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Abstract
Let B ⊂ C2 be the unit ball and Γ be a lattice of SU(2, 1). Bearing in mind

that all compact Riemann surfaces are discrete quotients of the unit disc ∆ ⊂ C,
Holzapfel conjectures that the discrete ball quotients B/Γ and their compactifica-
tions are widely spread among the smooth projective surfaces. There are known
ball quotients B/Γ of general type, as well as rational, abelian, K3 and elliptic ones.
The present note constructs three non-compact ball quotients, which are birational,
respectively, to a hyper-elliptic, Enriques or a ruled surface with an elliptic base.
As a result, we establish that the ball quotient surfaces have representatives in any
of the eight Enriques classification classes of smooth projective surfaces.

1 Introduction
In his monograph [4] Rolf-Peter Holzapfel states as a working hypothesis or a philosophy
that : " ... up to birational equivalence and compactifications, all complex algebraic
surfaces are ball quotients." By a complex algebraic surface is meant a smooth projective
surface over C. These have smooth minimal models, which are classified by Enriques in
eight types - rational, ruled of genus ≥ 1, abelian, hyperelliptic, K3, Enriques, elliptic
and of general type. The compact torsion free ball quotients B/Γ are smooth minimal
surfaces of general type. Ishida (cf.[10]), Keum (cf.[11], [12]) and Dzambic (cf.[1]) obtain
elliptic surfaces, which are minimal resolutions of the isolated cyclic quotient singularities
of compact ball quotients. Hirzebruch (cf.[2]) and then Holzapfel (cf.[3], [9], [7]) construct
torsion free ball quotient compactifications with abelian minimal models. In [9] Holzapfel
provides a ball quotient compactification, which is birational to the Kummer surface
of an abelian surface, i.e., to a smooth minimal K3 surface. Rational ball quotient
surfaces are explicitly recognized and studied in [6], [8]. The present work constructs
smooth ball quotients with a hyperelliptic or, respectively, a ruled model with an elliptic
base. It provides also a ball quotient with one double point, which is birational to
an Enriques surface. All of them are finite Galois quotients of a non-compact torsion
free B/Γ(6,8)

−1 , constructed by Holzapfel in [9] and having abelian minimal model of the
toroidal compactification. As a result, we establish the following

Theorem 1. (Weak Form of Holzapfel’s Conjecture) Any of the eight Enriques classi-
fication classes of complex projective surfaces contains a ball quotient surface.



2 Ball Quotient Compactifications with Abelian
Minimal Models

Let us recall that the complex 2-ball

B = {(z1, z2) ∈ C2 ; |z1|2 + |z2|2 < 1} = SU(2, 1)/S(U(2)× U(1))

is an irreducible non-compact Hermitian symmetric space. The discrete biholomorphism
groups Γ ⊂ SU(2, 1) of B, whose quotients B/Γ have finite SU(2, 1)-invariant measure are
called ball lattices. The present section studies the image T of the toroidal compactifying
divisor T ′ = (B/Γ)′ \ (B/Γ) on the minimal model A of (B/Γ)′, whenever A is an abelian
surface. It establishes that for any subgroup H ⊆ Aut(A, T ) there is a ball quotient
B/ΓH , birational to A/H.

Lemma 2. If a ball quotient B/Γ is birational to an abelian surface A then B/Γ is
smooth and non-compact.

Proof. Assume that B/Γ is singular. For a compact B/Γ set U = B/Γ. If B/Γ is non-
compact, let U = (B/Γ)′ be the toroidal compactification of B/Γ. In either case U
is a compact surface with isolated cyclic quotient singularities. Consider the minimal

resolution ϕ : Y → U of pi ∈ U sing by Hirzebruch-Jung strings Ei =
νi∑
t=1

Et
i . The

irreducible components Et
i of Ei are smooth rational curves of self-intersection (Et

i )
2 ≤

−2. The birational morphism Y > A transforms Et
i onto rational curves on A. It

suffices to observe that an abelian surface A does not support rational curves C, in order
to conclude that B/Γ is smooth. The compact smooth ball quotients are known to be
of general type, so that B/Γ is to be non-compact.

