Weak form of Holzapfel's Conjecture

Azniv Kasparian, Boris Kotzev

Abstract

Let $\mathbb{B} \subset \mathbb{C}^2$ be the unit ball and Γ be a lattice of $\mathrm{SU}(2,1)$. Bearing in mind that all compact Riemann surfaces are discrete quotients of the unit disc $\Delta \subset \mathbb{C}$, Holzapfel conjectures that the discrete ball quotients \mathbb{B}/Γ and their compactifications are widely spread among the smooth projective surfaces. There are known ball quotients \mathbb{B}/Γ of general type, as well as rational, abelian, K3 and elliptic ones. The present note constructs three non-compact ball quotients, which are birational, respectively, to a hyper-elliptic, Enriques or a ruled surface with an elliptic base. As a result, we establish that the ball quotient surfaces have representatives in any of the eight Enriques classification classes of smooth projective surfaces.

1 Introduction

In his monograph [4] Rolf-Peter Holzapfel states as a working hypothesis or a philosophy that : "... up to birational equivalence and compactifications, all complex algebraic surfaces are ball quotients." By a complex algebraic surface is meant a smooth projective surface over \mathbb{C} . These have smooth minimal models, which are classified by Enriques in eight types - rational, ruled of genus ≥ 1 , abelian, hyperelliptic, K3, Enriques, elliptic and of general type. The compact torsion free ball quotients \mathbb{B}/Γ are smooth minimal surfaces of general type. Ishida (cf.[10]), Keum (cf.[11], [12]) and Dzambic (cf.[1]) obtain elliptic surfaces, which are minimal resolutions of the isolated cyclic quotient singularities of compact ball quotients. Hirzebruch (cf.[2]) and then Holzapfel (cf.[3], [9], [7]) construct torsion free ball quotient compactifications with abelian minimal models. In [9] Holzapfel provides a ball quotient compactification, which is birational to the Kummer surface of an abelian surface, i.e., to a smooth minimal K3 surface. Rational ball quotient surfaces are explicitly recognized and studied in [6], [8]. The present work constructs smooth ball quotients with a hyperelliptic or, respectively, a ruled model with an elliptic base. It provides also a ball quotient with one double point, which is birational to an Enriques surface. All of them are finite Galois quotients of a non-compact torsion free $\mathbb{B}/\Gamma_{-1}^{(6,8)}$, constructed by Holzapfel in [9] and having abelian minimal model of the toroidal compactification. As a result, we establish the following

Theorem 1. (Weak Form of Holzapfel's Conjecture) Any of the eight Enriques classification classes of complex projective surfaces contains a ball quotient surface.

2 Ball Quotient Compactifications with Abelian Minimal Models

Let us recall that the complex 2-ball

$$\mathbb{B} = \{(z_1, z_2) \in \mathbb{C}^2; |z_1|^2 + |z_2|^2 < 1\} = \mathrm{SU}(2, 1) / \mathrm{S}(\mathrm{U}(2) \times \mathrm{U}(1))$$

is an irreducible non-compact Hermitian symmetric space. The discrete biholomorphism groups $\Gamma \subset \mathrm{SU}(2,1)$ of \mathbb{B} , whose quotients \mathbb{B}/Γ have finite $\mathrm{SU}(2,1)$ -invariant measure are called ball lattices. The present section studies the image T of the toroidal compactifying divisor $T' = (\mathbb{B}/\Gamma)' \setminus (\mathbb{B}/\Gamma)$ on the minimal model A of $(\mathbb{B}/\Gamma)'$, whenever A is an abelian surface. It establishes that for any subgroup $H \subseteq Aut(A,T)$ there is a ball quotient \mathbb{B}/Γ_H , birational to A/H.

Lemma 2. If a ball quotient \mathbb{B}/Γ is birational to an abelian surface A then \mathbb{B}/Γ is smooth and non-compact.

Proof. Assume that \mathbb{B}/Γ is singular. For a compact \mathbb{B}/Γ set $U = \mathbb{B}/\Gamma$. If \mathbb{B}/Γ is noncompact, let $U = (\mathbb{B}/\Gamma)'$ be the toroidal compactification of \mathbb{B}/Γ . In either case Uis a compact surface with isolated cyclic quotient singularities. Consider the minimal resolution $\varphi : Y \to U$ of $p_i \in U^{\text{sing}}$ by Hirzebruch-Jung strings $E_i = \sum_{t=1}^{\nu_i} E_i^t$. The irreducible components E_i^t of E_i are smooth rational curves of self-intersection $(E_i^t)^2 \leq$ -2. The birational morphism $Y \longrightarrow A$ transforms E_i^t onto rational curves on A. It suffices to observe that an abelian surface A does not support rational curves C, in order to conclude that \mathbb{B}/Γ is smooth. The compact smooth ball quotients are known to be of general type, so that \mathbb{B}/Γ is to be non-compact.

Assume that there is a rational curve $C \subset A$. Its desingularization $f : \widetilde{C} \to C$ can be viewed as a holomorphic map $F : \widetilde{C} \to A$. Homotopy lifting property applies to Fand provides a holomorphic immersion $\widetilde{F} : \widetilde{C} \to \widetilde{A} = \mathbb{C}^2$ in the universal cover \widetilde{A} of A, due to simply connectedness of the smooth rational curve \widetilde{C} . Its image $\widetilde{F}(\widetilde{C})$ is a compact complex-analytic subvariety of \mathbb{C}^2 , which maps to compact complex-analytic subvarieties $\operatorname{pr}_i(\widetilde{F}(\widetilde{C})) \subset \mathbb{C}$ by the canonical projections $\operatorname{pr}_i : \mathbb{C}^2 \to \mathbb{C}, 1 \leq i \leq 2$. Thus, $\operatorname{pr}_i(\widetilde{F}(\widetilde{C}))$ and, therefore, $\widetilde{F}(\widetilde{C})$ are finite. The contradiction justifies the non-existence of rational curves on A.

