One more proof of Infinitesimal Torelli Theorem for complete intersections in Kähler C-spaces

Azniv Kasparian

Abstract

In the series of papers [5], [6], [7], Konno has proved the Infinitesimal Torelli Theorem for complete intersections $X=X_{d_{1}, \ldots, d_{p}}$ in Kähler C-spaces $Y=G / P$ with second Betti number $b_{2}(Y)=1$. The argument from [5] makes use of Kii's paper [4], while [6] and [7] exploit Flenner's [2]. After the appearance of [5] in 1986, the author derived the Infinitesimal Torelli Theorem for $X=X_{d_{1}, \ldots, d_{p}} \subset Y=G / P$ with $b_{2}(Y)=1$ and sufficiently large $d_{i} \in \mathbb{N}$ from Green's [3] on hypersurfaces of high degree. This proof has been communicated to Konno and never published. In order to make clear my contribution, mentioned in [6] and to emphasize the effectiveness of Konno's arguments from [6], [7], I decided to collect my considerations in the present note.

The simply connected compact Kähler homogeneous spaces $Y=G / H$ for complex Lie groups G are called Kähler C-spaces. A Kähler C-space $Y=G / H$ has second Betti number $b_{2}(Y)=1$ or an infinite cyclic Picard group $\operatorname{Pic}(Y) \simeq(\mathbb{Z},+)$ if and only if G is a simply connected, complex simple Lie group and H is a maximal parabolic subgroup of G. From now on, we consider only Kähler C-spaces Y of $b_{2}(Y)=1$ and denote them by $Y=G / P$. More precisely, let r be the rank of the complex simple Lie algebra $\mathfrak{g}=\operatorname{Lie}(G)$. Fix a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and a system of simple roots $\alpha_{1}, \ldots, \alpha_{r}$ of \mathfrak{g} with respect to \mathfrak{h}. Put Δ^{+} for the set of the positive roots of $\mathfrak{g}, \Delta_{\widehat{l}}^{-}$for the set of the negative roots $\alpha=\sum_{i=1}^{r} n_{i} \alpha_{i}$ with $n_{i} \in \mathbb{Z}^{\leq 0}, n_{l}=0$ and \mathfrak{g}_{α} for the root spaces of α. Then the connected Lie subgroup P_{l} of G with Lie algebra

$$
\begin{equation*}
\operatorname{Lie}\left(P_{l}\right)=\mathfrak{h}+\sum_{\alpha \in \Delta^{+}} \mathfrak{g}_{\alpha}+\sum_{\alpha \in \Delta_{\hat{\imath}}^{-}} \mathfrak{g}_{\alpha} \tag{1}
\end{equation*}
$$

is a maximal parabolic subgroup P_{l} of G. All Kähler C-spaces Y with $b_{2}(Y)=1$ are of the form $Y=G / P_{l}$ for a simply connected, complex simple Lie group G and a maximal parabolic subgroup P_{l} with Lie algebra (1) for some $1 \leq l \leq r$. If G is of type $\mathcal{T}=$ $\mathbf{A}_{r}, \mathbf{B}_{r}, \mathbf{C}_{r}, \mathbf{D}_{r}, \mathbf{E}_{6}, \mathbf{E}_{7}, \mathbf{E}_{8}, \mathbf{F}_{4}$ or \mathbf{G}_{2} then for any $1 \leq l \leq r=\operatorname{rk}(\mathfrak{g})$ the Kähler C-space $Y=G / P_{l}$ is said to be of type (\mathcal{T}, α_{l}).

Let X be a complex projective manifold of $\operatorname{dim}_{\mathbb{C}} X=n$. The period map of X transforms a deformation family for the complex structure on X into deformation family for the Hodge decomposition of $H^{n}(X, \mathbb{C})$. Let us denote by Θ_{X} the tangent sheaf of X. The differential of the period map is

$$
\tau: H^{1}\left(X, \Theta_{X}\right) \longrightarrow \sum_{p+q=n} \operatorname{Hom}\left(H^{q}\left(X, \Omega_{X}^{p}\right), H^{q+1}\left(X, \Omega_{X}^{p-1}\right)\right) .
$$

If for some $p, q \in \mathbb{Z}^{\geq 0}$ with $p+q=n$ the \mathbb{C}-linear map

$$
\begin{equation*}
\tau_{(p, q)}: H^{1}\left(X, \Theta_{X}\right) \longrightarrow \operatorname{Hom}\left(H^{q}\left(X, \Omega_{X}^{p}\right), H^{q+1}\left(X, \Omega_{X}^{p-1}\right)\right) \tag{2}
\end{equation*}
$$

is injective then we say that X satisfies the Infinitesimal Torelli Theorem.
Theorem 1. (Konno [5]) Let $Y=G / P$ be a Kähler C-space with $b_{2}(Y)=1$ and X be a smooth complete intersection in Y with ample canonical bundle K_{X}. The Infinitesimal Torelli Theorem holds for the following X :
(i) X of sufficiently large dimension;
(ii) complete intersections X in irreducible Hermitian symmetric spaces Y of compact type;
(iii) complete intersections X in $Y=G / P$ with $\operatorname{Lie} G=\mathbf{C}_{r}, \mathbf{E}_{6}, \mathbf{F}_{4}$ or \mathbf{G}_{2};
(iv) complete intersections X of $\operatorname{dim}_{\mathbb{C}} X=2$ in $Y=G / P$, whose type is different from $\left(\mathbf{E}_{8}, \alpha_{4}\right)$.

