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Abstract: Let π : D → S be the projection of a period domain
D = G/V onto a Riemannian symmetric space S = G/K of non-
compact type with K ⊇ V . The totally geodesic variations of Hodge
structure U ⊂ D are exactly the equivariantly embedded Hermitian
symmetric subspaces U of D, which map diffeomorphically onto totally
geodesic subspaces π(U) ⊂ S. The article shows that a variation of
Hodge structure U ⊂ D is totally geodesic exactly when π(U) is a
left quasi-subgroup of a left quasi-group with right neutral element
(S,⊕σ, K), induced by a real analytic section σ : S → G of πK : G →
G/K = S. It establishes that U ⊂ D is totally geodesic exactly when
(π(U), ·) is a Loos-symmetric subspace of the Loos-symmetric space
(S, ·). We introduce the notion of a Loos-Hermitian symmetric space of
non-compact type and prove that U ⊂ D is a totally geodesic variation
of Hodge structure if and only if there is a Loos-Hermitian symmetric
structure (π(U), ∗) of non-compact type, whose square (π(U), ∗2) is a
Loos-symmetric subspace of (S, ·)
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The study of the totally geodesic variations of Hodge structure is

motivated by the presence of families of Calabi-Yau manifolds, whose
Teichmüller spaces have totally geodesic images under the period map
(cf.[1]). On the other hand, [2] shows that any irreducible Hermitian
symmetric space of non-compact type is realized as a totally geodesic
variation of Hodge structure of Calabi-Yau type.

If G is a real linear algebraic group and H < G is a compact subgroup
then g = Lie(G) admits a non-degenerate AdH-invariant bilinear form
〈 , 〉 : g × g → R and M := Lie(H)⊥ ⊂ g is called a canonical lift of
TR
ǒ (G/H) = g/Lie(H) to g. In particular, if H is a maximal compact
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subgroup of G then the canonical lift of TR
ǒ (G/H) to g with respect to

the Killing form of g is denoted by p.
Recall that a subspace s ⊂ g is a Lie triple system if [[s, s], s] ⊆ s.

Proposition 1. Let π : D → S be the projection of a period domain
onto a Riemannian symmetric space of non-compact type, U ⊂ D be
a totally geodesic variation of Hodge structure and s ⊂ p be canonical
lifts of TR

ǒ π(U) ⊂ TR
ǒ S to g = Lie(G). Then there is a Lie subgroup

G(U) of G with Lie(G(U)) = s⊕ [s, s], such that U = G(U)V/V ⊂ D is
an equivariantly embedded Hermitian symmetric space of non-compact
type, π(U) ⊂ S is totally geodesic and π : U → π(U) is a global
diffeomorphism.

Conversely, if U ⊂ D is a variation of Hodge structure with totally
geodesic π(U) ⊂ S, then U ⊂ D is totally geodesic.

Proof. For an arbitrary variation of Hodge structure U ⊂ D, for every
o ∈ U and for ǒ = π(o), the differential (dπ)o : TR

o U → TR
ǒ π(U) is an

R-linear isomorphism and there is a canonical lift TR
o U = TR

ǒ π(U) = s.
Moreover, A := T 1,0

o U is an abelian Lie subalgebra of g ⊗R C, so that
s = (A⊕ A) ∩ g satisfies [s, s] ⊆ [A,A] ∩ g ⊆ Lie(V ).

If U ⊂ D is totally geodesic then π(U) ⊂ S is totally geodesic be-
cause π maps the D-geodesics onto the S-geodesics. By [3], s is a Lie
triple system, there is a Lie subgroup G(U) ≤ G with Lie(G(U)) = s⊕
[s, s] and an equivariantly embedded totally geodesic U(s) := G(U)V/V ⊂
D with TR

o U(s) = s = TR
o U . Since D is complete and U,U(s) are geo-

desic at o, the coincidence TR
o U(s) = TR

o U suffices for U(s) = U . Sim-
ilarly, [3] reveals that W = G(U)K/K ⊂ S is an equivariantly embed-
ded, totally geodesic Riemannian symmetric subspace of non-compact
type. By Lie(G(U)∩K) = Lie(G(U))∩Lie(K) = [s, s] = Lie(G(U)∩V )
it follows G(U)∩K = G(U)∩V and π : U → W turns to be a global dif-
feomorphism. As a result, U is a Riemannian symmetric space of non-
compact type and the holomorphy of the geodesic isometry so : U → U
at o ∈ U implies that U is Hermitian symmetric.

