# Mac Williams identities for linear codes as Riemann-Roch conditions 

Azniv Kasparian, ${ }^{1,2}$ Ivan Marinov ${ }^{1,3}$<br>Faculty of Mathematics and Informatics<br>Sofia University "St. Kliment Ohridski"<br>5 James Bourchier Blvd., 1164 Sofia, Bulgaria


#### Abstract

The present note establishes the equivalence of Mac Williams identities for linear codes $C, C^{\perp} \subset \mathbb{F}_{q}^{n}$ with the Polarized Riemann-Roch Conditions for their $\zeta$ functions. It provides some averaging and probabilistic interpretations of the coefficients of Duursma's reduced polynomial of $C$.


Keywords: Mac Williams identities, Duursma's reduced polynomial, Polarized Riemann-Roch Conditions.

## 1 Introduction

Let $C$ be an $\mathbb{F}_{q}$-linear $[n, k, d]$-code of genus $g:=n+1-k-d \geq 0$ with dual $C^{\perp} \subset \mathbb{F}_{q}^{n}$ of genus $g^{\perp}=k+1-d^{\perp} \geq 0$. Throughout, denote by $\mathcal{W}_{C}(x, y)$ the homogeneous weight enumerator of $C$ and put $\mathcal{M}_{n, s}(x, y)$ for the MDS homogeneous weight enumerator of length $n$ and minimum distance $s$. In [1] and [2] Duursma introduces the $\zeta$-function of $C$ as the quotient

[^0]$\zeta_{C}(t)=\frac{P_{C}(t)}{(1-t)(1-q t)}$ of the unique polynomial $P_{C}(t)=\sum_{i=0}^{g+g^{\perp}} a_{i} t^{i} \in \mathbb{Q}[t]$ with $\mathcal{W}_{C}(x, y)=\sum_{i=0}^{g+g^{\perp}} a_{i} \mathcal{M}_{n, d+i}(x, y)$ and $P_{C}(1)=1$. The terminology arises from the algebro-geometric Goppa codes on a smooth irreducible curve $X / \mathbb{F}_{q} \subset$ $\mathbb{P}^{N}\left(\overline{\mathbb{F}_{q}}\right)$ of genus $g$, defined over a finite field $\mathbb{F}_{q}$. More precisely, suppose that there exist different $\mathbb{F}_{q}$-rational points $P_{1}, \ldots, P_{n} \in X\left(\mathbb{F}_{q}\right):=X \cap \mathbb{P}^{N}\left(\mathbb{F}_{q}\right)$ and a complete set of representatives $G_{1}, \ldots, G_{h}$ of the linear equivalence classes of the divisors of $\mathbb{F}_{q}(X)$ of degree $2 g-2<m<n$ with $\operatorname{Supp}\left(G_{i}\right) \cap \operatorname{Supp}(D)=\emptyset$ for $D=P_{1}+\ldots+P_{n}$ and $\forall 1 \leq i \leq h$. The evaluation maps
$$
\mathcal{E}_{D}: H^{0}\left(X, \mathcal{O}_{X}\left(\left[G_{i}\right]\right)\right) \longrightarrow \mathbb{F}_{q}^{n}, \quad \mathcal{E}_{D}(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right)
$$
on the global sections $f \in H^{0}\left(X, \mathcal{O}_{X}\left(\left[G_{i}\right]\right)\right)$ of the line bundles, associated with $G_{i}$ are $\mathbb{F}_{q}$-linear. Their images $C_{i}=\mathcal{E}_{D} H^{0}\left(X, \mathcal{O}_{X}\left(\left[G_{i}\right]\right)\right)$ are linear codes of genus $g_{i} \leq g$, known as algebro-geometric Goppa codes. Duursma's considerations from [1] imply that the $\zeta$-functions of $X$ and $C_{i}$ are related by the equality $\zeta_{X}(t)=\sum_{i=1}^{h} t^{g-g_{i}} \zeta_{C_{i}}(t)$.

Lemma 2.1 from the first section of the present note expresses the RiemannRoch Theorem on a curve $X$ in terms of $\zeta_{X}(t)$, in order to motivate Definition 2.2 for Riemann-Roch Conditions on a formal power series of one variable. Definition 2.3 is a polarized form of the Riemann-Roch Conditions. The main Theorem 2.4 establishes that Mac Williams identities for the weight distribution of $C, C^{\perp} \subset \mathbb{F}_{q}^{n}$ are equivalent to the Polarized Riemann-Roch Conditions for $\zeta_{C}(t), \zeta_{C^{\perp}}(t)$. Thus, Mac Williams duality can be viewed as a polarized version of the Serre duality on a smooth irreducible projective curve. The proof of Theorem 2.4 is based on the properties of Duursma's reduced polynomials $D_{C}(t), D_{C^{\perp}}(t)$, introduced and studied in [3].

