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The tautological variations of Hodge structure over Siegel upper half space, the open
quadric and the generalized ball are expressed explicitely by the variations of Hodge
. structure of Weil hypersurfaces in projective spaces. That realizes all the abelian-motivic
variations of Hodge structure by families of Jacobians of plane curves, which are known
to be described by meromorphic differentials on the projective plane. As a consequence,
the geometric origin of a maximal dimensional variation of Hodge structure turns to be
sufficient for expressing it by meromorphic differentials on t}{e projective plane.

Keywords: tautological variations of Hodge structure and J-Hodge structure, abelian- .
motivic and hypersurface variations

1991/95 Math. Subject Classification: 14D07, 14K10

For a smooth projective manifold X, defined over a field k C C of finite type,
Hodge has conjectured that H**(X,Q)N H**, w < dim¢ X, consists of the Q-
linear combinations of the cohomology classes of the algebraic submanifolds of X.
Let k be the algebraic closure of k and H2¥ (X, Q) C H**(X, Q) be the subspace
of l-adic cohomologies, over which the action of the Galois group Gal(k/k) reduces
to multiplication by scalars. Tate has conjectured .that H2¥(X, Q) is generated
by the cchomologies of the algebraic submanifolds of X. For abelian varieties X,
Tate conjecture is known to imply Hodge conjecture (cf. Deligne {5]), but neither
of them is proved. Let X be a separable scheme of finite type over F; and X be
the scheme obtained from X by extension of the scalars to F,. For primes [ # g,
the l-adic cohomologies H¥(X,Q;) with compact support are acted by Frobenius
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automorphism ¢ € Gal(F,/F,), ¢(z) = z?. Weil conjecture asserts that the
characteristic roots of ¢p~! on HY (7, Qi) are of absolute value g~ %. It is verified
for the abelian varieties and therefore, for any X whose cohomologies are expressed
through linear algebra constructions (by the cohomologies) of abelian varieties.
Hodge, Tate and Weil conjectures motivate the interest in the abelian varieties A
and their Hodge structures HY(A,Z) = AYHY(A,Z) >~ AV A.

The present work concerns the variations of Hodge structure which are ex-
pressed by a special kind of abelian varieties, namely, by Jacobians of plane curves.
The members of a family J — S of Jacobians of plane curves, as well .as the
infinitesimal variations T%S, s € S, can be identified with subspaces .of mero-
morphic differentials on Py. We exhibit, explicit embeddings of the so-called tau-
tological variations over Siegel upper half space S (p), the open quadric @(p) and
the generalized ball B(p,q), in the variations of Hodge structure of Weil hyper-

surfaces X C Ppy. Shermenev shows in [11] that the Hodge structures of X are \

expressed by meromorphic differentials on P,. So far, Kuga and Satake [8], Deligne
[4], Carlson and Simpson [3] have established that the aforementioned tautological
variations are expressed by abelian varieties. The abelian varieties are known to
be from the tensor category of the Jacobians of all curves (cf. [12]): On the other
hand, Rapoport.[10] has classified the complete intersections Y, whose variations
of Hodge structure are exactly the tautological variations over S(p) or Q(p). All
" such'Y turn to be of Hodge level 1 or 2. Our X are of arbitrary Hodge level, equal
to dimg X, and we realize the tautological variations as proper subfamilies of the
variations of X. ' )

The provided construction reveals that all the abelian-motivic variations of

Hodge structure are expressed by meromorphic differentials on Ps. As another

consequence, the geometrically arising variations of maximum dimension turn to

be realized in the tensor category of Jacobians of plane curves.

1. PRELIMINARIES.

1.1. TAUTOLOGICAL VARIATIONS OF HODGE STRUCTURE
AND J-HODGE STRUCTURE )

Hodge structure on a C-vector space V = Vo ®@C defined over @ consists of

Hodge decomposition V = S o yw—ii compatible with the complex conjugation
" Yw—ii = Viw—i and a non-degenerate bilinear polarization form ¥ : Vg ®¢ Vo —
Q, which is symmetric for an even weight w or skew-symmetric for an odd w. Hodge
" decomposition is orthogonal with respect to the Hermitian form ®(a,b) := ¥(a,b)
for a,b € V, and ®|yw-si2i > 0, (Ple—Zi-—-l,2i-i-"1 ‘< 0. J-Hodge structure on V =
Vo ®¢ C is Hodge structure with an endomorphism J : Vg — Vg, J? = —Id, such

that J is orthogonal with respect to ¥, unitary with respect to ® and compatible

‘with Hbdge decomposition J : V¥~H — yw—id,
The classifying space of Hodge structures on V' with fixed bilinear form ¥,
Hermitian form ®, and Hodge numbers hi := dime V¥4 > 0 is the homogeneous
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space

