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Abstract

The present article studies the finite Zariski tangent spaces to an affine variety
X as linear codes, in order to characterize their typical or exceptional properties by
global geometric conditions on X. We provide procedures for decreasing the length,
increasing the dimension or increasing the minimum distance of a single F-linear code
by families of codes, parameterized by "almost all” the points of affine spaces over the
algebraic closure F, of F,. The article discusses simultaneous decoding of tangent
codes with fixed error support. The duals of the tangent codes to X are realized by
gradients of polynomials from the ideal of X.

1 Introduction

Codes with additional structure are usually equipped with a priori properties, which fa-
cilitate their characterization and decoding. For instance, algebro-geometric Goppa codes
allowed Tsfasman, V1ddut and Zink to improve the asymptotic Gilbert-Varshamov bound
on the information rate for a fixed relative minimum distance (cf.[15]). Justesen, Larsen,
Elbrgnd, Jensen, Havemose, Hgholdt, Skorobogatov, Vl1idut, Krachkovskii, Porter, Du-
ursma, Feng, Rao and others developed efficient algorithms for decoding Goppa codes
after obtaining the error support of the received word (Pellikaan’s [11] is a survey on these
results.) Duursma’s considerations from [5] imply that the averaged homogeneous weight
enumerator of Goppa codes, associated with a complete set of representatives of the linear
equivalence classes of divisors of fixed degree is related to the (-polynomial of the un-
derlying curve (cf.|8] for the exact formulation). The realizations of codes by points of a

*2010 Mathematics Subject Classification: Primary: 94B27, 14G50; Secondary: 14G17, 11T71
Key words and phrases: Zariski tangent space, minimum distance of a tangent code, simultaneous decoding
of tangent codes, gradient codes, genus reduction of a tangent code.



Grassmannian, a determinantal variety or a modification of an arc provide other examples
for exploiting "an extra structure” on the objects under study.

The present article interprets the finite Zariski tangent spaces to an affine variety X,
defined over a finite field F, as linear codes, in order to control the length, the dimension
and the minimum distance of these codes by the equations of X. We propose a procedure
for simultaneous decoding of tangent codes with fixed error support j = {j1,...,7:}. This
could be useful when the probability for the occurrence of an error support j is considerably
larger than the one for any other ¢-tuple of indices. The spaces of the received words with
error support j are described as tangent codes to appropriate affine varieties Y;. Under
some special choices of the equations of X, the parity check matrices of the tangent codes
to Y are obtained from the ones for the tangent codes to X by removing ¢ rows and ¢
columns. Nevertheless, our characterization of the spaces of received words with error
support j has high complexity and reduces to an exhaustive search.

By the very definition, the parity check matrices of the tangent codes to an affine variety
X are values of the Jacobian matrix of a generating set of the absolute ideal of X. We
exploit this in Chapter 4 for "deforming” an abstract Fy-linear [n, k, d]-code C' with genus
g :=n+1—k—d > 0into three families of linear codes, whose parameters are, respectively,
[n—1,k,d], [n,k+ 1,d] or [n,k,d+ 1]. The aforementioned families are parameterized,
respectively, by “almost all the points” of the affine spaces Ek, Ez(n_k) or I[‘an over the
algebraic closure F, of F,. The members of these families are called, respectively, length,
dimension and weight reductions of C' and viewed as special cases of genus reductions of
C. In general, our construction takes place over a finite extension of the basic field F,.
However, it detects and realizes the possibility for being accomplished over F, itself.

In an analogy with the algebro-geometric Goppa codes, which have best decoding
capacity on the projective line P! (E), the tangent codes set up is most flexible on the

affine varieties X C En, isomorphic to Ek. The reason for this is that the irreducibility
of a generic affine variety X is very difficult to be gained by an explicit choice of the
equations of X, while the construction of "twisted embeddings” of Ek can be done easily
in various ways (compare the constructions from Corollary 3, Proposition 6 and Corollary
14). The above considerations can be viewed as a testimony for the lack of coding theory
constructions, reflecting the advantages of the algebraic varieties of general type.