Assume that there is a rational curve C ⊂ A. Its desingularization f : C̃ → C can
be viewed as a holomorphic map F : C̃ → A. Homotopy lifting property applies to F
and provides a holomorphic immersion F̃ : C̃ → Ã = C2 in the universal cover Ã of
A, due to simply connectedness of the smooth rational curve C̃. Its image F̃ (C̃) is a
compact complex-analytic subvariety of C2, which maps to compact complex-analytic
subvarieties pri(F̃ (C̃)) ⊂ C by the canonical projections pri : C2 → C, 1 ≤ i ≤ 2. Thus,
pri(F̃ (C̃)) and, therefore, F̃ (C̃) are finite. The contradiction justifies the non-existence
of rational curves on A.

The next lemma lists some immediate properties of the image T of the toroidal
compactifying divisor T ′ of A′ = (B/Γ)′ on its abelian minimal model A.

Lemma 3. Let A′ = (B/Γ)′ be a smooth toroidal ball quotient compactification, ξ :

A′ → A be the blow-down of the (−1)-curves L =
s∑
j=1

Lj on A′ to an abelian surface A
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and T ′i , 1 ≤ i ≤ h be the disjoint smooth elliptic irreducible components of the toroidal
compactifying divisor T ′ = (B/Γ)′ \ (B/Γ). Then:

(i) Ti = ξ(T ′i ) are smooth irreducible elliptic curves on A;
(ii) T sing =

∑
1≤i<j≤h

Ti ∩ Tj = ξ(L);

(iii) Ti ∩ T sing 6= ∅ and the restrictions ξ : T ′i → Ti are bijective for all 1 ≤ i ≤ h.

Proof. (i) According to the birational invariance of the genus, the curves Ti = ξ(T ′i ) have
smooth elliptic desingularizations. It suffices to show that any curve C ⊂ A of genus
1 is smooth. If C is singular then its desingularization C̃ is a smooth elliptic curve.
Therefore, the composition C̃ → C ↪→ A of the desingularization map with the identical
inclusion of C is a morphism of abelian varieties. In particular, it is unramified, which
is not the case for C̃ → C. Therefore any curve C ⊂ A of genus 1 is smooth.

(ii) The inclusion T sing ⊆
∑

1≤i<j≤h
Ti ∩ Tj follows from (i). For the opposite inclusion,

note that ξ|A′\L = Id(A′\L) : A′ \ L → A \ ξ(L) guarantees Ti = ξ(T ′i ) 6= ξ(T ′j) = Tj
and different elliptic curves on an abelian surface intersect transversally at any of their
intersection points. Thus, T sing =

∑
1≤i<j≤h

Ti∩Tj. The disjointness of T ′i yields
∑

1≤i<j≤h
Ti∩

Tj ⊆ ξ(L). Conversely, the Kobayashi hyperbolicity of B/Γ requires card(Lj ∩ T ′) ≥ 2
for all 1 ≤ j ≤ s. However, card(Lj ∩ T ′i ) ≤ 1 by the smoothness of Ti = ξ(T ′i ), so that
there exist at least two T ′i 6= T ′k with card(Lj ∩T ′i ) = card(Lj ∩T ′k) = 1. In other words,
the point ξ(Lj) ∈ Ti∩Tk. That verifies the inclusion ξ(L) ⊆

∑
1≤i<j≤h

Ti∩Tj, whereas the

coincidence ξ(L) =
∑

1≤i<j≤h
Ti ∩ Tj.