[#]-1
D(V,¥,8) = O(V,¥)NU(V,2)/ [ UK)x (1 -e(w)O(hlF]R),
i=0
_where O(V U} is the orthogonal group of V with respect to ¥, O(hl#]|R) =
O(V[ shiz \I'|V[ i ,) U(V,®) is the unitary group of V w1th respect to @,
U(h) = U (Vv ’,<I>|vw—.',.-), and e(w) := w — 2[¥] stands for the parity of the
weight w. - : B N
The semisimple linear automorphisms J|yw-s,: split V¥~ = |0 A
in £v/—1-eigenspaces with V_;"_i'i = V'™~ As a result, Hodge decomposition of
w L
the ¥-isotropic V4 := Y Vi'7"" determines completely Hodge decomposition of
. i=0 ’
V = Vi ® V4, and the classifying space of J-Hodge structures on V turns to be

DV, ¥, ®,J) ~U(RS + h% + - AL +h3 +--)/UKY) x --- x U(hY),
where . N
Y = dimg V' 7,
UM +hE 4o B+ b+ 0) = U (Vi Bly,)
Uky) =U (V™ @lypmii)

The classifying spaces D = D(V, ¥, ®), respectively, D = D(V,¥,®,J) are
~ open subsets of quotients D = O(V, ¥)/P(V), respectively, D = GL(V4,C)/P(V})
of reductive complex algebraic groups G by parabolic subgroups P, stabilizing
Hodge filtrations F* ;= = Yisi Viw=i respectively, Fi := Yivi V“"_j. Hodge
decomp051t10ns of V, V} induce welght zero Hodge decompos1t10ns g‘C = LieG® =
S, gt with gv~f = {r € gCjr(VIwd) C Vit eiiforall0 < j < w}
The parabolic subalgebras LieP = ) ;50 8"~". The holomorphic tangent bundle

THOD = THOD|p = [GC xp (LieGC/LieP)|p contains an equivariant subbundle
ThD = [GC xp (g7 + LieP)/LieP]D, associated with a non-integrable distri-
bution and called horizontal. As far as an arbitrary family of Hodge structures
with fixed ¥, &, A’ is induced by the tautological family over D, there is no loss
in regarding the base S of this family as a complex analytic subspace of I' \ D
for some discrete subgroup T' of the biholomorphism group G of D = G/G N P.
Variation of Hodge structure is a family ¥V — S, whose base S is locally tangent
to the horizontal distribution 7" D. The complete tautological families of Hodge
structures over D(V, ¥, ®) or, respectively, the complete'tautological families of
J-Hodge structures over D(V, ¥, ®,J), which are variations of Hodge structure are
referred to as tautological variations. '

Lemma 1. All the tautological variations of Hodge structure are
(1) Vs(p) = S 0 S(p)’z of rankVé(_pi)’i = p over Siegel upper half spaces S(p) =
Sp(p,R)/U(p) and '
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.. 2 —ii g 0 _ : . |
(il) Vo(p) = 2izo Vé(p) of rankVé(Op) = rankvgfp) =1, rank))lg(lp) = p over
open quadrics Q(p) = SO(2,p)/SO(2) x SO(p).

All the tautological variations of J-Hodge siructure are

(i) V¥, , = Zizo (Vfl‘_'—i‘i + Vi_’."' ) of weight 1 <w < 3 and ranlcV_T_"‘j =p,
rankV_,"f"}’l = g over generalized balls B(p, q) = U(p,q)/Up x Uy. ‘

The corresponding polarizations ¥p, WY are

/ ) ‘Ip

v(_lp I,;>, <1 1 1)11 | : _I; (;1?w—1]q

(=D)L

Proof. The existence of tautological variations is eqﬁivalent to TH°D = ThD
for the corresponding classifying space D.. In-the case of w = 2k+1 > 3 the
symplectic Lie algebra g€ = o(V, ¥) - has g~22? # 0. For an even weight w = 2k > 2,
the indefinite orthogonal Lie algebra g€ = oV, ¥) = g~ Y 4+ LieP if and only if
w =2 and h® = 1. That justifies the classification of the tautological variations of
Hodge structure. In the case of J-Hodge structures one can assume that hg_ # 0,
- after eventual shift (w—1,1) — (5, w—1) of Hodge indices: Then TYD(V,¥,®,J) =
T"D(V,¥,®,J) holds only when D(V,¥,8,7) ~U(h§ ,RY)JU(RY) x U(hY). The.
weights w < 3, since otherwise for 2 < j < w — 2 there follow h'_i =0 and ‘hj_ =0,
contrary to the assumption A7 # 0. O