The tangent codes set up studies families of linear codes, whose parity check matrices
are the values of a given polynomial matrix. That suggests their possible applications to
the theory of convolutional codes (cf.Chapter 9 from [2]). Appropriate collections of finite
Zariski tangent spaces to families of affine varieties seem suitable for studying optimization
and asymptotic problems on linear codes, due to their "geometrically integrable dynamical
nature”.

Here is a synopsis of the paper. Section 2 comprises some preliminaries on the Zariski
topology and the Zariski tangent spaces T, (X, Fym) to an affine variety X.

Our research starts in section 3 by studying the minimum distance d(7,(X,Fgm)) of a
finite Zariski tangent space T, (X, F,m) to an irreducible affine variety X/IF, C En, defined
over [F,. Proposition 2 (i) establishes that if X has some tangent code of minimum distance
> d+1 then "almost all” finite Zariski tangent spaces to X are of minimum distance > d+1.
The existence of a non-finite puncturing I1, : X — IL,(X) at |y| = d coordinates prohibits



tangent codes of minimum distance > d + 1, according to Proposition 2 (ii). Proposition 2
(iii) provides two sufficient conditions for the presence of a lower bound d+1 on “almost all”
tangent codes to X. For an arbitrary Fy-linear [n, k, d]-code C, Corollary 3 from subsection

3.1 designs such a "twisted embedding” Ek =+ X C ETL, tangent to C' = Ton (X, Fy)

at the origin 0", whose finite Zariski tangent spaces "reproduce” the parameters [n, k, d]
of at “almost all the points” of X. By Proposition 4, for any family 7 : C — Fy of linear
codes 7 1(a) = C(a) C F}! there is an explicit (not necessarily irreducible) affine variety
X c F,", whose Zariski tangent spaces T,(X,F,) C C(a) are contained in the members of
the family for Va € Fy.

Chapter 4 is devoted to the construction of families of genus reductions of an F,-linear
[n, k,d]-code C of genus g :==n+1—k —d > 0. Our family of length reductions of C
with parameters [n — 1, k, d] consists of "almost all” tangent codes to the image II,,(X)

of the puncturing IT,, : X — II,,(X) of a "twisted embedding” Fqk —= X C En at

the last coordinate. The members of the other two families are also determined by their
parity check matrices, but are not tangent to affine varieties. The dimension reductions of
C with parameters [n,k + 1, d] are parameterized by "almost all the points” of EQ(n_k).
Their parity check matrices are obtained by projecting the columns of a parity check
matrix H € M,_p)xn(Fy) of C on appropriate hyperplanes in En_k. The existence of a
polynomial parity check matrix of weight reductions of C' with parameters [n, k,> d + 1]
is established by an induction on the columns of the corresponding parity check matrices.

The last chapter 5 discusses the simultaneous decoding of tangent codes with fixed
error support and the gradient codes. After fixing the coding theory set up of the de-
coding with fixed error support j € (1";’"), we identify the spaces Err(T,(X,Fym), ) of
the received words with T, (X, Fgm )-error supported by j with the Zariski tangent spaces

To(Yj,Fym) of an affine variety Y;. If I, : T, — En_t is the puncturing at j and II;(X)
is the Zariski closure of II;(X) in En_t then Y; ~ th x II;(X) is the cylinder with base
IL;(X) in F,". In general, Err(T,(X,Fym),j) = Tu(Y;,Fym) are described by the means
of Groebner bases of the absolute ideal of X (cf.Corollary 13). Corollary 14 provides

such a "twisted embedding” Ek —= X C En, for which the parity check matrices

of Err(T,(X,Fgm),j) are obtained from the ones for T,(X,F,m) by erasing ¢ rows and
t columns. The Fym-linear decoding maps Dec : Err(T,(X,Fym),j) = To(X,Fym) arise
naturally from the coding theory set up as the composition of the puncturing II; at j and
its inverse Hj_1 ILj(To (X, Fgm)) = To(X,Fgm). The special choice of the equations of X
from Corollary 14 provides a uniform description of Dec at "almost all the points” of X,
given by matrices of rational functions of z1,...,x, with coefficients from [F,. The last
subsection 5.3 describes the duals of the tangent codes T (X,Fym) to X as the gradient
codes Grad,I(X,Fym) of the ideals of X over Fym. In the special case of an existence of a
polynomial h € I(X,F,)\ {0} in at most d variables, Proposition 16 establishes the Zariski
density of the locus X (icéﬂ) C X of the gradient codes of minimum distance < d + 1.

