}.

More precisely,
(i) tr(g) = 0 or λ1 = e

5πi
6 , λ2 = e−

πi
6 if and only if g is of order 12;

(ii) if tr(g) = 1+
√
3i

2
or λ1 = e

2πi
3 , λ2 = 1 then g is of order 3;

(iii) if tr(g) = −1 −
√
3i or g = e−

2πi
3 I2 then g is of order 3;

(iv) if tr(g) = −1−
√
3i

2
or λ1 = e−

πi
3 , λ2 = −1 then g is of order 6;

(v) if tr(g) = 1 +
√
3i or g = e

πi
3 I2 then g is of order 6.

Proof. If λ1 = e
2πsi
r1 then λ2 = e

2πi
3 e

− 2πsi
r1 and the trace

tr(g) = λ1 + λ2 = (1 +
√
3i) sin

(
2πs

r1
+
π

6

)

belongs to O−3 = Z + 1+
√
3i

2
Z if and only if 2 sin

(
2πs
r1

+ π
6

)
∈ Z. Combining with

sin
(

2πs
r1

+ π
6

)
∈ [−1, 1], one obtains 2 sin

(
2πs
r1

+ π
6

)
∈ Z ∩ [−2, 2] = {0,±1,±2} and,

respectively,

tr(g) ∈
{
0,±(1 +

√
3i)

2
,±(1 +

√
3i)

}
.

If sin
(

2πs
r1

+ π
6

)
= 0 for 2πs

r1
+ π

6
∈
(
π
6
, 13π

6

)
then 2πs

r1
+ π

6
= π or 2πs

r1
+ π

6
= 2π.

For 12s = 5r1 one has s = 5, r1 = 12 and λ1 = e
5πi
6 = −

√
3
2
+ 1

2
i, λ2 = e

2πi
3 e−

5πi
6 =

e−
πi
6 =

√
3
2
− 1

2
i. Therefore g is of order r = LCM(12, 12) = 12. Note that

(
e

5πi
6 0

0 e−
πi
6

)
∈ GL(2,O−3)
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attains this possibility.
In the case of 12s = 11r1 there follows s = 11, r1 = 12. As a result, λ1 = e

11πi
6 =√

3
2
− 1

2
i, λ2 = e

2πi
3 e

πi
6 = e

5πi
6 = −

√
3
2
+ 1

2
i, which was already obtained.

If sin
(

2πs
r1

+ π
6

)
= 1

2
for 2πs

r1
+ π

6
∈
(
π
6
, 13π

6

)
then 2πs

r1
+ π

6
= 5π

6
and 3s = r1.

Therefore s = 1, r1 = 3 and λ1 = e
2πi
3 = −1

2
+

√
3
2
i, λ2 = e

2πi
3 e−

2πi
3 = 1. The order of

g is r = LCM(3, 1) = 3. This possibility is attained by

(
e

2πi
3 0
0 1

)
∈ GL(2,O−3).

The equation sin
(

2πs
r1

+ π
6

)
= −1

2
has solutions 2πs

r1
+ π

6
= 7π

6
and 2πs

r1
+ π

6
= 11π

6
.

If 2s = r1 then s = 1, r1 = 2, λ1 = eπi = −1, λ2 = e
2πi
3 e−πi = e−

πi
3 = 1

2
−

√
3
2
i and

g is of order r = LCM(2, 6) = 6. For instance,

(
e−

πi
3 0
0 −1

)
∈ GL(2,O−3)

attains these eigenvalues.
For 6s = 5r1 one has s = 5, r1 = 6 λ1 = e

5πi
3 = e−

πi
3 = 1

2
−

√
3
2
i, λ2 = e

2πi
3 e

πi
3 =

eπi = −1, which is already obtained.

Note that sin
(

2πs
r1

+ π
6

)
= 1 is equivalent to 2πs

r1
+ π

6
= π

2
, whereas 6s = r1 and

s = 1, r1 = 6. The eigenvalues λ1 = e
πi
3 = 1

2
+

√
3
2
i, λ2 = e

2πi
3 e−

πi
3 = e

πi
3 = 1

2
+ sqrt3

2
i

are equal, so that g = e
πi
3 I2 and r = LCM(6, 6) = 6.

If sin
(

2πs
r1

+ π
6

)
= −1 then 2πs

r1
+ π

6
= 3π

2
and 3s = 2r1, s = 2, r1 = 3. Then

λ1 = e
4πi
3 = e−

2πi
3 = −1

2
−

√
3
2
i, λ2 = e

2πi
3 e

2πi
3 = e−

2πi
3 determine uniquely g = e−

2πi
3 I2

of order r = LCM(3, 3) = 3. That concludes the description of g ∈ GL(2,O−3) of

finite order and det(g) = e
2πi
3 .

Proposition 22. If g ∈ GL(2,O−3) is of finite order r and det(g) = e−
2πi
3 then

tr(g) ∈
{
0,±(1−

√
−3)

2
, ±(1−

√
−3)

}
, r ∈ {3, 6, 12}.

More precisely,
(i) tr(g) = 0 or λ1 = e

πi
6 , λ2 = e−5πi

6 if and only if g is of order 12;

(ii) if tr(g) = 1−
√
3i

2
or λ1 = e

4πi
3 , λ2 = 1 then g is of order 3;

(iii) if tr(g) = −1 +
√
3i or g = e

2πi
3 I2 then g is of order 3;

(iv) if tr(g) = −1+
√
3i

2
or λ1 = e

πi
3 , λ2 = −1 then g is of order 6;

(v) if tr(g) = 1−
√
3i or g = e−

πi
3 I2 then g is of order 6.
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Proof. If λ1 = e
2πsi
r1 then λ2 = e−

2πi
3 e

− 2πsi
r1 and the trace

tr(g) = λ1 + λ2 = (−1 +
√
3i) sin

(
2πs

r1
− π

6

)

belongs to O−3 = Z + 1+
√
3i

2
Z if and only if 2 sin

(
2πs
r1

− π
6

)
∈ Z. Combining with

2 sin
(

2πs
r1

− π
6

)
∈ [−2, 2], one concludes that sin

(
2πs
r1

− π
6

)
∈
{
0,±1

2
,±1

}
and tr(g) ∈

{
0,± (1−

√
3i)

2
,±(1 −

√
3i)
}

.

If sin
(

2πs
r1

− π
6

)
= 0 with 2πs

r1
− π

6
∈
(
−π

6
, 11π

6

)
then 2πs

r1
− π

6
= 0 or 2πs

r1
− π

6
= π.

For 12s = r1 one has s = 1, r1 = 12, λ1 = e
πi
6 =

√
3
2

+ 1
2
i, λ2 = e−

2πi
3 e−

πi
6 =

e−
5πi
6 = −

√
3
2
− 1

2
i, so that g is of order r = LCM(12, 12) = 12. For instance,

(
e

πi
6 0

0 e−
5πi
6

)
∈ GL(2,O−3)

attains this case.
For 12s = 7r1 there follows s = 7, r1 = 12, λ1 = e

7πi
6 = e−

5πi
6 , λ2 = e−

2πi
3 e

5πi
6 =

e
πi
6 , which is already discussed.

In the case of sin
(

2πs
r1

− π
6

)
= 1

2
note that 2πs

r1
− π

6
= π

6
or 2πs

r1
− π

6
= 5π

6
.

If 6s = r1 then s = 1, r1 = 6, λ1 = e
πi
3 = 1

2
+

√
3
2
i, λ2 = e−

2πi
3 e−

πi
3 = e−πi = −1

and g is of order r = LCM(6, 2) = 6. Note that
(
e

πi
3 0
0 −1

)
∈ GL(2,O−3)

attains this case.
For 2s = r1 there follows s = 1, r1 = 2, λ1 = eπi = −1, λ2 = e−

2πi
3 e−

πi
3 = e−

5πi
3 =

e
πi
3 , which is already obtained.

Note that sin
(

2πs
r1

− π
6

)
= −1

2
for 2πs

r1
−π

6
∈
(
−π

6
, 11π

6

)
implies 2πs

r1
−π

6
= 7π

6
, whereas

3s = 2r1, s = 2 and r1 = 3. Then λ1 = e
4πi
3 = −1

2
−

√
3
2
i, λ2 = e−

2πi
3 e−

4πi
3 = e−2πi = 1

and g is of order r = LCM(3, 1) = 3, attained by
(
e

4πi
3 0
0 1

)
∈ GL(2,O−3).

If sin
(

2πs
r1

− π
6

)
= 1 then 2πs

r1
− π

6
= π

2
or 3s = r1. As a result, s = 1, r1 = 3,

λ1 = e
2πi
3 = −1

2
+

√
3
2
i, λ2 = e−

2πi
3 e−

2πi
3 = e

2πi
3 , whereas g = e

2πi
3 I2 ∈ GL(2,O−3) is a

scalar matrix of order 3.
Finally, sin

(
2πs
r1

− π
6

)
= −1 holds for 2πs

r1
− π

6
= 3π

2
, i.e., 6s = 5r1 and s = 5, r1 = 6.

Now λ1 = e−
πi
3 = 1

2
−

√
3
2
i, λ2 = e−

2πi
3 e

πi
3 = e−

πi
3 , so that g = e−

πi
3 I2 ∈ GL(2,O−3) is

a scalar matrix of order 6. That concludes the proof of the proposition.
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3 Finite linear automorphism groups of E × E

The classification of the finite subgroups K of SL(2, R) for an endomorphism ring R
of an elliptic curve E starts with a classification of the Sylow subgroups Hpk of K.

Proposition 23. If K is a finite subgroup of SL(2, R) then K is of order |K| = 2a3b

for some integers 0 ≤ a ≤ 3, 0 ≤ b ≤ 1.
If K is of even order then the Sylow 2-subgroup H2a of K is isomorphic to C2, C4

or the quaternion group

Q8 = 〈g1, g2 | g21 = g22 = −I2, g2g1 = −g1g2〉
of order 8.

If the order of K is divisible by 3 then the Sylow 3-subgroup H3 of K is isomorphic
to the cyclic group C3 of the third roots of unity.

Proof. According to the First Sylow Theorem, if |K| = pm1

1 . . . pms
s for some rational

primes pj ∈ N and some mj ∈ N, then for any 1 ≤ i ≤ k there is a subgroup Hpij
≤ K

of order |Hpij
| = pij . In particular, any Hpj = 〈gpj〉 ≃ Cpj of prime order pj , dividing

|K| is cyclic and there is an element gpj ∈ K of order pj. By Proposition 15, the
order of an element g ∈ SL(2, R) is 1, 2, 3, 4, 6 or ∞. As a result, if g ∈ SL(2, R) is
of prime order p then p = 2 or 3. In other words, K is of order |K| = 2a3b for some
non-negative integers a, b.

Suppose that b ≥ 1 and consider the Sylow subgroup H3b ≤ K of order 3b. Then
any h ∈ H3b \{I2} is of order 3 since there is no g ∈ SL(2, R), whose order is divisible
by 9. We claim that H3b = 〈h1〉 ≃ C3 is a cyclic group of order 3. Otherwise, b ≥ 2
and there exists h2 ∈ H3b \ 〈h1〉. Note that hj1h2 ∈ H3b with 1 ≤ j ≤ 2 are of order
3, as far as hj1h2 = I2 implies h2 = h−j

1 ∈ 〈h1〉, contrary to the choice of h2. We
are going to show that if h1, h2, h1h2 ∈ SL(2, R) are of order 3 then h21h2 = I2, so
that there is no h2 ∈ H3b \ 〈h1〉 and H3b = 〈h1〉 ≃ C3. According to Proposition 15,
g ∈ SL(2, R) is of order 3 if and only if tr(g) = −1 and g is conjugate to

Dg =

(
e

2πi
3 0

0 e−
2πi
3

)
.

Similarly, g ∈ SL(2, R) coincides with the identity matrix I2 exactly when tr(g) = 2.
Thus, we have to check that if h1, h2 ∈ SL(2, R) satisfy tr(h1) = tr(h2) = tr(h1h2) =
−1 then tr(h21h2) = 2. Let

D1 = S−1h1S =

(
e

2πi
3 0

0 e−
2πi
3

)

be a diagonal form of h1 for some S ∈ GL(2,C) and

D2 = S−1h2S =

(
a b
c d

)
∈ GL(2,C).
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(More precisely, ifQ(R) = Q or Q(
√
−d) is the fraction field ofR then the eigenvectors

of h1 have entries from Q(R)(
√
−3), so that S,D2 ∈ Q(R)(

√
−3)2×2 have entries

from Q(R)(
√
−3) = Q(

√
−3) or Q(

√
−d,

√
−3).) Since the determinant and the

trace of a matrix are invariant under conjugation, the statement is equivalent to
the fact that if det(D2) = 1 and tr(D2) = tr(D1D2) = −1 then tr(D2

1D2) = 2.

Indeed, if d = −a − 1 and tr(D1D2) = e
2πi
3 a − e−

2πi
3 (a + 1) = −1 then a = e

2πi
3 ,

d = e−
2πi
3 , whereas tr(D2

1D2) = 2. That proves the non-existence of h2 ∈ H3b \ 〈h1〉
and H3b = H3 = 〈h1〉 ≃ C3.

Suppose that K is of even order and denote by H2a the Sylow 2-subgroup of
K < SL(2, R) of order 2a ≥ 2. Then any g ∈ H2a \ {I2} is of order

r ∈ {2i | i ∈ N} ∩ {1, 2, 3, 4, 6} = {2, 4}.

Recall from Proposition 15 that there is a unique element −I2 of SL(2, R) of order 2
and g ∈ SL(2, R) is of order 4 if and only if the trace tr(g) = 0. For a = 1 the Sylow
subgroup H2 = 〈−I2〉 ≃ C2 is cyclic of order 2. If a = 2 then H4 = 〈g〉 ≃ C4 is cyclic
of order 4, since SL(2, R) has a unique element −I2 of order 2. From now on, let us
assume that a ≥ 3 and fix an element g1 ∈ H2a of order 4. Due to g21 = −I2 ∈ 〈g1〉,
any g2 ∈ H2a \ 〈g1〉 is of order 4 and g22 = −I2. Moreover, g1g2 ∈ H2a is of order 4,
as far as g1g2 = ±I2 requires g2 = ∓g1 ∈ 〈g1〉, contrary to the choice of g2. We claim
that if g1, g2 ∈ SL(2, R) of order 4 have product g1g2 of order 4 then they generate a
quaternion group

〈g1, g2 | g21 = g22 = −I2, g2g1 = −g1g2〉 ≃ Q8

of order 8. In other words, if g1, g2 ∈ R2×2 have det(g1) = det(g2) = 1 and tr(g1) =
tr(g2) = tr(g1g2) = 0 then g2g1 = −g1g2. In particular, if g1, g2 ∈ SL(2, R) of order 4
have product g1g2 of order 4 then g2 6∈ 〈g1〉 = {±I2, ±g1}. To this end, let

D1 = S−1g1S =

(
i 0
0 −i

)

be the diagonal form of g1 and

D2 = S−1g2S =

(
a b
c d

)

for appropriate matrices S and D2 with entries from Q(R)(
√
−1) = Q(

√
−1) or

Q(
√
d,
√
−1). The determinant and the trace are invariant under conjugation, so that

suffices to show that if det(D2) = 1 and tr(D2) = tr(D1D2) = 0 thenD2D1 = −D1D2,
whereas

g2g1 = (SD2S
−1)(SD1S

−1) = S(D2D1)S
−1 =

= S(−D1D2)S
−1 = −(SD1S

−1)(SD2S
−1) = −g1g2.
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Indeed, tr(D2) = a + d = 0 and tr(D1D2) = i(a − d) = 0 require a = d = 0. Now,
det(D2) = −bc = 1 determines c = −1

b
for some b ∈ Q(

√
d,
√
−1) and

D2D1 =

(
0 −ib
− i

b
0

)
= −D1D2.

Thus, if a = 3 then the Sylow 2-subgroup of K is isomorphic to the quaternion group
Q8 of order 8,

H8 = 〈g1, g2 | g21 = g22 = −I2, g2g1 = −g1g2〉 ≃ Q8.

There remains to be rejected the case of a ≥ 4. The assumption a ≥ 4 implies the
existence of g3 ∈ H2a \ 〈g1, g2〉. Any such g3 is of order 4, together with the products
g1g3 ∈ H2a for 1 ≤ j ≤ 2, since gjg3 = ±I2 amounts to g3 = ±g3j ∈ 〈gj〉 and
contradicts the choice of g3. Thus, the subgroups

〈g1, g3 | g21 = g23 = −I2, g3g1 = −g1g3〉 ≃

〈g2, g3, | g22 = g23 = −I2, g3g2 = −g2g3〉 ≃ Q8

are also isomorphic to Q8. In particular,

D3 = S−1g3S =

(
0 b3

− 1
b3

0

)

with b3 ∈ Q(
√
d,
√
−1)∗ is subject to

D3D2 =

( − b3
b

0
0 − b

b3

)
=

(
b
b3

0

0 b3
b

)
= −D2D3,

whereas b23 = −b2 or b3 = ±ib. As a result, D3 = D1D2 and g3 = g1g2, contrary to the
choice of g3 6∈ 〈g1, g2〉. Therefore a < 4 and the Sylow 2-subgroup of a finite group
K < SL(2, R) is H2 ≃ C2, H4 ≃ C4 or H8 ≃ Q8.

Proposition 24. Any finite subgroup K of SL(2, R) is isomorphic to one of the
following:

K1 = {I2},
K2 = 〈−I2〉 ≃ C2,

K3 = 〈g1〉 ≃ C4 for some g1 ∈ SL(2, R) with tr(g1) = 0,

K4 = 〈g1, g2 | g21 = g22 = −I2, g2g1g2 = g1〉 ≃ Q8,

K5 = 〈g3〉 ≃ C3 for some g3 ∈ SL(2, R) with tr(g3) = −1,

K6 = 〈g4〉 ≃ C6 for some g4 ∈ SL(2, R) with tr(g4) = 1,
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K7 = 〈g1, g4 | g21 = g34 = −I2, g4g1g4 = g1〉 ≃ Q12

for some g1, g4 ∈ SL(2, R) with tr(g1) = 0, tr(g4) = 1,

K8 = 〈g1, g2, g3 | g21 = g22 = −I2, g33 = I2, g2g1 = −g1g2,

g3g1g
−1
3 = g2, g3g2g

−1
3 = g1g2〉 ≃ SL(2,F3)

for some g1, g2, g3 ∈ SL(2, R), tr(g1) = tr(g2) = 0, tr(g3) = −1, where Q8 denotes
the quaternion group of order 8, Q12 stands for the dicyclic group of order 12 and
SL(2,F3) is the special linear group over the field F3 with three elements.

Proof. By Proposition 23, K is of order 1, 2, 3, 6, 12 or 24. The only subgroup K <
SL(2, R) of order 1 is K = K1 = {I2}. Since −I2 is the only element of SL(2, R) of
order 2, the group K = K2 = 〈−I2〉 ≃ C2 is the only cyclic subgroup of SL(2, R) of
order 2. Any subgroup K < SL(2, R) of order 4 is cyclic or K = K3 = 〈g1〉 for some
g1 ∈ SL(2, R) with tr(g1) = 0, because SL(2, R) has a unique element −I2 of order
2. Proposition 15 has established the existence of elements g1 ∈ SL(2,Z) ≤ SL(2, R)
of order 4.

If K < SL(2, R) is a subgroup of order 8 then it coincides with its Sylow 2-
subgroup

K = H8 = 〈g1, g2 | g21 = g22 = −I2, g2g1 = −g1g2〉 = K4 ≃ Q8,

isomorphic to the quaternion group Q8 of order 8. Note that there is a realization

Q8 ≃ 〈D1 =

(
i 0
0 −i

)
, D2 =

(
0 1
−1 0

)
〉 < SL(2,Z[i])

as a subgroup of SL(2,Z[i]). In general,

Dj =

(
aj bj
cj −aj

)
∈ SL(2, R)

amount to a2j + bjcj = −1. The anti-commuting relation g2g1 = −g1g2 is equivalent
to 2a1a2 + b1c2 + b2c1 = 0. Therefore K4 = 〈g1, g2〉 < SL(2, R) is a realization of Q8

if and only if aj , bj , cj ∈ R are subject to

∣∣∣∣∣∣

a21 + b1c1 = −1
a22 + b2c2 = −1

2a1a2 + b1c2 + b2c1 = 0
. (12)

The existence of a solution of (12) in an arbitrary R = R−d,f = Z+fO−d = Z+fω−dZ
is an open problem.

If |K| = 3 then K = K5 = 〈g3〉 ≃ C3 for some g3 ∈ SL(2, R) with tr(g3) = −1.
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From now on, let us assume that K is of order |K| = 2a.3 for some 1 ≤ a ≤ 3 and
consider some Sylow subgroups H2, H3 = 〈g4〉 ≃ C3 of K. We claim that the product

H2aH3 = {ggi4 | g ∈ H2a , 0 ≤ i ≤ 2}

depletes K. More precisely, H2a ∩H3 = {I2}, because 2a and 3 are relatively prime.
Therefore

H2aH3/H2a = H2a ∪H2ag4 ∪H2ag
2
4

is a right coset decomposition of the subset H2aH3 ⊆ K modulo H2a . Due to the
disjointness of this decomposition, one has |H2aH3| = 3|H2a| = 3.2a = |K|. Therefore,
the subset H2aH3 of K coincides with K and K = H2aH3 is a product of its Sylow
subgroups.

If K = H2H3 = 〈−I2〉〈g3〉 for some g3 ∈ SL(2, R) with tr(g3) = −1 then ±I2
commute with gj3 for all 0 ≤ j ≤ 2 and the group K is abelian. Thus, K = 〈−g3〉 ≃ C6

is a cyclic group of order 6, generated by −g3 ∈ SL(2, R) with tr(−g3) = 1.
For K = H4H3 = 〈g1〉〈g3〉 with g1, g3 ∈ SL(2, R) of tr(g1) = 0, tr(g3) = −1, note

that g4 = −g3 ∈ SL(2, R) is of order 6. Then g34 = −I2 = g21, because −I2 ∈ SL(2, R)
is the only element of order 2. We claim that g1, g4 ∈ SL(2, R) are subject to g4g1g4 =
g1. To this end, let S ∈ Q(R)(

√
−3)))2×2 ⊆ Q(

√
−d,

√
−3)2×2 be a matrix, whose

columns are eigenvectors of g1. Then

D4 = S−1g4S =

(
e

πi
3 0

0 e−
πi
3

)
and

D1 = S−1g1S =

(
a1 b1
c1 −a1

)
with a21 + b1c1 = −1

generate the subgroup Ko = S−1KS ≃ K. It suffices to check that D4D1D4 = D1,
because then g4g1g4 = (SD4S

−1)(SD1S
−1)(SD4S

−1) = S(D4D1D4)S
−1 = SD1S

−1 =
g1 and

K = 〈g1, g3〉 = 〈g1, g4 = −g3 | g21 = g34 = −I2, g4g1g4 = g1〉 ≃ Q12

is isomorphic to the dicyclic group Q12 of order 12. The group Ko = 〈D1, D4〉 ≃ K
of order 12 has a cyclic subgroup 〈D4〉 ≃ C6 of order 6. The index [Ko : 〈D4〉] = 2,
so that 〈D4〉 is a normal subgroup of Ko and D1D4D

−1
1 ∈ 〈D4〉 is an element of

order 6. More precisely, D1D4D
−1
1 = D4 or D1D4D

−1
1 = D−1

4 = D5
4 = −D2

4. If
D1D4 = D4D1 then D1D4 ∈ Ko is of order 12, as far as (D1D4)

12 = (D4
1)

3(D6
4)

2 =
I32I

2
2 = I1, (D1D4)

6 = D2
1 = −I2 6= I2, (D1D4)

4 = D4
4 = −D4 6= I2, whereas

D1D4, (D1D4)
2, (D1D4)

3 6∈ {I2}. Consequently, D1D4 = −D2
4D1, so that D4D1D4 =

−D3
4D1 = D1 and K ≃ Ko ≃ Q12. For instance, the subgroup

〈D1 =

(
0 1
−1 0

)
, D4 =

(
e

πi
3 0

0 e−
πi
3

) ∣∣∣∣∣ D
2
1 = D3

4 = −I2, D1D4D
−1
1 = D−1

4 〉
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of SL(2,O−3) realizes Q12 as a subgroup of SL(2,O−3). The existence of Q12 ≃ K <
SL(2, R) for an arbitrary R is an open problem.