1.2. THE TAUTOLOGICAL VAFt»IATIONS ARE ABELIAN-MOTIVIC -

A variation is said to be abelian-motivic or expressed by abelian varieties if
it is a direct summand of a tensor polynomial with N-coefficients of variations of
Hodge structure of abelian varieties. All the tautological variations are expressed
by abelian varieties. More precisely:

Theorem 2. (i) (obvious) The tautological variation Vs(p) is the variation of
" Hodge structure of a polarized abelian variety A~ HY(A,C) of dim¢c A =p.

(i1) (Kuga and Satake [8], Deligne [4]) Let CH(V, ¥gp)) be the even part of the
Clifford algebra C(V,¥g(p)) of the reference Hodge structure (V,\I'Q(p)j € Vo)
Then there is a family A — Q(p) of ort+l.dimensional abelian varieties such that
the variation of Ct(V,¥o(py) ts

C* (Vo Yop) = Endo+(v,go)(A)-

(iii) (Carlson and Simpson [3]) The tautological variation of J-Hodge siructure
V}_p,q is the restriction of Vs(pyq) 10 @ ho(omorphically and equivarianily embedded
B(p,q) — S(p+q). Let E be the elliptic curve C/(Z++/—1Z), J be the endomor-
phism of HY(E,C) induced from the multiplication by /-1 on E, E = ELO 4 EO!
be the constani family of the aforementioned J-Hodge struclure and E™%(m) be the

20



m-th lensor power of EM*. Then
VY, = Vi®E(w— 1)@Vl @ E™(w - 1)
of weight w =2 or 3 are expressed by VJP ¢ = V+ ® V+

1.3. COMPLETE INTERSECTIONS WITH TAUTOLOGICAL VARIATIONS
OF HODGE STRUCTURE

Let Xdl' »d C Pn4r be a complete intersection of hypersurfaces of degree
di,...,dg. The primitive cohomologies H*(Xd1»% C),, i.e., the cohomologies
which are not dual to intersections of Xd1:--% with subspaces P C Pngr, have
only nonzero components H"(X,‘fl""’dk,(C)o. From now on, under a variation of
Hodge structure of a complete intersection X1 we mean the variation of Hodge
structure on H?(Xg1 9 C),. If b/ := dimg H* =94 (Xd19%), vanish for all j < i
and j > n — i, h' = k""" # 0, then the integer n — 2i (which is one less that the
number of the non-trivial Hodge components of H "(X didi (), ) is called level
of Xd1:dx or of its Hodge structure, g

Theorem 3 (Rapoport [10]).. (i) All the complete families Xd‘é'.( ')d" ofth""d"

C Pnyk, whose assoctated variations of Hodge structure are discrete quotzents of

level one tautological varzatzons over Siegel upper half spaces S(p), are XZn 1L,S(n)?
Xzzn 1 5(2n2+3n)i Xs,s(s)» Xa ,5(20) 3 S(21) Xs,s(so)' ‘

(ii) The complete families X, ‘é(};;l" of Xgrrd C Ppyy, whose associated vari-

ations of Hodge structure are discrete quotients of level two tautologzcal variations

over open quadrics Q(p), are depleted by the families X2 Q(19)’ x >3 Xl

2,0(19)" “+2,9(19)
of K3 surfaces and the family A4 9(20) of cubic fourfolds.