(iii) If Ti ∩ ξ(L) = ∅ then the intersection numbers (T ′i )
2 = T 2

i coincide. By the
Adjunction Formula,

0 = −e(Ti) = T 2
i +KA.Ti = T 2

i +OA.Ti = T 2
i ,

so that (T ′i )
2 = 0. That contradicts the contractibility of T ′i to the corresponding cusp

of B/Γ and justifies Ti ∩ T sing 6= ∅ for ∀1 ≤ i ≤ h.
Note that ξ|T ′i\L = Id|T ′i\L : T ′i \ L → Ti \ ξ(L) is bijective. In order to define

ξ−1 : Ti ∩ ξ(L) → T ′i ∩ L, let us recall that for any p ∈ ξ(L) the smooth rational curve
ξ−1(p) has card(ξ−1(p) ∩ T ′i ) ≤ 1. More precisely, card(ξ−1(p) ∩ T ′i ) = 1 if and only if
p ∈ Ti, so that for any p ∈ Ti ∩ ξ(L) there is a unique point {q(p)} = T ′i ∩ ξ−1(p). That
provides a regular morphism ξ−1(p) = q(p) for all p ∈ Ti ∩ ξ(L).

According to Lemma 3, the image T = ξ(T ′) of the toroidal compactifying divisor
T ′ = (B/Γ)′ \ (B/Γ) under the blow-down ξ : (B/Γ)′ → A of the (−1)-curves is a multi-

elliptic divisor, i.e., T =
h∑
i=1

Ti has smooth elliptic irreducible components Ti, which

intersect transversally. Note also that (A, T ) determines uniquely (B/Γ)′ as the blow-up
of A at T sing.
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Definition 4. A pair (A, T ) of an abelian surface A and a divisor T ⊂ A is an abelian
ball quotient model if there exists a torsion free toroidal ball quotient compactification
(B/Γ)′, such that the blow-down ξ : (B/Γ)′ → A of the (−1)-curves on (B/Γ)′ maps the
pair

(
(B/Γ)′ , T ′ = (B/Γ)′ \ (B/Γ)

)
onto (A, T ).

The next lemma explains the construction of non-compact ball quotients, which are
finite Galois quotients of torsion free non-compact B/Γ, birational to abelian surfaces.

Lemma 5. Let A′ = (B/Γ)′ = (B/Γ)∪T ′ be a torsion free ball quotient compactification
by a toroidal divisor T ′, ξ : A′ → A be the blow-down of the (−1)-curves on A′ to the
abelian minimal model A and T = ξ(T ′). Then

(i) Aut(A, T ) = Aut(A′, T ′) is a finite group;
(ii) any subgroup H ⊆ Aut(A, T ) lifts to a ball lattice ΓH , such that Γ is a normal

subgroup of ΓH with quotient group ΓH/Γ = H and B/ΓH is a non-compact ball quotient,
birational to X = A/H.

Moreover, if X = A/H is a smooth surface then B/ΓH is a smooth ball quotient.

Proof. (i) If G = Aut(A, T ), then Lemma 3(ii) implies the G-invariance of ξ(L). By the
means of an arbitrary automorphism of the smooth projective line P1, one extends the
G-action to L and, therefore, to

A′ = (A′ \ L) ∪ L = (A \ ξ(L)) ∪ L.

The G-invariance of T ′ =
h∑
i=1

T ′i follows from Lemma 3(iii). That justifies the inclusion

G ⊆ Aut(A′, T ′). For the opposite inclusion, note that the union L of the (−1)-curves
is invariant under an arbitrary automorphism of A′. As a result, there arises a G-
action on ξ(L) and A = (A \ ξ(L)) ∪ ξ(L) = (A′ \ L) ∪ ξ(L). The multi-elliptic divisor

T =
h∑
i=1

Ti is G-invariant according to Lemma 3(iii). Consequently, Aut(A′, T ′) ⊆ G,

whereas G = Aut(A′, T ′).
In order to show that G is finite, let us consider the natural representation

ϕ : G −→ Sym(T1, . . . , Th) ' Symh

in the permutation group of the irreducible components Ti of T . It suffices to prove that
the kernel kerϕ is finite, in order to assert that G is finite. For any g = τpgo ∈ kerϕ ⊂
Aut(A) with linear part go ∈ Gl2(C) and translation part τp, p ∈ A, we show that go and
τp take finitely many values. Note that the identical inclusions Ti ⊂ A are morphisms of
abelian varieties. Thus, for any choice of an origin ǒA ∈ Ti there is a C-linear embedding
Ei : T̃i = C ↪→ C2 = Ã of the corresponding universal covers. If Ei(1) = (ai, bi) then

Ti = Eai,bi = {(ait, bit)(mod π1(A)) ; t ∈ C} ⊂ A.