A forthcoming article is going to relate some standard operations on tangent codes
with appropriate operations of the associated affine varieties. It is going to discuss the
construction of morphisms of affine varieties, whose differentials are Hamming isometries



of the corresponding tangent codes.
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2  Algebraic geometry preliminaries

Let F, = UX_ F,m be the algebraic closure of the finite field F, with ¢ elements and En
be the n-dimensional affine space over F,. An affine variety X C IFqn is the common zero
set

X=V(fi,....fm) ={a €F | fila) =... = fm(a) = 0}

of polynomials fi,..., frm € Fy[z1,...,2,]. We say that X C En is defined over F, and
denote X/F, C F,” if the absolute ideal

I(X,F,) :={f €Fylz1,...,zn] | fla)=0, Vae X}

of X is generated by polynomials fi,..., fm € Fy[z1,..., 2] with coefficients from Fy.

The affine subvarieties of X form a family of closed subsets. The corresponding topology
is referred to as the Zariski topology on X. The Zariski closure M of a subset M C X
is defined as the intersection of the Zariski closed subsets Z of X, containing M. It is
easy to observe that M = VI(M,F,) is the affine variety of the absolute ideal I(M,F,) <
Fylz1,...,2n] of M. A subset M C X is Zariski dense if its Zariski closure M = X
coincides with X. A property P(a), depending on a point a € En holds at a generic point
of an affine variety X C Han if there is a Zariski dense subset M C X, such that P(a) is
true for all a € M.

An affine variety X C En is irreducible if any decomposition X = Z; U Z, into a
union of Zariski closed subsets Z; € X has Z; = X or Z3 = X. This holds exactly
when the absolute ideal I(X,F,) <F,[z1,..., 2] of X is prime, i.e. fg € I(X,F,) for
f,9 € Fylx1,...,m,) requires f € I(X,F,) or g € I(X,F,;). A prominent property of the
irreducible affine varieties X is the Zariski density of an arbitrary non-empty Zariski open
subset U C X. This is equivalent to U N W # () for any non-empty Zariski open subsets
UCXand W C X.

For an arbitrary irreducible affine variety X/IF, C En, defined over F; and an arbitrary
constant field F, C F' C IFTJ, the affine coordinate ring

F[X]:= Flz1,...,z,)/I(X, F)
of Xover F is an integral domain. The fraction field
F(X) = {i; ’ 01,02 € FIX], p2#0€ F[X}}

of F[X] is called the functional field of X over F'. The points a € X correspond to the
maximal ideals I(a,F;) < Fy[z1,...,xy], containing I(X,F,). For any F-rational point



a € X(F):=XNF" the localization

0ux.F) = {2 | pra € FIX) ala) 0

of F[X] at F[X]\ (I(a,F)/I(X,F)) is the local ring of a in X over F. An F-linear
derivation D, : Oy (X, F) — F at a € X(F) is an F-linear map, subject to Leibnitz-Newton
rule D, (1112) = Do(91)¢2(a) + 1 (a)Dga(th2) for Vi1, 1he € Og(X, F). The F-linear space

To(X, F) := Dery(Og(X, F), F)

of the F-linear derivations D, : Oq(X, F) — F at a € X(F) is called the Zariski tangent
space to X at a over F.

In order to derive a coordinate description of T, (X, F'), note that any F-linear deriva-
tion D, : O(X, F) — F at a € X(F) restricts to an F-linear derivation D, : F[X]| — F
at a. According to

D) =D (21 ) ala) + 40 Dufin) for Vir,in € FIX] with a(e) 20,

any F-linear derivation D, : F[X] — F at a € X(F') has unique extension to an F-linear
derivation D, : Oy(X, F) — F at a. In such a way, there arises an F-linear isomorphism

To(X, F) ~ Der,(F[X], F).