Let X be a compact Kähler manifold with canonical bundle K_{X} of the form

$$
K_{X}=E_{1}^{\otimes n_{1}} \otimes \ldots \otimes E_{k}^{\otimes n_{k}}, \quad n_{i} \in \mathbb{N}
$$

for some holomorphic line bundles $E_{i} \rightarrow X$ with irreducible associated divisors and $\operatorname{dim}_{\mathbb{C}} H^{0}\left(X, \mathcal{O}_{X}\left(E_{i}\right)\right) \geq 2$. In [4] Kii provides a sufficient condition for such X to satisfy the Infinitesimal Torelli Theorem. The proof of Theorem 1 from [5] makes use of the following special case of Kii's result:

Theorem 2. (Special case of Kii's Theorem 1 from [4]:) Let X be a compact Kähler manifold with $\operatorname{dim}_{\mathbb{C}} X=n$ and canonical bundle $K_{X}=E_{1}^{\otimes n_{1}}$ for $n_{1} \in \mathbb{N}$ and a holomorphic line bundle $E_{1} \rightarrow X$, whose associated linear system has base locus of codimension ≥ 2. If $\operatorname{dim}_{\mathbb{C}} H^{0}\left(X, \Omega_{X}^{n-1} \otimes E_{1}\right) \leq \operatorname{dim}_{\mathbb{C}} H^{0}\left(X, E_{1}\right)-2$ then

$$
\tau_{(n, 0)}: H^{1}\left(X, \Theta_{X}\right) \longrightarrow \operatorname{Hom}\left(H^{0}\left(X, \Omega_{X}^{n}\right), H^{1}\left(X, \Omega_{X}^{n-1}\right)\right)
$$

is injective and X satisfies Infinitesimal Torelli Theorem.
The main result of [6] is the following
Theorem 3. (Konno [6]) Let $X=X_{d_{1}, \ldots, d_{p}}$ be a smooth complete intersection in a Kähler C-space $Y=G / P_{l}$ with $b_{2}(Y)=1$, which is neither a projective space nor a complex quadric. Then Infinitesimal Torelli Theorem holds for the following X:
(i) complete intersections with non-negative canonical bundle $K_{X} \geq 0$;
(ii) complete intersections $X=X_{d_{1}, \ldots, d_{p}}$ with $d_{i} \geq 2$ for $\forall 1 \leq i \leq p$, which are different from
(a) a hypersurface of degree 2 in $Y=G / P_{l}$ of type $\left(\mathbf{A}_{4}, \alpha_{2}\right),\left(\mathbf{D}_{5}, \alpha_{4}\right),\left(\mathbf{E}_{6}, \alpha_{2}\right),\left(\mathbf{E}_{7}, \alpha_{1}\right)$, $\left(\mathbf{E}_{8}, \alpha_{8}\right),\left(\mathbf{F}_{4}, \alpha_{1}\right),\left(\mathbf{F}_{4}, \alpha_{3}\right)$ and
(b) a complete intersection $X=X_{2,2}$ in $Y=G / P_{l}$ of type $\left(\mathbf{B}_{l}, \alpha_{2}\right),\left(\mathbf{D}_{l}, \alpha_{2}\right),\left(\mathbf{E}_{6}, \alpha_{2}\right)$, $\left(\mathbf{E}_{7}, \alpha_{1}\right),\left(\mathbf{E}_{8}, \alpha_{8}\right),\left(\mathbf{F}_{4}, \alpha_{1}\right),\left(\mathbf{F}_{4}, \alpha_{3}\right)$.

Let X be a smooth complete intersection in a Kähler C-space $Y=G / P_{l}$ with $b_{2}(Y)=1$ and N_{X} be the normal bundle of X in Y. Then there is a short exact sequence of sheaves

$$
\begin{equation*}
\left.0 \longrightarrow N_{X}^{*} \longrightarrow \Omega_{Y}^{1}\right|_{X} \longrightarrow \Omega_{X}^{1} \longrightarrow 0 \tag{3}
\end{equation*}
$$

on X. The argument from [6] is based on the application of Flenner's Theorem 1.1 from [2] to (3).