The second section is devoted to some averaging and probabilistic interpretations of the coefficients $c_{i}$ of Duursma's reduced polynomial $D_{C}(t)=$ $\sum_{i=0}^{g+g^{\perp}-2} c_{i} t^{i} \in \mathbb{Q}[t]$ of a linear code $C$. After showing that $c_{i}\binom{n}{d+i} \in \mathbb{Z}^{\geq 0}$ for all $0 \leq i \leq g+g^{\perp}-2$, Proposition 3.1 establishes that $c_{i}$ with $0 \leq i \leq g-1$ is the average cardinality of an intersection of the projectivization $\mathbb{P}(C)$ of $C$ with $n-d-i$ coordinate hyperplanes in the ambient projective space $\mathbb{P}\left(\mathbb{F}_{q}^{n}\right)=\mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right)$. Proposition 3.2 expresses $c_{i}$ by the probabilities $\pi_{\mathbb{P}(C)}^{(w)}$, respectively $\pi_{\mathbb{P}\left(C^{\perp}\right)}^{(w)}$ of a word $[b] \in \mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right)$ of weight $w$ to belong to $\mathbb{P}(C)$, re-
spectively, to $\mathbb{P}\left(C^{\perp}\right)$. The coefficients $c_{i}$ of $D_{C}(t)$ with $0 \leq i \leq g-1$ are related also to the probabilities $\bar{\pi}_{[a]}^{(d+i)}$ of a $(d+i)$-tuple $\left\{\beta_{1}, \ldots, \beta_{d+i}\right\} \subseteq\{1, \ldots, n\}$ to contain the support of a word $[a] \in \mathbb{P}(C)$. In the case of $g \leq i \leq g+g^{\perp}-2=$ $n-d-d^{\perp}$, the coefficients $c_{i}$ are described by the probabilities $\bar{\pi}_{[b]}^{(n-d-i)}$ of $\left\{\beta_{1}, \ldots, \beta_{n-d-i}\right\} \subseteq\{1, \ldots, n\}$ to contain the support of a word $[b] \in \mathbb{P}\left(C^{\perp}\right)$.

## 2 Mac Williams identities for linear codes as Polarized Riemann-Roch Conditions on their $\zeta$-functions

Lemma 2.1 Let $X / \mathbb{F}_{q} \subset \mathbb{P}^{N}\left(\overline{\mathbb{F}_{q}}\right)$ be a smooth irreducible curve of genus $g$, defined over a finite field $\mathbb{F}_{q}$ and $\zeta_{X}(t)=\sum_{m=0}^{\infty} \mathcal{A}_{m}(X) t^{m}$ be the $\zeta$-function of $X$. Then the Riemann-Roch Theorem on $X$ implies the Riemann-Roch Conditions

$$
\mathcal{A}_{m}(X)=q^{m-g+1} \mathcal{A}_{2 g-2-m}(X)+\left(q^{m-g+1}-1\right) \operatorname{Res}_{1}\left(\zeta_{X}(t)\right) \quad \text { for } \quad \forall m \geq g
$$

where $\mathcal{A}_{m}(X)$ is the number of the effective divisors of degree $m$ of the function field $\mathbb{F}_{q}(X)$ of $X$ over $\mathbb{F}_{q}$ and $\operatorname{Res}_{1}\left(\zeta_{X}(t)\right)$ is the residuum of $\zeta_{X}(t)$ at $t=1$.

The above lemma motivates the following
Definition 2.2 A formal power series $\zeta(t)=\sum_{m=0}^{\infty} \mathcal{A}_{m} t^{m} \in \mathbb{C}[[t]]$ satisfies the Riemann-Roch Conditions $\operatorname{RRC}_{q}(g)$ of base $q \in \mathbb{N}$ and genus $g \in \mathbb{Z}^{\geq 0}$ if

$$
\mathcal{A}_{m}=q^{m-g+1} \mathcal{A}_{2 g-2-m}+\left(q^{m-g+1}-1\right) \operatorname{Res}_{1}(\zeta(t)) \quad \text { for } \quad \forall m \geq g
$$