If the origin ǒA 6∈ Ti, then for any point (Pi, Qi) ∈ Ti the elliptic curve Ti = Eai,bi +
(Pi, Qi). In either case, all vi = (ai, bi) are eigenvectors of the linear part go of g = τpgo ∈
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kerϕ. We claim that there are at least three pairwise non-proportional vi. Indeed, if
all vi were parallel, then T sing = ∅, which contradicts Ti ∩ T sing 6= ∅ for 1 ≤ i ≤ h
by Lemma 3 (iii). Suppose that among v1, . . . , vh there are two non-parallel and all
other vi are proportional to one of them. Then after an eventual permutation there is
1 ≤ k ≤ h− 1, such that v1, vk are linearly independent, vi = µiv1 for µi ∈ C, 2 ≤ i ≤ k
and vi = µivk+1 for µi ∈ C, k + 2 ≤ i ≤ h. Holzapfel has proved in [9] that any abelian

ball quotient model (A, T ) is subject to
h∑
i=1

card(Ti ∩ T sing) = 4card(T sing). In the case

under consideration

card(T sing) =
k∑
i=1

h∑
j=k+1

card(Ti ∩ Tj),

card(Ti ∩ T sing) =
h∑

j=k+1

card(Ti ∩ Tj) for 1 ≤ i ≤ k and

card(Tj ∩ T sing) =
k∑
i=1

card(Ti ∩ Tj) for k + 1 ≤ j ≤ h.

Therefore
h∑
i=1

card(Ti ∩ T sing) = 2card(T sing) 6= 4card(T sing) and there are at least three

pairwise non-proportional eigenvectors v1, v2, v3 of go. Let λi be the corresponding
eigenvalues of vi and v3 = ρ1v1 + ρ2v2 for some ρ1, ρ2 ∈ C∗. Then λ3v3 = go(v3) =
ρ1λ1v1 + ρ2λ2v2 implies that λ1 = λ3 = λ2 and go = λoI2 is a scalar matrix. On
the other hand, g(Ti) = go(Ti) + p = Ti for ∀1 ≤ i ≤ h, so that go permutes among
themselves the parallel elliptic curves among T1, . . . , Th. Since Ti are finitely many,
there is a natural number m, such that gmo ∈ kerϕ. Therefore, λmo ∈ End(Ti) and
λ−mo ∈ End(Ti) for all 1 ≤ i ≤ h, due to (gmo )−1 = g−mo ∈ kerϕ. Recall that the units
group End∗(Ti) = Z∗ = {±1} for Ti without a complex multiplication. If the elliptic
curve Ti has complex multiplication by an imaginary quadratic number field Q(

√
−d),

d ∈ N, then End(Ti) is a subring of the integers ring O−d of Q(
√
−d). The units groups

O∗−1 = 〈i〉, O∗−3 = 〈e 2πi
6 〉, and O∗−d = 〈−1〉 for ∀d 6= 1, 3 are finite cyclic groups. As a sub-

group of O∗−d, the units group End∗(Ti) is a finite cyclic group. Therefore λmo ∈ End∗(Ti)
and go = λoI2 take finitely many values.

Concerning the translation part τp of g ∈ kerϕ, one can always move the origin ǒA
of A at one of the singular points of T . Due to the G-invariance of T sing, there follows
g(ǒA) = τpgo(ǒa) = τp(ǒA) = p ∈ T sing. Therefore p takes finitely many values and kerϕ
is finite.