Theorem 4. (Special case of Flenner's Theorem 1.1 from [2]:) Let X be a complete intersection of $\operatorname{dim}_{\mathbb{C}} X=n$ in a Kähler C-space $Y=G / P_{l}$ with $b_{2}(Y)=1, N_{X}$ be the normal bundle of X in $Y, S^{m} N_{X}$ (respectively, $S^{m} N_{X}^{*}$) be the m-th symmetric tensor product of N_{X} (respectively, N_{X}^{*}). If the multiplication map

$$
\begin{equation*}
H^{0}\left(X, S^{n-p} N_{X} \otimes K_{X}\right) \otimes H^{0}\left(X, S^{p-1} N_{X} \otimes K_{X}\right) \longrightarrow H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}^{2}\right) \tag{4}
\end{equation*}
$$

is surjective for some $1 \leq p \leq n$ and

$$
\begin{equation*}
H^{i+1}\left(X, S N_{X}^{*} \otimes \Omega_{Y}^{n-i-1} \otimes K_{X}^{-1}\right)=0 \quad \text { for } \quad \forall 0 \leq i \leq n-2, \tag{5}
\end{equation*}
$$

then

$$
\tau_{(p, q)}: H^{1}\left(X, \Theta_{X}\right) \longrightarrow \operatorname{Hom}\left(H^{q}\left(X, \Omega_{X}^{p}\right), H^{q+1}\left(X, \Omega_{X}^{p-1}\right)\right)
$$

with $q=n-p$ is injective and Infinitesimal Torelli Theorem holds for X
The main Theorem 9 of the present note derives the Infinitesimal Torelli Theorem for complete intersections $X=X_{d_{1}, \ldots, d_{p}}$ with sufficiently large $d_{i} \in \mathbb{N}$ in Kähler C-spaces $Y=G / P_{l}$ with $b_{2}(Y)=1$ from Green's work [3] on hypersurfaces of high degree. The proof of Theorem 9 was communicated to Konno in 1986 and cited by him in [6]. The author has decided to collect the proof, in order to specify this citation and to make clear that Konno's results from [5], [6], [7] are much more general than Theorem 9.

More precisely, Green's Lemma 1.14 from [3] asserts that if X is a smooth hypersurface with ample canonical bundle on a smooth compact complex manifold Y of $\operatorname{dim}_{\mathbb{C}} Y=n+1$, N_{X} is the normal bundle of X in Y,

$$
\begin{gather*}
H^{i}\left(X, \Omega_{Y}^{j} \otimes S^{m} N_{X}^{*}\right)=0 \quad \text { for } \quad \forall i<n, \quad \forall 0 \leq j \leq n, \quad \forall 1 \leq m \leq n \tag{6}\\
H^{i}\left(X, \Omega_{Y}^{j} \otimes S^{m} N_{X}^{*} \otimes K_{X}^{-1}\right)=0 \quad \text { for } \quad \forall 0<i<n, \quad \forall 1 \leq j \leq n, \quad \forall 1 \leq m \leq n-2 \tag{7}
\end{gather*}
$$

then there is a commutative diagram

with surjective g, h, so that f is surjective and Infinitesimal Torelli Theorem holds for X due to the injectiveness of the dual map
$f^{*}=\tau_{(n, 0)}: H^{1}\left(X, \Theta_{X}\right) \rightarrow \operatorname{Hom}\left(H^{0}\left(X, \Omega_{X}^{n}\right), H^{1}\left(X, \Omega_{X}^{n-1}\right)\right) \simeq H^{1}\left(X, \Omega_{X}^{n-1}\right) \otimes H^{0}\left(X, K_{X}\right)^{*}$.
The following Proposition 5 generalizes Green's Lemma 1.14 from [3] to smooth complete intersections:

Proposition 5. Let $Y=G / P_{l}$ be a Kähler C-space with $b_{2}(Y)=1$ and canonical bundle $K_{Y}=\mathcal{O}_{Y}(-k(Y)), k(Y) \in \mathbb{N}$. If $X=X_{d_{1}, \ldots, d_{p}}$ is a smooth complete intersection in Y with $\operatorname{dim}_{\mathbb{C}} X=n$, normal bundle

$$
N_{X}=\mathcal{O}_{X}\left(d_{1}\right) \oplus \ldots \oplus \mathcal{O}_{X}\left(d_{p}\right),
$$

non-negative canonical bundle

$$
K_{X}=\mathcal{O}_{X}\left(-k(Y)+\sum_{s=1}^{p} d_{s}\right),-k(Y)+\sum_{s=1}^{p} d_{s} \geq 0
$$

(6) and (7), then there is a commutative diagram (8) with surjective g, h, f and Infinitesimal Torelli Theorem holds for X.

Proof. Note that

$$
f=\tau_{(n, 0)}^{*}: H^{1}\left(X, \Omega_{X}^{n-1}\right)^{*} \otimes H^{0}\left(X, K_{X}\right) \longrightarrow H^{1}\left(X, \Theta_{X}\right)
$$

is the dual of $\tau_{(n, 0)}$ from (2), so that the surjectiveness of f is equivalent to the injectiveness of $\tau_{(n, 0)}$ and implies Infinitesimal Torelli Theorem for X. Towards the surjectiveness of f, it suffices to establish the existence of a commutative diagram (8) with surjective g and h. By Lemma 1.5 [3], (1-6) implies the presence of a \mathbb{C}-linear map

$$
\mu: H^{1}\left(X, \Omega_{X}^{n-1}\right) / A \longrightarrow\left(H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}\right) / B\right)^{*}
$$

for appropriate \mathbb{C}-subspaces $A \subset H^{1}\left(X, \Omega_{X}^{n-1}\right)$ and $B \subset H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}\right)$. Let