If W := π(U) ⊂ S is totally geodesic then TR
o U = TR

ǒ W = s is
a Lie triple system of g, there is a Lie subgroup G(W ) ≤ G with
Lie(G(W )) = s ⊕ [s, s] and U = G(W )V/V ⊂ D is an equivariantly
embedded, totally geodesic submanifold. �

From now on, for a binary operation Q×Q→ Q and a, b ∈ Q, let us
denote by xo(a, b), yo(a, b) ∈ Q the solutions of the equations ax = b,
respectively, ya = b, if they exist. In 1935 Moufang defines a quasi-
group Q as a set with a binary operation Q×Q→ Q, with respect to
which there exist unique xo(a, b), yo(a, b) ∈ Q for for all a, b ∈ Q.
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Definition 2. The pair (L,⊕) with ⊕ : L×L → L is a left quasi-group
if for any a, b ∈ L there exists unique xo(a, b) ∈ L. An element er ∈ L
is right neutral with respect to ⊕ if a⊕ er = a for all a ∈ L.

Let G be a group, H ≤ G be a subgroup and let π : G → G/H be
the canonical homomorphism defined by π(a) = aH, a ∈ G. A map
σ : G/H → G is a section if πσ = IdG/H . Any σ induces a left quasi-
group ⊕σ : G/H × G/H → G/H, aH ⊕σ bH := π(σ(aH)σ(bH)) =
σ(aH)bH for all aH, bH ∈ G/H with right neutral element H. Let
(L,⊕, er) be a left quasi-group with right neutral element and L : L →
Sym(L), La(x) := a ⊕ x for all x ∈ L. Rephrasing [4], note that L is
injective and the subgroup GL := 〈L(L)〉 ≤ Sym(L) is isomorphic to
L(L)×HL with HL := StanGL(er) as a set. Thus, σL : GL/HL → GL,
σL(LaHL) = La is a section of π : GL → GL/HL and πL : (L,⊕, er)→
(GL/HL,⊕σL , HL) is an isomorphism of left quasi-groups with right
neutral elements. For a group G and a subgroup H ≤ G let Λ :
G→ Sym(G/H) be the group homomorphism, associated with the G-
action G × G/H → G/H, (a, bH) 7→ abH. For any section σ : L :=

G/H → G of π : G → G/H, the subgroup G̃L := 〈σ(G/H)〉 ≤ G

acts transitively on L and GL = Λ(G̃L), due to LaH = Λ(σ(aH)),

LaHΛ(σ(aH)−1) = IdG/H . Moreover, HL = GL ∩ Λ(H) = Λ(G̃L ∩ H)
by ker Λ = ∩b∈G(bHb−1).

Definition 3. If (L,⊕) is a left quasi-group, then L1 ⊂ L is a left
quasi-subgroup if the inclusions a⊕b, xo(a, b) ∈ L1 hold for all a, b ∈ L1.

Theorem 4. Let o ∈ U ⊂ D be a variation of Hodge structure with
a closed image W := π(U) under π : D = G/V → G/K = S. Then
U ⊂ D is totally geodesic if and only if there is a real analytic section
σ : S → G of πK : G → S with σ(ǒ) = e ∈ G, such that (W,⊕σ) is a
left quasi-subgroup of (S,⊕σ, K).

Proof. Let t⊕ p = g = Lie(G) be the Cartan decomposition and exp :
g → G. Then expǒ : p → S is a global diffeomorphism and σ :=
exp exp−1

ǒ : S → G is a real analytic section of πK . If U ⊂ D and
W ⊂ S are totally geodesic then W = G(W )K/K for G(W ) ≤ G
and expǒ(α)⊕σ expǒ(β) = exp(α) expǒ(β) ∈ W , xo(expǒ(α), expǒ(β)) =
exp(α)−1 expǒ(β) ∈ W for all α, β ∈ TR

ǒ W . Thus, (W,⊕σ, K) is a left
quasi-subgroup of (S,⊕σ, K).