and the residuum $\operatorname{Res}_{1}(\zeta(t))$ of $\zeta(t)$ at $t=1$.
Here is a polarized version of the Riemann-Roch Conditions.
Definition 2.3 Formal power series $\zeta(t)=\sum_{m=0}^{\infty} \mathcal{A}_{m} t^{m}, \zeta^{\perp}(t)=\sum_{m=0}^{\infty} \mathcal{A}_{m}^{\perp} t^{m}$ satisfy the Polarized Riemann-Roch Conditions $\operatorname{PRRC}_{q}\left(g, g^{\perp}\right)$ of base $q \in \mathbb{N}$ and genera $g, g^{\perp} \in \mathbb{Z}^{\geq 0}$ if

$$
\begin{gathered}
\mathcal{A}_{m}=q^{m-g+1} \mathcal{A}_{g+g^{\perp-2-m}}^{\perp}+\left(q^{m-g+1}-1\right) \operatorname{Res}_{1}(\zeta(t)) \quad \text { for } \quad \forall m \geq g \\
\mathcal{A}_{g-1}=\mathcal{A}_{g^{\perp}-1}^{\perp} \quad \text { and } \\
\mathcal{A}_{m}^{\perp}=q^{m-g^{\perp}+1} \mathcal{A}_{g+g^{\perp}-2-m}+\left(q^{m-g^{\perp}+1}-1\right) \operatorname{Res}_{1}\left(\zeta^{\perp}(t)\right) \quad \text { for } \quad \forall m \geq g^{\perp}
\end{gathered}
$$

where $\operatorname{Res}_{1}(\zeta(t)), \operatorname{Res}_{1}\left(\zeta^{\perp}(t)\right)$ stand for the corresponding residuums at $t=1$.

Note that $\operatorname{PRRC}_{q}\left(g, g^{\perp}\right)$ imply $\mathcal{A}_{m}=\kappa_{1} q^{m}+\kappa_{2}, \mathcal{A}_{m}^{\perp}=\kappa_{1}^{\perp} q^{m}+\kappa_{2}^{\perp}$ for all $m \geq g+g^{\perp}-1$ and some $\kappa_{j}, \kappa_{j}^{\perp} \in \mathbb{C}$. These are equivalent to the recurrence relations $\mathcal{A}_{m+2}-(q+1) \mathcal{A}_{m+1}+q \mathcal{A}_{m}=\mathcal{A}_{m+2}^{\perp}-(q+1) \mathcal{A}_{m+1}^{\perp}+q \mathcal{A}_{m}^{\perp}=0$ for $\forall m \geq g+g^{\perp}-1$ and hold exactly when $\zeta(t)=\frac{P(t)}{(1-t)(1-q t)}, \zeta^{\perp}(t)=\frac{P^{\perp}(t)}{(1-t)(1-q t)}$ for polynomials $P(t), P^{\perp}(t)$.

The main result of the present note is the following
Theorem 2.4 Mac Williams identities for an $\mathbb{F}_{q}$-linear $[n, k, d]$-code $C$ of genus $g:=n+1-k-d \geq 0$ and its dual $C^{\perp} \subset \mathbb{F}_{q}^{n}$ of genus $g^{\perp}=k+1-d^{\perp} \geq 0$ are equivalent to the Polarized Riemann-Roch Conditions $\operatorname{PRRC}\left(g, g^{\perp}\right)$ on their $\zeta_{\text {-functions }} \zeta_{C}(t), \zeta_{C^{\perp}}(t)$.

The proof of Theorem 2.4 makes use of Duursma's reduced polynomial $D_{C}(t)=\sum_{i=0}^{g+g^{\perp}-2} c_{i} t^{i} \in \mathbb{Q}[t]$ of $C$, whose coefficients relate the homogeneous weight enumerator

$$
\mathcal{W}_{C}(x, y)=\mathcal{M}_{n, n+1-k}(x, y)+(q-1) \sum_{i=0}^{g+g^{\perp}-2} c_{i}\binom{n}{d+i}(x-y)^{n-d-i} y^{d+i}
$$

of $C$ with the homogeneous weight enumerator $\mathcal{M}_{n, n+1-k}(x, y)$ of an MDS-code of the same length $n$ and dimension $k$ as $C$ (cf.[3]). It reveals that Randriambololona's Riemann-Roch Theorem 44 for linear codes from [4] implies the Polarized Riemann-Roch Conditions $\operatorname{PRRC}_{q}\left(g, g^{\perp}\right)$, stated by Definition 2.3. As a byproduct, we obtain the following