(ii) Since Γ ⊂ SU(2, 1) is a torsion free lattice, any subgroup H of

G = Aut(A′, T ′) ⊆ Aut(A′ \ T ′) = Aut (B/Γ)

lifts to a subgroup ΓH ⊂ Aut(B) = SU(2, 1), which normalizes Γ and has quotient
ΓH/Γ = H. We claim that ΓH is discrete. Indeed, ΓH = ∪ki=1γiΓ is a finite disjoint
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union of cosets, relative to Γ. Suppose that ΓH is not discrete and there is a sequence
{νn}∞n=1 ⊂ ΓH with a limit point νo ∈ γioΓ. Then pass to a subsequence {νmn}∞n=1 ⊂
γioΓ, converging to νo. As a result {γ−1

io
νmn}∞n=1 ⊂ Γ converges to γ−1

io
νo ∈ Γ and

contradicts the discreteness of Γ. Thus, ΓH ⊇ Γ is discrete and, therefore, a ball lattice.
Straightforwardly,

A′/H = [(B/Γ) / (ΓH/Γ)] ∪ (T ′/H) = (B/ΓH) ∪ (T ′/H) = (B/ΓH)

is the compactification of the ball quotient B/ΓH by the divisor T ′/H. The H-Galois
covers ζH : A→ A/H and ζ ′H : A′ → (B/ΓH) fit in a commutative diagram

A A′

A/H (B/ΓH)

?

ζH

�
ξ

?

ζ′H

�
ξH

with the contraction ξH of L/H to ξ(L)/H.
Note that X = A/H is smooth exactly when H has no isolated fixed points on A.

The blow-up ξ : A′ → A replaces an arbitrary pj = ξ(Lj) with stabilizer StabH(pj) by
a smooth rational curve Lj with StabH(q) = StabH(pj) for all q ∈ Lj. Therefore the
blow-up ξ does not create isolated H-fixed points on A′ and A′/H = (B/ΓH) is a smooth
compactification. Its open subset B/ΓH is smooth.

3 Explicit Constructions
The present section applies Lemma 5 to a specific abelian ball quotient model over
the Gauss numbers Q(ß), in order to provide ball quotient compactifications, which are
birational to a hyperelliptic, Enriques or a ruled surface with an elliptic base.

Theorem 6. (Holzapfel [9]) Let us consider the elliptic curve E−1 = C/(Z + ßZ) with
complex multiplication by the Gauss numbers Q(ß), its 2-torsion points

Q0 = 0(modZ + iZ), Q1 =
1

2
(modZ + iZ), Q2 = ßQ1, Q3 = Q1 +Q2,

the abelian surface A−1 = E−1 × E−1, the points

Qij = (Qi, Qj) ∈ A2−tor ⊂ A−1

and the divisor T (6,8)
−1 =

8∑
i=1

Ti with smooth elliptic irreducible components

Tk = Eßk,1 for 1 ≤ k ≤ 4,
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Tm+4 = Qm × E−1, Tm+6 = E−1 ×Qm for 1 ≤ m ≤ 2.

Then
(
A−1, T

(6,8)
−1

)
is an abelian model of an arithmetic ball quotient B/Γ(6,8)

−1 , defined
over Q(ß).

Corollary 7. (Holzapfel [9]) (i) In the notations from Theorem 6, the multiplications

I =

(
ß 0
0 1

)
, J =

(
1 0
0 ß

)
by ß ∈ Z[ß] = End(E−1) on the first, respectively, the

second elliptic factor E−1 of A−1 are automorphisms of
(
A−1, T

(6,8)
−1

)
.

(ii) If Γ
(6,8)
K3,−1 is the ball lattice, containing Γ

(6,8)
−1 as a normal subgroup with quotient

Γ
(6,8)
K3,−1/Γ

(6,8)
−1 = 〈−I2 = I2J2〉 ⊂ Aut

(
A−1, T

(6,8)
−1

)
, then the ball quotient B/Γ(6,8)

K3,−1 is
birational to the Kummer surface XK3 of A−1.

(iii) If Γ
(6,8)
Rat,−1 is the ball lattice, containing Γ

(6,8)
−1 as a normal subgroup with quotient

Γ
(6,8)
Rat,−1/Γ

(6,8)
−1 = 〈I, J〉 ⊆ Aut

(
A−1, T

(6,8)
−1

)
, then the ball quotient B/Γ(6,8)

Rat,−1 is a rational
surface.

The next lemma obtains the entire automorphism group G(6,8)
−1 = Aut

(
A−1, T

(6,8)
−1

)
.