Any F-linear derivation D, : F[X]| — F of the affine ring F[X] of X at a € X(F) lifts to

an F-linear derivation D, : F[zy,...,z,] — F of the polynomial ring at a, vanishing on
the ideal I(X, F) of X over F. If (X, F) = (f1,..., fm)r < Flx1,...,2,] is generated by
fiyoooy fm € Flxy,...,zy] then for arbitrary g1,...,g9m € Flz1,...,x,] one has

a (Z fi9i> =Y Da(fi)gi(a)
i=1 i=1
and the Zariski tangent space
To(X, F) ~{D, € Dery(F[z1,...,20], F) | Do(f1) =...= Da(fm) =0}

to X at a consists of the derivations D, : Fx1,...,x,] — F at a, vanishing on fi,..., f,.
In such a way, the coordinate description of T, (X, F) reduces to the coordinate description
of

Der,(Flz1,...,2,), F) = Derg(F[F,

]

,F) =T, (F,", F).
In order to endow T (En, F) with a basis over F', let us note that the polynomial ring
Flzy,...,xn]| = Flx1 —a1,...,2n — ap) = GjooFx) —al,...,xn—an](i)

has a natural grading by the F-linear spaces F[z1 — a1, ..., &, —a,]® of the homogeneous
polynomials on xy — a1,...,z, — a, of degree ¢ > 0. An arbitrary F-linear derivation
Dy : Flzy,...,2,) — F at a € F" vanishes on Flz; — a1,...,2, — a,)?) = F and on the



homogeneous polynomials F[z1 —ay,..., Ty — an}(i) of degree ¢ > 2. Thus, D, is uniquely
determined by its restriction to the n-dimensional space

Flxy —ay,...,zy — an](l) = Spanp(z1 — a1,...,Tp — ay)

over F'. That enables to identify the Zariski tangent space

N

To(Fy , F) ~ Dery(Flz1,...,2zy], F) ~ Homp(Fz1 —a1,..., T, — an]V, F)

to En at a with the space of the F-linear functionals on Fx; — aq,...,z, — an](l). Note
that 1 — ay,..., 2, — ay is a basis of Flz; — ay,..., 2, — ay]) over F and denote by

(3%1>a RRRE (%)a its dual basis. In other words, (%)a € Ta(En, F) are the uniquely

determined F-linear functionals on Flx; —ay,..., 2, — an](l) with

0 1 forl1<i=j<n,
—_— (mi—ai):&j: . .
Ox;j “ 0 forl1<i##j<n.

As a result, the Zariski tangent space to X at a € X(F') over F' can be described as

T.(X,F) = vzzvj<aij> )Zjafl =0, 1<i<m

=1

for any generating set fi,..., fm of (X, F) = (f1,..., fm)p. If

h oft
of _Ofi-sfwm) | O T O
Ox 6($1,...,xn) Afm Ofm
0x1 Tt Oxp

is the Jacobian matrix of fi,..., fm and F' = Fgs is a finite field then T, (X, Fgs) C Fpe is
the Fys-linear code with parity check matrix af( ) € Mpysn(Fgs).

Let X/F, C Fq be an irreducible affine variety, defined over Fy and a = (a1, ...,ay) €
X. The minimal extension F sw) := Fq(ai,...,ay) of the basic field Fy, which contains
the components of a is called the definition field of a. If F s@,) = F,(a;) are the definition

fields of a; € F, over F, then 6(a) is the least common multiple of §(a1),...,d(a,). Note
that a € X(Fgm) := X NFgm is an Fym-rational point if and only if §(a) divides m. For all
[ € N the Zariski tangent spaces T (X, qua(a)) have one and a same parity check matrix

O .o O fm)

8x( ) = 3(1’1, T )(a) € men(]Fq(S(a))

and are uniquely determined by T, (X, F 5(a>) as the tensor products

Ta(X, Fysta) = Ta(X, Fos@) ©F 50 Forsca-

In particular, T, (X, F @) and T, (X, F ) have equal dimension n — rkg 5o %(a) over
q
F 5(a), respectively, over F is). The minimum distances of Ty (X, F s)) and To(X, Fs))



coincide, as far as they equal the minimal natural number d for which %(a) has d lin-
early dependent columns. From now on, we write dim 7, (X, Fqs(a)) for the dimension of
Ta (X, Fqg(a)) over Fqg(a).