9. EXPLICIT CONSTRUCTIONS

Let us fix some standard notations. The Hodge structure on the second coho-
mology group H?(Py,C) = HY1(P;) of the projective line Py or, equivalently, on
the cup product A’HY(E,C) = HV(E) A H*'(E) of the first cohomology group
of the elliptic curve E = C/(Z 4 /—1Z) is called Tate Hodge structure. The
constant family of Tate Hodge structures (over an arbitrary base) is denoted by’
Q(l). If m € N, then Q(m) and Q(—m) designate the m-th tensor powers of Q(1)

and, respectively, Q(=1) = Hom(Q(1),C). The polarization 7E = (_1\ 1)

of the cbnstant family E of J-Hodge structures on E induces the polarization
¥Q1) = YE @ UB — 1. In other words, all Y™ m € Z, coincide with the
multiplication by complex numbers. ‘

. Theonem 4. For the Hermitian symmelric spaces
D=8(p)={z€ Maty,(C) | 'z2=12,2'2< L} or
D = B(p,q) = {z € Mat, ((C) | #7< L}, p<y,
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letd =p+1 or respeciwely, §=q+1 and conszder the hypersurfaces Xp(z) C
Popia, z € D, determined by the homogeneous equations

45 46—4j5, 4] 46 44 _
E, +§, mzn 1t 62:2115”2:1‘”2«"'1’2;' + 2541 =0

i=—1
of degree d = 46. Qver the open quadric
D =9(p) ={z € Mat,1,(C) | ['zz| < 1,27z <1+ [*22]?}

define the family Xg(p) of hypersurfaces

Xg(p)(l) = {:c €Pop1 | Z (:EZ, 1+ z,mzi 1:1:2f —}—m ) = 0}

of degree d = 4p. Let us denote by Hp the variations of Hodge structure of Xp
with polarizations WP, Pul Ws(p) = 1, wg(p) ='9 for the weights wp of the
tautological variations of Hodge structure Vp, 6} for Kronecker s delta and introduce

mp = p— 63,pr. Then the bomponents of the tautological variations of Hodge
structure are the subbundles :

V: JWwp—1 C HmD+t mptwp—i ®Q( mD)
of abelian-motivic variations, ezpressed by meromorphic differentials on P, and

¥p = \IIHD ® ¥=mp)|y, . The tautological variations of J-Hodge structure have

1

1w z +1 w— 1,+1—~;' i(w—-1 il—j
Vira CZ(Zéz(w 1)+k\ Hg(p.qi( » e )Q.DE]I -’(w—l)®@(ﬁ—p)

for 1 < w<3,0< i< w, expressed by meromorphic differentials on Pj, and

vy = \I/'Hxs(p o @ TB-1) ¢ gQ(-r)

w
vJF'-I

The proof is subdivided into several steps and presented by the rest of the
section. '

2.1. A SMOOTH FAMILY X OF HYPERSURFACES OVER A PRODUCT OF BALLS

Lemma 5. All the hypersurfaces X(z) = {z € Pny1 | fo(z) = 0} with
homogeneous. equations

[3] ' g d=1
fo(z) = 25 1+dzztﬂ’2s 1‘”2;4""32: +e(n)zg =0
i=0 i=1

of degree d > n + 2 > 3, parametrized by the product of balls
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' d—1
— 1\[5+1 = 2
B(1,d — 1)1 = zeMat[ p1.4-1(C) | Y lail? < 1, \7’10<z<[2] ,

J=1

are smooth.

Proof. One has to justify that the system of the polynomial equations 5 £ =

. ) L2i—1
0 . ) 3
ik =0with0<:i< ld I _ = 0 for an odd n has only the trivial solution

63}2,' 2 61?" .

e e — e — . O0fs  0f
Tl =2Zo=21 = =&, = 0. As far as the pairs depend only on

Oz 1’ 61:2,
. U kL . . .
Tgi_1, To;, this system splits in [5] + 1 parts of two equations with two variables.

T2i-1

For 1'2,'_.1, To9; With |2ei—1| < |z2i] # 0 one puts y := in order to express

I2i ) L2 -

d—1
as — Z ]Z,J y?J +d = 0. According to Cauchy—Schwarz 1nequahty,

2\2 sl C d-1 d-1 .

(5) =[S mtnf < (Ll | | T
i=1 =1 =

Bearing in mind that z € B(1,d — 1)[Z1*! and |y| < 1, one infers that
2\? 1, (d-1d@2d-1) 243
(3) <Xr= <

which contradicts d > 3. Similarly, for Ts;_1, T3 with |za;] < |we;_1| # 0 one

2% Then converting the equation = 0 into the form

L1 ‘ O0%2i_1

d+ — g Z kz,d ktd‘k =0, one gete an absurd. O

introduces t =

2.2. EXPRESSING THE VARIATION OF HODGE STRUCTURE OF X
BY MEROMORPHIC DIFFERENTIALS ON Py

Suppose tnat X, of dimg X, = n > 2 is a hypersurface from the constructed
smooth family, X, _1 is the intersection of X,, with the hyperplane z.1=0,and V3