$$
\mu^{*}: H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}\right) / B \longrightarrow\left(H^{1}\left(X, \Omega_{X}^{n-1}\right) / A\right)^{*} .
$$

be the dual map. Consider the natural embedding

$$
\varepsilon:\left(H^{1}\left(X, \Omega_{X}^{n-1}\right) / A\right)^{*} \hookrightarrow H^{1}\left(X, \Omega_{X}^{n-1}\right)^{*}
$$

of the \mathbb{C}-linear functionals on $H^{1}\left(X, \Omega_{X}^{n-1}\right)$, vanishing on A in all the \mathbb{C}-linear functionals $H^{1}\left(X, \Omega_{X}^{n-1}\right)^{*}$ on $H^{1}\left(X, \Omega_{X}^{n-1}\right)$. Denote by π_{B} the natural projection

$$
\pi_{B}: H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}\right) \longrightarrow H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}\right) / B
$$

with kernel $\operatorname{ker}\left(\pi_{B}\right)=B$. Then the composition

$$
\varepsilon \mu^{*} \pi_{B}: H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}\right) \longrightarrow H^{1}\left(X, \Omega_{X}^{n-1}\right)^{*}
$$

is a \mathbb{C}-linear map. Tensoring with $\operatorname{Id}_{H^{0}\left(X, K_{X}\right)}$, one obtains a \mathbb{C}-linear map $e=\left(\varepsilon \mu^{*} \pi_{B}\right) \otimes$ $\operatorname{Id}_{H^{0}\left(X, K_{X}\right)}$,

$$
e: H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}\right) \otimes H^{0}\left(X, K_{X}\right) \longrightarrow H^{1}\left(X, \Omega_{X}^{n-1}\right)^{*} \otimes H^{0}\left(X, K_{X}\right)
$$

According to Lemma 1.10 from [3], (7) suffices for the presence of a \mathbb{C}-linear isomorphism

$$
H^{1}\left(X, \Theta_{X}\right) \simeq\left[\frac{H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}^{2}\right)}{\operatorname{im} H^{0}\left(X, S^{n-2} N_{X} \otimes \Theta_{Y} \otimes K_{X}^{2}\right)}\right]^{*}
$$

As a result, one obtains a \mathbb{C}-linear isomorphism

$$
\left[\frac{H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}^{2}\right)}{i m H^{0}\left(X, S^{n-2} N_{X} \otimes \Theta_{Y} \otimes K_{X}^{2}\right)}\right] \simeq H^{1}\left(X, \Theta_{X}\right)^{*},
$$

whereas a \mathbb{C}-linear surjection

$$
h: H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}^{2}\right) \longrightarrow H^{1}\left(X, \Theta_{X}\right)^{*} .
$$

Towards the existence of a surjection

$$
\begin{equation*}
g: H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}\right) \otimes H^{0}\left(X, K_{X}\right) \longrightarrow H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}^{2}\right) \tag{9}
\end{equation*}
$$

let us note that the normal bundle $N_{X}=\mathcal{O}_{X}\left(d_{1}\right) \oplus \ldots \oplus \mathcal{O}_{X}\left(d_{p}\right)$ and its symmetric poser $S^{n-1} N_{X}$ decompose in direct sums of holomorphic line bundles. More precisely, denote by ω_{l} the fundamental weight, corresponding to the simple root α_{l} of $\mathfrak{g}=\operatorname{Lie}(G)$. The positive generator of the Picard group $\operatorname{Pic}(Y) \simeq(\mathbb{Z},+)$ of $Y=G / P_{l}$ is associated with the irreducible representation of P_{l} with dominant weight ω_{l}. There is a sheaf decomposition

$$
S^{n-1} N_{X}=\oplus_{\substack{k=\left(k_{1}, \ldots, k_{p}\right) \in\left(\mathbb{Z} \geq 0 \\ k_{1}+\ldots+k_{p}=n-1\right.}} \quad \mathcal{O}_{X}\left(\sum_{s=1}^{p} k_{s} d_{s}\right),
$$

whereas

$$
S^{n-1} N_{X} \otimes K_{X}=\oplus_{\substack{k=\left(k_{1}, \ldots, k_{p}\right) \in\left(\mathbb{Z} \geq^{0}\right)^{p} \\ k_{1}+\ldots+k_{p}=n-1}} \quad \mathcal{O}_{X}\left(-k(Y)+\sum_{s=1}^{p}\left(k_{s}+1\right) d_{s}\right)
$$

As a result, there arises a decomposition

$$
\begin{gathered}
H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}\right)= \\
=\oplus_{\substack{k=\left(k_{1}, \ldots, k_{p}\right) \in\left(\mathbb{Z} \geq 0 \\
k_{1}+\ldots+k_{p}=n-1\right.}} \quad H^{0}\left(X, \mathcal{O}_{X}\left(-k(Y)+\sum_{s=1}^{p}\left(k_{s}+1\right) d_{s}\right)\right) .
\end{gathered}
$$

of the corresponding holomorphic sections, as well as

$$
H^{0}\left(X, S^{n-1} N_{X} \otimes K_{X}^{2}\right)=
$$

$$
=\oplus_{\substack{k=\left(k_{1}, \ldots, k_{p}\right) \in\left(\mathbb{Z} \geq 0 \\ k_{1}+\ldots+k_{p}=n-1\right.}} \quad H^{0}\left(X, \mathcal{O}_{X}\left(-2 k(Y)+\sum_{s=1}^{p}\left(k_{s}+2\right) d_{s}\right)\right) .
$$