There remains to be shown that any subgroup K = H8H3 = 〈g1, g2, g3〉 ≃ Q8C3

of SL(2, R) of order 24 is isomorphic to the special linear group K8 ≃ SL(2,F3) over
F3. In other words, any K < SL(2, R) of order |K| = 24 can be generated by such
g1, g2, g3 ∈ SL(2, R) that the subgroup 〈g1, g2 | g21 = g22 = −I2, g2g1 = −g1g2〉 ≃ Q8

is isomorphic to the quaternion group Q8 of order 8, g3 is of order 3 and g3g1g
−1
3 = g2,

g3g2g
−1
3 = g1g2.

First of all, the Sylow 2-subgroup H8 ≃ Q8 of K is normal. More precisely, by the
Third Sylow Theorem, the number n2 ∈ N of the Sylow 2-subgroups of K (i.e., the
number n2 of the subgroups of K of order 8) divides |K| = 24 and n2 ≡ 1(mod 2).
Therefore n2 = 1 or n2 = 3. By Second Sylow Theorem, all Sylow 2-subgroups are
conjugate to each other, so that n2 = 1 exactly when H8 = 〈g1, g2〉 ≃ Q8 is a normal
subgroup of K. Let us assume that n2 = 3 and denote by νs the number of the
elements g ∈ K of order s. Due to −I2 ∈ H8 = 〈g1, g2〉 < K, one has ν1 = 1, ν2 = 1.
Note that g ∈ K is of order 3 if and only if −g ∈ K is of order 6, so that ν6 = ν3. By
the Third Sylow Theorem, the number n3 ∈ N of the Sylow 3-subgroups of K divides
|K| = 24 and n3 ≡ 1(mod 3). Therefore n3 = 1 or n3 = 4.

If n3 = 1 and there is a unique normal subgroup H3 = 〈g3〉 ≃ C3 of K of order 3,
then gjg3g

−1
j ∈ {g3, g23} ⊂ 〈g3〉 for j = 1 and j = 2. If gjg3g

−1
j = g3 then gjg3 = g3gj

for gj of order 4 and g3 of order 3, so that gjg3 ∈ K is of order 12, contrary to
the non-existence of an element of SL(2, R) of order 12. Therefore g1g3g

−1
1 = g23,

g2g3g
−1
2 = g23, whereas

(g1g2)g3(g1g2)
−1 = g1(g2g3g

−1
2 )g−1

1 = g1g
2
3g

−1
1 = (g1g3g

−1
1 )2 = (g23)

2 = g3

and g1g2 of order 4 commutes with g3 of order 3. Thus, (g1g2)g3 ∈ K is of order 12,
which is an absurd. That rejects the assumption n3 = 1 and proves that n3 = 4.

Let H3,j = 〈g3,j〉 ≃ C3, 1 ≤ j ≤ 4 be the four subgroups of K of order 3. Then
H3,i ∩H3,j = {I2} for all 1 ≤ i < j ≤ 4, as far as any g ∈ H3,i \ {I2} generates H3,i.
As a result, ∪4

i=1H3,i and K contain 8 different elements g3,i, g
2
3,i, 1 ≤ i ≤ 4 of order

3 and ν6 = ν3 = 8. Thus,

24 = |K| = ν1 + ν2 + ν3 + ν4 + ν6 = 18 + ν4,

so that K has ν4 = 6 elements of order 4. Since any Sylow 2-subgroup

H8 = 〈g1, g2 | g21 = g22 = −I2, g2g1 = −g1g2〉 = {±I2,±g1,±g2,±g1g2} ≃ Q8

of K contains six elements ±g1,±g2,±g1g2 of order 4, there cannot be more than one
H8. In other words, n2 = 1 and H8 is a normal subgroup of K.

The above considerations show that

K = H8⋊H3 = 〈g1, g2 | g21 = g22 = −I2, g2g1 = −g1g2〉⋊ 〈g3 | g33 = I2〉 ≃ Q8⋊C3
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is a semi-direct product of Q8 and C3. Up to an isomorphism, K is uniquely deter-
mined by the group homomorphism

ϕK : H3 −→ Aut(H8),

ϕK(g
j
3)(±gk1gl2) = gj3(±gk1gl2)g−j

3 for ∀ ± gk1g
l
2 ∈ H8, 0 ≤ k, l ≤ 1.

Since H3 = 〈g3〉 ≃ C3 is cyclic, ϕK is uniquely determined by ϕK(g3) ∈ Aut(H8).
On the other hand, H8 is generated by g1, g2, so that suffices to specify ϕK(g3)(gj) =
g3gjg

−1
3 ∈ H8 for 1 ≤ j ≤ 2, in order to determine ϕK . If the cyclic group 〈g1〉 ≃ C4

is normalized by g3 then g3g1g
−1
3 ∈ {±g1}, as an element of order 4. In the case of

g3g1g
−1
3 = g1, the element g1 ∈ K of order 4 commutes with the element g3 ∈ K of

order 3 and their product g1g3 ∈ K is of order 12. The lack of g ∈ SL(2, R) of order
12 requires g3g1g

−1
3 = −g1. Now,

g23g1g
−2
3 = g3(g3g1g

−1
3 )g−1

3 = g3(−g1)g−1
3 = g1

is equivalent to g23g1 = g1g
2
3 and the product g1g

2
3 ∈ K of g1 ∈ K of order 4 with

g23 ∈ K of order 3 is an element of order 12. The absurd justifies that neither of the
cyclic subgroups 〈g1〉 ≃ 〈g2〉 ≃ 〈g1g2〉 ≃ C4 of order 4 of H8 is normalized by g3.
Thus, an arbitrary g1 ∈ H8 ≃ Q8 of order 4 is completed by g2 := g3g1g

−1
3 ∈ H8 \ 〈g1〉

of order 4 to a generating set of H8 ≃ Q8. Then

g23g1g
−2
3 = g3(g3g1g

−1
3 )g−1

3 = g3g2g
−1
3 ∈ H8 \ (〈g1〉 ∪ 〈g2〉) = {g1g2, g2g1}

specifies that either g3g2g
−1
3 = g1g2 or g3g2g

−1
3 = g2g1. If g3g2g

−1
3 = g2g1, we replace

the generator g3 of K by h3 = g23 and note that h3g1h
−1
3 = g2g1. Now, h1 := g1 and

h2 := g2g1 generate H8 = 〈h1, h2 | h21 = h22 = −I2, h2h1 = −h1h2〉 and satisfy
h3h1h

−1
3 = h2,

h3h2h
−1
3 = g3[(g3g2g

−1
3 )(g3g1g

−1
3 )]g−1

3 = g3(g2g1g2)g
−1
3 = g3g1g

−1
3 =

= g2 = −(g2g1)g1 = −h2h1 = h1h2.

Thus, the group

K ′ = 〈g1, g2, g3 | g21 = g22 = −I2, g2g1 = −g1g2, g33 = I2, g3g1g
−1
3 = g2, g3g2g

−1
3 = g2g1〉

is isomorphic ro the group

K = 〈g1, g2, g3 | g21 = g22 = −I2, g2g1 = −g1g2, g33 = I2, g3g1g
−1
3 = g2, g3g2g

−1
3 = g1g2〉.

We shall realize SL(2,F3) as a subgroup Ko
8 = 〈D1, D2, D3〉 of SL(2,Q(

√
−d,

√
−3)).

The existence of subgroups SL(2,F3) ≃ K8 < SL(2, R) is an open problem. Towards
the construction of Ko

8 , let us choose

Dj =

(
aj bj
cj −aj

)
with a2j + bjcj = −1 for 1 ≤ j ≤ 2 and
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D3 =

(
e

2πi
3 0

0 e−
2πi
3

)

from SL(2,Q(
√
−d,

√
−3)). After computing

D3DjD
−1
3 =




aj e−
2πi
3 bj

e
2πi
3 cj −aj


 for 1 ≤ j ≤ 2,

observe that D3D1D
−1
3 = D2 reduces to

∣∣∣∣∣∣

a2 = a1
b2 = e−

2πi
3 b1

c2 = e
2πi
3 c1

.

The relation D2D1 = −D1D2 is equivalent to 2a1a2+ b1c2+ b2c1 = 0 and implies that
2a21 = b1c1. Now,

D3D2D
−1
3 =

(
a1 e

2πi
3 b1

e−
2πi
3 c1 −a1

)
=

( √
−3a21

√
−3e

2πi
3 a1b1√

−3e−
2πi
3 a1c1 −

√
−3a21

)
= D1D2

is tantamount to ∣∣∣∣∣∣

a1(1−
√
−3a1) = 0

b1(1−
√
−3a1) = 0

c1(1−
√
−3a1) = 0

and specifies that a1 =
√
−3
3

. Namely, the assumption a1 6= −
√
−3
3

forces a1 = b1 =

c1 = 0, whereas det(D1) = 0, contrary to the choice of D1 ∈ SL(2,Q(
√
−d,

√
−3)).

As a result, b1 6= 0, c1 = − 2
3b1

and

D1 =




−
√
−3
3

b1

− 2
3b1

√
−3
3


 , D2 =




−
√
−3
3

e−
2πi
3 b1

e
2πi
3 c1

√
−3
3


 , D3 =




e
2πi
3 0

0 e−
2πi
3




generate a subgroup SL(2,F3) ≃ Ko
8 < SL(2,Q(

√
−d,

√
−3)).

Corollary 25. If the finite subgroup K of SL(2, R) is not isomorphic to the dicyclic
group

K7 = 〈g1, g4 | g21 = g34 = −I2, g4g1g4 = g1〉 =
= 〈g1, g3 = −g4 | g21 = −I2, g33 = I2, g3g1g

−1
3 = g3g1〉 ≃ Q12

of order 12 then K is isomorphic to a subgroup of the special linear group

K8 = 〈g1, g2, g3 | g21 = g22 = −I2, g33 = I2, g2g1 = −g1g2, g3g1g−1
3 = g2, g3g2g

−1
3 = g1g2〉

≃ SL(2,F3)

over the field F3 with three elements.
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Proof. According to Proposition 24, any finite subgroup K < SL(2, R) is isomorphic
to some of the groups K1, . . . , K8. Thus, it suffices to establish that any Kj, 1 ≤ j ≤ 6
is isomorphic to a subgroup of K8. Note that K1 = {I2} ⊂ K8 and K2 = 〈−I2〉 ⊂ K8

are subgroups of K8. The generator g1 of K8 is of order 4, so that any subgroup
K3 ≃ C4 of SL(2, R) is isomorphic to the subgroup 〈g1〉 of K8. In the proof of
Proposition 24 we have seen that K8 has a normal Sylow 2-subgroup

H8 = 〈g1, g2 | g21 = g22 = −I2, g2g1 = −g1g2〉 ≃ Q8,

isomorphic to the quaternion group Q8 ≃ K4 of order 8. The generator g3 of K8

provides a subgroup 〈g3〉 ≃ C3 ≃ K5 of K8. The product (−I2)g3 of the commuting
elements −I2 ∈ K8 or order 2 and g3 ∈ K8 of order 3 is an element −g3 ∈ K8 of order
6, so that K6 ≃ C6 is isomorphic to the subgroup 〈−g3〉 of K8.

Towards the classification of the finite subgroups of GL(2, R), we proceed with
the following:

Lemma 26. Let H be a finite subgroup of GL(2, R). Then
(i) det(H) is a cyclic subgroup of R∗;
(ii) H is a product H = [H ∩ SL(2, R)]〈ho〉 of its normal subgroup H ∩ SL(2, R)

and any Cr ≃ 〈ho〉 ⊆ H with det(H) = 〈det(ho)〉 ≃ Cs;
(iii) the order s of det(H) = 〈det(ho)〉 divides the order r of ho ∈ H and

[H ∩ SL(2, R)] ∩ 〈ho〉 = 〈hso〉 ≃ C r
s
;

(iv) H is of order s|H ∩ SL(2, R)|;
(v) s = r if and only if H = [H ∩ SL(2, R)]⋋ 〈ho〉 is a semi-direct product.

Proof. (i) The image det(H) of the group homomorphism det : H → R∗ is a subgroup
of R∗. As far as the units group R∗ of the endomorphism ring R of E is cyclic, its
subgroup det(H) is cyclic, as well.

(ii) If det(ho) is a generator of the cyclic subgroup det(H) < R∗ then one can
represent H = [H ∩ SL(2, R)]〈ho〉. The inclusion [H ∩ SL(2, R)]〈ho〉 ⊆ H is clear
by the choice of ho ∈ H . For the opposite inclusion, note that any h ∈ H with
det(h) = det(ho)

m for some m ∈ Z is associated with hh−m
o ∈ H ∩ SL(2, R), so that

h = (hh−m
o )hmo ∈ [H ∩ SL(2, R)]〈ho〉 and H ⊆ [H ∩ SL(2, R)]〈.

(iii) If ho ∈ H is of order r then hro = I2 and det(ho)
r = 1. Therefore the order s

of det(ho) ∈ R∗ divides s. Note that hso ∈ [H ∩ SL(2, R)] ∩ 〈ho〉, as far as det(hso) =
det(ho)

s = 1. Therefore 〈hso〉 is a subgroup of [H ∩ SL(2, R)] ∩ 〈ho〉. Conversely,
any hxo ∈ [H ∩ SL(2, R)] ∩ 〈ho〉 has det(hxo) = det(ho)

x = 1, so that s divides x and
hxo ∈ 〈hso〉. That justifies [H∩SL(2, R)]∩〈ho〉 ⊆ 〈hso〉 and [H∩SL(2, R)]∩〈ho〉 = 〈hso〉.
The order of 〈hso〉 and hso is r

s
, since s divides r.
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(iv) It suffices to show that

H = ∪s−1
i=0 [H ∩ SL(2, R)]hjo

is the coset decomposition of H with respect to its normal subgroup H ∩ SL(2, R),
in order to conclude that the order |H| of H is s times the order |H ∩ SL(2, R)| of
H ∩ SL(2, R). The inclusion H ⊇ ∪s−1

i=0 [H ∩ SL(2, R)]hjo is clear by the choice of
ho ∈ H . According to H = [H ∩ SL(2, R)]〈ho〉, any element of H is of the form
h = ghmo for some g ∈ H∩SL(2, R) and m ∈ Z. If m = sq+ro is the division of m by
s with residue 0 ≤ ro ≤ s− 1 then h = [g(hso)

q]hroo ∈ [H ∩ SL(2, R)]hroo , due to hso ∈
H ∩ SL(2, R). Therefore H ⊆ ∪s−1

j=0[H ∩ SL(2, R)]hjo and H = ∪s−1
j=0[H ∩ SL(2, R)]hjo.

The cosets [H ∩ SL(2, R)]hio and [H ∩ SL(2, R)]hjo are mutually disjoint for any 0 ≤
i < j ≤ s− 1, because the assumption g1hi = g2h

j
o for g1, g2 ∈ H ∩ SL(2, R) implies

that hj−i
o = g−1

2 g1 ∈ [H ∩SL(2, R)]∩〈ho〉 = 〈hso〉. As a result, s divides 0 < j− i < s,
which is an absurd.

(v) According to (iii), the order s of det(ho) divides the order r of ho. On the
other hand, hso = I2 exactly when r divides s, so that hso = I2 is equivalent to r = s.
Thus, r = s exactly when

[H ∩ SL(2, R)] ∩ 〈ho〉 = {I2}.

As far as the product of the normal subgroup H ∩SL(2, R) and the subgroup 〈ho〉 is
the entire H , one has a semi-direct product H = [H ∩ SL(2, R)]⋊ 〈ho〉 if and only if
r = s.

Lemma 27. Let H = [H ∩SL(2, R)]〈ho〉 be a finite subgroup of GL(2, R) for ho ∈ H
of order r with det(H) = 〈det(ho)〉 ≃ Cs and H ∩ SL(2, R) be generated by g0 =
hso, g1, . . . , gt. Then H ∩ SL(2, R), r and

hogih
−1
o ∈ H ∩ SL(2, R) for all 1 ≤ i ≤ t

determine H up to an isomorphism.

Proof. By the proof of Lemma 26 (iv), H has a coset decomposition

H = ∪s−1
j=0[H ∩ SL(2, R)]hjo

with respect to its normal subgroup H ∩SL(2, R). Therefore, the group structures of
H ∩SL(2, R) and 〈ho〉 ≃ Cr, together with the multiplication rule for h1h

i
o, h2h

j
o ∈ H

with h1, h2 ∈ H ∩ SL(2, R) and 0 ≤ i, j ≤ s − 1 determine the group H up to an
isomorphism. Let us represent h1 = ga1i1 g

a2
i2
. . . gakik and h2 = gb1j1g

b2
j2
. . . gbljl as words in

the alphabet g0 = hso, g1, . . . , gt with some integral exponents ap, bq ∈ Z. (The group
H is finite, so that any gi is of finite order ri and one can reduce the exponent of gi to
a residue modulo ri.) In order to determine the product (h1h

i
o)(h2h

j
o) as an element
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of H = ∪s−1
j=0〈g0, g1, . . . , gt〉hjo, it suffices to specify g′i ∈ H ∩SL(2, R) = 〈g0, g1, . . . , gt〉

with hogi = g′iho for all 0 ≤ i ≤ t. That allows to move gradually hio to the end of

(h1hoi)(h2h
j
o), producing h1h

′
2h

i+j
o ∈ [H∩SL(2, R)]h(i+j)(mods)

o for an appropriate h′2 ∈
H ∩ SL(2, R). In other words, the group structures of H ∩ SL(2, R) and 〈ho〉 ≃ Cr,
together with the conjugates g′i = hogih

−1
o of gi determine the group multiplication

in H . Note that hog0h
−1
o = g0, since g0 = hso commutes with ho. The conjugates

g′i = hogih
−1
o with 1 ≤ i ≤ t belong to the normal subgroup H ∩ SL(2, R) ∋ gi of H

and have the same orders ri as gi.

Any finite subgroup H = [H ∩ SL(2, R)]〈ho〉 of GL(2, R) with determinant
det(H) = 〈det(ho)〉 ≃ Cs has a conjugate

S−1HS = {S−1[H ∩ SL(2, R)]S}〈S−1hoS〉 = [S−1HS ∩ SL(2,C)]〈S−1hoS〉

with a diagonal matrix S−1hoS. Mote precisely, if R is a subring of the integers ring
O−d of an imaginary quadratic number field Q(

√
−d) and λ1 = λ1(ho), λ2 = λ2(ho)

are the eigenvalues of ho, then there exists a basis

v1 =

(
s11
s21

)
, v2 =

(
s12
s22

)
of C2,

consisting of eigenvectors vj of ho, associated with the eigenvalues λj = λj(ho). This
is due to the finite order of ho, because the Jordan block

J =

(
λ1 1
0 λ1

)
with λ1 ∈ C∗

is of infinite order in GL(2,C). The matrix S = (sij)
2
i,j=1 with columns v1, v2 is non-

singular and its entries belong to the extension Q(
√
−d, λ(ho)) = Q(

√
−d, λ2(ho))

of Q(
√
−d) by some of the eigenvalues of ho. Making use of the classification of

ho ∈ GL(2, R) of finite order r and det(ho) ∈ R∗ of order s, done in section 2, one

determines explicitly the field F
(s,r)
−d = Q(

√
−d, λ1(ho)), obtained from Q(

√
−d) by

adjoining an eigenvalue λ1(ho) of ho ∈ H . The group

S−1HS = [S−1HS ∩ SL(2,C)]〈S−1hoS〉

has a diagonal generator Do = S−1hoS and the conjugates

(S−1hoS)(S
−1giS)(S

−1hoS)
−1 = S−1(hogih

−1
o )S

are easier to be computed.
The next lemma collects the fields F

(s,r)
−d .
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Lemma 28. Let H = [H∩SL(2, R)]〈ho〉 be a finite subgroup of GL(2, R) with ho ∈ H

of order r, det(ho) ∈ R∗ of order s and F
(s,r)
−d be the number field

F
(s,r)
−d =





Q(
√
−d) for s = r = 2,

Q(i) for s ∈ {2, 4}, r = 4,

Q(
√
−3) for (s, r) = (2, 6) or s ∈ {3, 6},

Q(
√
2, i) for s ∈ {2, 4}, r = 8,

Q(
√
3, i) for s = 2, r = 12.

.

Then there exists a matrix S ∈ GL(2, F
(s,r)
−d ) such that

Do = S−1hoS =

(
λ1(ho) 0

0 λ2(ho)

)

is diagonal and
Ho = S−1HS = [S−1HS ∩ SL(2, F (s,r)

−d )]〈Do〉

is a subgroup of GL(2, F
(s,r)
−d ), isomorphic to H.

Summarizing the results of section 2, one obtains also the following

Corollary 29. If ho ∈ GL(2, R) \ SL(2, R) is of order r with det(ho) ∈ R∗ of order
s and eigenvalues λ1(ho), λ2(ho), then

λ1(ho)

λ2(ho)
∈
{
±1, ±i, e±

2πi
3 , e±

πi
3

}
.

More precisely,

(i)
λ1(ho)

λ2(ho)
= 1 exactly when ho ∈

{
±iI2, e±

2πi
3 I2, e±

πi
3 I2

}

is a scalar matrix;

(ii)
λ1(ho)

λ2(ho)
= −1 for

(a) λ1(ho) = 1, λ2(ho) = −1 and an arbitrary R = R−d,f ;

(b) λ1(ho) = e±
3πi
4 , λ2(ho) = e∓

πi
4 , R = Z[i], s = 4;

(c) λ1(ho) = e±
5πi
6 , λ2(ho) = e∓

πi
6 , R = O−3, s = 3

(d) λ1(ho) = e±
2πi
3 , λ2(ho) = e∓

πi
3 , R = O−3, s = 6.

(iii)
λ1(ho)

λ2(ho)
= ±i for
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(a) λ1(ho) = e±
3πi
4 , λ2(ho) = e±

πi
4 , R = O−2, s = 2;

(b) {λ1(ho), λ2(ho)} = {±i,±1} or {±i,∓1} with R = Z[i], s = 4.

(iv)
λ1(ho)

λ2(ho)
= e±

2πi
3 for

(a) λ1(ho) = e±
5πi
6 , λ2(ho) = e±

πi
6 , R = Z[i], s = 2;

(b) λ1(ho) = e±
2πi
3 , λ2(ho) = 1, R = O−3, s = 3;

(c) λ1(ho) = e±
πi
3 , λ2(ho) = −1, R = O−3, s = 3.

(v)
λ1(ho)

λ2(ho)
= e±

πi
3 for

(a) λ1(ho) = e±
2πi
3 , λ2(ho) = e±

πi
3 , R = O−3, s = 2;

(b) λ1(ho) = εeη
πi
3 , λ2(ho) = ε, R = O−3, s = 6, ε, η ∈ {±1}.

Proposition 30. Let H be a finite subgroup of GL(2, R),

H ∩ SL(2, R) = {I2}

and ho ∈ H be an element of order r with det(H) = 〈det(ho)〉 ≃ Cs and eigenvalues
λ1(ho), λ2(ho). Then r = s and H is isomorphic to HC1(j) ≃ Csj for some 1 ≤ j ≤ 4,
where

HC1(1) = 〈ho〉 ≃ C2 with λ1(ho) = 1, λ2(ho) = −1,

HC1(2) = 〈ho〉 ≃ C3 with R = O−3, h0 = e−
2πi
3 I2 or λ1(ho) = e

2πi
3 , λ2(ho) = 1,

HC1(3) = 〈ho〉 ≃ C4 with R = Z[i], {λ1(ho), λ2(ho)} = {i, 1} or {−i,−1},
HC1(4) = 〈ho〉 ≃ C6 with R = O−3,

{λ1(ho), λ2(ho)} =
{
e

πi
3 , 1
}
,
{
e−

2πi
3 ,−1

}
or

{
e

2πi
3 , e−

πi
3

}
.