is the plane curve w1th homogeneous equation y¢ = y¢, + = 7 Z zo_,y 1 y{, + yo
The presence of a rational map X, 1 x Y1 — X,, ‘
((zo:zy:...: zn)', (y—1:%0 :91)) > (Toy=1: ToYo : 1Y1 .- . LiY1 : ... Tn¥1)

of degree d with singular locus (Xn_1 ﬂ‘{xg = 0}) x (Y1 N {y1 = 0}) justifies the
next . '
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Lemma 6 (Shermenev [11], Shioda and Katsura [13]). In the notations, in-
troduced in Lemma 5, let us fiz a hypersurface X, := X(z) of dimension n > 2 and
consider the complete intersections Xn—1 1= Xy N {1 = 0}, Xp_p := Xn 1N
{zo =0}, the plane curve -

) d—
P o
h= {yEPZ ‘ yo1t EZ 01y51]y6+y3—yf=0},

and the points {py,...,pa} :=YiN{y1 = 0}. Then X, .can be obtained by a blow up
Bi 7y — Xn_1xY] along Xp_ox{p1,...,pa} = dXn_2, a morphism { : Zy — Z,
of degree d and a blow down By : Zy — X, contracting ((Xn—1 X pi) = Pn_1 X p;i
‘1o p; and C(Xn_Q X Yl) ~Xn_ox Py to Xpn_9.

As an immediate consequence, the variation of Hodge structure of X is ex-
pressed by the variations of plane curves.

Corollary 7.- Given a Fermat hypersurface

| [31+(n)
Z =17 € Plglie(n) | >, #=0

i=0

of dimension k := [g] +ée(n) — 1, let us denote by M, . mqy the constant family

of H™(2,C) = H™(Py41,C) for 0 < m < k— 1 and H*(2,C) = H:(Pj41,C) +
H*(Z,C),. Then the variation of Hodge structure of the family of smooth hyper-
surfaces X — Bo x Bi x ... x Bz, defined in Lemma 5, 15 a direct summand
of ' '

S nH(B)e. . o H (B oM e ([5] +1-5),
0<i1<...<i, <[ %] : »

where H*(B;) stands for the variation of the plane curves with homogeneous equa-
tions '

S d—
z iy v+ o et =0,

R.II\D

(201, 21a—1) € By, and n;, i = (i1,..., 1), are natural numbers.

Proof. According to [5], if N — M is a finite map of equi-dimensional connected
manifolds, then H*(M, C) is a direct summand of H*(N, €), and if M" is a blow-up
of M along a closed submanifold 7" of codimension ¢, then H*(M',C) = H*(M, C)
+ Ec 1H"‘(T C) ® Q(3). By Kiinneth formula, the variation H"(Z;) of Z; =
CBr (Xno1 x Y1) is a direct summand of H*"H(By x ... x Bz)) & MY (Bo) +

dH* 3By x...x B[%])@)Q(I).On the other hand, Z; = 85 ' (X,) implies the equali-
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ty H™(Z2) = ’H”(Bé xBix...xBa))+H""?(Byx...x B2))®Q(1) for the variation
H™(Bo x Bi X ...x Ba)) of X. Consequently, H"(Bo X ...x B[}) turns to be a direct
. summand Of'Hl(Bo) ®'H"—1(Bl X...X B[%]) + (d— 1)7‘("_2(31 X...X B[%]) ®Q(1).

The proof is proceeded by induction on [%] . O

2.3. EXPLICIT REALIZATIONS OF THE TAUTOLOGICAL VARIATIONS
BY THE VARIATION OF X

Let X be the family of smooth hypersurfaces, constructed in Lemma 5. Re-
stricting to the bounded symmetric realizations of . i

D =58(p) C BLip) C B(L,4p+3)7*,
D = B(p,q) C B(L,q)" C B(L,4q+3)"*,
D= Q(p) C B(p, 1) C B(L, 1) C B(1,4p— 1),

specified in Theorem 4, one obtains the families Xp = U,ep{z € Ppy1 | f>(z) = 0}.
Let Sp be the trivial family of polynomial rings S = Clz_1, g, z1, ..., &p] over D,
aj;
6.’1:,'
and Rp := Sp/JIp be the family of Jacobian rings. Denote by f the sheaf of
the equations f, of Xp(z), d := deg f., A(Q) := —(n+2) +d(n+ 1 1), and
Q=" (~1)imde_y AdeoAdzyi A...Adzi A... Ade,. Griffiths [6] shows that
. the residue map ' '