The surjectiveness of

$$
\begin{gathered}
g_{l}: H^{0}\left(X, \mathcal{O}_{X}\left(-k(Y)+\sum_{s=1}^{p}\left(k_{s}+1\right) d_{s}\right)\right) \otimes H^{0}\left(X, \mathcal{O}_{X}\left(-k(Y)+\sum_{s=1}^{p} d_{s}\right)\right) \longrightarrow \\
\longrightarrow H^{0}\left(X, \mathcal{O}_{X}\left(-2 k(Y)+\sum_{s=1}^{p}\left(k_{s}+2\right) d_{s}\right)\right)
\end{gathered}
$$

for all $k=\left(k_{1}, \ldots, k_{p}\right) \in\left(\mathbb{Z}^{\geq}\right)^{p}$ with $\sum_{s=1}^{p} k_{s}=n-1$ implies the surjectiveness of (9). The commutativity of the diagram (8) follows from the fact that the multiplication by $H^{0}\left(X, K_{X}\right)$ commutes with the differentials of the spectral sequence, associated with the long exact sequence

$$
0 \rightarrow S^{n} N_{X}^{*} \rightarrow \ldots \rightarrow \Omega_{Y}^{n-1} \otimes N_{X}^{*} \rightarrow \Omega_{Y}^{n} \otimes \mathcal{O}_{X} \rightarrow \Omega_{X}^{n} \rightarrow 0
$$

The rest of the article derives sufficient conditions for $X=X_{d_{1}, \ldots, d_{p}} \subset Y=G / P_{l}$ to satisfy $K_{X} \geq 0$, (6) and (7).
Lemma 6. Let $X=X_{d_{1}, \ldots, d_{p}}$ be a smooth complete intersection of $\operatorname{dim}_{\mathbb{C}} X=n$ with nonnegative canonical bundle $K_{X}=\mathcal{O}_{X}\left(-k(Y)+\sum_{s=1}^{p} d_{s}\right), \sum_{s=1}^{p} d_{s} \geq k(Y)$ in a Kähler C-space $Y=G / P_{l}$ with $b_{2}(Y)=1$, such that

$$
\begin{gather*}
d_{p} \geq d_{p-1} \geq \ldots \geq d_{2} \geq d_{1}, \\
H^{i}\left(X, \Omega_{Y}^{j}(-\lambda)\right)=0 \quad \text { for } \quad \forall i<n, \quad \forall 0 \leq j \leq n, \quad \forall \lambda>n_{1}-1, \tag{10}\\
H^{i}\left(X, \Omega_{Y}^{j}(-\mu)\right)=0 \quad \text { for } \quad \forall i<n, \quad \forall 1 \leq j \leq n, \quad \forall \mu>(p+1) d_{1}-k(Y)-1 . \tag{11}
\end{gather*}
$$

Then Infinitesimal Torelli Theorem holds for X.
Proof. It suffices to establish that (10) implies (6) and (11) suffices for (7). To this end, note that for any $m \in \mathbb{N}$ the m-th symmetric tensor product

$$
S^{m} N_{X}^{*}=\oplus_{\substack{k=\left(k_{1}, \ldots, k_{p}\right) \in(\mathbb{Z} \geq 0)^{p} \\ k_{1}+\ldots+k_{p}=n-1}} \quad \mathcal{O}_{X}\left(-\sum_{s=1}^{p} k_{s} d_{s}\right)
$$

corresponds to a completely reducible P_{l}-module, whose irreducible components have dominant weights $-\left(\sum_{s=1}^{p} k_{s} d_{s}\right) \omega_{l}$. Since

$$
\sum_{s=1}^{p} k_{s} d_{s} \geq d_{1}\left(\sum_{s=1}^{p} k_{s}\right)=d_{1} m \geq d_{1},
$$

(10) suffices for (6). Similarly,
$\sum_{s=1}^{p} k_{s} d_{s}-k(Y)+\sum_{s=1}^{p} d_{s} \geq d_{1}\left(\sum_{s=1}^{p} k_{s}\right)-k(Y)+p d_{1}=m d_{1}-k(Y)+p d_{1} \geq-k(Y)+(p+1) d_{1}$ reveals that if (11) then (7).

The next lemma provides sufficient vanishing conditions on the cohomologies of Y, in order to have vanishing cohomologies on X.