Corollary 2.5 The lower parts $\varphi_{C}(t)=\sum_{i=0}^{g-2} c_{i} t^{i}, \varphi_{C^{\perp}}(t)=\sum_{i=0}^{g^{\perp}-2} c_{i}^{\perp} t^{i}$ of $D u$ ursma's reduced polynomials $D_{C}(t), D_{C^{\perp}}(t)$ of $C, C^{\perp} \subset \mathbb{F}_{q}^{n}$ with genera $g \geq 1$, respectively, $g^{\perp} \geq 1$ and the number $c_{g-1}=c_{g^{\perp}-1}^{\perp} \in \mathbb{Q}$ determine uniquely

$$
\begin{aligned}
& D_{C}(t)=\varphi_{C}(t)+c_{g-1} t^{g-1}+\varphi_{C^{\perp}}\left(\frac{1}{q t}\right) q^{g^{\perp}-1} t^{g+g^{\perp}-2} \\
& D_{C^{\perp}}(t)=\varphi_{C^{\perp}}(t)+c_{g-1} t^{g^{\perp}-1}+\varphi_{C}\left(\frac{1}{q t}\right) q^{g-1} t^{g+g^{\perp}-2} .
\end{aligned}
$$

## 3 Averaging and probabilistic interpretations of the coefficients of Duursma's reduced polynomial

Let $C \subset \mathbb{F}_{q}^{n}$ be a linear code with Duursma's reduced polynomial $D_{C}(t)=$ $\sum_{i=0}^{g+g^{\perp}-2} c_{i} t^{i}$ and $\mathbb{P}(C) \subset \mathbb{P}\left(\mathbb{F}_{q}^{n}\right)=\mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right)$ be the projectivization of $C$, viewed as a subspace of the projectivization $\mathbb{P}\left(\mathbb{F}_{q}^{n}\right)=\mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right)$ of the ambient space $\mathbb{F}_{q}^{n}$. Note that the weight wt : $\mathbb{F}_{q}^{n} \rightarrow\{0,1, \ldots, n\}, \mathrm{wt}(a)=\left|\left\{1 \leq i \leq n \mid a_{i} \neq 0\right\}\right|$ for all words $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n}$ descends to an weight function
$\mathrm{wt}: \mathbb{P}\left(\mathbb{F}_{q}^{n}\right) \rightarrow\{0,1, \ldots, n\}, \quad \operatorname{wt}([a])=\operatorname{wt}\left(\left[a_{1}: \ldots: a_{n}\right]\right)=\left|\left\{1 \leq i \leq n \mid a_{i} \neq 0\right\}\right|$.
Let us denote by $\mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right)^{(s)}:=\left\{[a] \in \mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right) \mid \mathrm{wt}([a])=s\right\}$ the set of the words of $\mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right)$ of weight $1 \leq s \leq n$ and put $\mathbb{P}(C)^{(s)}:=\mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right)^{(s)} \cap \mathbb{P}(C)=$ $\{[a] \in \mathbb{P}(C) \mid \operatorname{wt}([a])=s\}$. For an arbitrary $1 \leq s \leq n$, let $\binom{[n]}{s}$ be the collection of the subsets $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{s}\right\} \subseteq[n]:=\{1, \ldots, n\}$ of cardinality $|\alpha|=s$.

Recall that a linear code $C \subset \mathbb{F}_{q}^{n}$ is non-degenerate if it is not contained in a coordinate hyperplane $V\left(x_{i}\right)=\left\{a \in \mathbb{F}_{q}^{n} \mid a_{i}=0\right\}$ for some $1 \leq i \leq n$.
Proposition 3.1 Let $C$ be an $\mathbb{F}_{q}$-linear $[n, k, d]$-code of genus $g \geq 1$ with dual $C^{\perp} \subset \mathbb{F}_{q}^{n}$ of minimum distance $d^{\perp}$ and genus $g^{\perp} \geq 1$. Denote by $D_{C}(t)=$ $\sum_{i=0}^{g+g^{\perp}-2} c_{i} t^{i} \in \mathbb{Q}[t]$ Duursma's reduced polynomial of $C$.
(i) Then $c_{i}\binom{n}{d+i} \in \mathbb{Z}^{\geq 0}$ are non-negative integers for $\forall 0 \leq i \leq g+g^{\perp}-2$.
(ii) If $C$ is non-degenerate and $\mathbb{P}(C)^{(\subseteq \beta)}:=\{[a] \in \mathbb{P}(C) \mid \operatorname{Supp}([a]) \subseteq \beta\}$ is the set of the words of $\mathbb{P}(C)$, whose support is contained in some $\beta \in\binom{[n]}{s}$ then

$$
c_{i}=\binom{n}{d+i}^{-1}\left(\sum_{\substack{\left[\begin{array}{c}
{[n] \\
d+i}
\end{array}\right)}}\left|\mathbb{P}(C)^{(\subseteq \beta)}\right|\right) \quad \text { for } \quad \forall 0 \leq i \leq g-1
$$

is the average cardinality of an intersection of $\mathbb{P}(C)$ with $n-d-i$ coordinate hyperplanes.