Proof. By Lemma 26 (ii), the group H = 〈ho〉 ≃ Cr is cyclic and generated by any
ho ∈ H , whose determinant det(ho) generates det(H) = 〈det(ho)〉. Moreover, Lemma
26 (iii) specifies that {I2} = [H∩SL(2, R)]∩〈ho〉 = 〈hso〉 or the order r of ho coincides

with the order s of det(ho). For s ∈ {3, 4, 6} one can assume that det(ho) = e
2πi
3 ,

since the generators of det(H) = 〈det(ho)〉 ≃ Cs are e
2πi
s and e−

2πi
s . Making use of

the classification of the elements ho ∈ GL(2, R) of order s with det(ho) = e
2πi
s , done

in section 2, one concludes that H ≃ HC1(j) for some 1 ≤ j ≤ 4.
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Proposition 31. Let H be a finite subgroup of GL(2, R),

H ∩ SL(2, R) = 〈−I2〉 ≃ C2

and ho ∈ H be an element of order r with det(H) = 〈det(ho)〉 ≃ Cs and eigenvalues
λ1(ho), λ2(ho). Then H is isomorphic to HC2(i) for some 1 ≤ i ≤ 6, where

HC2(1) = 〈iI2〉 ≃ C4 with R = Z[i],

HC2
(2) = 〈−I2〉 × 〈ho〉 ≃ C2 × C2 with λ1(ho) = 1, λ2(ho) = −1,

HC2(3) = 〈ho〉 ≃ C6 with R = O−3, ho = e
πi
3 I2 or λ1(ho) = e−

πi
3 , λ2(ho) = −1,

HC2(4) = 〈ho〉 ≃ C8 with R = Z[i], λ1(ho) = e
3πi
4 , λ2(ho) = e−

πi
4 ,

HC2(5) = 〈−I2〉 × 〈ho〉 ≃ C2 × C4 with R = Z[i], λ1(ho) = i, λ2(ho) = 1,

HC2(6) = 〈ho〉 ≃ C8 with R = Z[i], λ1(ho) = e
3πi
4 , λ2(ho) = e−

πi
4 ,

HC2(7) = 〈−I2〉 × 〈ho〉 ≃ C2 × C6 with R = O−3,

{λ1(ho), λ2(ho)} =
{
e

2πi
3 , e−

πi
3

}
,
{
e

πi
3 , 1
}

or
{
e−

2πi
3 ,−1

}
. (13)

Proof. By Lemma 26 (iii), one has hso ∈ H∩SL(2, R) = 〈−I2〉 for some s ∈ {2, 3, 4, 6}.
If hso = I2 then s = r and

H = 〈−I2〉 × 〈ho〉 ≃ C2 × Cs

is a direct product, as far as the scalar matrix −I2 commutes with ho. When ho is
of odd order s = 3, its opposite matrix −ho ∈ H is of order 6 and H = 〈−ho〉 ≃
C6. Without loss of generality, h1 := −ho has det(h1) = e

2πi
3 and Proposition 21

specifies that either h1 = e
πi
3 I2 or λ1(h1) = e−

πi
3 , λ2(ho) = −1. For s = 2 the group

H = 〈−I2〉 × 〈ho〉 = HC2(2) ≃ C2 × C2, where ho ∈ H has eigenvalues λ1(ho) = 1,
λ2(ho) = −1. The case s = 4 occurs only for R = Z[i]. Assuming det(ho) = i, one
gets λ1(ho) = εi, λ2(ho) = ε for some ε ∈ {±1} by Proposition 17. Since −I2 ∈ H ,
one can replace ho by −ho and reduce to the case of ε = 1. If s = 6, then Proposition
19 provides (13).

In the case of hso = −I2, the intersection 〈ho〉SL(2, R) = 〈−I2〉 = H ∩ SL(2, R)
and the group

H = 〈ho〉 ≃ C2s

is cyclic. More precisely, for s = 2 Proposition 16 implies that ho = ±iI2 and
H ≃ HC2(1). If s = 3 and det(ho) = e

2πi
3 then H ≃ HC2(3) by Proposition 21. For

s = 4 and det(ho) = i one has H ≃ HC2(6), according to Proposition 17. Making
use of Proposition 19, one observes that there are no ho ∈ GL(2, R) of order 12 with

det(ho) = e
πi
3 and concludes the proof of the proposition.
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Towards the description of the finite subgroupsH = [H∩SL(2, R)]〈ho〉 ofGL(2, R)
with H ∩ SL(2, R) ≃ Ct for some t ∈ {3, 4, 6}, one needs the following

Lemma 32. If g ∈ GL(2,C) has different eigenvalues λ1 6= λ2 then any h ∈ GL(2,C)
with hg 6= gh and h2g = gh2 has vanishing trace tr(h) = 0.

Proof. The trace is invariant under conjugation, so that

g =

(
λ1 0
0 λ2

)

can be assumed to be diagonal. If

h =

(
a b
c d

)
∈ GL(2,C),

then h2g = gh2 is equivalent to

∣∣∣∣
(λ1 − λ2)b(a + d) = 0
(λ1 − λ2)c(a+ d) = 0

.

Due to λ1 6= λ2, there follow b(a + d) = 0 and c(a + d) = 0. The assumption
tr(h) = a+ d 6= 0 leads to b = c = 0. As a result,

h =

(
a 0
0 d

)

is a diagonal matrix and commutes with g. The contradiction justifies that tr(h) = 0.

Lemma 33. Let H = [H ∩ SL(2, R)]〈ho〉 be a finite subgroup of GL(2, R) with

H ∩ SL(2, R) = 〈g〉 ≃ Ct for some t ∈ {3, 4, 6} and

det(H) = 〈det(ho)〉 = 〈e 2πi
s 〉 ≃ Cs, s > 1

for some ho ∈ H of order r. Then:

(i)
r

s
=





1, 2, 3, 4 or 6 for s = 2,

1, 2 or 4 for s = 3,

1 or 2 for s = 4

1 for s = 6

divides t;
(ii) r

s
= t if and only if H = 〈ho〉 ≃ Cr is cyclic and H ∩ SL(2, R) = 〈hso〉;
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(iii) if r
s
< t then H is isomorphic to the non-cyclic abelian group

H ′ = 〈g, ho | gt = hro = I2, hog = gho〉

or to the non-abelian group

H ′′ = 〈g, ho | gt = hro = I2, hogh
−1
o = g−1〉;

(iv) if r
s
< t and H ≃ H ′′ is non-abelian then ho has eigenvalues λ1(ho) = ie

πi
s ,

λ2(ho) = −ieπi
s and

(r, s) ∈ {(2, 2), (6, 6)} for t = 3,

(r, s) ∈ {(2, 2), (8, 4), (6, 6)} for t = 4,

(r, s) ∈ {(2, 2), (8, 4), (6, 6)} for t = 6.

Proof. (i) Note that if det(ho) ∈ R∗ is of order s then det(hso) = det(ho)
s = 1 and

hso ∈ H ∩ SL(2, R) = 〈g〉 is an element of order r
s
. Since 〈g〉 ≃ Ct is of order t, the

ratio r
s
∈ N divides t. Proposition 16 provides the list of r

s
= r

2
for s = 2. If s = 3

then the values of r
s
= r

3
are taken from Propositions 21 and 22. Propositions 17 and

18 supply the range of r
s
= r

4
for s = 4, while Propositions 19 and 20 give account for

r
s
= r

6
in the case of s = 6.

(ii) Note that hso ∈ 〈g〉 is of order r
s
= t exactly when 〈g〉 = 〈hso〉 andH = 〈ho〉 ≃ Cr

is a cyclic group.
(iii) According to Lemma 27, the group H = [H ∩ SL(2, R)]〈ho〉 = 〈g〉〈ho〉 is

completely determined by the order t of g, the order r of ho and the conjugate
x = hogh

−1
o ∈ H ∩ SL(2, R) = 〈g〉 of g by ho. The order t of g is invariant under

conjugation, so that x = gm for some m ∈ Z∗
t . The Euler function ϕ(t) = 2 for

t ∈ {3, 4, 6} and Z∗
t = {±1(modt)}. Therefore x = hogh

−1
o = g or x = hogh

−1
o = g−1.

(iv) If H ≃ H ′′ is a non-abelian group then

h2ogh
−2
o = ho(hogh

−1
o )h−1

o = hog
−1h−1

o = (hogh
−1
o )−1 = (g−1)−1 = g,

so that g commutes with h2o, but does not commute with ho. By Lemma 32 there

follows tr(ho) = 0. There exists a matrix S ∈ GL
(
2,Q

(√
−d, e 2πi

t

))
, such that

D = S−1gS =

(
e

2πi
t 0

0 e−
2πi
t

)
∈ SL

(
2,Q

(√
−d, e 2πi

t

))

is diagonal. Since the trace is invariant under conjugation,

Do := S−1hoS =

(
a b
c −a

)
∈ GL

(
2,Q

(√
−d, e 2πi

t

))
.
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The relation hog = g−1ho implies the vanishing of a. As a result, the characteristic
polynomial

Xho(λ) = λ2 + det(ho) = λ2 + e
2πi
s = 0

has roots λ1(ho) = ie
πi
s , λ2(ho) = −ieπi

s . More precisely, for s = 2 one has λ1(ho) =
−1, λ2(ho) = 1, so that ho and Do are of order r = 2. The ratio r

s
= 1 divides

any t ∈ {3, 4, 6}. If s = 3 then λ1(ho) = e
5πi
6 , λ2(ho) = e−

πi
6 , so that ho and Do

are of order r = 12. The quotient r
s
= 4 divides only t = 4. Therefore r

s
= t and

H = 〈ho〉 ≃ C12, according to (ii). In the case of s = 4, one has λ1(ho) = e
3πi
4 ,

λ2(ho) = e−
πi
4 , whereas ho and Do are of order r = 8. The quotient r

s
= 2 divides

only t ∈ {4, 6}. Finally, for s = 6 the automorphism ho has eigenvalues λ1(ho) = e
2πi
3 ,

λ2(ho) = e−
πi
3 . Consequently, ho and Do are of order r = 6 and r

s
= 1 divides all

t ∈ {3, 4, 6}.

Lemma 34. (i) For arbitrary d ∈ N and t ∈ {3, 4, 6} there is a dihedral subgroup

Dt = 〈g, ho | gt = h2o = I2, hogh
−1
o = g−1〉 < GL(2,Q(

√
−d))

of order 2t with Dt ∩ SL(2,Q(
√
−d)) = 〈g〉 ≃ Ct, det(Dt) = 〈det(ho)〉 = 〈−1〉 ≃ C2

and eigenvalues λ1(ho) = −1, λ2(ho) = 1 of ho.
(ii) For an arbitrary t ∈ {3, 4, 6} there is a subgroup

Ht = 〈g, ho | gt = h6o = I2, hogh
−1
o = g−1〉 < GL(2,Q(

√
−3))

of order 6t with Ht ∩ SL(2,Q(
√
−3)) = 〈g〉 ≃ Ct, det(Ht) = 〈det(ho)〉 = 〈eπi

3 〉 ≃ C6

and eigenvalues λ1(ho) = e
2πi
3 , λ2(ho) = e−

πi
3 of ho.

(iii) For an arbitrary t ∈ {4, 6} there is a subgroup

H′
t = 〈g, ho | g

t
2 = h4o = −I2, hogh

−1
o = g−1〉 < GL(2,Q(

√
2, i))

of order 4t with H′
t ∩ SL(2,Q(

√
2, i)) = 〈g〉 ≃ Ct, det(H′

t) = 〈det(ho)〉 = 〈i〉 ≃ C4

and eigenvalues λ1(ho) = e
3πi
4 , λ2(ho) = e−

πi
4 of ho.

Proof. (i) Let us choose a diagonalizing matrix S ∈ GL(2,Q(
√
−d)) of ho, so that

Do = S−1hoS =

(
−1 0
0 1

)
.

Taking into account Proposition 15, one has to show the existence of

D = S−1‘gS =

(
a b
c d

)
∈ SL(2,Q(

√
−d)

with

DoDD
−1
o =

(
a −b

−c d

)
=

(
d −b

−c a

)
= D−1
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for any trace tr(g) = tr(D) = a + d ∈ {0,±1}. More precisely, for a = d = 0, b 6= 0
and c = −b−1, then the matrix

D = D4 =




0 b

−b−1 0




of order 4 and the matrix Do of order 2 generate a dihedral group D4 of order 8. If
a = d = −1

2
, b 6= 0 and c = −3

4
b−1 then

D = D3 =




−1
2

b

−3
4
b−1 −1

2




of order 3 and Do of order 2 generate a symmetric group D3 ≃ S(3) of degree 3. In
the case of a = d = 1

2
, b 6= 0 and c = −3

4
b−1, the matrix

D = D6 =




1
2

b

−3
4
b−1 1

2




of order 6 and the matrix Do of order 2 generate a dihedral group D6 of order 12.
(ii) By Proposition 19, if ho ∈ GL(2, R) has eigenvalues λ1(ho) = e

2πi
3 , λ2(ho) =

e−
πi
3 then R = O−3. Let us consider

Do = S−1hoS =

(
e

2πi
3 0

0 e−
πi
3

)
∈ GL(2,Q(

√
−3))

for some S ∈ GL(2,Q(
√
−3)) and

D = S−1gS =

(
a b
c d

)
∈ SL(2,Q(

√
−3))

with trace tr(g) = tr(D) = a+ d ∈ {0,±1}. Then

DoDD
−1
o =

(
a −b

−c d

)
=

(
d −b

−c a

)
= D−1

is equivalent to a = d. Consequently, D3, D4, D6 from the proof of (i) satisfy the
required conditions.

(iii) Note that

Do = S−1hoS =

(
e

3πi
4 0

0 e−
πi
4

)
∈ GL(2,Q(

√
2, i))
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for some S ∈ GL(2,Q(
√
2, i)) and

D = S−1gS =

(
a b
c d

)
∈ SL(2,Q(

√
2, i))

with trace tr(g) = tr(D) = a+ d ∈ {0, 1} satisfy

DoDD
−1
o =

(
a −b
c d

)
=

(
d −b

−c a

)
= D−1

exactly when a = d. In the notations from the proof of (i), one has 〈D4, Do〉 ≃ H′
4

and 〈D6, Do〉 ≃ H′
6.

Corollary 35. Let H be a finite subgroup of GL(2, R),

H ∩ SL(2, R) = 〈g〉 ≃ C3

and ho ∈ H be an element of order r with det(H) = 〈det(ho)〉 ≃ Cs and eigenvalues
λ1(ho), λ2(ho). Then H is isomorphic to some HC3(i), 1 ≤ i ≤ 5, where

HC3(1) = 〈ho〉 ≃ C6

with R = R−3,f , λ1(ho) = e
πi
3 , λ2(ho) = e

2πi
3 ,

HC3(2) = 〈g, ho | g3 = h2o = I2, hogh
−1
o = g−1〉 ≃ S3

is the symmetric group of degree 3, λ1(ho) = −1, λ2(ho) = 1,

HC3(3) = 〈g〉 × 〈e 2πi
3 I2〉 ≃ C3 × C3

with R = O−3 and any g ∈ SL(2,O−3) of trace tr(g) = −1,

HC3(4) = 〈g〉 × 〈ho〉 ≃ C3 × C6

with R = O−3, λ1(ho) = e
πi
3 , λ2(ho) = e−

2πi
3 ,

HC3(5) = 〈g, ho | g3 = h6o = I2, hogh
−1
o = g−1〉

of order 18 with R = O−3, λ1(ho) = E
2πi
3 , λ2(ho) = e−

πi
3 .

There exist subgroups

HC3(1), HC3(3), HC3(4) < GL(2,O−3),

as well as subgroups

Ho
C3(2) < GL(2,Q(

√
−d)), Ho

C3(5) < GL(2,Q(
√
−3))

with Ho
C3(j) ≃ HC3(j) for j ∈ {2, 5}.
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Proof. By Lemma 33 (i), the quotient r
s

is a divisor of t = 3, so that either r = s or
r = 3s = 6.

For s = 2, r = 6 one has a cyclic group H = 〈ho〉 ≃ C6 with det(ho) = −1. Up to

an inversion ho 7→ h−1
o of the generator, Proposition 16 specifies that λ1(ho) = e

πi
3 ,

λ2(ho) = e
2πi
3 and justifies the realization of HC3(1) = 〈ho〉 over O−3.

Form now on, let r = s ∈ {2, , 3, 46}. According to Lemma 33(iii) and (iv), the
group H = 〈g, ho〉 is either abelian or isomorphic to some HC3(j) for j ∈ {2, 5}.

If H = 〈g, ho | g3 = hro = I2, gho = hog〉 is an abelian group of order 3r, then
H = 〈g〉 × 〈ho〉 ≃ C3 × Cr is a direct product by Lemma 26 (iv). (Here we use that
the semi-direct product H = [H ∩SL(2, R)]⋊ 〈ho〉 = 〈g〉⋊ 〈ho〉 is a direct product if
and only if gho = hog.)

The order r = s = 2 of ho is relatively prime to the order 3 of g, so that gho is an
element of order 6 and 〈g, ho〉 = 〈gho〉 ≃ C6 ≃ HC3(1).

The order r = s = 4 of ho is relatively prime to the order 3 of g and gho is of
order 12. By the classification of x ∈ GL(2, R) of finite order, done in section 2, one
has det(gho) = −1. Therefore det(ho) = −1 and s = 2, contrary to the assumption
s = 4.

For r = s = 3 one can assume det(ho) = e−
2πi
3 , after an eventual inversion

ho 7→ h−1
o . Then by Proposition 22 one has ho = e

2πi
3 I2 or λ1(ho) = e

4πi
3 , λ2(ho) = 1.

Assume that λ1(ho) = e
4πi
3 , λ2(ho) = 1 and note that the commuting g and ho can be

simultaneously diagonalized by an appropriate S ∈ GL(2,C). Consequently,

D = S−1gS =

(
e

2πi
3 0

0 e−
2πi
3

)
and Do = S−1hoS =

(
e

4πi
3 0
0 1

)

are subject to D2Do = e
2πi
3 I2. As a result,

g2ho = (SDS−1)−1(SDoS
−1) = S(D2Do)S

−1 = e
2πi
3 I2

and H = 〈g, ho〉 = 〈g, g2ho〉 ≃ HC3(3).

Finally, for r = s = 6, let us assume that det(ho) = e−
πi
3 . Then

{λ1(ho), λ2(ho)} =
{
e

πi
3 , e−

2πi
3

}
,
{
e−

πi
3 , 1
}

or
{
e

2πi
3 ,−1

}
.

Similarly to the case of r = s = 3, the commuting g and ho admit a simultaneous
diagonalization

D = S−1gS =

(
e

2πi
3 0

0 e−
2πi
3

)
, Do = S−1hoS =

(
λ1(ho) 0

0 λ2(ho)

)
.

If λ1(ho) = e−
πi
3 , λ2(ho) = 1 then

DDo =

(
e

πi
3 0

0 e−
2πi
3

)
and H ≃ 〈D,Do〉 = 〈D,DDo〉 ≃ HC3(4).
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For λ1(ho) = e
2πi
3 and λ2(ho) = −1 note that

DDo =

(
e−

2πi
3 0

0 e
πi
3

)
, so that again H ≃ 〈D,Do〉 = 〈D,DDo〉 ≃ HC3(4).

Note that

g =

(
e

2πi
3 0

0 e−
2πi
3

)
, ho =

(
e

πi
3 0

0 e−
2πi
3

)
∈ GL(2,O−3)

generate a group, isomorphic to HC3(4).

Corollary 36. Let H be a finite subgroup of GL(2, R),

H ∩ SL(2, R) = 〈g〉 ≃ C4

and ho ∈ H be an element of order r with det(H) = 〈det(ho)〉 ≃ Cs and eigenvalues
λ1(ho), λ2(ho). Then H is isomorphic to some HC4(i), 1 ≤ i ≤ 9, where

HC4(1) = 〈ho〉 ≃ C8

with R = O−2, λ1(ho) = e
πi
4 , λ2(ho) = e

3πi
3 ,

HC4(2) = 〈g〉 × 〈ho〉 ≃ C4 × C2

with R = R−1,f , λ1(ho) = −1, λ2(ho) = 1,

HC4(3) = 〈g, ho | g2 = −I2, h2o = I2, hogh
−1
o = g−1〉 ≃ D4

is the dihedral group of order 8 with λ1(ho) = −1, λ2(ho) = 1,

HC4(4) = 〈ho〉 ≃ C12

with R = O−3, λ1(ho) = e
5πi
6 , λ2(ho) = e−

πi
6 ,

HC4(5) = 〈g〉 × 〈e 2πi
3 I2〉 ≃ C4 × C3

for R = O−3 and ∀g ∈ SL(2,O−3) with tr(g) = 0,

HC4(6) = 〈g〉 × 〈ho〉 ≃ C4 × C4

with R = Z[i], λ1(ho) = i, λ2(ho) = 1,

HC4(7) = 〈ig〉 × 〈ho〉 ≃ C2 × C8
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with R = Z[i], λ1(ho) = e
3πi
4 , λ2(ho) = e−

πi
4 ,

HC4(8) = 〈g, ho | g2 = h4o = −I2, hogh
−1
o = g−1〉

of order 16 with R = Z[i], λ1(ho) = e
3πi
4 , λ2(ho) = e−

πi
4 ,

HC4(9) = 〈g, ho | g2 = −I2, h6o = I2, hogh
−1
o = g−1〉

of order 24 with R = O−3, λ1(ho) = e
2πi
3 , λ2(ho) = e−

πi
3 .

There exist subgroups

HC4(1) < GL(2,O−2), HC4(4), HC4(5) < GL(2,O−3),

HC4(2), HC4(6) < GL(2,Z[i]),

as well as subgroups

Ho
C4(7), H

o
C4(8) < GL(2,Q(

√
2, i)), Ho

C4(3) < GL(2,Q(
√
−d)),

Ho
C4(9) < GL(2,Q(

√
−3)),

with Ho
C4(j) ≃ HC4(j) for j ∈ {3, 7, 8, 9}.

Proof. If r
s
= 4 then either (s, r) = (2, 8) and H ≃ HC4(1) or (s, r) = (3, 12) and

H ≃ HC4(4). By Proposition 16 there exists an element ho ∈ GL(2,O−2) of or-
der 8 with det(ho) = −1. Proposition 21 provides an example of ho ∈ GL(2,O−3)

of order 12 with det(ho) = e
2πi
3 . There remain to be considered the cases with

r
s
∈ {1, 2}. According to Lemma 33, the non-abelian H under consideration are

isomorphic to HC4(3), HC4(8) or HC4(9). By Lemma 34 (i) there is a subgroup
Ho

C4(3) < GL(2,Q(
√
−d)), conjugate to HC4(3). Lemma 34 (iii) provides an exam-

ple of S−1HC4(8)S = Ho
C4(8) < GL(2,Q(

√
2, i)), while Lemma 34(ii) justifies the

existence of S−1HC4(9)S = Ho
C4(9) < GL(2,Q(

√
−3)).

There remain to be classified the non-cyclic abelian groupsH = [H∩SL(2, R)]〈ho〉
with H ∩ SL(2, R) ≃ C4, 〈ho〉 ≃ Cr, det(ho) = e

2πi
3 for s ∈ {2, 3, 4, 6}, r ∈ {s, 2s}.

If r = s = 2 then by Proposition 16, the eigenvalues of ho are λ1(ho) = −1 and
λ2(ho) = 1. There exists a matrix S ∈ GL(2,Q(

√
−d), such that

Do = S−1hoS =

(
−1 0
0 1

)
.

Proposition 15 establishes that g ∈ SL(2, R) is of order 4 exactly when tr(g) = 0.
The trace and the determinant are invariant under conjugation, so that

D = S−1gS =

(
a b
c −a

)
∈ SL(2,Q(

√
−d)).
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The commutation

DDo =

(
−a b
−c −a

)
=

(
−a −b
c −a

)
= DoD

holds only when b = c = 0 and

D = ±
(

i 0
0 −i

)
.

Bearing in mind that D ∈ SL(2,Q(
√
−d)), one concludes that i ∈ Q(

√
−d), whereas

d = 1 and R = R−1,f . The matirces

g =

(
i 0
0 −i

)
, ho =

(
−1 0
0 1

)
∈ GL(2,Z[i])

generate a subgroup of GL(2,Z[i]), isomorphic to HC4(2).
For s = 2 and r = 4 one has R = Z[i] and ho = ±I2. Bearing in mind that

g ∈ SL(2, R) is of order 4 if and only if tr(g) = 0, let

g =

(
a b
c d

)
∈ SL(2,Z[o]).

Then

gho = ±
(
ai bi
ci −ai

)
∈ Z[i]2×2

has determinant det(gho) = det(g) det(ho) = det(ho) = −1 and trace tr(gho) = 0. By
Proposition 16, gho has eigenvalues λ1(gho) = −1, λ2(gho) = 1 and H ≃ HC4(2).