Lemma 7. Let $X=X_{d_{1}, \ldots, d_{p}}$ be a smooth complete intersection in a compact complex manifold $Y, \nu_{o} \in \mathbb{Z}, 0 \leq j \leq \operatorname{dim}_{\mathbb{C}} Y$. If

$$
\begin{equation*}
H^{i}\left(Y, \Omega_{Y}^{j}(-\nu)\right)=0 \quad \text { for } \quad \forall i<\operatorname{dim}_{\mathbb{C}} Y, \quad \forall \nu>\nu_{o} \tag{12}
\end{equation*}
$$

then

$$
\begin{equation*}
H^{i}\left(X, \Omega_{Y}^{j}(-\nu)\right)=0 \quad \text { for } \quad \forall i<\operatorname{dim}_{\mathbb{C}} X, \quad \forall \nu>\nu_{o} \tag{13}
\end{equation*}
$$

Proof. Let us consider the series

$$
Y=X_{0} \supset X_{1} \supset \ldots \supset X_{s-1} \supset X_{s} \supset \ldots \supset X_{p-1} \supset X_{p}=X
$$

of hypersurfaces X_{s} of degree d_{s} in X_{s-1} for $\forall 1 \leq s \leq p$. By an induction on $1 \leq s \leq p$, we shall prove that

$$
\begin{equation*}
H^{i}\left(X_{s}, \Omega_{Y}^{j}(-\nu)\right)=0 \quad \text { for } \quad \forall i<\operatorname{dim}_{\mathbb{C}} X_{s}, \forall \nu>\nu_{o} \tag{14}
\end{equation*}
$$

To this end, let us consider the short restriction sequence

$$
\left.\left.\left.0 \rightarrow \Omega_{Y}^{j}\left(-\nu-d_{s}\right)\right|_{X_{s-1}} \rightarrow \Omega_{Y}^{j}(-\nu)\right|_{X_{s-1}} \rightarrow \Omega_{Y}^{j}(-\nu)\right|_{X_{s}} \rightarrow 0
$$

and its associated long cohomology sequence

$$
\begin{equation*}
\ldots \rightarrow H^{i}\left(X_{s-1}, \Omega_{Y}^{j}(-\nu)\right) \rightarrow H^{i}\left(X_{s}, \Omega_{Y}^{j}(-\nu)\right) \rightarrow H^{i+1}\left(X_{s-1}, \Omega_{Y}^{j}\left(-\nu-d_{s}\right)\right) \rightarrow \ldots \tag{15}
\end{equation*}
$$

By the inductional hypothesis,

$$
H^{i}\left(X_{s-1}, \Omega_{Y}^{j}(-\nu)\right)=0 \quad \text { for } \quad \forall i<\operatorname{dim}_{\mathbb{C}} X_{s}=\operatorname{dim}_{\mathbb{C}} X_{s-1}-1<\operatorname{dim}_{\mathbb{C}} X_{s-1}, \quad \forall \nu>\nu_{o}
$$

and
$H^{i+1}\left(X_{s-1}, \Omega_{Y}^{j}\left(-\nu-d_{s}\right)\right)=0$ for $\forall i+1<\operatorname{dim}_{\mathbb{C}} X_{s}+1=\operatorname{dim}_{\mathbb{C}} X_{s-1}, \forall \nu+d_{s}>\nu_{o}+d_{s}>\nu_{o}$.
Now (15) provides

$$
H^{i}\left(X_{s}, \Omega_{Y}^{j}(-\nu)\right)=0 \quad \text { for } \quad \forall i<\operatorname{dim}_{\mathbb{C}} X_{s}, \quad \forall \nu>\nu_{o}
$$

and concludes the proof of the lemma.

Lemma 8. Let $Y=G / P_{l}$ be a Kähler C-space with $b_{2}(Y)=1$. Then there exists a sufficiently large natural number $d_{1} \in \mathbb{N}$, such that

$$
\begin{gather*}
H^{i}\left(Y, \Omega_{Y}^{j}(-\lambda)\right)=0 \quad \text { for } \quad \forall i<\operatorname{dim}_{\mathbb{C}} Y, \quad \forall 0 \leq j \leq n, \quad \forall \lambda>d_{1}-1 \quad \text { and } \tag{16}\\
H\left(Y, \Omega_{Y}^{j}(-\mu)\right)=0 \quad \text { for } \quad \forall i<\operatorname{dim}_{\mathbb{C}} Y, \quad \forall 1 \leq j \leq n, \quad \forall \mu>(p+1) d_{1}-k(Y)-1 \tag{17}
\end{gather*}
$$

Proof. Note that holomorphic bundles $\Omega_{Y}^{j} \rightarrow Y=G / P_{l}$ are not associated with completely reducible P_{l}-modules but there is an appropriate filtration on Ω_{Y}^{j}, whose successive quotients correspond to irreducible P_{l}-modules E_{w} (cf. [5]). The dominant weights w of these quotients are of the form $w=-\beta_{1}-\ldots-\beta_{j}$ for distinct positive complementary roots

$$
\beta_{r} \in \Delta_{l}^{+}:=\left\{\sum_{t=1}^{r} n_{t} \alpha_{t} \mid n_{t} \geq 0, \quad n_{l}>0\right\}
$$

of $\operatorname{Lie}\left(P_{l}\right)=\mathfrak{h}+\sum_{\alpha \in \Delta^{+}} \mathfrak{g}_{\alpha}+\sum_{\alpha \Delta_{\hat{l}}^{-}} \mathfrak{g}_{\alpha}$ with

$$
\Delta_{\widehat{l}}^{-}=\left\{-\sum_{t=1}^{r} n_{t} \alpha_{t} \mid n_{t} \geq 0, \quad n_{l}=0\right\}
$$