Conversely, suppose that (W,⊕σ, K) is a left quasi-subgroup of (S,⊕σ, K).

Then W = G̃oK/K for the subgroup G̃o := 〈σ(W )〉 ≤ G. Since

σ(W ) ⊂ G is closed and G̃o ∩K ≤ G is a compact subgroup,

σ(W )(G̃o ∩K) := {σ(p)k | p ∈ W, k ∈ G̃o ∩K}
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is a closed submanifold of G. Clearly, σ(W )(G̃o∩K) ⊆ G̃o. Any a ∈ G̃o

has πK(a) = aK = σ(aK)K ∈ G̃oK/K = W , so that a = σ(aK)ko
for some ko ∈ G̃o ∩ K and G̃o ⊆ σ(W )(G̃o ∩ K). The coincidence

of manifolds G̃o = σ(W )(G̃o ∩ K) implies that G̃o is a closed and,
therefore, a Lie subgroup of G. The diffeomorphism σ : W → σ(W )
induces (dσ)o = Id : TR

ǒ W → TR
e σ(W ) for TR

ǒ W ⊂ p. If v ∈ TR
ǒ W

then the S-geodesic γvǒ (t) : R → S with γvǒ (0) = ǒ,
dγvǒ (t)

dt

∣∣∣
t=0

= v has

factorization γvǒ (t) = πK exp(tv) and takes values in πKG̃o = W . Thus,
W ⊂ S is geodesic at ǒ ∈ W and, therefore, totally geodesic. �

Definition 5. A complete manifold S with a smooth binary operation
S × S → S, (x, y) 7→ x · y is a Loos-symmetric space if it satisfies the
axioms:
(A1) x · x = x for all x ∈ S;
(A2) x · (x · y) = y for all x, y ∈ S;
(A3) x · (y · z) = (x · y) · (x · z) for all x, y, z ∈ S;
(A4) Every x ∈ S has an open neighborhood Ux ⊂ S such that x · y = y
for y ∈ Ux implies y = x.

Theorem 6. (Loos [5], cf. also [6]) Any Riemannian symmetric space
S = G/K is a Loos symmetric space (S, ·) with respect to x · y :=
sx(y) for the involutive isometry sx : S → S with isolated fixed point
x ∈ S. Any Loos-symmetric space (S, ·) is supported by a Riemannian
symmetric space S.

Any Loos-symmetric space (S, ·) is a left quasi-group with xo(a, b) =
a · b for all a, b ∈ S by (A2) from Definition 5.

Definition 7. A Loos-symmetric space (S, ·) is of non-compact type if
for any y ∈ S with x · y = y it follows x = y.

Proposition 8. The following conditions are equivalent for a Loos-
symmetric space (S, ·):

(i) S is a Riemannian symmetric space of non-compact type;
(ii) (S, ·) is a Loos-symmetric space of non-compact type;
(iii) (S, ·) is a quasi-group.

Proof. (i) ⇒ (ii). Since expx : TR
x S → S is a global diffeomorphism,

x.y = sx expx exp−1
x (y) = expx(− exp−1

x (y)) = expx(expx(y)) = y is
equivalent to exp−1

x (y) = 0 and holds only for x = y.
(ii)⇒ (i). If the Riemannian symmetric space S is of compact type,

there is a periodic geodesic γ : R→ S through γ(0) = ǒ with minimal
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period to ∈ R>0. Then sǒ

(
γ

(
to
2

))
= γ

(
−to

2

)
implies γ

(
to
2

)
= ǒ,

whereas γ

(
t+

to
2

)
= γ(t) for all t ∈ R, which is an absurd.

(ii) ⇒ (iii). By assumption, y · a = a forces y = a. If a 6= b and
γy,a : R → S is the unique geodesic with γy,a(0) = y, γy,a(1) = a then
b = γy,a(−1) and the unique solution yo(a, b) ∈ S of y · a = b is the
middle point of the geodesic segment from a to b.