If s = r = 3 then R = O−3 and either ho = e−
2πi
3 or λ1(ho) = e

2πi
3 , λ2(ho) = 1. Re-

placing e−
2πi
3 I2 by its inverse, one observes that HC4(5) = 〈g, e− 2πi

3 I2〉 < GL(2,O−3).

If λ1(ho) = e
2πi
3 , λ2(ho) = 1, then there exists S ∈ GL(2,Q(

√
−3)), such that

Do = S−1hoS =

(
e

2πi
3 0
0 1

)
.

The determinant and the trace are invariant under conjugation, so that

D = S−1gS =

(
a b
c −a

)
∈ SL(2,Q(

√
−3)).

Note that

DDo =

(
e

2πi
3 a b

e
2πi
3 c −a

)
=

(
e

2πi
3 a e

2πi
3 b

c −a

)
= DoD

is equivalent to b = c = 0 and 1 = det(g) = det(D) = −a2 specifies that

D = ±
(

i 0
0 −i

)
.
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That contradicts F ∈ SL(2,Q(
√
−3)) and justifies the non-existence of H with s =

r = 3.
Let s = 3, r = 6. According to Proposition 21, there follows R = O−3 with

ho = e
πi
3 I2 or λ1(ho) = e−

πi
3 , λ2(ho) = 1. If ho = e

πi
3 then H = 〈g, ho〉 = 〈g, g2ho =

−ho = e−
2πi
3 I2〉 ≃ HC4(5). In the case of λ1(ho) = e−

πi
3 , λ2(ho) = 1 let us choose

S ∈ GL(2,Q(
√
−3)) with

Do = S−1hoS =

(
e−

πi
3 0

0 1

)
∈ GL(2,Q(

√
−3)) and

D = S−1gS =

(
a b
c −a

)
∈ SL(2,Q(

√
−3)).

Then

DDo =

(
e−

πi
3 a b

e−
πi
3 c −a

)
=

(
e−

πi
3 a e−

πi
3 b

c −a

)
= DoD

if and only if

D = ±
(

i 0
0 −i

)
∈ SL(2,Q(

√
−3)),

which is an absurd.
Let us suppose that s = r = 4. The Proposition 17 specifies that R = Z[i] and

λ1(ho) = εi, λ2(ho) = ε for some ε ∈ {±1}. As far as g2 = −I2 ∈ H , there is no loss
of generality in assuming that λ1(ho) = i, λ2(ho) = 1 and H ≃ HC4(6). Note that

g =

(
i 0
0 −i

)
, ho ∈

(
i 0
0 1

)
∈ GL(2,Z[i])

generate a subgroup, isomorphic to HC4(6).

For s = 4, r = 8, Proposition 17 implies that R = Z[i] and λ1(ho) = e
3πi
4 ,

λ2(ho) = e−
πi
4 . Note that (ig)2 = −g2 = I2, so that ig ∈ H = 〈g, ho〉 is of order 2 and

h6o = iI2, according to λ1(h
6
o) = λ1(ho)

6 = i, λ2(h
6
o) = λ2(ho)

6 = i. Consequently,

H = 〈g, ho〉 = 〈h6og = ig, ho〉 = 〈ig〉 × 〈ho〉 ≃ C2 × C8,

as far as 〈ig〉 ∩ 〈ho〉 = {I2}. More precisely, if ig = hmo , then the second eigenvalue

1 = −i2 = λ2(ig) = λ2(h
m
o ) = e−

πim
4 ,

whereas m ∈ 8Z and the first eigenvalue

−1 = λ1(ig) = λ1(h
m
o ) = e

3πim
4 = 1,

which is an absurd. Thus, H ≃ HC4(7) and there exists a subgroup

Ho
C4(7) = 〈

(
i 0
0 −i

)
,

(
e

3πi
4 0

0 e−
πi
4

)
〉 < GL(2,Q(

√
2, i)),
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conjugate to HC4(7).
Let us assume that s = r = 6. Then Proposition 19 applies to provide R = O−3

and
{λ1(ho), λ2(ho)} =

{
e

2πi
3 , e−

πi
3

}
,
{
e

πi
3 , 1
}
,
{
e−

2πi
3 ,−1

}
.

Choose a matrix S ∈ GL(2,Q(
√
−3)) with

Do = S−1hoS =

(
λ1(ho) 0

0 λ2(ho)

)
∈ GL(2,Q(

√
−3)),

D = S−1gS =

(
a b
c −a

)
∈ SL(2,Q(

√
−3)).

If λ1(ho) 6= λ2(ho) then

DDo =

(
λ1(ho)a λ2(ho)b
λ1(ho)c −λ2(ho)a

)
=

(
λ1(ho)a λ1(ho)b
λ2(ho)c −λ2(ho)a

)
= DoD

is tantamount to b = c = 0, a = ±i and

D = ±
(

i 0
0 −i

)
∈ SL(2,Q(

√
−3)

is an absurd.
Similarly, in the case of s = 6, r = 12, Proposition 19 derives that R = O−3 and

{λ1(ho), λ2(ho)} =
{
e

2πi
3 , e−

πi
3

}
,
{
e

πi
3 , 1
}
,
{
e−

2πi
3 ,−1

}
.

Note that λ1(ho) 6= λ2(ho) for all the possibilities and apply the considerations for
s = r = 6, in order to exclude the case s = 6, r = 12.

Corollary 37. Let H be a finite subgroup of GL(2, R),

H ∩ SL(2, R) = 〈g〉 ≃ C6

and ho ∈ H be an element of order r with det(H) = 〈det(ho)〉 ≃ Cs and eigenvalues
λ1(ho), λ2(ho). Then H is isomorphic to some HC6(i), 1 ≤ i ≤ 7, where

HC6(1) = 〈ho〉 ≃ C12

with R = Z[i], λ1(ho) = e
πi
6 , λ2(ho) = e

5πi
6 ,

HC6(2) = 〈g〉 × 〈ho〉 ≃ C6 × C12

with R = O−3 or R = R−3,2, λ1(ho) = −1, λ2(ho) = 1,

HC6(3) = 〈g, ho | g3 = −I2, h2o = I2, hogh
−1
o = g−1〉 ≃ D6
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is the dihedral group of order 12, λ1(ho) = −1, λ2(ho) = 1,

HC6(4) = 〈g〉 × 〈e 2πi
3 I2〉 ≃ C6 × C3

with R = O−3 and ∀g ∈ SL(2,O−3) of tr(g) = 1,

HC6(5) = 〈g, ho | g3 = h4o = −I2, hogh
−1
o = g−1〉

of order 24 with R = Z[i], λ1(ho) = e
3πi
4 , λ2(ho) = e−

πi
4 ,

HC6(6) = 〈g, ho | g3 = −I2, h6o = I2, hogh
−1
o = g−1〉

of order 36 with R = O−3, λ1(ho) = e
2πi
3 , λ2(ho) = e−

πi
3 ,

HC6(7) = 〈g〉 × 〈ho〉 ≃ C6 × C6

of order 36 with R = O−3, λ1(ho) = e
2πi
3 , λ2(ho) = e−

πi
3 .

There exist subgroups

HC6(1) < GL(2,Z[i]), HC6(2), HC6(4), HC6(7) < GL(2,O−3),

as well as subgroups

Ho
C6(3) < GL(2,Q(

√
−d)), Ho

C6(5) < GL(2,Q(
√
2, i)),

Ho
C6(6) < GL(2,Q(

√
−3))

with Ho
C6(j) ≃ HC6(j) for j ∈ {3, 5, 6}.

Proof. According to Lemma 33(i), the ratio r
s
∈ {1, 2, 3, 6} is a divisor of t = 6. If

r = 6s then s = 2 and H = 〈ho〉 ≃ C12 ≃ HC6(1) by Lemma 33 (i), (ii). According to
Proposition 16, the existence of ho ∈ GL(2, R) of order 12 with det(ho) = −1 requires
R = Z[i] and there exist ho ∈ GL(2,Z[i]) of order 12 with det(ho) = −1.

For r = 3s Lemma 33(i) specifies that s = 2. Combining with Lemma 33(iv), one
concludes that

H = 〈g, ho | g3 = −I2, h6o = I2, hog = gho〉
is a non-cyclic abelian group of order st = 12. By Proposition 16, R = O−3 or R =
R−3,2 and ho has eigenvalues λ1(ho) = e

επi
3 , λ2(ho) = e

ε2πi
3 for some ε ∈ {±1}. Due

to 〈g, ho〉 = 〈g, h−1
o = h5o〉 by ho = (h5o)

5, one can assume that λ1(ho) = e
πi
3 , λ2(ho) =

e
2πi
3 . The commuting matrices g and ho admit a simultaneous diagonalization

D = S−1gS =

(
e

πi
3 0

0 e−
πi
3

)
, Do = S−1hoS =

(
e

πi
3 0

0 e
2πi
3

)
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by an appropriate S ∈ GL(2,Q(
√
−3)). Then

D2Do =

(
−1 0
0 1

)

implies that λ1(g
2ho) = −1, λ2(g

2ho) = 1. As a result, H = 〈g, ho〉 = 〈g, g2ho〉 is a
subgroup of GL(2,O−3), isomorphic to HC6(2).

Form now on, r
s
∈ {1, 2}. In particular, r

s
< t = 6 and the non-abelian

H = 〈g, ho | g6 = hro = I2, hogh
−1
o = g−1〉

occurs for (r, s) ∈ {(2, 2), (8, 4), (6, 6)}, according to Lemma 33(iv). Namely, for
r = s = 2 one has a dihedral group H ≃ D6 ≃ HC6(3) of order 12, which is realized
as a subgroup of GL(2,Q(

√
−d)) by Lemma 34(i). In the case of s = 4 and r = 8

the group H ≃ HC6(5) of order 24 is embedded in GL(2,Q(
√
2, i)) by Lemma 34(iii).

In the case of r = s = 6 one has H ≃ HC6(6) of order 36, realized as a subgroup of
GL(2,Q(

√
−3)) by Lemma 34(ii).

There remain to be considered the non-cyclic abelian H with r = 2s, s ∈ {2, 3, 4}
or r = s ∈ {2, 3, 4, 6}. If s = 2, r = 4 then Proposition 16 requires R = Z[i]
and ho = ±iI2. Up to an inversion of ho, one can assume that ho = iI2. Then
H = 〈g, iI2〉 = 〈−g = (iI2)

2g, iI2〉 is generated by the element −g of order 3 and the
scalar matrix iI2 ∈ H of order 4, so that −ig = (iI2)(−g) ∈ H of order 12 generates
H , H ≃ HC6(1) ≃ C12. (Note that for g ∈ SL(2,Z[i]) of order 6 one has g3 = −I2,
whereas (−g)3 = −g3 = I2. The assumptions −g = I2 and (−g)2 = g2 = I2 lead to
an absurd. )

Let us assume that s = 3 and r = 6. Then Proposition 21 implies that R = O−3

with ho = E
πi
3 I2 or λ1(ho) = e−

πi
3 , λ2(ho) = −1. Note that H = 〈g, eπi

3 I2〉 =

〈g, e−πi
3 I2〉 by e−

πi
3 =

(
e

πi
3

)5
, e

πi
3 =

(
e−

πi
3

)5
. Further,

g3
(
e−

πi
3 I2

)
=
(
eπiI2

) (
e−

πi
3 I2

)
= e

2πi
3 I2

implies that

H = 〈g, e−πi
3 I2〉 = 〈g, g3

(
e−

πi
3 I2

)
= e

2πi
3 I2〉 = 〈g〉 × 〈e 2πi

3 〉 ≃ C6 × C3 ≃ HC6(4).

For any g ∈ SL(2,O−3) of order 6, there is a subgroup HC6(4) = 〈g, e 2πi
3 I2〉 <

GL(2,O−3).

For s = 4, r = 8 there follow R = Z[i] and λ1(ho) = e
3πi
4 , λ2(ho) = e−

πi
4 , according

to Proposition 17. Suppose that S ∈ GL(2,Q(
√
2, i)) diagonalizes ho,

Do = S−1hoS =

(
e

3πi
4 0

0 e−
πi
4

)
∈ GL(2,Q(

√
2, i)).
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By Proposition 15, g ∈ SL(2,Z[i]) is of order 6 exactly when tr(g) = 1. Since the
determinant and the trace are invariant under conjugation, one has

D = S−1gS =

(
a b
c 1− a

)
∈ SL(2,Q(

√
2, i).

However,

DDo =

(
e

3πi
4 a e−

πi
4 b

e
3πi
4 c e−

πi
4 (1− a)

)
=

(
e

3πi
4 a e

3πi
4 b

e−
πi
4 c e−

πi
4 (1− a)

)
= DoD

if and only if b = c = 0 and a = e
επi
3 for some ε ∈ {±1}. Now,

D =

(
e

επi
3 0

0 1− e
επi
3

)
∈ SL(2,Q(

√
2, i))

is an absurd, justifying the non-existence of H with s = 4 and r = 8.
In the case of r = s = 2 Proposition 16 implies that λ1(ho) = −1, λ2(ho) = 1, so

that H ≃ HC6(2) ≃ C6 × C2.

For r = s = 3 Proposition 21 reveals that R = O−3 with ho = e−
2πi
3 I2 or λ1(ho) =

e
2πi
3 , λ2(ho) = 1. It is clear that

H = 〈g, e− 2πi
3 I2 =

(
e

2πi
3 I2

)2
〉 = 〈g, e 2πi

3 I2 =
(
e−

2πi
3 I2

)2
〉 ≃ HC6(4) ≃ C3 × C3.

If λ1(ho) = e
2πi
3 , λ2(ho) = 1 then the commuting matrices g and ho admit a simulta-

neous diagonalization

D = S−1gS =

(
e

πi
3 0

0 e−
πi
3

)
, Do = S−1hoS =

(
e

2πi
3 0
0 1

)
∈ GL(2,Q(

√
−3))

by an appropriate S ∈ GL(2,Q(
√
−3)). Then D2Do = e−

2πi
3 I2, whereas g2ho =

S
(
e−

2πi
3 I2

)
S−1 = e−

2πi
3 I2 and

H = 〈g, ho〉 = 〈g, g2ho = e−
2πi
3 I2〉 ≃ HC6(4) ≃ C6 × C3.

The assumption r = s = 4 implies that R = Z[i] and λ1(ho) = εi, λ2(ho) =
ε for some ε ∈ {±1}, according to Proposition 17. Due to g3 = −I2, one has
〈g, ho〉 = 〈g,−ho = g3ho〉, so that there is no loss of generality in assuming ε = 1. If
S ∈ GL(2,Q(i)) conjugates ho to its diagonal form

Do = S−1hoS =

(
i 0
0 1

)
∈ GL(2,Q9i)),
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then

D = S−1gS =

(
a b
c 1− a

)
∈ SL(2,Q(i)).

The relation

DDo =

(
ia b
ic 1− a

)
=

(
ia ib
c 1− a

)
= DoD

implies that

D =

(
e

επi
3 0

0 e−
επi
3

)
∈ SL(2,Q(i)) for some ε ∈ {±}.

The contradiction proves the non-existence of H with r = s = 4.
Finally, for r = s = 6 Proposition 19 specifies that R = O−3 and

{λ1(ho), λ2(ho)} =
{
e

2πi
3 , e−

πi
3

}
,
{
1, e

πi
3

}
or

{
e−

2πi
3 ,−1

}
.

The commuting matrices g and ho admit simultaneous diagonalization

D = S−1gS =

(
e

πi
3 0

0 e−
πi
3

)
,

Do = S−1hoS =

(
λ1(ho) 0

0 λ2(ho)

)
∈ GL(2,Q(

√
−3)

by an appropriate S ∈ GL(2,Q(
√
−3)). Let us denote

Do :=

(
e

2πi
3 0

0 e−
πi
3

)
, D′

o :=

(
1 0

0 e
πi
3

)
, D′′

o :=

(
e−

2πi
3 0

0 −1

)
∈ GL(2,O−3)

and observe that
D2Do = D′′

o , D62D′′
o = D′

o.

By its very definition,
H = 〈D,Do〉 < GL(2,O−3)

is isomorphic to HC6(7). The equalities 〈D,D′
o = D2D′′

o〉 = 〈D,D′′
o〉 and 〈D,D′′

o =
D2Do〉 = 〈D,Do〉 conclude the proof of the proposition.

Proposition 38. Let H be a finite subgroup of GL(2, R),

H ∩ SL(2, R) = 〈g1, g2 | g21 = g22 = −I2, g2g1 = −g1g2〉 ≃ Q8,

and ho ∈ H be an element of order r with det(H) = 〈det(ho)〉 ≃ Cs and eigenvalues
λ1(ho), λ2(ho). Then H is isomorphic to some HQ8(i), 1 ≤ i ≤ 9, where

HQ8(1) = 〈g1, g2, iI2 | g21 = g22 = −I2, g2g1 = −g1g2〉
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is of order 16 with R = Z[i],

HQ8(2) = 〈g1, g2, ho | g21 = g22 = −I2, h2o = I2, g2g1 = −g1g2,
hog1h

−1
o = −g1, hog2h

−1
o = −g2〉

is of order 16 with R = Z[i], λ1(ho) = −1, λ2(ho) = 1,

HQ8(3) = 〈g1, g2, ho | g21 = g22 = h4o = −I2, g2g1 = −g1g2,
hog1h

−1
o = g2, hog2h

−1
o = −g1〉

is of order 16 with R = O−2, λ1(ho) = e
πi
4 , λ2(ho) = e

3πi
4 , h2o = ±g1g2,

HQ8(4) = 〈g1, g2, ho | g21 = g22 = −I2, h2o = I2, g2g1 = −g1g2,
hog1h

−1
o = g2, hog2h

−1
o = g1〉

is of order 16 with R = R−2,f , λ1(ho) = −1, λ2(ho) = 1,

HQ8(5) = 〈g1, g2〉 × 〈e 2πi
3 〉 ≃ Q8 × C3

is of order 24 with R = O3,

HQ8(6) = 〈g1, g2, ho | g21 = g22 = −I2, h3o = I2, g2g1 = −g1g2,
hog1h

−1
o = g2, hog2h

−1
o = g1g2〉

is of order 24 with R = O−3, λ1(ho) = e
2πi
3 , λ2(ho) = 1,

HQ8(7) = 〈g1, g2, ho | g21 = g22 = h4o = −I2, g2g1 = −g1g2,
hog1h

−1
o = −g1, hog2h

−1
o = −g2〉

is of order 32 with R = Z[i], λ1(ho) = e
3πi
4 , λ2(ho) = e−

πi
4 ,

HQ8(8) = 〈g1, g2, ho | g21 = g22 = h4o = −I2, g2g1 = −g1g2,
hog1h

−1
o = g2, hog2h

−1
o = g1〉

is of order 32 with R = Z[i], λ1(ho) = e
3πi
4 , λ2(ho) = e−

pii
4 ,

HQ8(9) = 〈g1, g2, ho | g21 = g22 = −I2, h4o = I2, g2g1 = −g1g2,
hog1h

−1
o = g2, hog1h

−1
0 = g2〉

is of order 32 with R = Z[i], λ1(ho) = i, λ2(ho) = 1.
There exist subgroups

HQ8(1), HQ8(2), HQ8(9) < GL(2,Z[i]), Q8(5) < GL(2,O−3),

as well as subgroups

Ho
Q8(4) < GL(2,Q(

√
−2)), Ho

Q8(6) < GL(2,Q(
√
−3)),

Ho
Q8(3), Ho

Q8(7), Ho
Q8(8) < GL(2,Q(

√
2, i)),

such that Ho
Q8(j) ≃ HQ8(j) for j ∈ {3, 4, 6, 7, 8}.
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Proof. According to Lemmas 26 and 27, the group H = 〈g1, g2〉〈ho〉 with det(H) =
〈det(ho)〉 ≃ Cs is completely determined by the order r of ho and the elements
xj = hogjh

−1
o ∈ 〈g1, g2〉, 1 ≤ j ≤ 2 of order 4. Bearing in mind that 〈g1, g2〉(4) =

{±g1,±g2,±g1g2}, let us split the considerations into Case A with xj ∈ {±gj} for
1 ≤ j ≤ 2, Case B with hog1h

−1
o = g2, hog2h

−1
o = εg1 for some ε = ±1 and Case C

with hog1h
−1
o = g2, hog2h

−1
o = εg1g2 for some ε = ±1.

In the case A, let us distinguish between Case A1 with xj = hogjh
−1
o = gj for

∀1 ≤ j ≤ 2 and Case A2 with xk = hogkh
−1
o = −gk for some k ∈ {1, 2}. Note that if

hogj = gjho for ∀1 ≤ j ≤ 2 then ho ∈ H is a scalar matrix. Indeed, if ho has diagonal
form

Do = S−1hoS =

(
λ1 0
0 λ2

)

for some S ∈ GL(2,Q(
√
−d, λ1)) and

Dj = S−1gjS =

(
aj bj
cj −aj

)
∈ SL(2,Q(

√
−d, λ1)) for 1 ≤ j ≤ 2 then

DoDjD
−1
o =




aj
λ1

λ2

bj

λ2

λ1
cj −aj


 (14)

coincides with Dj if and only if

∣∣∣∣∣∣

(
λ1

λ2
− 1
)
bj = 0(

λ2

λ1
− 1
)
cj = 0

.

The assumption λ1(ho) = λ1 6= λ2 = λ2(ho) implies bj = cj = 0 for ∀1 ≤ j ≤ 2, so
that

D1 = ±i
(

1 0
0 −1

)
and D2 =

(
1 0
0 −1

)

are diagonal. In particular, D1 commutes with D2, contrary to D2D1 = −D1D2.
Thus, in the Case A1 with hogj = gjho for ∀1 ≤ j ≤ 2 the matrix ho ∈ H is
to be scalar. By Propositions 16, 17, 18, 19, 20, 21, 22, the scalar matrices ho ∈
GL(2, R) \ SL(2, R) are

ho = iI2 ∈ GL(2,Z[i]) of order 4,

ho = e±
2πi
3 I2 ∈ GL(2,Z[i]) of order 3 and

ho = e±
πi
3 I2 ∈ GL(2,Z[i]) of order 6.

For any subgroup

Q8 ≃ 〈g1, g2 | g21 = g22 = −I2, g2g1 = −g1g2〉 < SL(2,Z[i])
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one obtains a group

HQ8(1) = 〈g1, g2, iI2 | g21 = g22 = −I2, g2g1 = −g1g2〉 < GL(2,Z[i])

of order 16. As far as −I2 ∈ H ∩ SL(2, R), the group H contains e
2πi
3 I2 if and only

if it contains −e 2πi
3 I2 = e−

πi
3 I2. Since 〈g1, g2〉 ∩ 〈e 2πi

3 I2〉 = {I2}, any finite group H

with e
2πi
3 I2 ∈ H is a subgroup of GL(,O−3) of the form

HQ8(5) = 〈g1, g2〉 × 〈e 2πi
2 I2〉 ≃ Q8 × C3.

These deplete H = [H ∩ SL(2, R)]〈ho〉 = 〈g1, g2〉〈ho〉 ≃ Q8Cs of Case A1.
In the Case A2, one can assume that hog1h

−1
o = −g1. If hog2ho = g2 then

ho(g1g2)h
−1
o = −g1g2, so that there is no loss of generality in supposing hog2h

−1
o = −g2.

