Mac Williams identities for linear codes as Riemann-Roch conditions

Azniv Kasparian, ^{1,2} Ivan Marinov ^{1,3}

Faculty of Mathematics and Informatics
Sofia University "St. Kliment Ohridski"
5 James Bourchier Blvd., 1164 Sofia, Bulgaria

Abstract

The present note establishes the equivalence of Mac Williams identities for linear codes $C, C^{\perp} \subset \mathbb{F}_q^n$ with the Polarized Riemann-Roch Conditions for their ζ functions. It provides some averaging and probabilistic interpretations of the coefficients of Duursma's reduced polynomial of C.

Keywords: Mac Williams identities, Duursma's reduced polynomial, Polarized Riemann-Roch Conditions.

1 Introduction

Let C be an \mathbb{F}_q -linear [n, k, d]-code of genus $g := n + 1 - k - d \geq 0$ with dual $C^{\perp} \subset \mathbb{F}_q^n$ of genus $g^{\perp} = k + 1 - d^{\perp} \geq 0$. Throughout, denote by $\mathcal{W}_C(x, y)$ the homogeneous weight enumerator of C and put $\mathcal{M}_{n,s}(x, y)$ for the MDS homogeneous weight enumerator of length n and minimum distance s. In [1] and [2] Duursma introduces the ζ -function of C as the quotient

¹ Partially supported by the Science Foundation of Sofia University, Contract 57/2016.

² Email: kasparia@fmi.uni-sofia.bg

³ Email: ivan.boychev.marinov@gmail.com

 $\zeta_C(t) = \frac{P_C(t)}{(1-t)(1-qt)}$ of the unique polynomial $P_C(t) = \sum_{i=0}^{g+g^{\perp}} a_i t^i \in \mathbb{Q}[t]$ with $\mathcal{W}_C(x,y) = \sum_{i=0}^{g+g^{\perp}} a_i \mathcal{M}_{n,d+i}(x,y)$ and $P_C(1) = 1$. The terminology arises from the algebro-geometric Goppa codes on a smooth irreducible curve $X/\mathbb{F}_q \subset \mathbb{P}^N(\overline{\mathbb{F}_q})$ of genus g, defined over a finite field \mathbb{F}_q . More precisely, suppose that there exist different \mathbb{F}_q -rational points $P_1, \ldots, P_n \in X(\mathbb{F}_q) := X \cap \mathbb{P}^N(\mathbb{F}_q)$ and a complete set of representatives G_1, \ldots, G_h of the linear equivalence classes of the divisors of $\mathbb{F}_q(X)$ of degree 2g-2 < m < n with $\operatorname{Supp}(G_i) \cap \operatorname{Supp}(D) = \emptyset$ for $D = P_1 + \ldots + P_n$ and $\forall 1 \leq i \leq h$. The evaluation maps

$$\mathcal{E}_D: H^0(X, \mathcal{O}_X([G_i])) \longrightarrow \mathbb{F}_q^n, \ \mathcal{E}_D(f) = (f(P_1), \dots, f(P_n))$$

on the global sections $f \in H^0(X, \mathcal{O}_X([G_i]))$ of the line bundles, associated with G_i are \mathbb{F}_q -linear. Their images $C_i = \mathcal{E}_D H^0(X, \mathcal{O}_X([G_i]))$ are linear codes of genus $g_i \leq g$, known as algebro-geometric Goppa codes. Duursma's considerations from [1] imply that the ζ -functions of X and C_i are related by the equality $\zeta_X(t) = \sum_{i=1}^h t^{g-g_i} \zeta_{C_i}(t)$.

Lemma 2.1 from the first section of the present note expresses the Riemann-Roch Theorem on a curve X in terms of $\zeta_X(t)$, in order to motivate Definition 2.2 for Riemann-Roch Conditions on a formal power series of one variable. Definition 2.3 is a polarized form of the Riemann-Roch Conditions. The main Theorem 2.4 establishes that Mac Williams identities for the weight distribution of $C, C^{\perp} \subset \mathbb{F}_q^n$ are equivalent to the Polarized Riemann-Roch Conditions for $\zeta_C(t), \zeta_{C^{\perp}}(t)$. Thus, Mac Williams duality can be viewed as a polarized version of the Serre duality on a smooth irreducible projective curve. The proof of Theorem 2.4 is based on the properties of Duursma's reduced polynomials $D_C(t), D_{C^{\perp}}(t)$, introduced and studied in [3].