Lemma 8. In the notations from Theorem 6, the group G
(6,8)
−1 = Aut

(
A−1, T

(6,8)
−1

)
is

generated by I =

(
ß 0
0 1

)
, J =

(
1 0
0 ß

)
, the transposition θ =

(
0 1
1 0

)
of the

elliptic factors E−1 of A−1 and the translation τ33 by Q33. The aforementioned generators
are subject to the relations

I4 = Id, J4 = Id, θ2 = Id, τ 2
33 = Id,

IJ = JI, θI = Jθ, θJ = Iθ,

Iτ33 = τ33I, Jτ33 = τ33J, θτ33 = τ33θ.

and G(6,8)
−1 is of order 64.

Proof. Any g ∈ G(6,8)
−1 leaves invariant

(
T

(6,8)
−1

)sing

=
∑

1≤i<j≤8

Ti ∩ Tj =
2∑

m=1

2∑
n=1

Qmn +Q00 +Q33.

Thus, g(Ti) = Tj implies si = card(Ti ∩ T sing) = card(Tj ∩ T sing) = sj, according
to the bijectiveness of g. In the case under consideration, s1 = s2 = s3 = s4 =
4 and s5 = s6 = s7 = s8 = 2, so that G(6,8)

−1 permutes separately T1, . . . , T4 and
T5, . . . , T8. In particular, the intersection ∩4

i=1Ti = {Q00, Q33} is G(6,8)
−1 -invariant and

any g = τ(U,V )go ∈ G
(6,8)
−1 transforms the origin ǒA−1 = Q00 into g(ǒA−1) = (U1, U2) ∈
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{Q00, Q33}. Straightforwardly, τ33(Ti) = Ti for 1 ≤ i ≤ 4 and τ33(Tm+2n) = T3−m+2n

for 1 ≤ m ≤ 2, 2 ≤ n ≤ 3 imply that τ33 ∈ G
(6,8)
−1 . Therefore G(6,8)

−1 is generated
by G(6,8)

−1 ∩ Gl2(End(E−1)) = G
(6,8)
−1 ∩ Gl2(Z[i]) and τ33. Note that θ ∈ Aut(A−1) acts

on T
(6,8)
−1 and induces the permutation (T1, T3)(T5, T7)(T6, T8) of its irreducible compo-

nents. Therefore θ ∈ G(6,8)
−1 and 〈I, J, θ〉 is a subgroup of G(6,8)

−1 ∩Gl2(Z[i]). On the other

hand, any g =

(
α β
γ δ

)
∈ G(6,8)

−1 ∩ GL2(Z[ß]) acts on T5, . . . , T8 and, therefore, on the

set {T̃5 = T̃6 = 0 × C, T̃7 = T̃8 = C × 0} of the corresponding universal covers. If
g(0 × C) = 0 × C, g(C × 0) = C × 0 then β = γ = 0, so that α, δ ∈ End(E−1) = Z[ß]
and det(g) = αδ ∈ End∗(E−1) = 〈ß〉 = C4 imply g = IkJ l for some 0 ≤ k, l ≤ 3.
Similarly, for g(0 × C) = C × 0, g(C × 0) = 0 × C one has α = δ = 0, whereas
β, γ ∈ Z[ß], βγ ∈ Z[ß]∗ = 〈ß〉 and g = IkJ lθ for some 0 ≤ k, l ≤ 3. Consequently,
G

(6,8)
−1 ∩ Gl2(Z[ß]) = 〈I, J, θ〉 and G(6,8)

−1 = 〈I, J, θ, τ33〉. The announced relations among
τ33, I, J , θ imply that

G
(6,8)
−1 = {τn33I

kJ lθm | 0 ≤ k, l ≤ 3, 0 ≤ m,n ≤ 1}

is of order 64.