It suffices to establish the existence of a sufficiently large natural number $d_{1} \in \mathbb{N}$, such that

$$
\begin{array}{r}
H^{i}\left(Y, E_{w-\lambda \omega_{l}}\right)=0 \quad \text { for } \quad \forall i<\operatorname{dim}_{\mathbb{C}} Y=n+p \\
\forall w=-\beta_{1}-\ldots-\beta_{j}, \quad \beta_{t} \in \Delta_{l}^{+}, \quad \forall 0 \leq j \leq n, \quad \forall \lambda>d_{1}-1 \tag{18}
\end{array}
$$

and

$$
\begin{array}{r}
H^{i}\left(Y, E_{w-\mu \omega_{l}}\right)=0 \quad \text { for } \quad \forall i<\operatorname{dim}_{\mathbb{C}} Y=n+p \tag{19}\\
\forall w=-\beta_{1}-\ldots-\beta_{j}, \quad \beta_{t} \in \Delta_{l}^{+}, \quad \forall 1 \leq j \leq n, \quad \forall \mu>(p+1) d_{1}-k(Y)-1
\end{array}
$$

where $E_{w-\lambda \omega_{l}}, E_{w-\mu \omega_{l}}$ denote the homogeneous vector bundles on $Y=G / P_{l}$, induced by the irreducible representations of P_{l} with dominant weights $w-\lambda \omega_{l}$, respectively, $w-\mu \omega_{l}$. Recall that ω_{l} stands for the fundamental weight, associated with the simple root α_{l} of $\mathfrak{g}=\operatorname{Lie}(G)$, i.e., the Killing form $\left(\omega_{l}, \alpha_{t}\right)=0$ vanishes for $1 \leq l \neq t \leq r$ and $\left(\omega_{l}, \alpha_{l}\right)=\frac{\left(\alpha_{l}, \alpha_{l}\right)}{2}$. Let

$$
\rho=\frac{1}{2} \sum_{\alpha \in \Delta^{+}} \alpha=\sum_{t=1}^{r} \omega_{t}
$$

be the half-sum of the positive roots of $\mathfrak{g}=\operatorname{Lie}(G)$ or the sum of the fundamental weights of \mathfrak{g}. We say that the weight $w-\nu \omega_{l}+\rho$ is singular if there exists a positive root $\alpha \in \Delta^{+}$ with $\left(w-\nu \omega_{l}+\rho, \alpha\right)=0$. When $\left(w-\nu \omega_{l}+\rho, \alpha\right) \neq 0$ for $\forall \alpha \in \Delta^{+}$and there are exactly i positive roots α with $\left(w-\nu \omega_{l}+\rho, \alpha\right)<0$, the weight $w-\nu \omega_{l}+\rho$ is called regular of index i. Borel-Weil-Bott Theorem (cf. [1], [8]) asserts that if the weight $w-\nu \omega_{l}+\rho$ is singular, then $H^{i}\left(Y, E_{w-\nu \omega_{l}}\right)=0$ for $\forall i \geq 0$. If $w-\nu \omega_{l}+\rho$ is a regular weight of index i_{o}, then $H^{i}\left(Y, E_{w-\nu \omega_{l}}\right)=0$ for all $i \neq i_{o}$. In order to have

$$
H^{i}\left(Y, E_{w-\nu \omega_{l}}\right)=0 \quad \text { for } \quad \forall i<\operatorname{dim}_{\mathbb{C}} Y
$$

it suffices to require

$$
\begin{equation*}
\left(w-\nu \omega_{l}+\rho, \beta\right) \leq 0 \quad \text { for } \quad \forall \beta \in \Delta_{l}^{+}=\left\{\sum_{t=1}^{r} n_{t} \alpha_{t} \mid n_{t} \geq 0, \quad n_{l}>0\right\} \tag{20}
\end{equation*}
$$

Indeed, if (20) holds for all positive complementary roots β, then either $w-\nu \omega_{l}+\rho$ is singular or $w-\nu \omega_{l}+\rho$ is regular of index

$$
i_{o} \geq\left|\Delta_{l}^{+}\right|=\operatorname{dim}_{\mathbb{C}} Y,
$$

as far as the holomorphic tangent space of $Y=G / P_{l}$ at the origin is

$$
T^{1,0} Y=\sum_{\beta \in \Delta_{l}^{+}} \mathfrak{g}_{\beta}
$$

and $\left|\Delta_{l}^{+}\right|=\operatorname{dim}_{\mathbb{C}} T^{1,0} Y=\operatorname{dim}_{\mathbb{C}} Y$.
An arbitrary complementary root $\beta \in \Delta_{l}^{+}$decomposes into a linear combination $\beta=$ $\sum_{t=1}^{r} b_{t} \alpha_{t}$ of the simmple roots α_{t} with non-negative coefficients $b_{t} \geq 0$ for $\forall 1 \leq t \leq r$ and $b_{l}>0$. Then