By Lemma 33(iv), hog1h
−1
o = −g1 requires λ1(ho) = ie

πi
s , λ(ho) = −ieπi

s , whereas
λ1(ho)
λ2(ho)

+ 1 = λ2(ho)
λ1(ho)

+ 1 = 0. If

Do = S−1hoS =

(
ie

πi
s 0

0 −ieπi
s

)
∈ GL(2,Q(

√
−d, ieπi

s ))

is a diagonal form of ho ∈ H and

Dj = S−1gjS =

(
aj bj
cj −aj

)
∈ GL(2,Q(

√
−d, ieπi

s )) for 1 ≤ j ≤ 2,

then DoDjD
−1
o = −Dj for 1 ≤ j ≤ 2 is equivalent to a1 = a2 = 0. As a result, bj 6= 0

and cj = − 1
bj

. Straightforwardly, D2D1 = −D1D2 amounts to 2a1a2+b1c2+b2c1 = 0,

whereas b2
b1
+ b1

b2
= 0. Denoting β := b2

b1
∈ Q(

√
−d, ieπi

s ), one computes that β = ±i ∈
Q(

√
−d, ieπi

s ). Then by Lemma 28 there follows s = 2 with d = 1 or s = 4. For s = 2
one has λ1(ho) = −1, λ2(ho) = 1, so that ho ∈ H is of order 2 and

H = HQ8(2) = 〈g1, g2, ho | g21 = g22 = −I2, h2o = I2,

g2g1 = −g1g2, hog1h
−1
o = −g1, hog2h

−1
o = −g2〉

is a subgroup of GL(2, R−1,f) of order 16. Note that

ho =

(
−1 0
0 1

)
, g1 =

(
0 1
−1 0

)
and g2 =

(
0 i
i 0

)

generate a subgroup of GL(2,Z[i]), isomorphic to HQ8(2). In the case of s = 4, the

element ho ∈ H with eigenvalues λ1(ho) = e
3πi
4 , λ2(ho) = e−

πi
4 is of order 8 and

H = HQ8(7) = 〈g1, g2, ho | g21 = g22 = h4o = −I2, g2g1 = −g1g2

hog1h
−1
o = −g1, hog2h

−1
o = −g2〉
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is a subgroup of GL(2,Z[]i) of order 32. The matrices

Do =

(
e

3πi
4 0

0 e−
πi
4

)
, D1 =

(
0 1

−1 0

)
, D2 =

(
0 i
i 0

)

generate a subgroup Ho
Q8(7) of GL(2,Q(

√
2, i)), isomorphic to HQ8(7). That con-

cludes the Case A.
In the Case B, let us observe that hog1h

−1
o = g2 and hog2h

−1
o = εg1 imply h2og1h

−2
o =

εg1 and h2og2h
−2
o = εg2. If h2o ∈ H ∩SL(2, R) then det(ho) = λ1(ho)λ2(ho) = −1. The

matrices

Do = S−1hoS =

(
λ1(ho) 0

0 λ2(ho)

)
and Dj = S−1gjS =

(
aj bj
cj −aj

)

with a2j + bjcj = −1, 2a1a2 + b1c2 + b2c1 = 0 satisfy DoD1D
−1
o = D2 if and only if

D2 =

(
a1 −λ21(ho)b1

− c1
λ2

1
(ho)

−a1

)
.

Then DoD2D
−1
o = εD1 is equivalent to

∣∣∣∣∣∣∣

(ε− 1)a1 = 0
(ε− λ41(ho))b1 = 0(
ε− 1

λ4

1
(ho)

)
c1 = 0

.

According to det(D1) = 1 6= 0, there follows (ε − 1)(ε − λ41(ho)) = 0. In the case of
−1 = ε = λ41(ho), Proposition 16 implies that R = O−2, ho is of order 8 and

Do = S−1hoS =

(
e

πi
4 0

0 e
3πi
4

)
∈ GL(2,Q(

√
2, i)).

Moreover,

D1 =

(
0 b1

− 1
b1

0

)
, D2 =

(
0 −ib1

− i
b1

0

)
,

so that the subgroup

HQ8(3) = 〈g1, g2, ho | g21 = g22 = h4o = −I2, g2g1 = −g1g2,

hog1h
−1
o = g2, hog2h

−1
o = −g1〉 < GL(2,O−2)

of order 16 is conjugate to the subgroup

Ho
Q8(3) = 〈Do =

(
e

πi
4 0

0 e
3πi
4

)
, D1 =

(
0 1

−1 0

)
,
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D2 =

(
0 −i

−i 0

)
〉 < GL(2,Q(

√
2, i)).

For ε = 1 and λ41(ho) 6= 1 there follows

D2 = D1 = ±
(

i 0
0 −i

)
,

which contradicts D2D1 = −D1D2. Therefore ε = 1 implies λ41(ho) = 1 and

Do =

(
1 0
0 −1

)

is of order 2, since all ho ∈ H of order 4 with det(ho) = −1 are scalar matrices and
commute with g1, g2. In such a way, one obtains the group

HQ8(4) = 〈g1, g2, ho | g21 = g22 = −I2, h2o = I2, g2g1 = −g1g2,

hog1h
−1
o = g2, hog2h

−1
o = g1〉

of order 16. The matrices

D1 =

(
a1 b1
c1 −a1

)
and D2 =

(
a1 −b1

−c1 −a1

)

generate a subgroup of GL(2,Q(
√
−d)), isomorphic to Q8 exactly when a1 = ±

√
−2
2

∈
Q(

√
−d) and c1 = − 1

b1
for some b1 ∈ Q(

√
−d)∗. Therefore HQ8(4) occurs only as a

subgroup of GL(2, R−2,f) and

Do =




1 0

0 −1


 , D1 =




√
−2
2

1

−1
2

−
√
−2
2


 , D2 =




√
−2
2

−1

1
2

−
√
−2
2




generate a subgroup Ho
Q8(4) of GL(2,Q(

√
−2)), isomorphic to HQ8(4). That con-

cludes the Case B with h2o ∈ H ∩ SL(2, R).
Let us suppose that hog1h

−1
o = g2, hog2h

−1
o = εg1 with det(ho) ∈ R∗ of order s > 2.

Note that hso ∈ H ∩ SL(2, R) = 〈g1, g2〉 implies hsogjh
−s
o ∈ {±gj} for ∀1 ≤ j ≤ 2, so

that s ∈ {4, 6} has to be an even natural number. The group

H ′ = 〈g1, g2, h2o | g21 = g22 = −I2, hro = I2, g2g1 = −g1g2,

h2og1h
−2
o = εg1, h2og2h

−2
o = εg2〉

with h2o ∈ GL(2, R)\SL(2, R), H ′∩SL(2, R) = 〈g1, g2〉 ≃ Q8 is of order 8 s
2
∈ {16, 24}

and satisfies the assumptions of Case A. Thus, for ε = 1 one has h2o = iI2 or h2o =

e
2πi
3 I2. If h2o = iI2 then ho ∈ H is of order 8 with det(ho) = ±i. Therefore R = Z[i]
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and ho has eigenvalues λ1(ho) = e
3πi
4 , λ2(ho) = e−

πi
4 with λ1(ho)

λ2(ho)
= λ2(ho)

λ1(ho)
= −1. The

relations DoD1D
−1
o = D2, DoD2D

−1
o = D1 on the diagonal form Do of ho hold for

D1 =

(
a1 b1
c1 −a1

)
, D2 =

(
a1 −b1

−c1 −a1

)
∈ SL(2,Q(

√
2, i)).

The group 〈D1, D2〉 is isomorphic to Q8 if and only if a1 = ±
√
−2
2

and c1 = − 1
b1

for

some b1 ∈ Q(
√
2, i). In such a way, one obtains the group

HQ8(8) = 〈g1, g2, ho |g21 = g22 = h4o = −I2, g2g1 = −g1g2,

hog1h
−1
o = g2, hog2h

−1
o = g1〉

for R = Z[i]. Note that HQ8(8) is of order 32 and has a conjugate Ho
Q8(8) =

〈D1, D2, Do〉 < GL(2,Q(
√
2, i)). If h2o = e

2πi
3 I2 then R = O−3 and ho ∈ H is of

order 6 with det(ho) = e±
2πi
3 . According to hog1h

−1
o = g2 6= g1, ho is not a scalar

matrix, so that λ1(ho) = e−
πi
3 , λ2(ho) = −1 for det(ho) = e

2πi
3 . Now, DoD1D

−1
o = D2

is tantamount to

D2 =




a1 e
2πi
3 b1

e−
2πi
3 c1 −a1




and DoD2D
−1
o = D1 reduces to

∣∣∣∣∣∣

(
1− e−

2πi
3

)
b1 = 0(

1− e
2πi
3

)
c1 = 0

.

As a result, b1 = c1 and

D1 = D2 = ±
(

i 0
0 −i

)

commute with each other. Thus, there is no group H of Case B with h2o = e
2πi
3 I2. If

hog1h
−1
o = g2, hog2h

−1
o = −g1 and h2o 6∈ 〈g1, g2〉 then

H ′ = 〈g1, g2, h2o | g21 = g22 = −I2, hro = I2, g2g1 = −g1g2,

h2og1h
−2
o = −g1, h2og2h

−2
o = −g2〉

is isomorphic to HQ8(2) or HQ8(7), according to the considerations for Case A. More
precisely, if H ′ ≃ HQ8(2) then ho of order 4 has det(ho) = ±i and R = Z[i]. Due to
−I2 ∈ 〈g1, g2〉, one can assume that

Do =

(
i 0
0 1

)
.
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Then DoD1D
−1
o = D2 requires

D2 =

(
a1 ib1

−ic1 −a1

)
,

so that DoD2D
−1
o = −D1 results in a1 = 0. Bearing in mind that det(D1) =

det(D2) = 1, one concludes that

D1 =

(
0 b1

− 1
b1

0

)
, D2 =

(
0 ib1
i
b1

0

)
.

For b1 = 1, one obtains a subgroup 〈D1, D2, Do〉 of GL(2,Z[i]), isomorphic to

HQ8(9) = 〈g1, g2, ho | g21 = g22 = −I2, h4o = I2, g2g1 = −g1g2,

hog1h
−1
o = g2, hog2h

−1
o = −g1〉 < GL(2,Z[i]).

Since det(ho) = i is of order s = 4, the group HQ8(9) is of order 32. If H ′ =
〈g1, g2, h2o〉 ≃ HQ8(7) then ho ∈ H is to be of order 16, since h2o is of order 8. The lack
of ho ∈ GL(2, R) of order 16 reveals that the groups HQ8(3), HQ8(4), HQ8(8), HQ8(9)
deplete Case B.

There remains to be considered Case C with hog1h
−1
o = g2, hog2h

−1
o = εg1g2,

ho(g1g2)h
−1
o = εg1 for some ε = ±1. Note that h2og1h

−2
o = εg1g2, h

2
og2h

−2
o = g1,

h3og1h
−3
o = g1, h

3
og2h

−3
o = g2 require the divisibility of s by 3, as far as 〈gj〉 are

normal subgroups of 〈g1, g2〉 and hso ∈ 〈g1, g2〉. In other words, s ∈ {3, 6} and R =

O−3. The non-scalar matrices ho ∈ GL(2,O−3) with det(ho) = e
2πi
3 have eigenvalues

{λ1(ho), λ2(ho)} =
{
e

2πi
3 , 1

}
,
{
e−

πi
3 ,−1

}
or
{
e

5πi
6 , e−

πi
6

}
. If ho is of order 3 or 6 then

λ1(ho)
λ2(ho)

= e
2πi
3 and DoD1D

−1
o = D2 specifies that

D2 =

(
a1 e

2πi
3 b1

e−
2πi
3 c1 −a1

)
.

Now, 2a1a2 + b1c2 + b2c1 = 0 reduces to 2a21 = b1c1 and a21 + b1c1 = −1 requires
a1 = ±−3

3
, c1 = − 2

3b1
for some b1 ∈ Q(

√
−3)∗. Replacing, eventually, Dj by D3

j , one
has

D1 =




√
−3
3

b1

− 2
3b1

−
√
−3
3


 , D2 =




√
−3
3

e
2πi
3 b1

−2e−
2πi
3

3b1
−

√
−3
3


 .

Now,

D1D2 =




√
−3
3

e−
2πi
3 b1

−2e
2πi
3

3b1
−

√
−3
3
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and DoD2D
−1
o = εD1D2 holds for ε = 1. Thus,

Ho
Q8(6) = 〈D1, D2, Do〉 < GL(2,Q(

√
−3))

is conjugate to

HQ8(6) = 〈g1, g2, ho | g21 = g22 = −I2, h3o = I2, g2g1 = −g1g2

hog1h
−1
o = g2, hog2h

−1
o = g1g2〉 < GL(2,O−3)

of order 24 with λ1(ho) = e
2πi
3 , λ2(ho) = 1 or to

H = 〈g1, g2, ho | g21 = g22 = −I2, h3o = −I2, g2g1 = −g1g2, (15)

hog1h
−1
o = g2, hog2h

−1
o = g1g2〉 < GL(2,O−3)

of order 24 with λ1(ho) = e−
πi
3 , λ2(ho) = −1. Due to −I2 ∈ 〈g1, g2〉, the presence

of ho ∈ H of order 6 with det(H) = 〈det(ho)〉 ≃ C3 is equivalent to the existence of
−ho ∈ H of order 3 with det(H) = 〈det(−ho)〉 ≃ C3 and H from (15) is isomorphic
to HQ8(6). If ho has diagonal form

Do =

(
e

5πi
6 0

0 e−
πi
6

)
∈ GL(2,Q(

√
−3))

of order 12 with det(Do) = e
2πi
3 , λ1(ho)

λ2(ho)
= λ2(ho)

λ1(ho)
= −1, then DoD1D

−1
o = D2 implies

that

D2 =

(
a1 −b1

−c1 a1

)

with a21 = b1c1 = −1
2
. Therefore, a1 = ±

√
−2
2

∈ GL(2,Q(
√
−3)), which is an absurd.

If hog1h
−1
o = g2, hog2h

−1
o = εg1g2 and s = 6 then ho ∈ H is of order 6, according to

Proposition 19. Now H ′′ = 〈g1, g2, h3o〉 < GL(2, R) with h3o 6∈ 〈g1, g2〉 is subject to
Case A with a scalar matrix ho ∈ H , according to h3og1h

−3
o = g1, h

3
og2h

−3
o = g2. If

h3o = iI2 then ho is of order r = 12. The assumption h3o = e
2πi
3 I2 holds for ho of order

r = 9. Both contradict to r = 6 and establish that any subgroup H < GL(2, R) with
H ∩ SL(2, R) ≃ Q8 is isomorphic to HQ8(i) for some 1 ≤ i ≤ 9.

Proposition 39. Let H be a finite subgroup of GL(2, R),

H ∩ SL(2, R) = K7 = 〈g1, g4, g21 = g34 = −I2, g1g4g
−1
1 = g−1

4 〉 ≃ Q12

and ho ∈ H be an element of order r with det(H) = 〈det(ho)〉 ≃ Cs and eigenvalues
λ1(ho), λ2(ho). Then H is isomorphic to HQ12(i) for some 1 ≤ i ≤ 10, where

HQ12(1) = 〈g1, g4, ho = iI2 | g21 = g34 = −I2, g1g4g
−1
1 = g−1

4 〉
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is of order 24 with R− Z[i],

HQ12(2) = 〈g1, g4, ho | g21 = g34 = −I2, h6o = I2, g1g4g
−1
1 = g−1

4 ,

hog1h
−1
o = g1g4, hog4h

−1
o = g4〉

of order 24, with R = O−3, λ1(ho) = e
πi
3 , λ2(ho) = e

2πi
3 ,

HQ12(3) = 〈g1, g4, ho | g21 = g34 = h6o = −I2, g1g4g−1
1 = g−1

4 ,

hog1h
−1
o = g1g

2
4, hog4h

−1
o = g4〉

is of order 24 with R = O−3, λ1(ho) = e
πi
6 , λ2(ho) = e

5πi
6 ,

HQ12(4) = 〈g1, g4, ho | g21 = g34 = −I2, h2o = I2, g1g4g
−1
1 = g−1

4 ,

hog1h
−1
o = −g1, hog4h

−1
o = g4〉

is of order 24 with λ1(ho) = −1, λ2(ho) = 1,

HQ12(5) = 〈g1, g4, ho = e
2πi
3 I2 | g21 = g34 = −I2, g1g4g

−1
1 = g−1

4 〉

is of order 36 with R = O−3,

HQ12(6) = 〈g1, g4, ho | g21 = g34 = −I2, h3o = I2, g1g4g
−1
1 = g−1

4 ,

hog1h
−1
o g1g

2
4, hog4h

−1
o = g4〉

is of order 36 with R = O−3, λ1(ho) = e
2πi
3 , λ2(ho) = 1,

HQ12(7) = 〈g1, g4, ho | g21 = g34 = h6o = −I2, g1g4g
−1
1 = g−1

4 ,

hog1h
−1
o = −g1, hog4h

−1
o = g4〉

is of order 36 with R = O−3, λ1(ho) = e−
πi
6 , λ2(ho) = e

5πi
6 ,

HQ12(8) = 〈g1, g4, ho | g21 = g34 = h4o = −I2, g1g4g
−1
1 = g−1

4 ,

hog1h
−1
o = −g1, hog4h

−1
o = g4〉

is of order 48 with R = Z[i], λ1(ho) = e
3pii
4 , λ2(ho) = e−

πi
4 ,

HQ12(9) = 〈g1, g4, ho | g21 = g34 = −I2, h6o = I2, g1g4g
−1
1 = g−1

4 ,

hog1h
−1
o = g1g4, hog4h

−1
o = g4〉

is of order 72 with R = O−3, λ1(ho) = 1, λ2(ho) = e
πi
3 ,

HQ12(10) = 〈g1, g4, ho | g21 = g34 = −I2, h6o = I2, g1g4g
−1
1 = g−1

4 ,

70



hog1h
−1
o = −g1, hog4h

−1
o = g4〉

is of order 72 with R = O−3, λ1(ho) = e
2πi
3 , λ2(ho) = e−

πi
3 .

There exist subgroups

HQ12(2), HQ12(4), HQ12(5), HQ12(6), HQ12(9), HQ12(10) < GL(2,O−3),

as well as subgroups

Ho
Q12(1), H

o
Q12(3), H

o
Q12(7) < GL(2,Q(

√
3, i)), Ho

Q12(8) < GL(2,Q(
√
2,
√
3, i))

with Ho
Q12(j) ≃ HQ12(j) for j ∈ {1, 3, 7, 8}.

Proof. According to Lemma 27, the groups H = K7〈ho〉 with det(H) = 〈det(ho)〉 ≃
Cs are determined up to an isomorphism by the order r of ho, the element hog1h

−1
o ∈

K7 of order 4 and the element hog4h
−1
o ∈ K7 of order 6. Let us denote by K

(m)
7 the

set of the elements of K7 of order m. Straightforwardly,

K
(6)
7 = {g4, g−1

4 }, K
(4)
7 = {±g1g4 | 0 ≤ i ≤ 3}.

Inverting g1g4g
−1
1 = g−1

4 , one obtains g1g
−1
4 g−1

1 = g4. If hog4h
−1
o = g−1

4 then

(g1ho)g4(g1h
−1
o = g1(hog4h

−1
o )g−1

1 = g1g
−1
4 g−1

1 = g4.

As far as K7 = 〈g1, g4, ho〉 = 〈g1, g4, g1ho〉, there is no loss of generality in assuming
hog4h

−1
o = g4.

We start the study of H by a realization of K7 as a subgroup of the special linear
group SL(2,Q(

√
−d,

√
−3)). Let

D4 = S−1g4S =

(
e

πi
3 0

0 e−
πi
3

)

be a diagonal form of g4 for some S ∈ GL(2,Q(
√
−d,

√
−3)) and

D1 = S−1g1S =

(
a1 b1
c1 −a1

)
with a21 + b1c1 = −1.

Then

D1D4D
−1
1 =




−
√
−3a21 + e−

πi
3 −

√
−3a1b1

−
√
−3a1c1

√
−3a21 + E

πi
3


 ∈ SL(2,Q(

√
−d,

√
−3))

coincides with D−1
4 if and only if

D1 =

(
0 b1

−b−1
1 0

)
for some b1 ∈ Q(

√
−d,

√
−3)∗.
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That allows to compute explicitly

K
(4)
7 =

{
±D1 = ±

(
0 b1

−b−1
1 0

)
, ±D1D4 = ±

(
0 e−

πi
3 b1

−
(
e−

πi
3 b1

)−1

0

)
,

±D1D
2
4 = ±

(
0 e−

2πi
3 b1

−
(
e−

2πi
3 b1

)−1

0

)}
,

K
(4)
7 =



D1D

j
4 =


 0 e−

jπi
3 b1

−
(
e−

jπi
3 b1

)−1

0




∣∣∣∣∣ 0 ≤ j ≤ 5



 .

Now, DoD4D
−1
o = D4 amounts to

Do =

(
λ1(ho) 0

0 λ2(ho)

)
and

DoD1D
−1
o =




0 λ1(ho)
λ2(ho)

b1

−
[
λ1(ho)
λ2(ho)

b1

]−1

0


 =


 0 e−

jπi
3 b1

−
(
e−

jπi
3 b1

)−1

0


 = D1D

j
4

if and only if λ1(ho)
λ2(ho)

= e−
jπi
3 . Note that the ratio λ1(ho)

λ2(ho)
of the eigenvalues of ho is

determined up to an inversion and
{
e−

jπi
3 | 0 ≤ j ≤ 5

}
=
{
1 = e0, e∓

jπi
3 , −1 = eπi | 1 ≤ j ≤ 2

}
.

For any ho ∈ H with λ1(ho)
λ2(ho)

= e∓
jπi
3 , 0 ≤ j ≤ 3 the group

H = 〈g1, g4, ho | g21 = g34 = −I2, hro = I2, g1g4g
−1
1 = g−1

4 ,

hog1h
−1
o = g1g

j
4, hog4h

−1
o = g4〉.

Note that λ1(ho)
λ2(ho)

= 1 exactly when ho ∈ H \ SL(2, R) is a scalar matrix. Ac-
cording to Propositions 16, 17, 18, 19, 20, 21, 22, the only scalar matrices ho ∈
GL(2, R) \ SL(2, R) are ho = ±iI2 for R = Z[i] and ho = e±

2πi
3 I2 or e±

πi
3 I2 with

R = O−3. Replacing, eventually, ho = −iI2 by h−1
o = iI2, one obtains the group

HQ12(1) = 〈g1, g4, iI2〉 with R = Z[i]. Note that Ho
Q12(1) = 〈D1, D4, ho = iI2〉 is

a realization of HQ12(1) as a subgroup of GL(2,Q(
√
3, i)). Bearing in mind that

−I2 ∈ K7, one observes that e−
πi
3 I2 ∈ H if and only if −e−πi

3 I2 = e
2πi
3 I2 ∈ H . Re-

placing, eventually, e
πi
3 I2 and e−

2πi
3 I2 by their inverse matrices, one observes that

ho = e
2πi
3 I2 ∈ H whenever H contains a scalar matrix of order 3 or 6. That provides

the group HQ12(5) = 〈g1, g4, e
2πi
3 I2〉. Note that

〈D1 =

(
0 1

−1 0

)
, D4 =

(
e

πi
3 0

0 E−πi
3

)
, Do = e

2πi
3 I2〉 < GL(2,O−3)
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is a realization of HQ12(5) as a subgroup of GL(2,O−3).

For λ1(ho)
λ2(ho)

= e∓
πi
3 , Corollary 29 specifies that either R = O−3, s = 2, r = 6,

λ1(ho) = e
πi
3 , λ2(ho) = e

2πi
3 and H ≃ HQ12(2) or R = O−3, s = 6, r = 6, λ1(ho) =

εe
ηπi
3 , λ2(ho) = ε. In the second case, one can restrict to ε = 1, due to −I2 ∈ K7 ⊂ H .

The corresponding group H ≃ HQ12(9). Both, HQ12(2) and HQ12(9) can be realized
as subgroups of GL(2,O−3), setting

g1 =

(
0 1

−1 0

)
, g4 =

(
e

πi
3 0

0 e−
πi
3

)
,

ho =

(
e

πi
3 0

0 e
2πi
3

)
or, respectively, ho =

(
e−

πi
3 0

0 1

)
.

If λ1(ho)
λ2(ho)

= e∓
2πi
3 then, eventually, replacing ho by h−1

o , one has λ1(ho) = e
πi
6 ,

λ2(ho) = e
5πi
6 , s = 2, r = 12, R = Z[i] andH ≃ HQ12(3) or λ1(ho) = ε, λ2(ho) = εe

2πi
3 ,

s = 3, R = O−3, by Corollary 29. Note that −I2 ∈ K7 ⊂ H reduces the second case
to λ1(ho) = 1, λ2(ho) = e

2πi
3 , s = 3, r = 3, R = O−3 and H ≃ HQ12(6). Note that

g1 =

(
0 1

−1 0

)
, g4 =

(
e

πi
3 0

0 e−
πi
3

)
, ho =

(
1 0

0 e
2πi
3

)

generate a subgroup of GL(2,O−3), isomorphic to HQ12(6). In the case of H ≃
HQ12(3) the eigenvalues of ho are primitive twelfth roots of unity, so that

D1 =

(
0 b1

−b−1
1 0

)
, D4 =

(
e

πi
3 0

0 e−
πi
3

)
, Do =

(
e

πi
6 0

0 e
5πi
6

)

generate a subgroup Ho
Q12(3) < GL(2,Q(

√
3, i)), isomorphic to HQ12(3).