The next lemma lists some immediate properties of the image T of the toroidal compactifying divisor T' of $A' = (\mathbb{B}/\Gamma)'$ on its abelian minimal model A.

Lemma 3. Let $A' = (\mathbb{B}/\Gamma)'$ be a smooth toroidal ball quotient compactification, $\xi : A' \to A$ be the blow-down of the (-1)-curves $L = \sum_{j=1}^{s} L_j$ on A' to an abelian surface A

and T'_i , $1 \leq i \leq h$ be the disjoint smooth elliptic irreducible components of the toroidal compactifying divisor $T' = (\mathbb{B}/\Gamma)' \setminus (\mathbb{B}/\Gamma)$. Then:

(i) $T_i = \xi(T'_i)$ are smooth irreducible elliptic curves on A;

(ii)
$$T^{\text{sing}} = \sum_{1 \le i < j \le h} T_i \cap T_j = \xi(L);$$

(iii) $T_i \cap T^{\text{sing}} \neq \emptyset$ and the restrictions $\xi : T'_i \to T_i$ are bijective for all $1 \le i \le h$

Proof. (i) According to the birational invariance of the genus, the curves $T_i = \xi(T'_i)$ have smooth elliptic desingularizations. It suffices to show that any curve $C \subset A$ of genus 1 is smooth. If C is singular then its desingularization \widetilde{C} is a smooth elliptic curve. Therefore, the composition $\widetilde{C} \to C \hookrightarrow A$ of the desingularization map with the identical inclusion of C is a morphism of abelian varieties. In particular, it is unramified, which is not the case for $\widetilde{C} \to C$. Therefore any curve $C \subset A$ of genus 1 is smooth.

(ii) The inclusion $T^{\text{sing}} \subseteq \sum_{\substack{1 \le i < j \le h}} T_i \cap T_j$ follows from (i). For the opposite inclusion,

note that $\xi|_{A'\setminus L} = \operatorname{Id}_{(A'\setminus L)} : A' \setminus L \to A \setminus \xi(L)$ guarantees $T_i = \xi(T'_i) \neq \xi(T'_j) = T_j$ and different elliptic curves on an abelian surface intersect transversally at any of their intersection points. Thus, $T^{\operatorname{sing}} = \sum_{1 \leq i < j \leq h} T_i \cap T_j$. The disjointness of T'_i yields $\sum_{1 \leq i < j \leq h} T_i \cap T_j \subseteq \xi(L)$. Conversely, the Kobayashi hyperbolicity of \mathbb{B}/Γ requires $\operatorname{card}(L_j \cap T') \geq 2$ for all $1 \leq j \leq s$. However, $\operatorname{card}(L_j \cap T'_i) \leq 1$ by the smoothness of $T_i = \xi(T'_i)$, so that there exist at least two $T'_i \neq T'_k$ with $\operatorname{card}(L_j \cap T'_i) = \operatorname{card}(L_j \cap T'_k) = 1$. In other words, the point $\xi(L_j) \in T_i \cap T_k$. That verifies the inclusion $\xi(L) \subseteq \sum_{1 \leq i < j \leq h} T_i \cap T_j$, whereas the

coincidence $\xi(L) = \sum_{1 \le i < j \le h} T_i \cap T_j$.

(iii) If $T_i \cap \xi(L) = \emptyset$ then the intersection numbers $(T'_i)^2 = T_i^2$ coincide. By the Adjunction Formula,

$$0 = -e(T_i) = T_i^2 + K_A \cdot T_i = T_i^2 + \mathcal{O}_A \cdot T_i = T_i^2,$$

so that $(T'_i)^2 = 0$. That contradicts the contractibility of T'_i to the corresponding cusp of \mathbb{B}/Γ and justifies $T_i \cap T^{\text{sing}} \neq \emptyset$ for $\forall 1 \leq i \leq h$.

Note that $\xi|_{T'_i \setminus L} = \operatorname{Id}|_{T'_i \setminus L} : T'_i \setminus L \to T_i \setminus \xi(L)$ is bijective. In order to define $\xi^{-1} : T_i \cap \xi(L) \to T'_i \cap L$, let us recall that for any $p \in \xi(L)$ the smooth rational curve $\xi^{-1}(p)$ has $\operatorname{card}(\xi^{-1}(p) \cap T'_i) \leq 1$. More precisely, $\operatorname{card}(\xi^{-1}(p) \cap T'_i) = 1$ if and only if $p \in T_i$, so that for any $p \in T_i \cap \xi(L)$ there is a unique point $\{q(p)\} = T'_i \cap \xi^{-1}(p)$. That provides a regular morphism $\xi^{-1}(p) = q(p)$ for all $p \in T_i \cap \xi(L)$.

According to Lemma 3, the image $T = \xi(T')$ of the toroidal compactifying divisor $T' = (\mathbb{B}/\Gamma)' \setminus (\mathbb{B}/\Gamma)$ under the blow-down $\xi : (\mathbb{B}/\Gamma)' \to A$ of the (-1)-curves is a multielliptic divisor, i.e., $T = \sum_{i=1}^{h} T_i$ has smooth elliptic irreducible components T_i , which intersect transversally. Note also that (A, T) determines uniquely $(\mathbb{B}/\Gamma)'$ as the blow-up of A at T^{sing} . **Definition 4.** A pair (A, T) of an abelian surface A and a divisor $T \subset A$ is an abelian ball quotient model if there exists a torsion free toroidal ball quotient compactification $(\mathbb{B}/\Gamma)'$, such that the blow-down $\xi : (\mathbb{B}/\Gamma)' \to A$ of the (-1)-curves on $(\mathbb{B}/\Gamma)'$ maps the pair $((\mathbb{B}/\Gamma)', T' = (\mathbb{B}/\Gamma)' \setminus (\mathbb{B}/\Gamma))$ onto (A, T).