The second section is devoted to some averaging and probabilistic interpretations of the coefficients c_i of Duursma's reduced polynomial $D_C(t) = \sum_{i=0}^{g+g^{\perp}-2} c_i t^i \in \mathbb{Q}[t]$ of a linear code C. After showing that $c_i \binom{n}{d+i} \in \mathbb{Z}^{\geq 0}$ for all $0 \leq i \leq g + g^{\perp} - 2$, Proposition 3.1 establishes that c_i with $0 \leq i \leq g - 1$ is the average cardinality of an intersection of the projectivization $\mathbb{P}(C)$ of C with n - d - i coordinate hyperplanes in the ambient projective space $\mathbb{P}(\mathbb{F}_q^n) = \mathbb{P}^{n-1}(\mathbb{F}_q)$. Proposition 3.2 expresses c_i by the probabilities $\pi_{\mathbb{P}(C)}^{(w)}$, respectively $\pi_{\mathbb{P}(C^{\perp})}^{(w)}$ of a word $[b] \in \mathbb{P}^{n-1}(\mathbb{F}_q)$ of weight w to belong to $\mathbb{P}(C)$, respectively, to $\mathbb{P}(C^{\perp})$. The coefficients c_i of $D_C(t)$ with $0 \leq i \leq g-1$ are related also to the probabilities $\overline{\pi}_{[a]}^{(d+i)}$ of a (d+i)-tuple $\{\beta_1, \ldots, \beta_{d+i}\} \subseteq \{1, \ldots, n\}$ to contain the support of a word $[a] \in \mathbb{P}(C)$. In the case of $g \leq i \leq g + g^{\perp} - 2 =$ $n - d - d^{\perp}$, the coefficients c_i are described by the probabilities $\overline{\pi}_{[b]}^{(n-d-i)}$ of $\{\beta_1, \ldots, \beta_{n-d-i}\} \subseteq \{1, \ldots, n\}$ to contain the support of a word $[b] \in \mathbb{P}(C^{\perp})$.

2 Mac Williams identities for linear codes as Polarized Riemann-Roch Conditions on their ζ-functions

Lemma 2.1 Let $X/\mathbb{F}_q \subset \mathbb{P}^N(\overline{\mathbb{F}_q})$ be a smooth irreducible curve of genus g, defined over a finite field \mathbb{F}_q and $\zeta_X(t) = \sum_{m=0}^{\infty} \mathcal{A}_m(X)t^m$ be the ζ -function of X. Then the Riemann-Roch Theorem on X implies the Riemann-Roch Conditions

$$\mathcal{A}_m(X) = q^{m-g+1} \mathcal{A}_{2g-2-m}(X) + (q^{m-g+1}-1) \operatorname{Res}_1(\zeta_X(t)) \quad for \quad \forall m \ge g,$$

where $\mathcal{A}_m(X)$ is the number of the effective divisors of degree m of the function field $\mathbb{F}_q(X)$ of X over \mathbb{F}_q and $\operatorname{Res}_1(\zeta_X(t))$ is the residuum of $\zeta_X(t)$ at t = 1.

The above lemma motivates the following

Definition 2.2 A formal power series $\zeta(t) = \sum_{m=0}^{\infty} \mathcal{A}_m t^m \in \mathbb{C}[[t]]$ satisfies the Riemann-Roch Conditions $\operatorname{RRC}_q(g)$ of base $q \in \mathbb{N}$ and genus $g \in \mathbb{Z}^{\geq 0}$ if

$$\mathcal{A}_m = q^{m-g+1} \mathcal{A}_{2g-2-m} + (q^{m-g+1} - 1) \operatorname{Res}_1(\zeta(t)) \quad \text{for} \quad \forall m \ge g$$

and the residuum $\operatorname{Res}_1(\zeta(t))$ of $\zeta(t)$ at t = 1.

Here is a polarized version of the Riemann-Roch Conditions.