By Theorem 1.1.28 and Exercise 1.1.29 from [5], the homogeneous weight enumerator of a non-degenerate $\mathbb{F}_{q}$-linear code $C \subset \mathbb{F}_{q}^{n}$ can be expressed in the form $\mathcal{W}_{C}(x, y)=x^{n}+\sum_{i=0}^{n-d} B_{i}(x-y)^{i} y^{n-i}$ with $B_{i}=(q-1)\left(\sum_{\alpha \in\binom{[n]}{i}}\left|\mathbb{P}(C)^{(\subseteq\urcorner \alpha)}\right|\right)$.

Thus, our Proposition 3.1 (ii) reveals that Tsfasman-Vlădut-Nogin's coefficients $B_{d+i}=\binom{n}{d+i}(q-1) c_{i}$ for $\forall 0 \leq i \leq g-1$ and the coefficients $c_{i}$ of Duursma's reduced polynomial $D_{C}(t)$.

Proposition 3.2 Let $C$ be an $\mathbb{F}_{q}$-linear $[n, k, d]$-code of genus $g \geq 1$, whose dual $C^{\perp}$ is an $\left[n, n-k, d^{\perp}\right]$-code of genus $g^{\perp} \geq 1$ and $D_{C}(t)=\sum_{i=0}^{g+g^{\perp}-2} c_{i} t^{i} \in \mathbb{Q}[t]$ be Duursma's reduced polynomial of $C$. For any $1 \leq w \leq n$ denote by $\pi_{\mathbb{P}(C)}^{(w)}$ the probability of $[b] \in \mathbb{P}^{n-1}\left(\mathbb{F}_{q}\right)^{(w)}$ to belong to $\mathbb{P}(C)^{(w)}$ and put $\bar{\pi}_{[a]}^{(w)}$ for the probability of $\beta \in\binom{[n]}{w}$ to contain the support $\operatorname{Supp}([a])$ of some $[a] \in \mathbb{P}(C)$. Then:

$$
\begin{gathered}
\text { (i) } c_{i}=\sum_{w=d}^{d+i} \pi_{\mathbb{P}(C)}^{(w)}\binom{d+i}{w}(q-1)^{w-1} \quad \text { for } \quad \forall 0 \leq i \leq g-1, \\
c_{i}=q^{i-g+1}\left[\sum_{w=d^{\perp}}^{n-d-i} \pi_{\mathbb{P}\left(C^{\perp}\right)}^{(w)}\binom{n-d-i}{w}(q-1)^{w-1}\right] \quad \text { for } \quad \forall g \leq i \leq g+g^{\perp}-2 ; \\
\text { (ii) } c_{i}=\sum_{[a] \in \mathbb{P}(C)} \bar{\pi}_{[a]}^{(d+i)} \quad \text { for } \quad \forall 0 \leq i \leq g-1, \\
c_{i}=q^{i-g+1}\left(\sum_{[b] \in \mathbb{P}\left(C^{\perp}\right)} \bar{\pi}_{[b]}^{(n-d-i)}\right) \text { for } \quad \forall g \leq i \leq g+g^{\perp}-2=n-d-d^{\perp} .
\end{gathered}
$$

## References

[1] I. Duursma, Weight distribution of geometric Goppa codes, Transections of the American Mathematical Society, 351 (1999), 3609-3639.
[2] I. Duursma, From weight enumerators to zeta functions, Discrete Applied Mathematics, 111 (2001), 55-73.
[3] A. Kasparian, I. Marinov, Duursma's reduced polynomial, arXiv:1505.01993v1[cs.IT] 8 May 2015
[4] H. Randriambololona, Harder-Narasimhan theory for linear codes, arXiv:1609.00738v1[cs.CO] 2 Sept 2016
[5] M. Tsfasman, S. Vlădut, D. Nogin, Algebraic Geometry Codes: Basic Notions, Providence, RI: American Mathematical Society, 2007.


[^0]:    ${ }^{1}$ Partially supported by the Science Foundation of Sofia University, Contract 57/2016.
    ${ }^{2}$ Email: kasparia@fmi.uni-sofia.bg
    3 Email: ivan.boychev.marinov@gmail.com