The next lemma explains the construction of non-compact ball quotients, which are finite Galois quotients of torsion free non-compact \mathbb{B}/Γ , birational to abelian surfaces.

Lemma 5. Let $A' = (\mathbb{B}/\Gamma)' = (\mathbb{B}/\Gamma) \cup T'$ be a torsion free ball quotient compactification by a toroidal divisor T', $\xi : A' \to A$ be the blow-down of the (-1)-curves on A' to the abelian minimal model A and $T = \xi(T')$. Then

(i) Aut(A, T) = Aut(A', T') is a finite group;

(ii) any subgroup $H \subseteq Aut(A, T)$ lifts to a ball lattice Γ_H , such that Γ is a normal subgroup of Γ_H with quotient group $\Gamma_H/\Gamma = H$ and \mathbb{B}/Γ_H is a non-compact ball quotient, birational to X = A/H.

Moreover, if X = A/H is a smooth surface then \mathbb{B}/Γ_H is a smooth ball quotient.

Proof. (i) If G = Aut(A, T), then Lemma 3(ii) implies the *G*-invariance of $\xi(L)$. By the means of an arbitrary automorphism of the smooth projective line \mathbb{P}^1 , one extends the *G*-action to *L* and, therefore, to

$$A' = (A' \setminus L) \cup L = (A \setminus \xi(L)) \cup L.$$

The G-invariance of $T' = \sum_{i=1}^{h} T'_i$ follows from Lemma 3(iii). That justifies the inclusion $G \subseteq Aut(A', T')$. For the opposite inclusion, note that the union L of the (-1)-curves is invariant under an arbitrary automorphism of A'. As a result, there arises a G-action on $\xi(L)$ and $A = (A \setminus \xi(L)) \cup \xi(L) = (A' \setminus L) \cup \xi(L)$. The multi-elliptic divisor $T = \sum_{i=1}^{h} T_i$ is G-invariant according to Lemma 3(iii). Consequently, $Aut(A', T') \subseteq G$, whereas G = Aut(A', T').

In order to show that G is finite, let us consider the natural representation

$$\varphi: G \longrightarrow \operatorname{Sym}(T_1, \ldots, T_h) \simeq Sym_h$$

in the permutation group of the irreducible components T_i of T. It suffices to prove that the kernel ker φ is finite, in order to assert that G is finite. For any $g = \tau_p g_o \in \ker \varphi \subset$ Aut(A) with linear part $g_o \in Gl_2(\mathbb{C})$ and translation part τ_p , $p \in A$, we show that g_o and τ_p take finitely many values. Note that the identical inclusions $T_i \subset A$ are morphisms of abelian varieties. Thus, for any choice of an origin $\check{o}_A \in T_i$ there is a \mathbb{C} -linear embedding $\mathcal{E}_i : \widetilde{T}_i = \mathbb{C} \hookrightarrow \mathbb{C}^2 = \widetilde{A}$ of the corresponding universal covers. If $\mathcal{E}_i(1) = (a_i, b_i)$ then

$$T_i = E_{a_i, b_i} = \{ (a_i t, b_i t) (\text{mod } \pi_1(A)) ; t \in \mathbb{C} \} \subset A.$$

If the origin $\check{o}_A \notin T_i$, then for any point $(P_i, Q_i) \in T_i$ the elliptic curve $T_i = E_{a_i, b_i} + (P_i, Q_i)$. In either case, all $v_i = (a_i, b_i)$ are eigenvectors of the linear part g_o of $g = \tau_p g_o \in$

ker φ . We claim that there are at least three pairwise non-proportional v_i . Indeed, if all v_i were parallel, then $T^{\text{sing}} = \emptyset$, which contradicts $T_i \cap T^{\text{sing}} \neq \emptyset$ for $1 \leq i \leq h$ by Lemma 3 (iii). Suppose that among v_1, \ldots, v_h there are two non-parallel and all other v_i are proportional to one of them. Then after an eventual permutation there is $1 \leq k \leq h - 1$, such that v_1, v_k are linearly independent, $v_i = \mu_i v_1$ for $\mu_i \in \mathbb{C}$, $2 \leq i \leq k$ and $v_i = \mu_i v_{k+1}$ for $\mu_i \in \mathbb{C}$, $k+2 \leq i \leq h$. Holzapfel has proved in [9] that any abelian ball quotient model (A, T) is subject to $\sum_{i=1}^{h} \operatorname{card}(T_i \cap T^{\operatorname{sing}}) = 4\operatorname{card}(T^{\operatorname{sing}})$. In the case under consideration

$$\operatorname{card}(T^{\operatorname{sing}}) = \sum_{i=1}^{k} \sum_{j=k+1}^{h} \operatorname{card}(T_i \cap T_j),$$
$$\operatorname{card}(T_i \cap T^{\operatorname{sing}}) = \sum_{j=k+1}^{h} \operatorname{card}(T_i \cap T_j) \quad \text{for} \quad 1 \le i \le k \quad \text{and}$$
$$\operatorname{card}(T_j \cap T^{\operatorname{sing}}) = \sum_{i=1}^{k} \operatorname{card}(T_i \cap T_j) \quad \text{for} \quad k+1 \le j \le h.$$