Definition 2.3 Formal power series $\zeta(t) = \sum_{m=0}^{\infty} \mathcal{A}_m t^m$, $\zeta^{\perp}(t) = \sum_{m=0}^{\infty} \mathcal{A}_m^{\perp} t^m$ satisfy the Polarized Riemann-Roch Conditions $\operatorname{PRRC}_q(g, g^{\perp})$ of base $q \in \mathbb{N}$ and genera $g, g^{\perp} \in \mathbb{Z}^{\geq 0}$ if

$$\mathcal{A}_m = q^{m-g+1} \mathcal{A}_{g+g^{\perp}-2-m}^{\perp} + (q^{m-g+1}-1) \operatorname{Res}_1(\zeta(t)) \quad \text{for} \quad \forall m \ge g,$$
$$\mathcal{A}_{g-1} = \mathcal{A}_{g^{\perp}-1}^{\perp} \quad \text{and}$$
$$\mathcal{A}_m^{\perp} = q^{m-g^{\perp}+1} \mathcal{A}_{g+g^{\perp}-2-m} + (q^{m-g^{\perp}+1}-1) \operatorname{Res}_1(\zeta^{\perp}(t)) \quad \text{for} \quad \forall m \ge g.$$

 $\mathcal{A}_{m}^{\perp} = q^{m-g^{-}+1} \mathcal{A}_{g+g^{\perp}-2-m} + (q^{m-g^{-}+1}-1) \operatorname{Res}_{1}(\zeta^{\perp}(t)) \quad \text{for} \quad \forall m \geq g^{\perp},$ where $\operatorname{Res}_{1}(\zeta(t)), \operatorname{Res}_{1}(\zeta^{\perp}(t))$ stand for the corresponding residuums at t = 1. Note that $\operatorname{PRRC}_q(g, g^{\perp})$ imply $\mathcal{A}_m = \kappa_1 q^m + \kappa_2$, $\mathcal{A}_m^{\perp} = \kappa_1^{\perp} q^m + \kappa_2^{\perp}$ for all $m \geq g + g^{\perp} - 1$ and some $\kappa_j, \kappa_j^{\perp} \in \mathbb{C}$. These are equivalent to the recurrence relations $\mathcal{A}_{m+2} - (q+1)\mathcal{A}_{m+1} + q\mathcal{A}_m = \mathcal{A}_{m+2}^{\perp} - (q+1)\mathcal{A}_{m+1}^{\perp} + q\mathcal{A}_m^{\perp} = 0$ for $\forall m \geq g + g^{\perp} - 1$ and hold exactly when $\zeta(t) = \frac{P(t)}{(1-t)(1-qt)}, \ \zeta^{\perp}(t) = \frac{P^{\perp}(t)}{(1-t)(1-qt)}$ for polynomials $P(t), \ P^{\perp}(t)$.

The main result of the present note is the following

Theorem 2.4 Mac Williams identities for an \mathbb{F}_q -linear [n, k, d]-code C of genus $g := n+1-k-d \ge 0$ and its dual $C^{\perp} \subset \mathbb{F}_q^n$ of genus $g^{\perp} = k+1-d^{\perp} \ge 0$ are equivalent to the Polarized Riemann-Roch Conditions $\operatorname{PRRC}(g, g^{\perp})$ on their ζ -functions $\zeta_C(t), \zeta_{C^{\perp}}(t)$.

The proof of Theorem 2.4 makes use of Duursma's reduced polynomial $D_C(t) = \sum_{i=0}^{g+g^{\perp}-2} c_i t^i \in \mathbb{Q}[t]$ of C, whose coefficients relate the homogeneous weight enumerator

$$\mathcal{W}_C(x,y) = \mathcal{M}_{n,n+1-k}(x,y) + (q-1)\sum_{i=0}^{g+g^{\perp}-2} c_i \binom{n}{d+i} (x-y)^{n-d-i} y^{d+i}$$

of C with the homogeneous weight enumerator $\mathcal{M}_{n,n+1-k}(x, y)$ of an MDS-code of the same length n and dimension k as C (cf.[3]). It reveals that Randriambololona's Riemann-Roch Theorem 44 for linear codes from [4] implies the Polarized Riemann-Roch Conditions $\operatorname{PRRC}_q(g, g^{\perp})$, stated by Definition 2.3. As a byproduct, we obtain the following