(iii)⇒ (ii). If y·a = a = a·a has unique solution in S then y = a. �

Definition 9. A submanifold S1 of a Loos-symmetric space (S, ·) of
non-compact type is a Loos-symmetric subspace if for all a, b ∈ S it
holds a · b, xo(a, b), yo(a, b) ∈ S1.

Definition 10. A complete manifold S with a smooth binary operation
S×S → S, (x, y) 7→ x∗y is a Loos-Hermitian symmetric space of non-
compact type if it satisfies the following axioms:
(a1) x ∗ x = x for all x ∈ S;
(a2) x ∗ {x ∗ [x ∗ (x ∗ y)]} = y for all x, y ∈ S;
(a3) x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ S;
(a4) if x ∗ (x ∗ y) = y for some x, y ∈ S then x = y.

Theorem 11. A complete manifold S admits a Loos-Hermitian sym-
metric structure (S, ∗) of non-compact type if and only if it is a Her-
mitian symmetric space of non-compact type. If so, then (S, ∗2) with
x ∗2 y := x ∗ (x ∗ y) is the Loos-symmetric space of non-compact type,
supported by S.

Proof. The axioms (a1)-(a4) for (S, ∗) imply that (S, ∗2) is a Loos-
symmetric space of non-compact type. The integrable almost complex
structures

Jx : TR
x S → TR

x S, Jx(u) := exp−1
x (x ∗ expx(u))

turn the Riemannian symmetric space S of non-compact type into a
Hermitian symmetric space of non-compact type.

Let S = G/K be a Hermitian symmetric space of non-compact type
and Jx : TR

x S → TR
x S be the almost complex structure at x ∈ S. Then

it is clear that x∗y = jx(y) := expx Jx exp−1
x (y) is subject to (a1), (a2),

(a4) from Definition 10 and (S, ∗2) satisfies Definition 7. Towards (a3),
note that S = ∪v∈TR

y S
γvy (R) is covered by the images of the geodesics

γvy : R→ S with γvy (0) = y,
dγvy (t)

dt

∣∣∣
t=0

= v. Further,

jyγ
v
y (t) = jy expy(tv) = expy(tJy(v)) = γJy(v)

y (t)
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and jxγ
v
y (t) = γ

(djx)yv

jx(y) (t) imply that jxjyγ
v
y (t) = γ

(djx)yJy(v)

jx(y) (t). The

differentials of the holomorphic isometries jx : S → S are subject to
(djx)yJy = Jjx(y)(djx)y. As a result,

jxjyγ
v
y (t) = γ

Jjx(y)(djx)y(v)

jx(y) (t) = jjx(y)γ
(djx)y(v)

jx(y) (t) = jjx(y)jxγ
v
y (t),

whereas jxjy = jjx(y)jx and (a3). �

Corollary 12. The following conditions are equivalent for a variation
of Hodge structure U ⊂ D and the projection π : D → S onto a
Riemannian symmetric space S of non-compact type:

(i) U ⊂ D is totally geodesic;
(ii) (π(U), ·) is a Loos-symmetric subspace of (S, ·);
(iii) there is such a Loos-Hermitian symmetric structure (π(U), ∗) of

non-compact type that (π(U), ∗2) with x ∗2 y := x ∗ (x ∗ y) is a Loos-
symmetric subspace of (S, ·).

Proof. For a Riemannian symmetric space R of non-compact type and
x ∈ R, let sRx : R → R be the geodesic isometry with unique fixed
point x.

(i) ⇒ (ii). Any totally geodesic subspace W ⊂ S is Riemannian
symmetric and, therefore, Loos-symmetric with

x · y = sWx (y) = expWx (−(expWx )−1(y)) = expSx(−(expSx)−1(y)) = sSx(y)

for all x, y ∈ W .
(ii)⇒ (i). By Proposition 8, W = G(W )/K(W ) ⊂ S is an equivari-

antly embedded Riemannian symmetric subspace of non-compact type,

as far as G(W ) = 〈sWx = sSx |W
∣∣∣x ∈ W 〉 is a subgroup of G.

(i) ⇒ (iii). follows from the Hermitian symmetry of the totally
geodesic U ⊂ D and (iii)⇒ (ii) is obvious. �
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