Therefore $\sum_{i=1}^{h} \operatorname{card}(T_i \cap T^{\operatorname{sing}}) = 2\operatorname{card}(T^{\operatorname{sing}}) \neq 4\operatorname{card}(T^{\operatorname{sing}})$ and there are at least three pairwise non-proportional eigenvectors v_1, v_2, v_3 of g_o . Let λ_i be the corresponding

pairwise non-proportional eigenvectors v_1, v_2, v_3 of g_o . Let λ_i be the corresponding eigenvalues of v_i and $v_3 = \rho_1 v_1 + \rho_2 v_2$ for some $\rho_1, \rho_2 \in \mathbb{C}^*$. Then $\lambda_3 v_3 = g_o(v_3) = \rho_1 \lambda_1 v_1 + \rho_2 \lambda_2 v_2$ implies that $\lambda_1 = \lambda_3 = \lambda_2$ and $g_o = \lambda_o I_2$ is a scalar matrix. On the other hand, $g(T_i) = g_o(T_i) + p = T_i$ for $\forall 1 \leq i \leq h$, so that g_o permutes among themselves the parallel elliptic curves among T_1, \ldots, T_h . Since T_i are finitely many, there is a natural number m, such that $g_o^m \in \ker \varphi$. Therefore, $\lambda_o^m \in \operatorname{End}(T_i)$ and $\lambda_o^{-m} \in \operatorname{End}(T_i)$ for all $1 \leq i \leq h$, due to $(g_o^m)^{-1} = g_o^{-m} \in \ker \varphi$. Recall that the units group $\operatorname{End}^*(T_i) = \mathbb{Z}^* = \{\pm 1\}$ for T_i without a complex multiplication. If the elliptic curve T_i has complex multiplication by an imaginary quadratic number field $\mathbb{Q}(\sqrt{-d})$, $d \in \mathbb{N}$, then $\operatorname{End}(T_i)$ is a subring of the integers ring \mathcal{O}_{-d} of $\mathbb{Q}(\sqrt{-d})$. The units groups $\mathcal{O}_{-1}^* = \langle i \rangle, \mathcal{O}_{-3}^* = \langle e^{\frac{2\pi i}{6}} \rangle$, and $\mathcal{O}_{-d}^* = \langle -1 \rangle$ for $\forall d \neq 1, 3$ are finite cyclic groups. As a subgroup of \mathcal{O}_{-d}^* , the units group $\operatorname{End}^*(T_i)$ is a finite cyclic group. Therefore $\lambda_o^m \in \operatorname{End}^*(T_i)$ and $g_o = \lambda_o I_2$ take finitely many values.

Concerning the translation part τ_p of $g \in \ker \varphi$, one can always move the origin \check{o}_A of A at one of the singular points of T. Due to the G-invariance of T^{sing} , there follows $g(\check{o}_A) = \tau_p g_o(\check{o}_A) = \tau_p(\check{o}_A) = p \in T^{\text{sing}}$. Therefore p takes finitely many values and $\ker \varphi$ is finite.

(ii) Since $\Gamma \subset SU(2,1)$ is a torsion free lattice, any subgroup H of

$$G = Aut(A', T') \subseteq Aut(A' \setminus T') = Aut(\mathbb{B}/\Gamma)$$

lifts to a subgroup $\Gamma_H \subset Aut(\mathbb{B}) = SU(2,1)$, which normalizes Γ and has quotient $\Gamma_H/\Gamma = H$. We claim that Γ_H is discrete. Indeed, $\Gamma_H = \bigcup_{i=1}^k \gamma_i \Gamma$ is a finite disjoint

union of cosets, relative to Γ . Suppose that Γ_H is not discrete and there is a sequence $\{\nu_n\}_{n=1}^{\infty} \subset \Gamma_H$ with a limit point $\nu_o \in \gamma_{i_o}\Gamma$. Then pass to a subsequence $\{\nu_{m_n}\}_{n=1}^{\infty} \subset \gamma_{i_o}\Gamma$, converging to ν_o . As a result $\{\gamma_{i_o}^{-1}\nu_{m_n}\}_{n=1}^{\infty} \subset \Gamma$ converges to $\gamma_{i_o}^{-1}\nu_o \in \Gamma$ and contradicts the discreteness of Γ . Thus, $\Gamma_H \supseteq \Gamma$ is discrete and, therefore, a ball lattice. Straightforwardly,

$$A'/H = \left[\left(\mathbb{B}/\Gamma \right) / \left(\Gamma_H/\Gamma \right) \right] \cup \left(T'/H \right) = \left(\mathbb{B}/\Gamma_H \right) \cup \left(T'/H \right) = \overline{\left(\mathbb{B}/\Gamma_H \right)}$$

is the compactification of the ball quotient \mathbb{B}/Γ_H by the divisor T'/H. The *H*-Galois covers $\zeta_H : A \to A/H$ and $\zeta'_H : A' \to \overline{(\mathbb{B}/\Gamma_H)}$ fit in a commutative diagram

with the contraction ξ_H of L/H to $\xi(L)/H$.

Note that X = A/H is smooth exactly when H has no isolated fixed points on A. The blow-up $\xi : A' \to A$ replaces an arbitrary $p_j = \xi(L_j)$ with stabilizer $Stab_H(p_j)$ by a smooth rational curve L_j with $Stab_H(q) = Stab_H(p_j)$ for all $q \in \underline{L}_j$. Therefore the blow-up ξ does not create isolated H-fixed points on A' and $A'/H = \overline{(\mathbb{B}/\Gamma_H)}$ is a smooth compactification. Its open subset \mathbb{B}/Γ_H is smooth.

3 Explicit Constructions

The present section applies Lemma 5 to a specific abelian ball quotient model over the Gauss numbers $\mathbb{Q}(\mathfrak{G})$, in order to provide ball quotient compactifications, which are birational to a hyperelliptic, Enriques or a ruled surface with an elliptic base.