Corollary 2.5 The lower parts $\varphi_C(t) = \sum_{i=0}^{g-2} c_i t^i$, $\varphi_{C^{\perp}}(t) = \sum_{i=0}^{g^{\perp}-2} c_i^{\perp} t^i$ of Duursma's reduced polynomials $D_C(t)$, $D_{C^{\perp}}(t)$ of $C, C^{\perp} \subset \mathbb{F}_q^n$ with genera $g \ge 1$, respectively, $g^{\perp} \ge 1$ and the number $c_{g-1} = c_{g^{\perp}-1}^{\perp} \in \mathbb{Q}$ determine uniquely

$$D_C(t) = \varphi_C(t) + c_{g-1}t^{g-1} + \varphi_{C^{\perp}}\left(\frac{1}{qt}\right)q^{g^{\perp}-1}t^{g+g^{\perp}-2},$$

$$D_{C^{\perp}}(t) = \varphi_{C^{\perp}}(t) + c_{g-1}t^{g^{\perp}-1} + \varphi_C\left(\frac{1}{qt}\right)q^{g-1}t^{g+g^{\perp}-2}.$$

3 Averaging and probabilistic interpretations of the coefficients of Duursma's reduced polynomial

Let $C \subset \mathbb{F}_q^n$ be a linear code with Duursma's reduced polynomial $D_C(t)$ $\sum_{i=0}^{g+g^{\perp}-2} c_i t^i \text{ and } \mathbb{P}(C) \subset \mathbb{P}(\mathbb{F}_q^n) = \mathbb{P}^{n-1}(\mathbb{F}_q) \text{ be the projectivization of } C, \text{ viewed}$ as a subspace of the projectivization $\mathbb{P}(\mathbb{F}_q^n) = \mathbb{P}^{n-1}(\mathbb{F}_q)$ of the ambient space \mathbb{F}_q^n . Note that the weight $\mathrm{wt}: \mathbb{F}_q^n \to \{0, 1, \dots, n\}, \mathrm{wt}(a) = |\{1 \le i \le n \mid a_i \ne 0\}|$ for all words $a = (a_1, \ldots, a_n) \in \mathbb{F}_q^n$ descends to an weight function

wt :
$$\mathbb{P}(\mathbb{F}_q^n) \to \{0, 1, \dots, n\}, \text{ wt}([a]) = \text{wt}([a_1 : \dots : a_n]) = |\{1 \le i \le n \mid a_i \ne 0\}|$$

Let us denote by $\mathbb{P}^{n-1}(\mathbb{F}_q)^{(s)} := \{[a] \in \mathbb{P}^{n-1}(\mathbb{F}_q) \mid \operatorname{wt}([a]) = s\}$ the set of the words of $\mathbb{P}^{n-1}(\mathbb{F}_q)$ of weight $1 \le s \le n$ and put $\mathbb{P}(C)^{(s)} := \mathbb{P}^{n-1}(\mathbb{F}_q)^{(s)} \cap \mathbb{P}(C) =$ $\{[a] \in \mathbb{P}(C) \mid \text{wt}([a]) = s\}$. For an arbitrary $1 \leq s \leq n$, let $\binom{[n]}{s}$ be the collection of the subsets $\alpha = \{\alpha_1, \ldots, \alpha_s\} \subseteq [n] := \{1, \ldots, n\}$ of cardinality $|\alpha| = s$.

Recall that a linear code $C \subset \mathbb{F}_q^n$ is non-degenerate if it is not contained in a coordinate hyperplane $V(x_i) = \{a \in \mathbb{F}_q^n \mid a_i = 0\}$ for some $1 \leq i \leq n$.

Proposition 3.1 Let C be an \mathbb{F}_q -linear [n, k, d]-code of genus $g \ge 1$ with dual $C^{\perp} \subset \mathbb{F}_q^n$ of minimum distance d^{\perp} and genus $g^{\perp} \ge 1$. Denote by $D_C(t) =$ $\sum_{i=0}^{g+g^{\perp}-2} c_i t^i \in \mathbb{Q}[t] \text{ Duursma's reduced polynomial of } C.$

(i) Then $c_i \binom{n}{d+i} \in \mathbb{Z}^{\geq 0}$ are non-negative integers for $\forall 0 \leq i \leq g+g^{\perp}-2$.