$$
\left(w-\nu \omega_{l}+\rho, \beta\right)=-\sum_{r=1}^{j}\left(\beta_{r}, \beta\right)-\nu b_{l} \frac{\left(\alpha_{l}, \alpha_{l}\right)}{2}+\frac{1}{2} \sum_{t=1}^{r} b_{t}\left(\alpha_{t}, \alpha_{t}\right) \leq 0
$$

is equivalent to

$$
n u \geq \frac{2}{b_{l}\left(\alpha_{l}, \alpha_{l}\right)}\left[\frac{1}{2} \sum_{t=1}^{r} b_{t}\left(\alpha_{t}, \alpha_{t}\right)-\sum_{r=1}^{j}\left(\beta_{r}, \beta\right)\right]
$$

and holds for $\forall \nu \geq \nu_{o}$, provided

$$
\nu_{o} \geq \frac{2}{b_{l}\left(\alpha_{l}, \alpha_{l}\right)}\left[\frac{1}{2} \sum_{t=1}^{r} b_{t}\left(\alpha_{t}, \alpha_{t}\right)-\sum_{r=1}^{j}\left(\beta_{r}, \beta\right)\right] .
$$

For any fixed $w=-\sum_{r=1}^{j} \beta_{r}$ and $\beta=\sum_{t=1}^{r} b_{t} \alpha_{t} \in \Delta_{l}^{+}$, let us denote

$$
C(w, \beta):=\frac{2}{b_{l}\left(\alpha_{l}, \alpha_{l}\right)}\left[\frac{1}{2} \sum_{t=1}^{r} b_{t}\left(\alpha_{t}, \alpha_{t}\right)-\sum_{r=1}^{j}\left(\beta_{r}, \beta\right)\right] .
$$

It suffices to choose

$$
d_{1} \geq C_{w}:=\max _{\beta \in \Delta_{l}^{+}} C(w, \beta)
$$

in order to have $H^{i}\left(Y, E_{w-\lambda \omega_{l}}\right)=0$ for $w=-\sum_{r=1}^{j} \beta_{r}, \forall i<\operatorname{dim}_{\mathbb{C}} Y$ and $\forall \lambda \geq d_{1}$. Similarly, for

$$
C_{w}=\max _{\beta \in \Delta_{l}^{+}} C(w, \beta) \quad \text { and } \quad d_{1} \geq \frac{C_{w}+k(Y)}{p+1}
$$

one has $H^{i}\left(Y, E_{w-\mu \omega_{l}}\right)=0$ for $w=-\sum_{r=1}^{j} \beta_{r}, \forall i<\operatorname{dim}_{\mathbb{C}} Y$ and $\forall \mu \geq(p+1) d_{1}-k(Y)$. For any $0 \leq j \leq n$ there are finitely many weights $w=-\sum_{r=1}^{j} \beta_{r}$ with different positive complementary roots $\beta_{r} \in \Delta_{l}^{+}$. If C is the maximum of C_{w} over the weights $w=-\sum_{r=1}^{j} \beta_{r}$ with different $\beta_{1} \ldots \beta_{j} \in \Delta_{l}^{+}$and any $0 \leq j \leq n$, then the choice of

$$
d_{1} \geq \max \left(C, \frac{C+k(Y)}{p+1}\right)
$$

suffices for (18) and (19).

Combining Lemmas 6, 7 and 8, one obtains the following
Theorem 9. For any Kähler C-space $Y=G / P_{l}$ with $b_{2}(Y)=1$ there exist sufficiently large natural numbers $d_{p} \geq d_{p-1} \geq \ldots \geq d_{2} \geq d_{1}$, such that Infinitesimal Torelli Theorem holds for any smooth complete intersection $X=X_{d_{1}, \ldots, d_{p}}$ in $Y=G / P_{l}$.

References

[1] Bott R., Homogeneous vectorr bundles, Ann. of Math. 66 (1957), 203-248.
[2] Flenner H., The infinitesimal Torelli problem for zero sets of sections of vector bundles, Math. Z. 193 (1986), 307-322.
[3] Green M., The period map for hypersurface sections of high degree of an arbitrary variety, Comp. Math. 55 (1985), 135-156.
[4] Кий К. И., Локальная Теорема Торелли для многообразий с делимым каноническим классом, Известия АН СССР, Сер. Мат. 42 (1978), 56-69.
[5] Konno K., Infinitesimal Torelli Theorem for complete intgersections in certain homogeneous Kähler manifolds, Tohoku Math. Journ., 38 (1986), 609-624.
[6] Konno K., Infinitesimal Torelli Theorem for complete intgersections in certain homogeneous Kähler manifolds - II, Tohoku Math. Journ. 42 (1990), 333-338.
[7] Konno K., Infinitesimal Torelli Theorem for complete intgersections in certain homogeneous Kähler manifolds - III, Tohoku Math. Journ. 43 (1991), 557-568.
[8] Kostant B., Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. 74 (1961), 329-387.