Theorem 6. (Holzapfel [9]) Let us consider the elliptic curve $E_{-1} = \mathbb{C}/(\mathbb{Z} + \mathbb{B}\mathbb{Z})$ with complex multiplication by the Gauss numbers $\mathbb{Q}(\mathbb{B})$, its 2-torsion points

$$Q_0 = 0 \pmod{\mathbb{Z} + i\mathbb{Z}}, \quad Q_1 = \frac{1}{2} \pmod{\mathbb{Z} + i\mathbb{Z}}, \quad Q_2 = \beta Q_1, \quad Q_3 = Q_1 + Q_2,$$

the abelian surface $A_{-1} = E_{-1} \times E_{-1}$, the points

$$Q_{ij} = (Q_i, Q_j) \in A_{2-tor} \subset A_{-1}$$

and the divisor $T_{-1}^{(6,8)} = \sum_{i=1}^{8} T_i$ with smooth elliptic irreducible components

$$T_k = E_{\mathfrak{B}^k, 1}$$
 for $1 \le k \le 4$

 $T_{m+4} = Q_m \times E_{-1}, \quad T_{m+6} = E_{-1} \times Q_m \quad \text{for} \quad 1 \le m \le 2.$

Then $(A_{-1}, T_{-1}^{(6,8)})$ is an abelian model of an arithmetic ball quotient $\mathbb{B}/\Gamma_{-1}^{(6,8)}$, defined over $\mathbb{Q}(\beta)$.

Corollary 7. (Holzapfel [9]) (i) In the notations from Theorem 6, the multiplications $I = \begin{pmatrix} \beta & 0 \\ 0 & 1 \end{pmatrix}, J = \begin{pmatrix} 1 & 0 \\ 0 & \beta \end{pmatrix}$ by $\beta \in \mathbb{Z}[\beta] = \operatorname{End}(E_{-1})$ on the first, respectively, the second elliptic factor E_{-1} of A_{-1} are automorphisms of $(A_{-1}, T_{-1}^{(6,8)})$.

(ii) If $\Gamma_{K3,-1}^{(6,8)}$ is the ball lattice, containing $\Gamma_{-1}^{(6,8)}$ as a normal subgroup with quotient $\Gamma_{K3,-1}^{(6,8)}/\Gamma_{-1}^{(6,8)} = \langle -I_2 = I^2 J^2 \rangle \subset Aut \left(A_{-1}, T_{-1}^{(6,8)} \right)$, then the ball quotient $\mathbb{B}/\Gamma_{K3,-1}^{(6,8)}$ is birational to the Kummer surface X_{K3} of A_{-1} .

(iii) If $\Gamma_{Rat,-1}^{(6,8)}$ is the ball lattice, containing $\Gamma_{-1}^{(6,8)}$ as a normal subgroup with quotient $\Gamma_{Rat,-1}^{(6,8)}/\Gamma_{-1}^{(6,8)} = \langle I, J \rangle \subseteq Aut\left(A_{-1}, T_{-1}^{(6,8)}\right)$, then the ball quotient $\mathbb{B}/\Gamma_{Rat,-1}^{(6,8)}$ is a rational surface.

The next lemma obtains the entire automorphism group $G_{-1}^{(6,8)} = Aut\left(A_{-1}, T_{-1}^{(6,8)}\right)$.

Lemma 8. In the notations from Theorem 6, the group $G_{-1}^{(6,8)} = Aut \left(A_{-1}, T_{-1}^{(6,8)}\right)$ is generated by $I = \begin{pmatrix} \beta & 0 \\ 0 & 1 \end{pmatrix}$, $J = \begin{pmatrix} 1 & 0 \\ 0 & \beta \end{pmatrix}$, the transposition $\theta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ of the elliptic factors E_{-1} of A_{-1} and the translation τ_{33} by Q_{33} . The aforementioned generators are subject to the relations

$$I^{4} = \mathrm{Id}, \quad J^{4} = \mathrm{Id}, \quad \theta^{2} = \mathrm{Id}, \quad \tau_{33}^{2} = \mathrm{Id},$$
$$IJ = JI, \quad \theta I = J\theta, \quad \theta J = I\theta,$$
$$I\tau_{33} = \tau_{33}I, \quad J\tau_{33} = \tau_{33}J, \quad \theta\tau_{33} = \tau_{33}\theta.$$

and $G_{-1}^{(6,8)}$ is of order 64.

Proof. Any $g \in G_{-1}^{(6,8)}$ leaves invariant

$$\left(T_{-1}^{(6,8)}\right)^{\text{sing}} = \sum_{1 \le i < j \le 8} T_i \cap T_j = \sum_{m=1}^2 \sum_{n=1}^2 Q_{mn} + Q_{00} + Q_{33}.$$