(ii) If C is non-degenerate and $\mathbb{P}(C)^{(\subseteq\beta)} := \{[a] \in \mathbb{P}(C) \mid \operatorname{Supp}([a]) \subseteq \beta\}$ is the set of the words of $\mathbb{P}(C)$, whose support is contained in some $\beta \in \binom{[n]}{s}$ then

$$c_{i} = \binom{n}{d+i}^{-1} \left(\sum_{\beta \in \binom{[n]}{d+i}} \left| \mathbb{P}(C)^{(\subseteq \beta)} \right| \right) \quad for \quad \forall 0 \le i \le g-1$$

is the average cardinality of an intersection of $\mathbb{P}(C)$ with n - d - i coordinate hyperplanes.

By Theorem 1.1.28 and Exercise 1.1.29 from [5], the homogeneous weight enumerator of a non-degenerate \mathbb{F}_q -linear code $C \subset \mathbb{F}_q^n$ can be expressed in the

form
$$\mathcal{W}_C(x,y) = x^n + \sum_{i=0}^{n-d} B_i(x-y)^i y^{n-i}$$
 with $B_i = (q-1) \left(\sum_{\alpha \in \binom{[n]}{i}} \left| \mathbb{P}(C)^{(\subseteq \neg \alpha)} \right| \right).$

Thus, our Proposition 3.1 (ii) reveals that Tsfasman-Vlădut-Nogin's coefficients $B_{d+i} = \binom{n}{d+i}(q-1)c_i$ for $\forall 0 \leq i \leq g-1$ and the coefficients c_i of Duursma's reduced polynomial $D_C(t)$.

Proposition 3.2 Let C be an \mathbb{F}_q -linear [n, k, d]-code of genus $g \ge 1$, whose dual C^{\perp} is an $[n, n-k, d^{\perp}]$ -code of genus $g^{\perp} \ge 1$ and $D_C(t) = \sum_{i=0}^{g+g^{\perp}-2} c_i t^i \in \mathbb{Q}[t]$ be Duursma's reduced polynomial of C. For any $1 \le w \le n$ denote by $\pi_{\mathbb{P}(C)}^{(w)}$ the probability of $[b] \in \mathbb{P}^{n-1}(\mathbb{F}_q)^{(w)}$ to belong to $\mathbb{P}(C)^{(w)}$ and put $\overline{\pi}_{[a]}^{(w)}$ for the probability of $\beta \in {[n] \choose w}$ to contain the support $\operatorname{Supp}([a])$ of some $[a] \in \mathbb{P}(C)$. Then:

$$(i) \quad c_{i} = \sum_{w=d}^{d+i} \pi_{\mathbb{P}(C)}^{(w)} {d+i \choose w} (q-1)^{w-1} \quad for \quad \forall 0 \le i \le g-1,$$

$$c_{i} = q^{i-g+1} \left[\sum_{w=d^{\perp}}^{n-d-i} \pi_{\mathbb{P}(C^{\perp})}^{(w)} {n-d-i \choose w} (q-1)^{w-1} \right] \quad for \quad \forall g \le i \le g+g^{\perp}-2;$$

$$(ii) \quad c_{i} = \sum_{[a] \in \mathbb{P}(C)} \overline{\pi}_{[a]}^{(d+i)} \quad for \quad \forall 0 \le i \le g-1,$$

$$c_{i} = q^{i-g+1} \left(\sum_{[b] \in \mathbb{P}(C^{\perp})} \overline{\pi}_{[b]}^{(n-d-i)} \right) \quad for \quad \forall g \le i \le g+g^{\perp}-2 = n-d-d^{\perp}.$$

References

- I. Duursma, Weight distribution of geometric Goppa codes, Transections of the American Mathematical Society, 351 (1999), 3609–3639.
- [2] I. Duursma, From weight enumerators to zeta functions, Discrete Applied Mathematics, 111 (2001), 55-73.
- [3] A. Kasparian, I. Marinov, Duursma's reduced polynomial, arXiv:1505.01993v1[cs.IT] 8 May 2015
- [4] H. Randriambololona, Harder-Narasimhan theory for linear codes, arXiv:1609.00738v1[cs.CO] 2 Sept 2016
- [5] M. Tsfasman, S. Vlădut, D. Nogin, Algebraic Geometry Codes: Basic Notions, Providence, RI: American Mathematical Society, 2007.