Jp be the family of Jacobian ideals J, := < |-1<i< n> C S, z €D,

iy Q in—iv'i
Resp : R = W FL F

fr+i-i

is an isomorphism. _Carlsoni ?nd Griffiths [1] establish that the non-degenerate
pairing ¥¥o : 1T x HLTH — HEY, ie., the Serre duality map with values in
the constant family of H?"(Xp(z),C) = C, can be naturally identified with the
ring multiplication ’R,g(l) X ’R,g("—') — 'R,(g_ 2(n+2),

Lemma 8. In the notations from Theorem 4, let -

. Va(p.g) = V},p,q’ Wa(p,g) = 1,

k(i,5) =15 + (1 - i)(45 —2—7), 1(i,4) =126 —2—j) + (1 —9)(26 + j).
Consider the holomorphic subbundles '
» i WB'D+i;mD+1UD—i C Hgo+i;mo+wb—i" 0< i <wp,

generated by the global sections

b,i A(mp+i) .Q
R“D{P% +Ip aﬁ;m;ﬂf}’
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where
26—1

: . .. . s 2p+1 . V
w]p" = w’i({’])mg("]) (H 1!1) for 1< j<p,D=38(p) or B(p,q);
. t=1 .

26—1

oo (fle)” mesen

2p—2 2p+1-2i
w@i . ( H ‘It) fori=0or2

t=-1

1 2p—2 2p-2
1\ :
ij(")'l = (§> (ng—l +ai) | II = ( II “”) for0<j<p-1.

1£2§-1,2j t=—1

Then the bundles Wp = 3 ;0% WmD'H Mp+Wp—i g am it polarization preserving iso-

morphisms .

¢p : Wp — Vp ® Q(mp), |
TP (wy, wy) = Up @ YN (pp (wr), pp(w2))

for sectzons wy, we of Wp.

Proof In the cases of D S(p) or B(p,q) the claim is a straightforward

consequence of z} € Jp(z) for s >46—1,i€ {-1,0,2p+ 1}, z € D, and the fact
that the line bundles 'Rgé 2)(2P+3) 516 associated with the sheaves of sections

46—-2
+ Jgé—Z)(2p+3) .

2p+1

)

For D = Q(p), r € {2j — 1,25} let us note that

0f.
Oz,

~ 1.2
= 4pzfPt 22 ey, € Jo(n)(2)
a(p)

2p—2 4p—2 .
— 2p(4p-2)
. U-(H 1171) +Jg(p)p ..

t———-l

and the line bundle R (4p—2) i generated by

Applying repeatedly the aforementioned relatlons of the J acoblan rings, one com-
putes for j # k that ' .

- ) . 4p—2
1 : _
wf(p?,lw’?(p),l =3 H [($§1_1 + w%l) ($21—1$21)4p 31 : H .’Ut)

1=j,k 8L 15,k
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4p—2

4p

1 —21 9

— _ _“ p~16p3 6p32p1

—2” (%11 - Ty 1Ty ” - Bt
=4,k

2222 | '
k 4p— 1m4p 3_|_ 4p—-3 4p 1
512p4 9”21 1Ly Toi—1Ty ) |- ” Ty )
1=i.k . B ETN

ie.,
2.2
ng(p)l Zj %k H Q(p)1
=ik . 256p* =ik

However, 27z < 14 [*2z]* < 1+ 1 for z = *(20,21,...,2p-1) € Q(p) reveals that
2,2

256 4

Ro(p)(#) that siffices for the va_mshlng of [Ti—; & w,g(p) 1 # k. Sirﬁilarly, the
expression '

2|2 < Zf;ol |z:]? < 1, whereas <1l In the torsion free Jacobian rings

v 4p—2
. 2 1 '
Q(p),1\° _ 2 232 4p-4
(wj : D) (3721'-1‘*‘1721) (®2j-122;) H Tt
1£25-1,2j
: 4p-2
. P 2p—2 4p—2
I N Y 6p—4 6p—4 2p
=8 (’32] 185t Ta1 Ty I = +{ ] =
t#2§-1,25 t=—1
4p-2
2 -\
J 4p 4p-—-4 4p 4 4p }
32p ("’2] 1%g5 &g 1Ty T +o
1£25—1,2j

2
%

1—@ [(w;”)(P)’l)z - a] +>o

o 2
< 1 forces (wjg(”)’l,) =0o.0

?