Thus, $g(T_i) = T_j$ implies $s_i = \operatorname{card}(T_i \cap T^{\operatorname{sing}}) = \operatorname{card}(T_j \cap T^{\operatorname{sing}}) = s_j$, according to the bijectiveness of g. In the case under consideration, $s_1 = s_2 = s_3 = s_4 =$ 4 and $s_5 = s_6 = s_7 = s_8 = 2$, so that $G_{-1}^{(6,8)}$ permutes separately T_1, \ldots, T_4 and T_5, \ldots, T_8 . In particular, the intersection $\cap_{i=1}^4 T_i = \{Q_{00}, Q_{33}\}$ is $G_{-1}^{(6,8)}$ -invariant and any $g = \tau_{(U,V)}g_o \in G_{-1}^{(6,8)}$ transforms the origin $\check{o}_{A_{-1}} = Q_{00}$ into $g(\check{o}_{A_{-1}}) = (U_1, U_2) \in$ $\{Q_{00}, Q_{33}\}. \text{ Straightforwardly, } \tau_{33}(T_i) = T_i \text{ for } 1 \leq i \leq 4 \text{ and } \tau_{33}(T_{m+2n}) = T_{3-m+2n} \text{ for } 1 \leq m \leq 2, \ 2 \leq n \leq 3 \text{ imply that } \tau_{33} \in G_{-1}^{(6,8)}. \text{ Therefore } G_{-1}^{(6,8)} \text{ is generated } \text{by } G_{-1}^{(6,8)} \cap Gl_2(\text{End}(E_{-1})) = G_{-1}^{(6,8)} \cap Gl_2(\mathbb{Z}[i]) \text{ and } \tau_{33}. \text{ Note that } \theta \in Aut(A_{-1}) \text{ acts } \text{ on } T_{-1}^{(6,8)} \text{ and induces the permutation } (T_1, T_3)(T_5, T_7)(T_6, T_8) \text{ of its irreducible components. Therefore } \theta \in G_{-1}^{(6,8)} \text{ and } \langle I, J, \theta \rangle \text{ is a subgroup of } G_{-1}^{(6,8)} \cap Gl_2(\mathbb{Z}[i]). \text{ On the other } \text{ hand, any } g = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in G_{-1}^{(6,8)} \cap \text{GL}_2(\mathbb{Z}[\beta]) \text{ acts on } T_5, \ldots, T_8 \text{ and, therefore, on the } \text{ set } \{\tilde{T}_5 = \tilde{T}_6 = 0 \times \mathbb{C}, \ \tilde{T}_7 = \tilde{T}_8 = \mathbb{C} \times 0\} \text{ of the corresponding universal covers. If } g(0 \times \mathbb{C}) = 0 \times \mathbb{C}, \ g(\mathbb{C} \times 0) = \mathbb{C} \times 0 \text{ then } \beta = \gamma = 0, \text{ so that } \alpha, \delta \in \text{End}(E_{-1}) = \mathbb{Z}[\beta] \text{ and } \det(g) = \alpha\delta \in \text{End}^*(E_{-1}) = \langle \beta \rangle = \mathbb{C}_4 \text{ imply } g = I^k J^l \text{ for some } 0 \leq k, l \leq 3. \text{ Similarly, for } g(0 \times \mathbb{C}) = \mathbb{C} \times 0, \ g(\mathbb{C} \times 0) = 0 \times \mathbb{C} \text{ one has } \alpha = \delta = 0, \text{ whereas } \beta, \gamma \in \mathbb{Z}[\beta], \ \beta\gamma \in \mathbb{Z}[\beta]^* = \langle \beta \rangle \text{ and } g = I^k J^l \theta \text{ for some } 0 \leq k, l \leq 3. \text{ Consequently, } G_{-1}^{(6,8)} \cap Gl_2(\mathbb{Z}[\beta]) = \langle I, J, \theta \rangle \text{ and } G_{-1}^{(6,8)} = \langle I, J, \theta, \tau_{33} \rangle. \text{ The announced relations among } \tau_{33}, I, J, \theta \text{ imply that }$

$$G_{-1}^{(6,8)} = \{ \tau_{33}^n I^k J^l \theta^m \mid 0 \le k, l \le 3, \quad 0 \le m, n \le 1 \}$$

is of order 64.

Theorem 9. In the notations from Lemma 5, Theorem 6 and Lemma 8, let us consider the subgroups $H_{HE} = \langle \tau_{33}J^2 \rangle$, $H_{Enr} = \langle -I_2, \tau_{33}I^2 \rangle$, $H_{Rul} = \langle J^2 \rangle$ of $G_{-1}^{(6,8)} = Aut\left(A_{-1}, T_{-1}^{(6,8)}\right)$, their liftings $\Gamma_{HE,-1}^{(6,8)}$, $\Gamma_{Enr,-1}^{(6,8)}$, $\Gamma_{Rul,-1}^{(6,8)}$ to ball lattices and the blow-up $A_{\widehat{2-tor}}$ of A_{-1} at the 2-torsion points A_{2-tor} . Then

(i) $\mathbb{B}/\Gamma_{HE,-1}^{(6,8)}$ is a smooth ball quotient, birational to the smooth hyperelliptic surface A_{-1}/H_{HE} ;

(ii) $\mathbb{B}/\Gamma_{Enr,-1}^{(6,8)}$ is a ball quotient with one double point $Orb_{H_{Enr}}(Q_{03})$, which is birational to the smooth Enriques surface $A_{\widehat{2-tor}}/H_{Enr}$;

(iii) $\mathbb{B}/\Gamma_{Rul,-1}^{(6,8)}$ is a smooth ball quotient, birational to the smooth trivial ruled surface $A_{-1}/H_{Rul} = E_{-1} \times \mathbb{P}^1$ with an elliptic base E_{-1} .

Proof. (i) Recall that the \mathbb{Z} -module $\pi_1(E_{-1}) = \mathbb{Z} + i\mathbb{Z} = \mathbb{Z} + (1+i)\mathbb{Z}$ is generated by 1, 1+i and $Q_3 = \frac{1+i}{2} \pmod{\pi_1(E_{-1})}$. The translation $\tau_{Q_3} : E_{-1} \to E_{-1}$ is of order 2, as well as the morphism

$$\tau_{Q_3}(-1): E_{-1} \longrightarrow E_{-1},$$

$$\tau_{Q_3}(-1)(P) = -P + Q_3$$

with four fixed points

$$\frac{1}{2}Q_3 + (E_{-1})_{2-tor} = \frac{1}{2}Q_3 + \{Q_i \,|\, 0 \le i \le 3\}.$$

8

According to [5], the quotient A_{-1}/H_{HE} by the cyclic group

$$H_{HE} = \langle \tau_{Q_3} \times \tau_{Q_3}(-1) \rangle$$

of order 2 is a smooth hyperelliptic surface. Lemma 5 (ii) implies that $\mathbb{B}/\Gamma_{HE,-1}^{(6,8)}$ is a smooth ball quotient, birational to A_{-1}/H_{HE} .