Theorem 9. In the notations from Lemma 5, Theorem 6 and Lemma 8, let us con-
sider the subgroups HHE = 〈τ33J

2〉, HEnr = 〈−I2, τ33I
2〉, HRul = 〈J2〉 of G(6,8)

−1 =

Aut
(
A−1, T

(6,8)
−1

)
, their liftings Γ

(6,8)
HE,−1, Γ

(6,8)
Enr,−1, Γ

(6,8)
Rul,−1 to ball lattices and the blow-up

A2̂−tor of A−1 at the 2-torsion points A2−tor. Then
(i) B/Γ(6,8)

HE,−1 is a smooth ball quotient, birational to the smooth hyperelliptic surface
A−1/HHE;

(ii) B/Γ(6,8)
Enr,−1 is a ball quotient with one double point OrbHEnr(Q03), which is bira-

tional to the smooth Enriques surface A2̂−tor/HEnr;
(iii) B/Γ(6,8)

Rul,−1 is a smooth ball quotient, birational to the smooth trivial ruled surface
A−1/HRul = E−1 × P1 with an elliptic base E−1.

Proof. (i) Recall that the Z-module π1(E−1) = Z + iZ = Z + (1 + i)Z is generated by
1, 1 + i and Q3 = 1+i

2
(mod π1(E−1)). The translation τQ3 : E−1 → E−1 is of order 2, as

well as the morphism
τQ3(−1) : E−1 −→ E−1,

τQ3(−1)(P ) = −P +Q3

with four fixed points

1

2
Q3 + (E−1)2−tor =

1

2
Q3 + {Qi | 0 ≤ i ≤ 3}.
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According to [5], the quotient A−1/HHE by the cyclic group

HHE = 〈τQ3 × τQ3(−1)〉

of order 2 is a smooth hyperelliptic surface. Lemma 5 (ii) implies that B/Γ(6,8)
HE,−1 is a

smooth ball quotient, birational to A−1/HHE.
(ii) The quotient XK3 = A2̂−tor/〈−I2〉 is a smooth K3 surface, called the Kummer

surface of A−1. We claim that the involution τ33I
2 acts on A2̂−tor and determines an

unramified double cover

ζ : XK3 = A2̂−tor/〈−I2〉 → A2̂−tor/〈−I2, τ33I
2〉 = A2̂−tor/HEnr.

More precisely, τ33I
2 = τQ3(−1) × τQ3 leaves invariant the 2-torsion points A2−tor =

{Qij | 0 ≤ i, j ≤ 3} and any choice of an automorphism of P1 extends τ33I
2 to an

automorphism of A2̂−tor. Note that τ33I
2(−I2) = (−I2)τ33I

2, so that τ33I
2 normalizes

〈−I2〉 and there is a well defined quotient group HEnr/〈−I2〉 = 〈τ33I
2〉 of order 2. That

allows to define ζ : XK3 → A2̂−tor/HEnr as an HEnr/〈−I2〉-Galois cover. We claim that
τ33I

2 is a fixed point free involution on XK3, in order to conclude that A2̂−tor/HEnr is a
smooth Enriques surface. More precisely, the fixed points of τ33I

2 on the set XK3 of the
〈−I2〉-orbits on A2̂−tor lift to ε-fixed points of τ33I

2 on A2̂−tor for ε = ±1. The ε-fixed
points (P,Q) ∈ A−1 are subject to∣∣∣∣ −P +Q3 = εP

Q+Q3 = εQ

For ε = 1 the equality Q + Q3 = Q has no solution Q ∈ E−1, while for ε = −1 the
equation −P + Q3 = −P on P ∈ E−1 is inconsistent. Therefore τ33I

2 has no ε-fixed
points on A−1. By the very definition of the τ33I

2-action on A2̂−tor, there are no ε-fixed
points for τ33I

2 on A2̂−tor and τ33I
2 : XK3 → XK3 is a fixed point free involution. As a

result, A2̂−tor/HEnr is a smooth Enriques surface.
Recall that the exceptional divisor ξ−1

2−tor(A2−tor) of the blow-up

ξ2−tor : A2̂−tor → A−1

of A−1 at A2−tor is HEnr-invariant, so that ξ2−tor descends to the contraction ξ2−tor :
A2̂−tor/HEnr → A−1/HEnr of ξ−1