For λ1(ho)
λ2(ho)

= −1 there are four non-equivalent possibilities for the eigenvalues

λ1(ho), λ2(ho) of ho. The first one is λ1(ho) = 1, λ2(ho) = −1 with s = 2, r = 2 for
any R = R−d,f and H ≃ HQ12(4) of order 24. Note that

D1 =

(
0 1

−1 0

)
, D4 =

(
e

πi
3 0

0 e−
πi
3

)
, ho =

(
1 0
0 −1

)

realizes HQ12(4) as a subgroup of GL(2,O−3). The second one is λ1(ho) = e
3πi
4 ,

λ2(ho) = E−πi
4 with s = 4, r = 8, R = Z[i] and H ≃ HQ12(8) of order 48. Observe

that

D1 =

(
0 1

−1 0

)
, D4 =

(
e

πi
3 0

0 e−
πi
3

)
, Do =

(
e

3πi
4 0

0 e−
πi
4

)
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generate a subgroup of GL(2,Q(
√
2,
√
3, i)), isomorphic to HQ12(8). In the third case,

λ1(ho) = e−
πi
6 , λ2(ho) = e

5πi
6 with s = 3, r = 12, R = O−3 and H ≃ HQ12(7) of order

36, realized by

D1 =

(
0 1

−1 0

)
, D4 =

(
e

πi
3 0

0 e−
πi
3

)
, Do =

(
e−

πi
6 0

0 e
5πi
6

)

as a subgroup of GL(2,Q(
√
3, i)). In the fourth case, λ1(ho) = e

2πi
3 , λ2(ho) = e−

πi
3

with s = 6, r = 6, R = O−3 and H ≃ HQ12(10) of order 72. The matrices

g1 =

(
0 1

−1 0

)
, g4 =

(
e

πi
3 0

0 e−
πi
3

)
, ho =

(
e

2πi
3 0

0 e−
πi
3

)

generate a subgroup of GL(2,O−3), isomorphic to HQ12(10). The groups HQ12(4),

HQ12(7), HQ12(8), HQ12(10) with λ1(ho)
λ2(ho)

= −1 are non-isomorphic, as far as they are
of different orders.

Proposition 40. Let H be a finite subgroup of GL(2, R),

H ∩ SL(2, R) = K8 = 〈g1, g2, g3 | g21 = g22 = −I2, g33 = I2, g2g1 = −g1g2,

g3g1g
−1
3 = g2, g3g2g

−1
3 = g1g2〉 ≃ SL(2,F3)

and ho ∈ H be an element of order r with det(H) = 〈det(ho)〉 ≃ Cs and eigenvalues
λ1(ho), λ2(ho). Then H is isomorphic to HSL(2,3)(i) for some 1 ≤ i ≤ 9, where

HSL(2,3)(1) = 〈g1, g2, g3, iI2 | g21 = g22 = −I2, g33 = I2, g2g1 = −g1g2,

g3g1g
−1
3 = g2, g3g2g

−1
3 = g1g2, 〉

of order 48 with R = Z[i],

HSL(2,3)(2) = 〈g1, g2, g3, ho | g21 = g22 = −I2, g33 = I2, h2o = I2, g2g1 = −g1g2

g3g1g
−1
3 = g2, g3g2g

−1
3 = g1g2, hog1h

−1
o = −g1, hog2h

−1
o = −g2, hog3h

−1
o = −g2g3〉

of order 48 with R = Z[i], λ1(ho) = −1, λ2(ho) = 1,

HSL(2,3)(3) = 〈g1, g2, g3, ho | g21 = g22 = h4o = −I2, g33 = I2, g2g1 = −g1g2,

g3g1g
−1
3 = g2, g3g2g

−1
3 = g1g2, hog1h

−1
o = g2, hog2h

−1
o = −g1, hog3h

−1
o = g2g

2
3〉

of order 48 with R = O−2, λ1(ho) = e
πi
4 , λ2(ho) = e

3πi
4 ,

HSL(2,3)(4) = 〈g1, g2, g3, ho | g21 = g22 = −I2, g33 = I2, h2o = I2, g2g1 = −g1g2
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g3g1g
−1
3 = g2, g3g2g

−1
3 = g1g2, hog1h

−1
o = g2, hog2h

−1
o = g1, hog3h

−1
o = g1g

2
3〉

of order 48 with R = R−2,f , λ1(ho) = −1, λ2(ho) = 1,

HSL(2,3)(5) = K8 × 〈e 2πi
3 I2〉 ≃ SL(2,F3)× C3

of order 72 with R = O−3,

HSL(2,3)(6) = 〈g1, g2, g3, ho | g21 = g22 = −I2, g33 = I2, h3o = I2, g2g1 = −g1g2,

g3g1g
−1
3 = g2, g3g2g

−1
3 = g1g2, hog1h

−1
o = g2, hog2h

−1
o = g1g2, hog3h

−1
o = g3〉

of order 72 with R = O−3, λ1(ho) = e
2πi
3 , λ2(ho) = 1,

HSL(2,3)(7) = 〈g1, g2, g3, ho | g21 = g22 = h4o = −I2, g33 = I2, g2g1 = −g1g2

g3g1g
−1
3 = g2, g3g2g

−1
3 = g1g2, hog1h

−1
o = −g1, hog2h

−1
o = −g2, hog3h

−1
o = −g2g3〉

of order 96 with R = Z[i], λ1(ho) = e
3πi
4 , λ2(ho) = e−

πi
4 ,

HSL(2,3)(8) = 〈g1, g2, g3, ho | g21 = g22 = h4o = −I2, g33 = I2, g2g1 = −g1g′2

g3g1g
−1
3 = g2, g3g2g

−1
3 = g1g2, hog1h

−1
o = g2, hog2h

−1
o = g1, hog3h

−1
o = g1g

2
3〉

of order 96 with R = Z[i], λ1(ho) = e
3πi
4 , λ2(ho) = e−

πi
4 ,

HSL(2,3)(9) = 〈g1, g2, g3, ho | g21 = g22 = −I2, g33 = I2, h4o = I2, g2g1 = −g1g2,

g3g1g
−1
3 = g2, g3g2g

−1
3 = g1g2, hog1h

−1
o = g2, hog2h

−1
o = −g1, hog3h

−1
o = g2g

2
3〉

of order 96 with R = Z[i], λ1(ho) = i, λ2(ho) = 1.
There exists a subgroup

HSL(2,3)(5) < GL(2,O−3),

as well as subgroups

Ho
SL(2,3)(1), H

o
SL(2,3)(2), H

o
SL(2,3)(9) < GL(2,Q(

√
3, i)),

Ho
SL(2,3)(4) < GL(2,Q(

√
−2,

√
−3)),

Ho
SL(2,3)(3), H

o
SL(2,3)(7), H

o
SL(2,3)(8) < GL(2,Q(

√
2,
√
3, i))

with Ho
SL(2,3)(j) ≃ HSL(2,3)(j) for 1′ ≤ j ≤ 4 or 6 ≤ j ≤ 9.
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Proof. According to Lemma 27, the groups H under consideration are uniquely deter-
mined up to an isomorphism by the order r of ho and by the elements hogjh

−1
o ∈ K

(4)
8 ,

1 ≤ j ≤ 2, x3 := hog3h
−1
o ∈ K

(3)
8 . (Throughout, G(ν) denotes the set of the elements of

order ν from a group G.) Recall by Proposition 24 the realization of K8 ≃ SL(2,F3)
as a subgroup K8 of GL(2,Q(

√
−d,

√
−3)), generated by the matrices

D1 =




−
√
−3
3

b1

− 2
3b1

√
−3
3


 , D2 =




−
√
−3
3

e−
2πi
3 b1

−2e
2πi
3

3b1

√
−3
3


 , D3 =

(
e

2πi
3 0

0 e−
2πi
3

)

with some b1 ∈ Q(
√
−d,

√
−3)∗. After computing

D1D2 =




−
√
−3
3

e−
4πi
3 b1

−2e
4πi
3

3b1

√
−3
3


 ,

one puts

δj :=




−
√
−3
3

e−
2jπi
3 b1

−2e
2jπi
3

3b1

√
−3
3


 for 0 ≤ j ≤ 2

and observes that δ0 = D1, δ1 = D2, δ2 = D1D2. The elements of K8 of order 4
constitute the subset

K(4)
8 = {±δj | 0 ≤ j ≤ 2}.

In order to list the elements of K8 of order 3, let us note that D3D1D
−1
3 = D2 and

D3D2D
−1
3 = D1D2 imply D3(D1D2)D

−1
3 = D1. Thus, for any even permutation

j, l,m of 0, 1, 2, one has

∣∣∣∣∣∣

D3δjD
−1
3 = δl

D3δlD
−1
3 = δm

D3δmD
−1
3 = δj

or, equivalently,

∣∣∣∣∣∣

D3δj = δlD3

D3δl = δmD3

D3δm = δjD3

. (16)

Making use of (16, one computes that

(−δjD3)
2 = δmD

2
3, (−δjD3)

3 = (−δjD3)(−δjD3)
2 = I2 for all 0 ≤ j ≤ 2,

so that −δjD3 ∈ K(3)
8 . As a result, δjD

2
3 = (−δlDm)

2 ∈ K(3)
8 for all 0 ≤ j ≤ 2 and

K(3)
8 = {D3, −δjD3, D2

3, δjD
2
3 | 0 ≤ j ≤ 2}.

Proposition 24 has established that K8 has a unique Sylow 2-subgroup

H8 = 〈δ0, δ1 | δ20 = δ21 = −I2, δ1δ0 = −δ0δ1〉 = {±I2,±δj | 0 ≤ j ≤ 2},
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so that the set K(4)
8 = H(4)

8 of the elements of K8 of order 4 are contained in H8 ≃ Q8.
In other words, xj := hoδjh

−1
o ∈ H8 and H ′ = 〈g1, g2, ho〉 ≃ H′ = 〈δ0, δ1, Do〉 is a

subgroup of H with H ∩SL(2, R) ≃ Q8. Proposition 38 establishes that any such H ′

is isomorphic to HQ8(i) for some 1 ≤ i ≤ 9.
We claim that for any 1 ≤ i ≤ 9 there is (at most) a unique finite subgroup H =

〈g1, g2, g3, ho〉 of GL(2, R) with 〈g1, g2, ho〉 ≃ HQ8(i), H ∩ SL(2, R) = 〈g1, g2, g3〉 ≃
SL(2,F3) and det(H) = 〈det(ho)〉. To this end, let us consider the adjoint represen-
tation

Ad : K8 −→ S(K(4)
8 ) ≃ S6

Adx(y) = xyx−1 for ∀x ∈ K8, ∀y ∈ K(4)
8

and its restriction
Ad : K(3)

8 −→ S(K(4)
8 ) ≃ S6

to the elements of K8 of order 3. Note that

〈x0, x1〉 = ho〈δ0, δ1〉h−1
o = hoH8h

−1
o = H8,

as far as H8 ≃ Q8 is normal subgroup of H′ = H8〈ho〉. The adjoint action

Adho : K8 −→ K8

Adho(x) = hoxh
−1
o for ∀x ∈ K8

of ho is a group homomorphism and transforms the relations D3δsD
−1
3 = δs+1 for

0 ≤ s ≤ 1 into the relations x3xsx
−1
3 = xs+1 for 0 ≤ s ≤ 1. For any 1 ≤ i ≤ 9 the

subgroup H′ ≃ HQ8(i) of H determines uniquely x0, x1 ∈ H8. We claim that for any

such x0, x1 there is a unique x3 ∈ K(3)
8 with

Adx3
(x0) = x1, Adx3

(x1) = x0x1. (17)

Indeed, Proposition 38 specifies the following five possibilities:

Case 1 x0 = δ0, x1 = δ1;

Case 2 x0 = −δ0, x1 = −δ1;
Case 3 x0 = δ1, x1 = −δ0;
Case 4 x0 = δ1, x1 = δ0;

Case 5 x0 = δ1, x1 = δ2.

For any 0 ≤ s 6= t ≤ 2 and ε, η ∈ {±1} note that

Adεδs(ηδs) = ηδs, Adεδs(ηδt) = −ηδt.
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Combining with (14), one concludes that

AdD3
(〈δj〉) = Ad(−δsD3)(〈δj〉) = 〈δl〉,

AdD3
(〈δl〉) = Ad(−δsD3)(〈δl〉) = 〈δm〉,

AdD3
(〈δm〉) = Ad(−δsD3)(〈δm〉) = 〈δj〉

for any 0 ≤ s ≤ 2 and any even permutation j, l,m of 0, 1, 2. Similarly,

AdD2

3
(〈δj〉) = AdδsD

2

3
(〈δj〉) = 〈δm〉,

AdD2

3
(〈δl〉) = AdδsD

2

3
(〈δl〉) = 〈δj〉,

AdD2

3
(〈δm〉) = AdδsD

2

3
(〈δm〉) = 〈δl〉

for any 0 ≤ s ≤ 2 and any even permutation j, l,m of 0, 1, 2. In the case 1, (17)
read as Adx3

(δ0) = δ1, Adx3
(δ1) = δ2 and imply that x3 = D3, according to (16) and

Ad(−δs) 6≡ IdK8
for all 0 ≤ s ≤ 2. In the Case 2, Adx3

(δ0) = δ1 and Adx3
(δ1) = −δ2

specify that x3 = −δ1D3 = −D2D3. In the next Case 3, the relations Adx3
(δ1) = −δ0,

Adx3
(δ0 = δ2 hold if and only if x3 = δ1D

2
3 = D2D

2
3. Further, Adx3

(δ1) = δ0,
Adx3

(δ0) = −δ2 in Case 4 are satisfied by x3 = δ0D
2
3 = D1D

2
3 and Adx3

(δ1) = δ2,
Adx3

(δ2) = δ0 in Case 5 are valid for x3 = D3. Given a presentation of H ′ ≃ HQ8(i)
with generators g1, g2, ho, one adjoins a generator g3 ∈ SL(2, R) of order 3 and the
relation hog3h

−1
o = x3, in order to obtain a presentation of H ≃ HSL(2,3)(i), 1 ≤ i ≤ 9.

4 Explicit Galois groups for A/H of fixed Kodaira-

Enriques type

In order to classify the finite subgroups H of Aut(A), for which A/H is of a fixed
Kodaira-Enriques classification type, one needs to describe the finite subgroups H
of Aut(A) for A = E × E. Making use of the classification of the finite subgroups

L(H) of GL(2, R), done in section 3, let detL(H) = 〈detL(ho) = e
2πi
s 〉 ≃ Cs for

some s ∈ {1, 2, 3, 4, 6}, ho ∈ H . (In the case of s = 1, we choose ho = IdA.) By
Proposition 24 one has L(H) ∩ SL(2, R) = 〈L(h1), . . . ,L(ht)〉 for some 0 ≤ t ≤ 3.
(Assume L(H) ∩ SL(2, R) = {I2} for t = 0.) The linear part

L(H) = [L(h) ∩ SL(2, R)]〈L(ho)〉 = 〈L(h1), . . . ,L(ht)〉〈L(ho)〉
of H is a product of its normal subgroup 〈L(h1), . . . ,L(ht)〉 and the cyclic group
〈L(ho)〉. The translation part T (H) = ker(L|H) of H is a finite subgroup of (TA,+) ≃
(A,+). The lifting

(
T̃A,+

)
<
(
Ã = C2,+

)
of T (H) is a free Z-module of rank 4.

Therefore
(
T̃ (H),+

)
has at most four generators and

T (H) = 〈τ(Pi,Qi) | 1 ≤ i ≤ m〉 for some 0 ≤ m ≤ 4.
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(In the case of m = 0 one has T (H) = {IdA}.) We claim that

H = T (H)〈h1, . . . , ht, ho〉 = 〈τ(Pi,Qi), hj , ho | 1 ≤ i ≤ m, 1 ≤ j ≤ t〉

for some 0 ≤ m ≤ 4, 0 ≤ t ≤ 3. The choice of τ(Pi,Qi), hj, ho ∈ H justifies the inclusion
〈τ(Pi,Qi), hj, ho | 1 ≤ i ≤ m, 1 ≤ j ≤ t〉 ⊆ H . For the opposite inclusion, an arbitrary
element h ∈ H with L(h) = L(h1)k1 . . .L(ht)ktL(ho)ko for some kj ∈ Z produces a
translation τ(U,V ) := hh−ko

o h−kt
t . . . h−k1

1 ∈ ker (L|H) = T (H) = 〈τ(Pi,Qi) | 1 ≤ i ≤ m〉,
so that h = τ(U,V )h

k1
1 . . . hktt h

ko
o ∈ 〈τ(Pi,Qi), hj, ho | 1 ≤ i ≤ m, 1 ≤ j ≤ t〉 and

H ⊆ 〈τ(Pi,Qi), hj , ho | 1 ≤ i ≤ m, 1 ≤ j ≤ t〉. In such a way, we have derived the
following

Lemma 41. If H is a finite subgroup of Aut(A), A = E × E with

detL(H) = 〈detL(ho) = e
2πi
s 〉 ≃ Cs and

L(H) ∩ SL(2, R) = 〈L(h1), . . . ,L(ht)〉 for some 0 ≤ t ≤ 3 then

H = 〈τ(Pi,Qi), hjho | 1 ≤ i ≤ m, 1 ≤ j ≤ t〉
is generated by 0 ≤ m ≤ 3 translations and at most four non-translation elements.

Bearing in mind that A/H is birational to a K3 surface exactly when L(H) is a
subgroup of SL(2, R), one obtains the following

Corollary 42. The quotient A/H by a finite subgroup H of Aut(A) has a smooth K3
model if and only if H is isomorphic to some HK3(j,m) with 1 ≤ j ≤ 8, 0 ≤ m ≤ 3,
where

HK3(1.m) = 〈τ(Pi,Qi), τ(U1,V1)(−I2) | 1 ≤ i ≤ m〉
HK3(2, m) = 〈τ(Pi,Qi), h1 | 1 ≤ i ≤ m〉

for L(h1) ∈ SL(2, R), trL(h1) = 0,

HK3(3, m) = 〈τ(Pi,Qi), h1, h2 | 1 ≤ i ≤ m〉

for L(h1),L(h2) ∈ SL(2, R), trL(h1) = trL(h2) = 0, L(h2)L(h1) = −L(h1)L(h2),

HK3(4, m) = 〈τ(Pi,Qi), h3 | 1 ≤ i ≤ m〉

for L(h3) ∈ SL(2, R), trL(h3) = −1,

HK3(5, m) = 〈τ(Pi,Qi), h4 | 1 ≤ i ≤ m〉

for L(h4) ∈ SL(2, R), trL(h4) = 1,

HK3(6, m) = 〈τ(Pi,Qi), h1, h4 | 1 ≤ i ≤ m〉
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for L(h1),L(h4) ∈ SL(2, R), trL(h1) = 0, trL(h4) = 1, L(h1)L(h4)[L(h1)]−1 =
[L(h4)]−1,

HK3(7, m) = 〈τ(Pi,Qi), h1, h2, h3 | 1 ≤ i ≤ m〉
for L(h1),L(h2),L(h3) ∈ SL(2, R), trL(h1) = trL(h2) = 0, trL(h3) = −1,

L(h2)L(h1) = −L(h1)L(h2),
L(h3)L(h1)[L(h3)]−1 = L(h2) L(h3)L(h2)[L(h3)]−1 = L(h1)L(h2),

HK3(8, m) = 〈τ(Pi,Qi), h1, h2, h3 | 1 ≤ i ≤ m〉
for L(h1),L(h2),L(h3) ∈ SL(2, R), trL(h1) = trL(h2) = 0, trL(h3) = −1,

L(h2)L(h1) = −L(h1)L(h2),
L(h3)L(h1)[L(h3)]−1 = L(h2), L(h3)L(h2)[L(h3)]−1 = L(h1)L(h2).

We are going to show that for an arbitrary finite subgroup H < Aut(A) with
an abelian linear part L(H) < GL(2, R), there exist an isomorphic model F1 × F2

of A and a normal subgroup N1 of H , embedded in Aut(F1), such that the quo-
tient group H/N1 is an automorphism group of F2. This result can be viewed as a
generalization of Bombieri-Mumford’s classification [3] of the hyper-elliptic surfaces.
More precisely, if H = T (H)〈ho〉 for some ho ∈ H with eigenvalues λ1L(ho) = 1,

λ2L(ho) = detL(ho) = e
2πi
s , s ∈ {2, 3, 4, 6}, then there is a translation subgroup

N1 of Aut(F1), such that G ≃ H/N1 is a non-translation group, acting on the split
abelian surface F ′

1×F2 = (F1/N1)×F2. According to Proposition 5, the quotient A/H
is hyper-elliptic (respectively, ruled with elliptic base) exactly when the finite Galois
covering A → A/H is unramified (respectively, ramified). Since F1 → F1/N1 = F ′

1

is unramified for a translation subgroup N1TF1
< Aut(F1), the covering A → A/H

is unramified is and only if the covering F ′
1 × F2 → (F ′

1 × F2)/G is unramified for
G = H/N1. In particular, the first canonical projection pr1 : G→ Aut(F ′

1) is a group
monomorphism and G is an abelian group with at most two generators, according to
the classification of the finite translation groups of F ′

1. Thus, Bombieri-Mumford’s
classification of the hyper-elliptic surfaces (F ′

1×F2)/G reduces to the classification of
the split, fixed point free abelian subgroups G < Aut(F ′

1×F2) with at most two gener-
ators, for which the canonical projections pr1 : G→ Aut(F ′

1) and pr2 : G→ Aut(F2)
are injective group homomorphisms.

Towards the classification of the finite subgroups of Aut(E), let us recall that the
semi-direct products 〈a〉⋊ 〈b〉 ≃ Cm ⋊Cs of cyclic groups are completely determined
by the adjoint action of b on a. Namely, Adb(a) = bab−1 = aj for some residue j ∈ Z∗

m

modulo m, relatively prime to m. Now Adbs(a) = aj
s

= a requires js ≡ 1(modm). In
other words, j ∈ Z∗

m is of order r, dividing s and 〈a〉⋋ 〈b〉 is isomorphic to

G(j)
s (m) := Cm ⋊j Cs = 〈a, b | am = 1, bs = 1, bab−1 = aj〉 (18)
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for some j ∈ Z∗
m of order r, dividing s. Form now on, we use the notation (18)

without further reference. Note that the only j ∈ Z∗
m of order 1 is j ≡ 1(modm) and

G
(1)
s (m) = 〈a〉 × 〈b〉 ≃ Cm × Cs is the direct product of 〈a〉 = Cm and 〈b〉 = Cs.

Lemma 43. Let G be a finite subgroup of the automorphism group Aut(E) of an
elliptic curve E with endomorphism ring End(E) = R. Then G is isomorphic to

some of the groups G1(m,n), G
(−1,−1)
2 (m,n), G

(j)
s (m), s ∈ {3, 4, 6}, where

G1(m,n) = 〈τP1
, τP2

〉 ≃ Cm × Cn, m, n ∈ N

is a translation group with at most two generators,

G
(−1,−1)
2 (m,n) = 〈τP1

, τP2
〉⋊〈−1〉 ≃ (Cm×Cn)⋊(−1,−1)C2 = (〈a〉 × 〈b〉)⋊(−1,−1)〈c〉 =

= 〈a, b, c | am = 1, bn = 1, c2 = 1, cac−1 = a, cbc−1 = b−1〉
G

(j)
3 (m) = 〈τP1

〉⋊j 〈e
2πi
3 〉 ≃ Cm ⋊j C3 = 〈a〉⋊j 〈c〉 =

= 〈a, c | am = 1, c3 = 1, cac−1 = aj〉
for some j ∈ Z∗

m of order 1 or 3, R = O−3,

G
(j)
4 (m) = 〈τP1

〉⋊j 〈i〉 ≃ Cm ⋊j C4 = 〈a〉⋊j 〈c〉 =

= 〈a, c | am = 1, c4 = 1, cac−1 = aj〉
for some j ∈ Z∗

m of order 1, 2 or 4, R = Z[i],

G
(j)
6 (m) = 〈τP1

〉⋊j 〈e
πi
3 〉 ≃ Cm ⋊j C6 = 〈a〉⋊j 〈c〉 =

= 〈a, c | am = 1, c6 = 1, cac−1 = aj〉
for some j ∈ Z∗

m of order 1, 2, 3 or 6.