(ii) The quotient $X_{K3} = A_{\widehat{2-tor}}/\langle -I_2 \rangle$ is a smooth K3 surface, called the Kummer surface of A_{-1} . We claim that the involution $\tau_{33}I^2$ acts on $A_{\widehat{2-tor}}$ and determines an unramified double cover

$$\zeta: X_{K3} = A_{\widehat{2-tor}} / \langle -I_2 \rangle \to A_{\widehat{2-tor}} / \langle -I_2, \tau_{33} I^2 \rangle = A_{\widehat{2-tor}} / H_{Enr}.$$

More precisely, $\tau_{33}I^2 = \tau_{Q_3}(-1) \times \tau_{Q_3}$ leaves invariant the 2-torsion points $A_{2-tor} = \{Q_{ij} \mid 0 \leq i, j \leq 3\}$ and any choice of an automorphism of \mathbb{P}^1 extends $\tau_{33}I^2$ to an automorphism of A_{2-tor} . Note that $\tau_{33}I^2(-I_2) = (-I_2)\tau_{33}I^2$, so that $\tau_{33}I^2$ normalizes $\langle -I_2 \rangle$ and there is a well defined quotient group $H_{Enr}/\langle -I_2 \rangle = \langle \tau_{33}I^2 \rangle$ of order 2. That allows to define $\zeta : X_{K3} \to A_{2-tor}/H_{Enr}$ as an $H_{Enr}/\langle -I_2 \rangle$ -Galois cover. We claim that $\tau_{33}I^2$ is a fixed point free involution on X_{K3} , in order to conclude that A_{2-tor}/H_{Enr} is a smooth Enriques surface. More precisely, the fixed points of $\tau_{33}I^2$ on the set X_{K3} of the $\langle -I_2 \rangle$ -orbits on A_{2-tor} lift to ε -fixed points of $\tau_{33}I^2$ on A_{2-tor} for $\varepsilon = \pm 1$. The ε -fixed points $(P,Q) \in A_{-1}$ are subject to

$$\begin{vmatrix} -P + Q_3 = \varepsilon P \\ Q + Q_3 = \varepsilon Q \end{vmatrix}$$

For $\varepsilon = 1$ the equality $Q + Q_3 = Q$ has no solution $Q \in E_{-1}$, while for $\varepsilon = -1$ the equation $-P + Q_3 = -P$ on $P \in E_{-1}$ is inconsistent. Therefore $\tau_{33}I^2$ has no ε -fixed points on A_{-1} . By the very definition of the $\tau_{33}I^2$ -action on A_{2-tor} , there are no ε -fixed points for $\tau_{33}I^2$ on A_{2-tor} and $\tau_{33}I^2 : X_{K3} \to X_{K3}$ is a fixed point free involution. As a result, A_{2-tor}/H_{Enr} is a smooth Enriques surface.

Recall that the exceptional divisor $\xi_{2-tor}^{-1}(A_{2-tor})$ of the blow-up

$$\xi_{2-tor}: A_{\widehat{2-tor}} \to A_{-1}$$

of A_{-1} at A_{2-tor} is H_{Enr} -invariant, so that ξ_{2-tor} descends to the contraction $\overline{\xi_{2-tor}}$: $A_{\widehat{2-tor}}/H_{Enr} \rightarrow A_{-1}/H_{Enr}$ of $\xi_{2-tor}^{-1}(A_{2-tor})/H_{Enr}$ to A_{2-tor}/H_{Enr} . In particular, the smooth Enriques surface $A_{\widehat{2-tor}}/H_{Enr}$ is birational to A_{-1}/H_{Enr} . The singular locus $(A_{-1}/H_{Enr})^{\text{sing}} \subseteq (A_{2-tor}/H_{Enr})$, according to the smoothness of $A_{\widehat{2-tor}}/H_{Enr}$. On the other hand, $\tau_{33}I^2$ has no fixed points on A_{2-tor} , so that A_{2-tor}/H_{Enr} consists of eight double points

$$Orb_{H_{Enr}}(Q_{ij}) = Orb_{H_{Enr}}(Q_{3-i,3-j}), \quad 0 \le i, j \le 3$$

and $(A_{-1}/H_{Enr})^{\text{sing}} = A_{2-tor}/H_{Enr}$. Note that

$$\left(T_{-1}^{(6,8)}\right)^{\text{sing}} = \{Orb_{H_{Enr}}(Q_{00}), Orb_{H_{Enr}}(Q_{11}), Orb_{H_{Enr}}(Q_{12})\}$$

is contained in $(A_{-1}/H_{Enr})^{\text{sing}}$ and the birational morphism

$$\xi_{H_{Enr}}: \overline{\left(\mathbb{B}/\Gamma_{Enr,-1}^{(6,8)}\right)} \to A_{-1}/H_{Enr}$$

resolves $\left(T_{-1}^{(6,8)}\right)^{\text{sing}}$ by smooth rational curves of self-intersection (-2). Therefore $\overline{\left(\mathbb{B}/\Gamma_{Enr,-1}^{(6,8)}\right)}^{\text{sing}}$ consists of the following five double point:

 $Orb_{H_{Enr}}(Q_{01}), Orb_{H_{Enr}}(Q_{10}), Orb_{H_{Enr}}(Q_{02}), Orb_{H_{Enr}}(Q_{20}), Orb_{H_{Enr}}(Q_{03}).$

Since

$$Orb_{H_{Enr}}(Q_{0,m}) \in \left[T_{m+6} \setminus \left(T_{-1}^{(6,8)}\right)^{\operatorname{sing}}\right] / H_{Enr} = \left(T_{m+6}' \setminus L\right) / H_{Enr}$$
$$Orb_{H_{Enr}}(Q_{m,0}) \in \left[T_{m+4} \setminus \left(T_{-1}^{(6,8)}\right)^{\operatorname{sing}}\right] / H_{Enr} = \left(T_{m+4}' \setminus L\right) / H_{Enr}$$

for $\forall 1 \leq m \leq 2$ belong to the compactifying divisor T'/H_{Enr} , the ball quotient $\mathbb{B}/\Gamma_{Enr,-1}^{(6,8)}$ has only one singular point

$$\left(\mathbb{B}/\Gamma_{Enr,-1}^{(6,8)}\right)^{\text{sing}} = \{Orb_{H_{Enr}}(Q_{0,3})\}.$$