16
That completes the proof of Theorem 4.

with

3. CONSEQUENCES

3.1. ABELIAN-MOTIVIC VARIATIONS

Corollary 9. The following three tensor vcategories are equivalent;
(I) the category A of the abelian-motivic variations of Hodge structure,
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(I1) the category AH of the abelian- motivic hypersurface variations of Hodge .
structure, and

(IIT) the category JPC of the variations of Hodge structure, expressed by Jaco-
bians of plane curves. '

Proof. The inclusions JPC C AH C A are obvious. As far as A is generated
by the tautological variations of Hodge structure Vs(p) over Slegel upper half spaces
S(p), Theorem 4 implies that A CJgprc.O

3.2. MAXIMAL DIMENSIONAL VARIATIONS

For Hodge structure H of weight w=2k+1>1let
add hk 21hk 1-2¢
and
podd = hk(hk+1)+2hk 1-2ipk-2-2
; ' i>0
In the case of w = 2k let -

even ,_E : k—-1-2i3 k—2-2i
231 ‘ h . 'h 3

20
u;ven: (hk 1 1)hk 2+Zhlc 3 21hlc 4-2i .
i20 !
for w >4,
’ugven =I5 + th—2~2ihk—3—2_i
i>0
with 73 = h* for R¥F"1 =1, I3 = éh’,‘hk"1 for an even h* and R*-1 > 1,

3 = ;( R* —1)RF1 4+ 1 for an odd h* and h*~1 > 1. According to [9] or [2], the

maximum dimension p of a variation of Hodge structure is p°% = rna,x(,u"dfJI "dd)
lf ,u) = 2k + 1 or #even — max('ueuen’ #even, ueven) lf w = 2k

The summands hihi~1, j < 2], of 1, including (h*~* — 1)h¥=2 from p§*"

and (—h’” h®¥-! from Tz with an even hk h’" 1 5 1, are realized by appropriate

shlfts of the tautological variations of J- Hodge structure over the generalized balls.
B(RI, hi~1), respectively, B(R*~1 — 1, h¥=2), B(5h, h*=1). The tautologlcal varia-

tion of Hodge structure Vs(nx) provides a vanatlon of dimension hk (h’c +1) in the

case of pu§?. The tautologlcal variation of Hodge structure Vg(hk) is an example of
dimension h* for pgU¢™ or fiz with RE-1 = 1. The non-symmetric domain

QA+, 3(h* ~ 1) € B(1, 1) x B! 1, (B~ 1)) X B(L 5(8* = 1),
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cut by the inequality *YY < (1 —|t|)%(I, - 'XX) fort € B(1,1), X €
B(h®-1 -1, Z(h’C — 1)), Y € B(1, (h* — 1)), is an instance of a variation of Hodge

structure of dimension —(h’c —1)h* =141 in the case of I3 with an odd A, hR¥=1 > 1.

w—

If all Hodge numbers of H are greater than 1, Al*3
~then the results of [9] and [7] imply that all the maximal dlmensmnal snnply
connected variations of Hodge structure are isomorphic to products of the afore-
mentioned bounded domains. The lack of quasiprojective discrete quotients of
Q(R*=1, L(h¥ — 1)) (cf. [7]) reveals that the maximal dimensional variations, cov-
ered by Q(h’c L L(hF—1)) x [Tiso B( B(h*=2-% pk-3-2) 4o not arise from geometry.
All the other maXImal d1mens1onal variations are direct sums of tautological ones,
so that Theorem 4 1mphes

Corollary 10. The geomeirically arising mazimal dimensional variations of
Hodge structure with sufficiently large Hodge numbers are exzpressed by Jacobians
of plane curves.

Let us observe that our main result provides a “new” symplectic representation
of SO(2,p). Indeed, the inclusion Vo) C C(Vo(n), ¥g(p)) from Theorem 2 (ii)
induces a symplectic representation SO(2,p) — Sp(2°P*1 R). Since a plane curve

1 - .
Y of degree 4p has genus —(4p‘— 1)(4p — 2), Theorem 4 interprets as a realization

of SO(2,p) in a product of Mumford-Tate groups Sp((4p— 1)(2p 1),R) of Hodge
structures of such Y.
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