Proof. Any finite translation group G < (LE,+) lifts to a lattice G̃ < (Ẽ = C,+) of
rank 2, containing π1(E). By the Structure Theorem for finitely generated modules

over the principal ideal domain Z, there exists a Z-basis λ1, λ2 of G̃ and natural
numbers m,n ∈ N, such that

G̃ = λ1Z+ λ2Z, π1(E) = mλ1Z+mnλ2Z.

As a result, P1 = λ1 + π1(E) ∈ (E,+) of order m and P2 = λ2 + π1(E) ∈ (E,+) of

order mn generate the finite translation group G = G̃/π1(E) ≃ Cm × Cmn.
If G is a finite non-translation subgroup of Aut(E) then the linear part L(G) of

G is a non-trivial subgroup of the units group R∗. Bearing in mind that

R∗ =





〈−1〉 ≃ C2 for R 6= Z[i],O−3,

〈i〉 ≃ C4 for R = Z[i],

〈eπi
3 〉 for R = O−3,
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one concludes that G = 〈e 2πi
s 〉 ≃ Cs for some s ∈ {2, 3, 4, 6}. Any lifting g0 = τUe

2πi
s ∈

G of L(g0) = e
2πi
s has a fixed point P0 ∈ E. After moving the origin of E at P0, one can

assume that g0 = e
2πi
s . Bearing in mind that the translation part T (G) = ker(|G), one

observes that G = T (G)〈e 2πi
s 〉. The inclusion T (G)〈e 2πi

s 〉 ⊆ G is clear. For any g ∈ G

with L(g) = e
2πij
s for some 0 ≤ j ≤ s− 1, one has g

(
e

2πi
s

)−j

∈ ker(L|G) = T (G), so

that G ⊆ T (G)〈e 2πi
s 〉 and G = T (G)〈e 2πi

s 〉. Note that T (G) is a normal subgroup of

G with T (G) ∩ 〈e 2πi
s 〉 = {IdE}, so that

G = T (G)⋊ 〈e 2πi
s 〉

is a semi-direct product. As a result, there is an adjoint action

Ad : 〈e 2πi
s 〉 −→ Aut(T (G)),

Ad
e
2πij
s
(τP1

) = e
2πij
s τP1

e−
2πij
s = τ

s
2πij
s P1

of 〈e 2πi
s 〉 on T (G), which is equivalent to the invariance of T (G) under a multiplication

by e
2πi
s ∈ R∗. The translation group ′T (G) = 〈τP1

, τP2
〉 has at most two generators,

so that
G = 〈τP1

, τP2
〉⋊ 〈e 2πi

s 〉
for some s ∈ {2, 3, 4, 6}. If s = 2 and 〈τP1

, τP2
〉 ≃ Cm × Cn = 〈τQ1

〉 × 〈τQ2
〉,

then Ad−1(τQ1
) = τ−Qk

for 1 ≤ k ≤ 2. The residue classes −1(modm) ∈ Z∗
m and

−1(modn) ∈ Z∗
n are order 1 or 2.

We claim that G = 〈τP1
〉 ⋊ 〈e 2πi

s 〉 has at most two generators for s ∈ {3, 4, 6}.
Indeed, τP1

∈ T (G) implies that Ad
e
2πi
s
(τP1

) = τ
e
2πi
s P1

∈ T (G). For s ∈ {3, 4, 6} the

points P1, e
2πi
s P1 have Z-linearly independent liftings from T̃ (G), so that T (G) =

〈τP1
, τP2

〉 = 〈τP1
, τ

e
2πi
s P1

〉. As a result,

G == 〈τP1
, e

2πi
s τP1

e−
2πi
s 〉⋊ 〈e 2πi

s 〉 = 〈τP1
〉⋊ 〈e 2πi

s 〉 ≃ m ⋊j Cs = 〈a〉⋊j 〈c〉 =

〈a, c | am = 1, cs = 1, cac−1 = aj〉
for some j ∈ Z∗

m of order r, dividing s ∈ {3, 4, 6}.

Let us put G
(1,1)
1 (m,n) := G1(m,n), in order to list the finite subgroups of Aut(E)

as G
(j1,j2)
s (m,n) with s ∈ {1, 2} and G

(j)
s (m) with s ∈ {3, 4, 6}.

Lemma 44. Let H be a finite subgroup of Aut(A) with abelian linear part L(H).
Then:

(i) there exists S ∈ GL(2,C), such that all the elements of

S−1HS = {S−1hS = (τU1
λ1L(h), τU2

λ2L) | h ∈ H} < Aut(S−1A)
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have diagonal linear parts;
(ii) if F1 = S−1(E×ǒE), F2 = S−1(ǒE×E) then S−1A = F1×F2 and the canonical

projections
prk : S

−1HS −→ Aut(Fk),

prk(τU1
λ1L(h), τU2

λ2L(h)) = τUk
λkL(h),

are group homomorphisms with prk(S
−1HS) ≃ G

(j1,j2)
s (m,n), s ∈ {1, 2} or G

(j)
s ,

s ∈ {3, 4, 6};
(iii) S−1HS = ker(pr2)〈h1, . . . , ht〉 for any liftings hj = (αj, βj) ∈ S−1HS of the

generators β1, . . . , βt of pr2(S
−1HS), 1 ≤ t ≤ 3;

(iv) S−1A/ ker(pr2) = C1 × F2, where C1 is an elliptic curve for a translation
subgroup ker(pr2) < (TF1

,+) < Aut(F1) or a rational curve for a non-translation
subgroup ker(pr2) < Aut(F1), ker(pr2) \ (TF1

,+) 6= ∅;
(v) A/H ≃ (C1 × F2)/G for ’

G := 〈h1, . . . , ht〉/(〈h1, . . . , ht〉 ∩ ker(pr2))

with isomorphic second projection

pr2 : G −→ pr2(S
−1HS)

and first projection
pr1 : G→ pr1(G) < Aut(C1)

with kernel ker(pr1|G) ≃ ker(pr1|S−1HS).

Proof. (i) It is well known that for any finite set {L(h) | h ∈ H} of commuting
matrices, there exists S ∈ GL(2,C), such that

S−1L(h)S = L(S−1hS) =

(
λ1L(h) 0

0 λ2L(h)

)

are diagonal for all h ∈ H . Namely, if there is ho ∈ H , whose linear part L(ho)
has two different eigenvalues λ1L(ho) 6= λ2L(ho), then one takes the j-th column of
S ∈ Q(

√
−1)2×2 to be an eigenvector, associated with λjL(ho), 1 ≤ j ≤ 2. The

conjugate S−1L(ho)S is a diagonal matrix. It suffices to show that vj are eigenvectors
of all L(h), in order to conclude that S−1L(h)S are diagonal, as the matrices of
L(h) with respect to the basis v1, v2 of C2. Indeed, for any h ∈ H the relation
L(h)L(ho) = L(ho)L(h) implies that

λjL(ho)[L(h)vj ] = L(h)L(ho)vj = L(ho)[L(h)vj.

Therefore L(h)vj is an eigenvector of L(ho) with associated eigenvalue λjL(ho, so that
L(h)vj is proportional to vj , i.e., L(h)vj = chvj for some ch ∈ C, which turns to be
an eigenvalue ch = λjL(h) of L(h). If λ1L(h) = λ2L(h) for ∀h ∈ H then all L(h) are
scalar matrices. In particular, L(h) are diagonal.
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(ii) Note that the direct product A = E×E of elliptic curves coincides with their
direct sum. If

S−1A := S−1Ã/S−1π1(A) = C2/S−1π1(A),

then S−1A→ S−1A is an isomorphism of abelian surfaces and

S−1(A) = S−1(E × E) = S−1[(E × ǒE)× (ǒE × E)] =

= S−1(E × ǒE)× S−1(ǒE ×E) = F1 × F2.

The canonical projections prk : S−1HS → Aut(Fk) are group homomorphisms, ac-
cording to

prk((τV1
λ1L(g), τV2

λ2L(g))(τU1
λ1L(h), τU2

λ2L(h)) =
= prk(τV1+λ1L(g)U1

(λL(g).λ1L(h)), τV2+λ2L(g)U2
(λ2L(g).λ2L(h))) =

= τVkλkL(g)Uk
(λkL(g).λkL(h)) = (τVk

λkL(g))(τUk
λjL(h)) =

= prk(τV1
λ1L(g), τV2

λ2L(h)).(prk(τU1
λ1L(h), τU2

λ2L(h))
for ∀g, h ∈ H with S−1gS = τ(V1,V2)L(S−1gS), S−1hS = τ(U1,U2)L(S−1hS). The image
prk(S

−1HS) of S−1HS is a finite subgroup of Aut(Fk) for 1 ≤ k ≤ 2.
(iii) If hj = (αj, βj) ∈ S−1HS are liftings of the generators βj of pr2(S

−1HS),
then ker(pr2)〈h1, . . . , ht〉 is a subgroup of S−1HS, as far as ker(pr2) is a normal
subgroup of S−1HS. For any pr2(S

−1hS) = βm1

1 . . . βmt
t for some mi ∈ Z, one has

(S−1HS)(hm1

1 . . . hmt
t ) ∈ ker(pr2), so that S−1hS ∈ ker(pr2)〈h1, . . . , ht〉and S−1HS =

ker(pr2)〈h1, . . . , ht〉.
(iv) The subgroup ker(pr2) of S−1HS acts identically on F2 and can be thought

of as a subgroup of Aut(F1), pr1(ker(pr2)) ≃ ker(pr2). Thus,

S−1A/ ker(pr2) ≃ [F1/pr1(ker(pr2)]× F2 = C1 × F2

with an elliptic curve C1 exactly when pr1(ker(pr2)) is a translation subgroup of
Aut(F1) or a rational curve C1 for a non-translation subgroup pr1(ker(pr2)) of the
automorphism group Aut(F1) of F1.

(v) Since ker(pr2) is a normal subgroup of S−1HS with quotient

S−1HS/ ker(pr2) = [ker(pr2)〈h1, . . . , ht〉]/ ker(pr2) =

= 〈h1, . . . , ht〉/(〈h1, . . . , ht〉 ∩ ker(pr2)) = G,

one has

A/H ≃ (S−1A)/(S−1HS) ≃ [S−1A/ ker(pr2)]/[S
−1HS/ ker(pr2)] = (C1 × F2)/G.

By the First Isomorphism Theorem, the epimorphism pr2 : S−1HS → pr2(S
−1HS)

gives rise to an isomorphism

pr2 : S
−1HS/ ker(pr2) = G −→ pr2(S

−1HS).
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The homomorphism pr1 : S
−1HS → Aut(F1) induces a homomorphism

pr1 : S
−1HS/ ker(pr2) = G −→ Aut(F1)/pr1(ker(pr2)) ≃ Aut(C1).

in the automorphism group of C1 = F1/pr1(ker(pr2)). It suffices to show that the
kernel

ker(pr1) = {S−1hS ker(pr2) | pr1(S
−1hS) ∈ pr1 ker(pr2)} =

[ker(pr2) ker(pr1)]/ ker(pr2),

since

[ker(pr2) ker(pr1)]/ ker(pr2) ≃ ker(pr1)/[ker(pi2) ∩ ker(pr1)] = ker(pr1).

Indeed, if there exists S−1h1S(pr1(S
−1hS), IdF2

) ∈ ker(pr2) then

S−1(h−1
1 h)S = (IdF1

, pr2(S
−1hS)) ∈ S−1HS ∩ ker(pr1),

so that S−1hS ∈ S−1h1S ker(pr1) ⊂ ker(pr2) ker(pr1) for ∀S−1hS ker(pr2) ∈ ker(pr1).
Conversely, any element of [ker(pr2) ker(pr1)]/ ker(pr2) is of the form

(g1, IdF2
)(IdF1

, g2) ker(pr2) = (g1, g2) ker(pr2)

for some (g1, IdF2
), (IdF1

, g2) ∈ S−1HS ∩ [Aut(F1)×Aut(F2)], so that

pr1(g1, g2) = g1 = pr1((g1, IdF2
)) ∈ pr1 ker(pr2)

reveals that (g1, g2) ker(pr2) ∈ ker(pr1).

According to Lemma 43, the finite automorphism groups of elliptic curves have
at most three generators. Combining with Lemma 44(iii), one concludes that the
finite subgroups H of Aut(E × E) with abelian linear part L(H) have at most six
generators. Their linear parts L(H) have at most two generators.

Lemma 45. Let h = τ(U,V )L(h) be an automorphism of A = E×E and w = (u, v) ∈
C2 = Ã be a lifting of (u, v) + π1(A) = (U, V ) ∈ A. Then h has no fixed points on A
if and only if for any µ = (µ1, µ2) ∈ π1(A) the affine-linear transformation

h̃(w, µ) = τw+µL(h) ∈ Aff(C2, R) := (C2,+)⋋GL(2, R)

has no fixed points on C2.

Proof. The statement of the lemma is equivalent to the fact that FixA(h) 6= q∅ exactly

when FixC2(h̃(w, µ)) 6= ∅ for some µ ∈ π1(A). Indeed, if (p, q) ∈ FixC2(h̃(w, µ)) then
(P,Q) = (p+ π1(E), q + π1(E)) ∈ A is a fixed point of h, according to

h(P,Q) = L(h)
(
P
Q

)
+

(
U
V

)
= L(h)

(
p
q

)
+

(
u
v

)
+

(
µ1

µ2

)
+

(
π1(E)
π1(E)

)
=
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=

(
p
q

)
+

(
π1(E)
π1(E)

)
=

(
P
Q

)
.

Conversely, if

L(h)
(
P
Q

)
+

(
U
V

)
=

(
P
Q

)
,

then for any lifting (p, q) ∈ C2 of (P,Q) = (p+ π1(E), q + π1(E)), one has

L(h)
(
p
q

)
+

(
U
V

)
+

(
π1(E)
π1(E)

)
=

(
p
q

)
+

(
π1(E)
π1(E)

)
.

In other words,

µ =

(
µ1

µ2

)
:= L(h)

(
p
q

)
+

(
u
v

)
−
(
p
q

)
∈
(
π1(E)
π1(E)

)

and (p, q) ∈ FixC2(h̃(w,−µ)).

Now we are ready to characterize the automorphisms h ∈ Aut(A) without fixed
points

Lemma 46. An automorphism h = τ(U,V )L(h) ∈ Aut(A) \ (TA,+) acts without fixed
points on A = E × E if and only if its linear part L(h) has eigenvalues λ1L(h) = 1,
λ2L(h) 6= 1 and

L(h)
(
u
v

)
6= λ2

(
u
v

)

for any lifting (u, v) ∈ C2 of (u+ π1(E), v + π1(E)) = (U, V ).

Proof. The fixed points (P,Q) ∈ A of h = τ(U,V )L(h) are described by the equality

(L(h)− I2)

(
P
Q

)
=

(
−U
−V

)
. (19)

If det(L(h) − I2) 6= 0 or 1 ∈ C is not an eigenvalues of L(h), then consider the
adjoint matrix

(L(h)− I2)
∗ =

(
d −b

−c a

)
∈ R2×2 of

L(h)− I2 =

(
a b
c d

)
∈ R2×2.

According to (L(h)− I2)
∗(L(h) − I2) = det(L(h)− I2)I2 = (L(h)− I2)(L(h)− I2)

∗,
one obtains

det(L(h)−I2)
(
P
Q

)
= (L(h)−I2)∗(L(h)−I2)

(
u
v

)
= −(L(h)−I2)∗

(
U
V

)
. (20)
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Then for an arbitrary lifting (u1, v1) ∈ C2 of
(
u1 + π1(E)
v1 + π1(E)

)
=

(
U1

V1

)
:= −(L(h)− I2)

∗
(
U
V

)
,

the point

(p, q) =

(
u1

det(L(h)− I2)
,

v1
det(L(h)− I2)

)
∈ 2

descends to (P,Q) = (p+ π1(E), q + π1(E)), subject to (20). As a result,

(L(h)− I2)

(
P
Q

)
=

1

det(L(h)− I2)
(L(h)− I2)

(
u1
v1

)
+

(
π1(E)
π1(E)

)
=

=

(
u
v

)
+

(
π1(E)
π1(E)

)

and (P,Q) ∈ FixA(h).
From now on, let us suppose that the linear part L(h) ∈ GL(2, R) of h ∈ Aut(A)\

(TA,+) has eigenvalues λ1L(h) = 1 and λ2L(h) = detL(h) ∈ R∗ \{1}. We claim that
a lifting (u, v) ∈ 2 of (u+ π1(E), v + π1(E)) = (U, V ) ∈ A satisfies

L(h)
(
u
v

)
= λ2L(h)

(
u
v

)

if and only if there exists (p, q) ∈ C2 with

(L(h)− I2)

(
p
q

)
=

(
−u
−v

)
,

which amounts to (p, q) ∈ FixC2(τ(u,v)L(h)). To this end, let us view L(h) : C2 → C2

as a linear operator in C2 and reduce the claim to the equivalence of (−u,−v) ∈
ker(L(h)− λ2L(h)I2) with (−u,−v) ∈ Im(L(h)− I2). In other word, the statement
of the lemma reads as ker(L(h)− λ2L(h)I2) = Im(L(h)− I2) for the linear operators
L(h)− λ2L(h)I2 and L(h) − I2 in C2. By Hamilton -Cayley Theorem, L(h) ∈ C2×2

is a root of its characteristic polynomial

XL(h)(λ) = (λ− λ1L(h))(λ− 1).

Thus,
(L(h)− λ2L(h)I2)Im(L(h)− I2) = {(0, 0)}

is the zero subspace of C2 and Im(L(h) − I2) ⊆ ker(L(h) − λ2L(h)I2). However,
dim Im(L(h)− I2) = rk(L(h)− I2) = 1 and

dimker(L(h)− λ2L(h)) = 2− rk(L(h)− λ2L(h)I2) = 2− 1 = 1,

so that Im(L(h)− I2) = ker(L(h)− λ2L(h)I2).
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Corollary 47. Let H = T (h)〈ho〉 be a finite subgroup of Aut(A) for some ho ∈ H
with

λ1L(ho) = 1, λ2L(ho) = e
2πi
s , s ∈ {2, 3, 4, 6},

S ∈ GL(2,Q(
√
−d)) be a diagonalizing matrix for ho and

S−1hoS =
(
τW , e

2πi
s

)

after appropriate choice of an origin of S−1A = F1 × F2, F1 = S−1(E × ǒE), F2 =
S−1(ǒE × E). Then A/H is a hyper-elliptic surface if and only if the kernel ker(pr1)
of the first canonical projection pr1 : S

−1HS → Aut(F1) is a translation subgroup of
Aut(F2). If so, then

S−1A/[ker(pr2) ker(pr1)] ≃ C1 × C2

for some elliptic curves C1, C2 and

A/H ≃ (C1 × C2)/G,

where the group G is isomorphic to some of the groups

GHE
2 = 〈(τU1

,−1)〉 ≃ C2

with U1 ∈ C2−tor
1 \ {ǒC1

},

GHE
2,2 = 〈τ(P1,Q1)〉 × 〈(τU1

,−1)〉 ≃ C2 × C2

with P1, U1 ∈ C2−tor
1 \ {ǒC1

}, Q1 ∈ C2−tor
2 ,

GHE
3 = 〈(τU1

, e
2πi
3 )〉 ≃ C3

with R = O−3, U1 ∈ C3−tor
1 \ C2−tor

1 ,

GHE
3,3 = 〈τ(P1,Q1)〉 × 〈

(
τU1

, e
2πi
3

)
〉 ≃ C3 × C3

with R = O−3, P1, U1 ∈ C3−tor
1 \ C2−tor

1 , Q ∈ C3−tor
2 \ {ǒC2

},

GHE
4 = 〈(τU1

, i)〉 ≃ C4

with R = Z[i], U1 ∈ C4−tor
1 \ (C2−tor

1 ∪ C3−tor
1 ),

GHE
4,4 = 〈τ(P1,Q1)〉 × 〈(τU1

, i)〉 ≃ C2 × C4

with R = Z[i], P1 ∈ C2−tor
1 \ {ǒC1

}, Q1 ∈ C
(1i)−tor
2 \ {ǒC2

}, U1 ∈ C4−tor
1 \ (C2−tor

1 ∪
C3−tor

1 ),

GHE
6 = 〈

(
τU1

, e
πi
3

)
〉 ≃ C6
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with R = O−3, U1 ∈ C6−tor
1 \ (C3−tor

1 ∪ C4−tor
1 ∪ C5−tor

1 ).
In the notations from Proposition 30, A/H is a hyper-elliptic surface exactly when

H ≃ S−1HS is isomorphic to some of the groups:

HHE
2 (m,n) = 〈(τMj

, IdF2
), (IdF1

, τNk
), (τW ,−1) | 1 ≤ j ≤ m, 1 ≤ k ≤ n〉

with W 6∈ ker(pr2), 2W ∈ ker(pr2), L(HHE
2 (m,n)) ≃ HC1(1) ≃ C2,

HHE
2,2 (m,n) = 〈(τMj

, IdF2
), (IdF1

, τNk
), τ(X,Y ), (τW ,−1) | 1 ≤ j ≤ m, 1 ≤ k ≤ n〉

with 2X.2W ∈ ker(pr2), X,W 6∈ ker(pr2), 2Y ∈ ker(pr1), Y 6∈ ker(pr1),
L(HHE

2,2 (m,n)) ≃ HC1(1) ≃ C2

HHE
3 (m,n) = 〈(τMj

, IfF2
), (IdF1

, τNk
),
(
τW , e

2πi
3

)
| 1 ≤ j ≤ m, 1 ≤ k ≤ n〉

with R = O−3, 3W ∈ ker(pr2), 2W 6∈ ker(pr2), L(HHE
3 (m,n)) ≃ HC1(2) ≃ C3,

HHE
3,3 (m,n) = 〈(τMj

, IdF2
), (IdF1

, τNk
), τ(X,Y ),

(
τW , e

2πi
3

)
| 1 ≤ j ≤ m, 1 ≤ k ≤ n〉

with R = O−3, 3X, 3W ∈ ker(pr2), 2X, 2W 6∈ ker(pr2), 3Y ∈ ker(pr1), Y 6∈ ker(pr1),
L(HHE

3,3 (m,n)) ≃ HC1(2) ≃ C3,

HHE
4 (m,n) = 〈(τMj

, IdF2
), (IdF1

, τNk
), (τW , i) | 1 ≤ j ≤ m, 1 ≤ k ≤ n〉

with R = Z[i], 4W ∈ ker(pr2), 2W, 3W 6∈ ker(pr2), L(HHE
4 (m,n)) ≃ HC1(e) ≃ C4,

HHE
4,4 (m,n) = 〈(τMj

, IdF2
), (IdF1

, τNk
), τ(X,Y ), (τW , i) | 1 ≤ j ≤ m, 1 ≤ k ≤ n〉

with R = Z[i], 2X ∈ ker(pr2), X 6∈ ker(pr2), (1i)Y ∈ ker(pr1), Y 6∈ ker(pr1),
4W ∈ ker(pr2), 2W, 3W 6∈ ker(pr2), L(HHE

4,4 (m,n) ≃ HC1(3) ≃ C4,

HHE
6 (m,n) = 〈(τMj

, IdF2
), (IdF1

, τNk
),
(
τW , e

πi
3

)
| 1 ≤ j ≤ m, 1 ≤ k ≤ n〉

with R = O−3, 6W ∈ ker(pr2), 3W, 4W, 5W 6∈ ker(pr2), where m,n ∈ {0, 1, 2}.

Proof. In the notations from Lemma 44, the kernel ker(pr2) of the second canonical
projection pr2 : S

−1HS → Aut(F2) is a translation group, so that

S−1A→ S−1A/ ker(pr2) = C1 × F2

is unramified and C1 is an elliptic curve. Thus, the covering A→ A/H is unramified
if and only if C1 × F2 → (C1 × F2)/G ≃ A/H is unramified. In other words, A/H
is a hyper-elliptic surface exactly when the group G has no fixed point on C1 × F2.
For any g ∈ G with L(g) 6= I2 the second component pr2(g) = τV2

e
2πij
s for some 1 ≤

j ≤ s− 1, V2 ∈ F2 has a fixed point on F2. Towards FixC1×F2
(g) = ∅ one has to have
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pr1(g) 6= IdC1
, so that ker(pr1) ⊆ T (G) = G∩ker(L) and ker(pr1) ⊆ H = H ∩ker(L)

are translation groups. The covering C1 × F2 → (C1 × F2)/ ker(pr1) = C1 × C2 is
unramified, C2 is an elliptic curve and A/H is a hyper-elliptic surface exactly when
Go = G/ ker(pr1) has no fixed points on (C1×F2)/ ker(pr1). The canonical projections

pr1 : Go −→ Aut(C1) and pr2 : Go −→ Aut(C2)

are injective. Since pr1(Go) is a translation subgroup of Aut(C1), the group Go ≃
pr1 is abelian and has at most two generators. As a result, pr2(Go) ≃ Go is an
abelian subgroup of Aut(C2) with at most two generators and non-trivial linear part

L (pr2(Go)) = 〈e 2πi
s 〉 ≃ Cs for some s ∈ {2, 3, 4, 6}. According to Lemma 43,

pr2(Go) ≃ 〈τQ1
〉 × 〈e 2πi

s 〉 ≃ Cm × Cs

for some Q1 ∈ C2 with τQ1
= Ad

e
2πi
s
(τQ1

) = τ
e
2πi
s Q1

. In other words, the point

Q1 ∈ C

(
e
2πi
s −1

)
−tor

2 \ {ǒC2
}. If s = 2 then any Q1 ∈ C2−tor

2 works out and the order of
Q1 ∈ (C2,+) is m = 2.