2−tor(A2−tor)/HEnr to A2−tor/HEnr. In particular, the
smooth Enriques surface A2̂−tor/HEnr is birational to A−1/HEnr. The singular locus
(A−1/HEnr)

sing ⊆ (A2−tor/HEnr), according to the smoothness of A2̂−tor/HEnr. On the
other hand, τ33I

2 has no fixed points on A2−tor, so that A2−tor/HEnr consists of eight
double points

OrbHEnr(Qij) = OrbHEnr(Q3−i,3−j), 0 ≤ i, j ≤ 3

and (A−1/HEnr)
sing = A2−tor/HEnr. Note that(
T

(6,8)
−1

)sing

= {OrbHEnr(Q00), OrbHEnr(Q11), OrbHEnr(Q12)}
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is contained in (A−1/HEnr)
sing and the birational morphism

ξHEnr :
(
B/Γ(6,8)

Enr,−1

)
→ A−1/HEnr

resolves
(
T

(6,8)
−1

)sing

by smooth rational curves of self-intersection (−2). Therefore
(
B/Γ(6,8)

Enr,−1

)sing

consists of the following five double point:

OrbHEnr(Q01), OrbHEnr(Q10), OrbHEnr(Q02), OrbHEnr(Q20), OrbHEnr(Q03).

Since
OrbHEnr(Q0,m) ∈

[
Tm+6 \

(
T

(6,8)
−1

)sing
]
/HEnr =

(
T ′m+6 \ L

)
/HEnr,

OrbHEnr(Qm,0) ∈
[
Tm+4 \

(
T

(6,8)
−1

)sing
]
/HEnr =

(
T ′m+4 \ L

)
/HEnr

for ∀1 ≤ m ≤ 2 belong to the compactifying divisor T ′/HEnr, the ball quotient B/Γ(6,8)
Enr,−1

has only one singular point(
B/Γ(6,8)

Enr,−1

)sing

= {OrbHEnr(Q0,3)}.

(iii) The quotient X = A−1/HRul = E−1 × [E−1/〈(−1)〉] of A−1 by the reflection
J2 = 1× (−1) is a smooth surface, birational to the smooth ball quotient B/Γ(6,8)

Rul,−1. It
is well known that C = E−1/〈−1〉 is a smooth projective curve. More precisely, if

p(t) =
1

t2
+

∑
λ∈(Z+iZ)\{0}

[
1

(t− λ)2
− 1

λ2

]
is the Weierstrass p-function, associated with the lattice Z + iZ = π1(E−1), then the
map

ψ : E−1 \ {ǒE−1} −→ P2,

ψ(t+ (Z + iZ)) = [1 : p(t+ (Z + iZ)) : p′(t+ (Z + iZ))] = [1 : p(t) : p′(t)]

extends by ψ(ǒE−1) = [0 : 0 : 1] = p∞ to a projective embedding of E−1. The image

ψ(E−1) =
{

[z : x : y] ∈ P2 ; zy2 = (x− p(Q1))(x− p(Q2))(x− p(Q3))
}

is a cubic hypersurface in P2. As far as p(t) is even and p′(t) is an odd function of t, the
multiplication µ−1 by −1 on E−1 acts on ψ(E−1) by the rule

µ−1([z : x : y]) = [z : x : −y].

The fixed points of this action are p∞ and p(Qi) for 1 ≤ i ≤ 3. The fibres of the
projection

Π : ψ(E−1) \ {p∞} −→ P1 \ {q∞ = [0 : 1]},
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Π([z : x : y]) = [z : x]

are exactly the µ−1-orbits on ψ(E−1) \ {p∞}, so that its image

P1 \ {q∞} = Π(ψ(E−1) \ {p∞}) = (ψ(E−1) \ {p∞})/〈µ−1〉

is the corresponding Galois quotient by the cyclic group 〈µ−1〉 of order 2. Thus,

ψ(E−1)/〈µ−1〉 = (ψ(E−1) \ {p∞})/〈µ−1〉 ∪ {p∞} = (P1 \ {q∞}) ∪ {p∞} = P1.
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