(iii) The quotient $X = A_{-1}/H_{Rul} = E_{-1} \times [E_{-1}/\langle (-1) \rangle]$ of A_{-1} by the reflection $J^2 = 1 \times (-1)$ is a smooth surface, birational to the smooth ball quotient $\mathbb{B}/\Gamma_{Rul,-1}^{(6,8)}$. It is well known that $C = E_{-1}/\langle -1 \rangle$ is a smooth projective curve. More precisely, if

$$\mathfrak{p}(t) = \frac{1}{t^2} + \sum_{\lambda \in (\mathbb{Z} + i\mathbb{Z}) \setminus \{0\}} \left[\frac{1}{(t-\lambda)^2} - \frac{1}{\lambda^2} \right]$$

is the Weierstrass \mathfrak{p} -function, associated with the lattice $\mathbb{Z} + i\mathbb{Z} = \pi_1(E_{-1})$, then the map

$$\psi: E_{-1} \setminus \{\check{o}_{E_{-1}}\} \longrightarrow \mathbb{P}^2,$$

$$\psi(t + (\mathbb{Z} + i\mathbb{Z})) = [1: \mathfrak{p}(t + (\mathbb{Z} + i\mathbb{Z})): \mathfrak{p}'(t + (\mathbb{Z} + i\mathbb{Z}))] = [1: \mathfrak{p}(t): \mathfrak{p}'(t)]$$

extends by $\psi(\check{o}_{E_{-1}}) = [0:0:1] = p_{\infty}$ to a projective embedding of E_{-1} . The image

$$\psi(E_{-1}) = \left\{ [z:x:y] \in \mathbb{P}^2 ; \ zy^2 = (x - \mathfrak{p}(Q_1))(x - \mathfrak{p}(Q_2))(x - \mathfrak{p}(Q_3)) \right\}$$

is a cubic hypersurface in \mathbb{P}^2 . As far as $\mathfrak{p}(t)$ is even and $\mathfrak{p}'(t)$ is an odd function of t, the multiplication μ_{-1} by -1 on E_{-1} acts on $\psi(E_{-1})$ by the rule

$$\mu_{-1}([z:x:y]) = [z:x:-y].$$

The fixed points of this action are p_{∞} and $\mathfrak{p}(Q_i)$ for $1 \leq i \leq 3$. The fibres of the projection

$$\Pi: \psi(E_{-1}) \setminus \{p_{\infty}\} \longrightarrow \mathbb{P}^1 \setminus \{q_{\infty} = [0:1]\},\$$

 $\Pi([z:x:y]) = [z:x]$

are exactly the μ_{-1} -orbits on $\psi(E_{-1}) \setminus \{p_{\infty}\}$, so that its image

$$\mathbb{P}^1 \setminus \{q_\infty\} = \Pi(\psi(E_{-1}) \setminus \{p_\infty\}) = (\psi(E_{-1}) \setminus \{p_\infty\}) / \langle \mu_{-1} \rangle$$

is the corresponding Galois quotient by the cyclic group $\langle \mu_{-1} \rangle$ of order 2. Thus,

$$\psi(E_{-1})/\langle \mu_{-1}\rangle = (\psi(E_{-1}) \setminus \{p_{\infty}\})/\langle \mu_{-1}\rangle \cup \{p_{\infty}\} = (\mathbb{P}^1 \setminus \{q_{\infty}\}) \cup \{p_{\infty}\} = \mathbb{P}^1.$$

References

- [1] Dzambic A., Arithmetic of a Fake Projective Plane and Related Elliptic Surfaces, preprint (2008), arXiv: 0803.0645.
- [2] Hirzebruch F. Chern Numbers of Algebraic Surfaces An Example, Math. Ann. 266 (1984) 351–356.
- [3] Holzapfel R.-P., Chern Numbers of Algebraic Surfaces Hirzebruch's Examples Are Picard Modular Surfaces, Math. Nach. 126 (1986) 255–273.
- [4] Holzapfel R.-P., Ball and Surface Arithmetic, 1998.
- [5] Griffiths Ph., Harris J., Pronciples of Algebraic Geometry, Wiley Interscience Publ., 1978.
- [6] Holzapfel R.-P. with appendices by A. Pineiro and N. Vladov, Picard-Eistein Metrics and Class Fields Connected with Apolonius Cycle, HU Preprint 98-15 (1998).
- [7] Holzapfel R.-P., Jacobi Theta Embedding of a Hyperbolic 4-space with Cusps, In: Geometry, Integrability and Quantization, I. Mladenov and G. Naber (Eds), Coral Press, Sofia 2002, pp 11–63.
- [8] Holzapfel R.-P., Vladov N., Quadric-Line Configurations Degenerating Plane Picard Einstein Metrics I-II, Sitzungsber d. Berliner Math. Ges., Berlin 2003, 79–142.
- [9] Holzapfel R.-P., Complex Hyperbolic Surfaces of Abelian Type, Serdica Math. Jour. 30 (2004) 207–238.
- [10] Ishida M., An Elliptic Surface Covered by Mumford's Fake Projective Plane, Tohoku Math. J. 40 (1988) 367-398.
- [11] Keum J., A Fake Projective Plane with an Order 7 Automorphism, Topology 45 (2006) 919–927.
- [12] Keum J., Quotients of Fake Projective Planes, Geom. Topol. 12 (2008) 2497–2515.