For s = 3 note that the endomorphism ring of C2 is End(C2) = O−3. Therefore
the fundamental group π1(C2) = c(Z + τZ) for some τ ∈ Q(

√
−3) and c ∈ C∗. By

c ∈ π1(C2) and e
πi
3 ∈ End(C2) one has e

πi
3 c ∈ π1(C2). Due to the linear independence

of c and e
πi
3 over Z, one has π1(C2) = cZ+e

πi
3 cZ = cO−3. For α = e

2πi
3 −1 = −3

2
+

√
3
2
i

the equation

α
(
x+ e

πi
3 y
)
=
(
a + e

πi
3 b
)
c for some a, b ∈ Z

has a solution x = −a+b
3

, y = −a−2b
3

. Note that x(modZ) ≡ y(modZ) and

(
x+ e

πi
3 y
)
c
(
modZ+ e

πi
3 Z
)
=
(
x+ e

πi
3

)
(modπ1(C2)) ∈

{
ǒC2

, ±
(
1 + e

πi
3

)
(modπ1(C2))

}
= C3−tor

2 ,

whereas Cα−tor
2 = C3−tor

2 and m = 3. Thus, Q1 ∈ C3−tor
2 \ {ǒC2

} in the case of s = 3.
If s = 4 then End(C2) = Z[i] and π1(C2) = cZ[i] for some c ∈ C∗. The equation

(i− 1)(x+ iy)c = (a+ bi)c for some a, b ∈ Z has a solution x = −a+b
2

, y = −a−b
2

with

(x+ iy)c(modZ[i]) = x+ iy(modπ1(C2)) ∈
{
ǒC2

,

(
1 + i

2

)
c(modπ1(C2))

}
= C

(i+1)−tor
2 ,

so that m = 4 and Q1 ∈ C
(i+1)−tor
2 \ {ǒC2

}.
For s = 6 one has e

πi
3 − 1 = e

2πi
3 and Ce

2πi
3 −tor

2 = {ǒC2
}, Therefore pr2(Go) =

〈eπi
3 〉 ≃ C6 in this case.
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The restrictions on P1, U1 ∈ C1 arise from the isomorphism Go ≃ pr1(Go) ≃
pr2(Go). Namely,

(
τU1

, e
2πi
s

)
∈ Go with pr2

(
τU1

, e
2πi
s

)
= E

2πi
s of order s ∈ {2, , 34, 6}

has to have τU1
= pr1

(
τU1

, e
2πi
s

)
∈ (C1,+) of order s. That amounts to U1 ∈ Cs−tor

1

and U1 6∈ Ct−tor
1 for all 1 ≤ t < s. If pr2(Go) = 〈τQ1

〉 × 〈e 2πi
s 〉 with Q1 6= ǒC2

then the
order m of Q1 ∈ C2 has to coincide with the order of P1 ∈ C1.

In order to relate the classification GHE
s , GHE

m,s of Go with the classification of the

groups HHE
s (m,n), HHE

s,s (m,n) of H ≃ S−1HS, note that P1, U1 ∈ Cp−tor
1 \ Cq−tor

1

for some natural numbers p > q exactly when the corresponding liftings X,W ∈ F1

are subject to pX, pQ ∈ ker(pr2), qX, qW 6∈ ker(pr2). Similarly, Q1 ∈ Cp−tor
2 \ Cq−tor

2

for p, q ∈ N, P > q if and only if an arbitrary lifting Y ∈ F2 satisfies pY ∈ ker(pr1),
qY 6∈ ker(pr1).

Bearing in mind that A/H with H = T (H)〈ho〉, λ1L(ho) = 1, λ2L(ho) ∈ R∗ \ {1}
is either hyper-elliptic or a ruled surface with an elliptic base, one obtains the following

Corollary 48. Let H = T (H)〈ho〉 be a finite subgroup of Aut(A) for some ho ∈
H with λ1L(ho) = 1, λ2L(ho) = e

2πi
s , s ∈ {2, 3, 4, 6}, S ∈ GL(2,Q(

√
−d)) be a

diagonalizing matrix for ho and

S−1hoS =
(
τU1

, e
2πi
s

)

after an appropriate choice of an origin of S−1(A) = F1 × F2, F1 = S−1(E × ǒE),
F2 = S−1(ǒE × E). Then A/H is a ruled surface with an elliptic base if and only if
the kernel ker(pr1) of the first canonical projection pr1 : S

−1HS → Aut(F1) contains

a non-translation element S−1hS =
(
IdF1

, τV2
e

2πik
s

)
for some 1 ≤ k ≤ s−1, V2 ∈ F2.

In the notations from Lemma 44, the quotient A/H ≃ (C1 × F2)/G of the split
abelian surface C1 × F2 = S−1A/ ker(pr2) by its finite automorphism group G =
S−1HS/ ker(pr2) is a ruled surface with an elliptic base exactly when G is isomorphic
to some of the groups

GRE
2 (m,n) = 〈τ(P1,Q1), τ(P2,Q2), 〉⋊ 〈(τU1

,−1)〉 ≃ (Cm × Cn)⋊(−1,−1) C2 =

= (〈a〉×〈b〉)⋊(−1,−1) 〈c〉 = 〈a, b, c | am = 1, bn = 1, cac−1 = a−1, cbc−1 = b−1〉
with τU1

∈ (〈τP1
, τP2

〉,+) ≃ Cm × Cn for some m,n ∈ N,

GRE
3 (m, j) = 〈τ(P1,Q1)〉⋊ 〈

(
τU1

, e
2πi
3

)
〉 ≃ Cm ⋊j C3 =

= 〈a〉⋊j 〈c〉 = 〈a, c | am = 1, c3 = 1, cac−1 = aj〉
with R = O−3, 2U1 ∈ (〈τP1

〉,+) ≃ Cm for some j ∈ Z∗
m of order 1 or 3,

GRE
4 (m, j) = 〈τ(P1,Q1)〉⋊ 〈(τU1

, i)〉 ≃ Cm ⋊j C4 =
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= 〈a〉⋊j 〈c〉 = 〈a, c | am = 1, c4 = 1, cac−1 = aj〉
with R = Z[i] for some j ∈ Z∗

m or order 1, 2 or 4,

GRE
6 (m, j) = 〈τ(P1,Q1)〉⋊ 〈

(
τU1

, e
πi
3

)
〉 ≃ Cm ⋊j C6 =

= 〈a〉⋊j 〈c〉 = 〈a, c | am = 1, c6 = 1, cac−1 = aj〉
with R = O−3 and at least one of 3U1, 4U1 or 5U1 from (〈τP1

〉,+) for some j ∈ Z∗
m

of order 1, 2, 3 or 6.

The classification of G is an immediate application of the group isomorphism
pr2 : G → pr2(S

−1HS) from Lemma 44 (v) and the classification of Aut(F2), given
in Lemma 43.

Lemma 49. Let G be a finite subgroup of GL(2, R) with G ∩ SL(2, R) 6= {I2}, such
that any g ∈ G \ SL(2, R) 6= ∅ has an eigenvalue λ1(g) = 1. Then:

(i) G = Gs = 〈gs, go〉 is generated by gs ∈ SL(2, R) of order s ∈ {2, 3, 4, 6} and
go ∈ GL(2, R) with det(go) = −1, tr(go) = 0, subject to gogsg

−1
o = g−1

s ;
(ii) and g ∈ G \ SL(2, R) has eigenvalues λ1(g) = 1 and λ2(g) = −1;
(iii) the group

Gs = 〈gs, go | gss = I2, g2o = I2, gogsg
−1
o = g−1

s 〉 ≃ Ds

is dihedral of order 2s for s ∈ {3, 4, 6} or the Klein group G2 ≃ C2 × C2 for s = 2.

Proof. Note that g ∈ G\SL(2, R) has an eigenvalue 1 exactly when the characteristic
polynomial Xg(λ) = λ2 − tr(g)λ + det(g) ∈ R[λ] of g vanishes at λ = 1. This is
equivalent to

tr(g) = det(g) + 1.

If −I2 6∈ G, then Proposition 24 specifies that G ∩ SL(2, R) = 〈g3〉 ≃ C3. In the no-
tations from Proposition 35, all the finite subgroups HC3(i) = [HC3(i)∩SL(2, R)]〈go〉
of GL(2, R) with HC3(i) ∩ SL(2, R) ≃ C3, such that go has an eigenvalue λ1(go) = 1
are isomorphic to

HC3(4) = 〈g, go g3 = g3o = I2, gogg
−1
o = g−1〉 ≃ S3 ≃ D3

for some g ∈ SL(2, R) with tr(g) = −1 and λ1(go) = 1, λ2(go) = −1. Since go is of
order 2, the complement

HC3(4) \ SL(2, R) = 〈g〉go = {gjgo | 0 ≤ j ≤ 2}
consists of matrices gjgo of determinant det(gjgo) = det(go) = −1 and g ∈ HC3(4) \
SL(2, R) has as eigenvalue 1 exactly when tr(gjgo) = 0. Bearing in mind the invari-
ance of the trace under conjugation, one can consider

g =

(
e

2πi
3 0

0 e−
2πi
3

)
and go =

(
ao bo
co −ao

)
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with a2o + boco = 1. Then

gogg
−1
o = goggo =




e−
2πi
3 +

√
−3a2o

√
−3aobo

√
−3aoco e

2πi
3 +

√
−3a2o


 =




e−
2πi
3 0

0 e
2πi
3


 = g−1

is equivalent to ao = 0 and

gjgo =




e
2πij
3 0

0 e−
2πij
3






0 bo

1
bo

0


 =

(
0 e

2πij
3 bo

e
−

2πij
3

bo
0

)

have tr(gjgo) = 0 for all 0 ≤ j ≤ 2. Thus, any g ∈ HC3(4)\SL(2, R) has an eigenvalue
λ1(g) = 1.

If −I2 ∈ G, then for any g ∈ G \ SL(2, R) with λ1(g) = 1, λ2(g) = det(g) ∈
R∗ \ {1}, one has −g ∈ G \ SL(2, R) with λ1(−g) = −1, λ2(−g) = − det(g). Thus,
−g has an eigenvalue 1 exactly when λ2(−g) = − det(g) = 1 or λ2(g) = det(g) = −1.
In particular,

G = [G ∩ SL(2, R)]〈go〉
for some go ∈ G with det(go) = −1, tr(go) = 0 and G \ SL(2, R) = [G ∩ SL(2, R)]go.
Thus, for any g ∈ G \ SL(2, R) has det(g) = −1 and g has an eigenvalue λ1(g) = 1
exactly when tr(g) = 0.

We claim that tr(g1go) = 0 for all g1 ∈ G ∩ SL(2, R) and some go ∈ G with
det(go) = −1, tr(go) = −1 requires G ∩ SL(2, R) to be a cyclic group. Assume the
opposite. Then by Proposition 24, either G ∩ SL(2, R) contains a subgroup

K4 = 〈g1, g2 | g21 = g22 = −I2, g1g2g
−1
1 = g−1

2 〉 ≃ Q8

isomorphic to the quaternion group Q8 of order 8, or

G ∩ SL(2, R) = K7 = 〈g1, g4 | g21 = g34 = −I2, g1g4g
−1
1 = g−1

4 〉 ≃ Q12

is isomorphic to the dicyclic group Q12 of order 12. In either case, one has h1, h2 ∈
SL(2, R) with tr(h1) = 0 and h2 of order s ∈ {4, 6}, such that h1h2h

−1
1 = h−1

2 . Let
us consider

D1 = S−1h1S =

(
a1 b1
c1 −a1

)
∈ SL

(
2,Q

(√
−d, E 2πi

s

))
,

D2 = S−1h2S =

(
e

2πi
s 0

0 e−
2πi
s

)
and

Do = S−1goS =

(
ao bo
co −ao

)
∈ GL

(
2,Q

(√
−d, e 2πi

s

))
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with a2o + boco = 1. The relation

D1D2D
−1
1 = −D1D2D1 =




e−
2πi
s − 2iIm

(
e

2πi
s

)
a21 −2iIm

(
e

2πi
s

)
a1b1

−2iIm
(
e

2πi
s

)
a1c1 e

2πi
s + 2iIm

(
e

2πi
s

)
a21


 =

=




e−
2πi
s 0

0 e
2πi
s


 = D−1

2

requires a1 = 0 and

D1 =

(
0 b1

− 1
b1

0

)
for some b1 ∈ Q

(√
−d, e 2πi

s

)
.

Now,

tr(D2Do) = tr




e
2πi
s ao e

2πi
s bo

e−
2πi
s co −e− 2πi

s ao


 = 2iIm

(
e

2πi
s

)
ao = 0

specifies the vanishing of ao, whereas

Do =

(
0 bo
1
bo

0

)
for some bo ∈ Q

(√
−de 2πi

s

)
.

The condition

tr(D1Do) = tr

(
b1
bo

0

0 − bo
b1

)
=
b1
bo

− bo
b1

= 0

requires b1 = εbo for some ε ∈ {±} and

tr(D1D2Do) = tr




εe−
2πi
s 0

mbox

0 −εe 2πi
s


 = −ε

(
e

2πi
s − e−

2πi
s

)
= −2iIm

(
e

2πi
s

)
ε 6= 0

contradicts the assumption. Therefore G ∩ SL(2, R) = 〈g〉 ≃ Cs is cyclic group of
order s ∈ {2, 4, 6}. If G = [G∩ SL(2, R)]〈go〉 has a normal subgroup G ∩ SL(2, R) =
〈g〉 ≃ C2 then g = −I2 and go(−I2) = (−I2)go, as far as −I2 is a scalar matrix. As a
result, G = 〈g〉×〈go〉 ≃ C2×C2. For G = [G∩SL(2, R)]〈go〉 with a normal subgroup
G∩SL(2, R) = 〈g〉 ≃ Cs of order {4, 6} note that the element gogg

−1
o of 〈g〉 is of order

s, so that either gogg
−1
o = g or gogg

−1
o = g−1, according to Z∗

4 = {±1(mod4)}, Z∗
6 =

{±1(mod6)}. If gog = ggo then there exists a matrix S ∈ GL
(
2,Q

(√
−d, e 2πi

s

))
,

such that

D = S−1gS =

(
e

2πi
s 0

0 e−
2πi
s

)
and Do = S−1goS =

(
1 0
0 −1

)
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are diagonal. Then tr(ggo) = tr(DDo) = e
2πi
s − e−

2πi
s = 2iIm

(
e

2πi
s

)
6= 0 and 1 is not

an eigenvalue of ggo. Therefore gogg
−1
o = g−1. If

D = S−1gS =

(
e

2πi
s 0

0 e−
2πi
s

)
and

Do = S−1goS =

(
ao bo
Co −ao

)
∈ GL

(
2,Q

(√
−d, e 2πi

s

))
with a2o + boco = 1,

then the relation

DoDD
−1
o = DoDDo =




e−
2πi
s + 2iIm

(
e

2πi
s

)
a2o 2iIm

(
e

2πi
s

)
aobo

2iIm
(
e

2πi
s

)
aoco e

2πi
s − 2iIm

(
e

2πi
s

)
a2o


 =

=

(
e−

2πi
s 0

0 e
2πi
s

)
= D−1

specifies that ao = 0 and

Do =

(
0 bo
1
bo

0

)
for some bo ∈ Q

(√
−d, e 2πi

s

)
.

The non-trivial coset

S−1GS \ SL
(
2,Q

(√
−d, e 2πi

s

))
= 〈D〉Do = {DjDo | 0 ≤ j ≤ s− 1}

consists of elements of trace

tr(DjDo) = tr

(
0 e

2πij
s bo

e−
2πij
s

bo
0

)
= 0,

so that any ∆ ∈ S−1GS \ SL
(
2,Q

(√
−d, e 2πi

s

))
has an eigenvalue 1 and any g =

S∆S−1 ∈ G \ SL(2, R) has an eigenvalue 1.

Proposition 50. The quotient A/H of A = E × E is an Enriques surface if and
only if H is generated by h ∈ H of order s ∈ {2, 3, 4, 6} with L(h) ∈ SL(2, R) and
ho ∈ H with λ1L(ho) = 1, λ2L(ho) = −1, τ(ho) = hoL(ho)−1 = τ(Uo,Vo), subject to
hohh

−1
o = hohho = h−1 and

L(ho)
(
Uo

Vo

)
6= −

(
Uo

Vo

)
. (21)
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In particular, for s = 2 the group

H ≃ L(H) ≃ C2 × C2

is isomorphic to the Klein group of order 4, while for s ∈ {3, 4, 6} one has a dihedral
group

H ≃ L(H) ≃ Ds = 〈a, b | as = 1, b2 = 1, bab−1 = a−1〉
of order 2s.

Proof. According to Lemmas 41 and 49, the finite subgroups H of Aut(E × E) with
Enriques quotient A/H are of the form

H = 〈τ(Pi,Qi), h, ho | 1 ≤ i ≤ m〉

with 0 ≤ m ≤ 3 and

L(H) = 〈L(h), L(ho) L(h)s = I2, L(ho)2 = I2, L(ho)L(h)L(ho)−1 = L(h−1
) ≃ Ds

for some L(h) ∈ SL(2, R), L(ho) ∈ GL(2, R), λ1L(ho) = 1, λ2L(ho) = −1. Note that

K := L−1(L(H) ∩ SL(2, R)) = 〈τ(Pi,Qi) | 1 ≤ i ≤ m〉〈h〉

is a normal subgroup of H with a single non-trivial coset

H \K = Kho =

{
τ
h(z,j)=

m∑
i=1

zi(Pi,Qi)
hjho | zi ∈ Z, 0 ≤ j ≤ s− 1

}
.

The automorphism h, whose linear part L(h) has eigenvalues λ1L(h) = e
2πi
s , λ2L(h) =

e−
2πi
s , different from 1 has always a fixed point on A. Without loss of generality, one

can assume that h = L(h) ∈ GL(2, R), after moving the origin of A at a fixed point
of h. If ho = τ(Uo,Vo)L(ho) for some (Uo, Vo) ∈ A then the translation parts

τ(h(z, j)) = h(z, j)L(h(z, j))−1 = τ m∑
i=1

zi(Pi,Qi)+hj(Uo,Vo)
for ∀z = (z1, . . . , zm) ∈ Zm

and 0 ≤ j ≤ s− 1. The linear parts L(h(z, j)) = L(hjho) = hjL(ho) have eigenvalues
λ1(h

jL(ho)) = 1, λ2(h
jL(ho)) = −1 for all 0 ≤ j ≤ s − 1. Applying Lemma 46, one

concludes that FixA(h(z, j)) = ∅ if and only if no one lifting (x(z, j), y(z, j)) ∈ C2 of
τ(h(z, j)) is in the kernel of the linear operator ψj = hjL(ho)+ I2 : C2 → C2. For any
fixed 0 ≤ j ≤ s− 1, note that (x(z, j), y(z, j)) 6∈ ker(φj) for all z = (z1, . . . , zm) ∈ Zm

implies that the lifting of the R-span of 〈τ(Pi,Qi) | 1 ≤ i ≤ m〉 to C2 is parallel to
ker(ψj). It suffices to establish that ker(ψ0)∩ ker(ψ1) = {(0, 0)}, in order to conclude
that m = 0 and H = 〈h, ho〉 = 〈ho, h〉. Since the claim ker(ψ0)∩ ker(ψ1) = {(0, 0)}
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is independent on the choice of a coordinate system on C2, one can use Lemma 49 to
assume that

L(ho) = Do =

(
0 bo
1
bo

0

)
and h = L(h) =

(
e

2πi
s 0

0 e−
2πi
s

)

for some s ∈ {2, 3, 4, 6}. Then ψ0 = L(ho) + I2 has kernel ker(ψ0) = SpanC(bo,−1),
while

ψ1 = hL(ho) + I2 =

(
1 e

2πi
s bo

e−
2πi
s b−1

o 1

)

has kernel ker(ψ1) = SpanC

(
e

2πi
s bo,−1

)
. For s ∈ {2, , 34, 6} the vectors (bo,−1) and

(
e

2πi
s bo,−1

)
are linearly independent over C, so that ker(ψ0) ∩ ker(ψ1) = {(0, 0)}.

Now, L(hjho) = hjL(ho) 6= I2 for any 0 ≤ j ≤ s−1, as far as L(ho) 6∈ 〈h〉 < SL(2, R).
On the other hand, the subgroup 〈h = L(h)〉 of H is contained in SL(2, R), so that
the translation part T (H) = ker(L|H) = IdA is trivial. As a result, L : H → L(H) is
a group isomorphism and the relation L(ho)hL(ho)−1 = h−1 implies that

hohh
−1
o =

(
τ(Uo,Vo)L(ho)

)
h
(
τ−L(ho)−1(Uo,Vo)L(ho)−1

)
=

= τ(Uo,Vo)−L(ho)hL(ho)−1(Uo,Vo)[L(Ho)hL(ho)−1] = τ(Uo,Vo)−h−1(Uo,Vo)h
−1 = h−1.

After acting by h on (Uo, Vo) = h−1(Uo, Vo), one obtains that h(Uo, Vo) = (Uo, Vo),
or (Uo, Vo) ∈ A is a fixed point of h. Bearing in mind that K = 〈h〉 ≃ 〈L(h)〉 =
L(H)∩SL(2, R) is a normal subgroup of H ≃ L(H) = [L(H)∩SL(2, R)]〈L(ho)〉, let
us represent the complement H \K as the set of the entries of the left coset

H \K = hoK = {hohj | 0 ≤ j ≤ s− 1}.

Then hoh
j = τ(Uo,Vo)(L(ho)hj) have translation parts

τ(hoh
j) = hoh

jL(hohj)−1 = hoL(ho)−1 = τ(ho) = τ(Uo,Vo)

and linear parts L(ho)hj with eigenvalues λ1(L(ho)hj) = 1, λ2(L(ho)hj) = −1. Ac-
cording to Lemma 46, the automorphism hoh

j ∈ Aut(A) has no fixed point on A if
and only if no one lifting (uo, vo) ∈ C2 of (uo + π1(E), vo + π1(E)) = (Uo, Vo) is in the
kernel of ϕj = L(ho)hj + I2. We claim that if

h

(
uo
vo

)
=

(
uo
vo

)
+

(
µ1

µ2

)
for some (µ1, µ2) ∈ π1(A),

then ϕj(uo, vo)− ϕ0(uo, vo) ∈ π1(A). Indeed, by an induction on j, one has

hj
(
uo
vo

)
−
(
uo
vo

)
∈ π1(A),
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whereas

ϕj(uo, vo)− ϕ0(uo, vo) = L(ho)hj
(
uo
vo

)
− L(ho)

(
uo
vo

)
∈ π1(A).

Thus, the assumption (uo, vo) ∈ ker(ϕj) implies that

ϕ0(uo, vo) = L(ho)(uo, vo) + (uo, vo) = (µ′
1, µ

′
2) ∈ π1(A),

whereas

L(ho)
(
Uo

Vo

)
= −

(
Uo

Vo

)
,

contrary to the assumption (21). Note that (21) is equivalent to ϕ0(uo, vo) 6∈ π1(A)
for all liftings (uo, vo) ∈ C2 of (uo + π1(E), vo + π1(E)) = (Uo, Vo) and is slightly
stronger than FixA(ho) = ∅, which amounts to ϕ0(uo, vo) 6= 0 for ∀(uo, vo) ∈ C2 with
(uo + π1(E), vo + π1(E)) = (Uo, Vo).
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