Let X = XjU...UX; be areducible affine variety and ¢ € X;; N...NX;, with1 <4 <
... <1y < s be a common point of 7 > 2 irreducible components X;, of X. In general, X;,
have different Zariski tangent spaces at a and the union 74,(X;,, F s )U. . .UTo(Xi,, Fsa)
is not an F s -linear subspace of F;‘W). That is why we define the Zariski tangent space

T.(X, Fqg(a)) to a reducible variety X C En at a point a € X as the F s -linear code of
length n with parity check matrix

Of _ Ofrre s fm)

96D = Blan, . am) Y € MmnFgo),

for some generators fi,..., fi € Fylx1,..., 2] of I(X,Fy) = (fi,.. "fm>E'

For an arbitrary finite set S and an arbitrary natural number ¢ < |S| let us denote
by (“tg) the collection of the t-sets of .S, i.e., the family of the unordered subsets of S of
cardinality ¢. In the case of S ={1,...,n}, we write (1";’”) instead of ({1";’"}).

For a systematic study of the Zariski tangent spaces to an affine variety see [13], [1],
[10], [12] or [6].

3 Immediate properties of tangent codes construction
3.1 Typical minimum distance of a tangent code
For an arbitrary subset v € (1";1"”) of {1,...,n} of cardinality d, the erasing

I, :F," — IFTzn_Cl

of the components z, = (2,,,...,2,), labeled by v = {v1,...,74} is called the puncturing
at . If =y ={1,...,n}\v={d1,...,0n—q} is the complement of -y then

Iy(z1,...,20) = Ty = (T5,, ..., T5,_,)-

The minimum distance of a linear code C' C Fy is related to the kernels of the puncturings
of C. Note that the puncturing

L, 2 Ta(X, Fystar) — TLTu(X, Fysta) € Fr)!

of a finite Zariski tangent space to X coincides with the differential
1_[,7 = (dH’y)tz : Ta(X, Fqé(a)) — THV(a) (H')/(X)qué(a))

of the puncturing
IL, : X — II,(X)

of the corresponding irreducible affine variety X. That allows to study the minimum
distance of T, (X, F s) by the global properties of IL, : X — I, (X).
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In order to formulate precisely, let us recall that a finite morphism ¢ : X — ¢(X) is
called separable if the finite extension F,(p(X)) C Fy(X) of the corresponding function
fields is separable. This means that the minimal polynomial g¢(t) € Fy(p(X))[t] of an
arbitrary element ¢ € Fy(X) over Fy(¢(X)) has no multiple roots.

A morphism ¢ : X — ¢(X) is etale at some point a € X, if the differential (dy), :
To(X,F @) = Typa)(0(X), Fps ) of ¢ at a is an F s -linear embedding. Let us denote
by Etale(y) the set of the points a € X, at which the morphism ¢ : X — ¢(X) is etale.

Lemma 1. Let us suppose that X/F, C En s an irreducible affine variety, defined over
Fq and IL, : X — I1(X) C En_d is its puncturing at y € (1"&’”),
(i) The etale locus

Etale(IL,) = X \ V <det§£ ‘ 5 e <1dm>) (1)

1s a Zariski open subset of X.

(1t) If the set Etale(ILy) N H;I(HW(X)SmOOth) # () is non-empty then the puncturing
I, : X = IL,(X) is a finite morphism, Etale(IL,) N H;l(HV(X)SmOOth) C Xsmooth gnd the
differentials

(dlly)a : Ta(X, F o) — Tin, (o) T (X), F o)

are surjective at all the points a € Etale(ILy) N H;l(HW(X)SmOOth).

(i) If the puncturing IL, : X — IL,(X) is a finite separable morphism then the inter-
section Etale(II,) N H;I(HW(X)SmOOth) # 0 is a Zariski dense subset of X. In particular,
for a finite 1L, : X — I1,(X), whose degree degll, := [Fy(X) : F,(IL,(X))] is relatively
prime to p = charlF, the subset () # Etale(IL,) N H;l(HW(X)SmOOth) C X is Zariski dense.

Proof. (i) The kernel of the differential (dIly)q : To(X,Fys) — T, (o) (I (X), Fysa))
consists of the tangent vectors v(a) € T4(X, F s)) with support Supp(v(a)) C v. Thus,

ker(dIly) # {0"} exactly when rk%(a) < d. That justifies
Ofs 1,...,m
X \ Btale(IL,) = X 22 |
\ Etale(II,) ﬂv<det8x7 5€< d >>,

whereas (1).
(ii) Let us observe that dim7u(X,F s@) > dim X = k at all the points a € X. If

a € Btale(TL,) N I (TT,(X)™°°™) then (dIly)q : Ta(X, Fusw) = Tir (@) (Ty(X), F )
is injective and dim Tty (4)(I1,(X),F5)) = dimIl,(X). Combining with the inequality
dimII,(X) < dim X, one obtains
dim X < dim To(X, F o)) = dim(dIL, ) To (X, F s0)) < dim Tip ) (T (X), Fyo) =
dimII,(X) < dim X.

Therefore (dIL,)oTu(X,Fps0)) = T (a)(I4(X), Fs)), dim X = dim T,(X,F,) and the
dimensions dimII, (X) = dim X coincide. In other words, the differential

(dﬂv)a : Ta(Xv Fq6<a>) — THW(a)(H’Y(X)ﬂquS(G))

8



is surjective, a € XM is a smooth point and IL, : X — I1,(X) is a finite morphism.
(iii) Without loss of generality, assume that v = {1,...,d}, =y := {1,...,n} \ v =
{d+1,...,n} and note that the puncturing I, : X — IL,(X) is a finite morphism if
and only if Ty := z5 + I(X,F,) € F (X) are algebraic over F,(IL,(X)) = F,(z=,) for all
1 < s <d. Let gs(zs5) € Fy(ILy(X))[xs] be the minimal polynomial of Ty over F(IL,(X))
and fs(xs,7-,) € F,lxs,2-,] be the product of gs; with the least common multiple of
the denominators of the coefficients of g;. Then f(xs,2-) is irreducible in Fia[xs,xw]
and defined up to a multiple from IET. Moreover, fs(zs,2-y) € I(X,F,) is of minimal
degree deg, fs(zs, 1) = deggs(xs) = degqu(Hv(X)) T with respect to ;. According to

fi,.-., fa € I(X,F,), the Zariski tangent space Ty (X, F5@) at an arbitrary point a € X
is contained in the F s)-linear code C(a) with parity check matrix

%CL 0 8f1 a %a
M(a): o2 () Frais () Fn (@)
O(z1,...,2n
(= ) 0 .. Yie) Pi(a) ... Yi(a)

Note that IL L(IL, (X)smooth) s a non-empty, Zariski open, Zariski dense subset of the
irreducible affine variety X and Etale(IL,) C X is Zariski open by (i), so that the in-
tersection Etale(IL,) N H;l(HW(X)SmOOth) = { only when Etale(ILl,) = 0. We claim
that Etale(IL,) = @ requires the inseparability of Z; = zs+ € I(X,F,) € F,(X) over
Fy(IL,) for some 1 < s < d. This suffices for Etale(IL,) N II7 ! (IL, (X)5m°™) £ @ in the
case of a finite separable morphism I, : X — II,(X). Note that the inseparability of
T = x5+ € I(X,F,) € Fy(X) over Fy(IL,) holds only when p = charF, divides the degree

degr— (i1, (x)) Ts = [Fq(ILy(X))(T5) : Fo(IL,(X))]

of Ty over F,(IL,(X)). Bearing in mind that the degree degg (11, (x)) Ts of Ty divides
the degree degll, = [F,(X) : F,(IL,(X))] of II,, one concludes that the intersection
Etale(ILy) N H;l(HV(X)SmOOth) # () is non-empty in the case of GCD(degIL,, p) = 1.

By the very definition of an etale morphism, Etale(IL,) = () amounts to the existence

of a nowhere vanishing vector field v : X — [] To(X,F () with Suppv(a) C v for all
aeX

a € X. Then v(a) € C(a) for all a € X and rk%(a) < d. Thus,

6(f17"'afd)
At e, )

(a)zl_[gi(a):o for Va € X

s=1

d _ o
and [] gﬁz € I(X,F,). The absolute ideal I(X,F,) <« Fy[z1,..., 2] of the irreducible
s=1

affine variety X is prime, so that g—i; € I(X,F,) for some 1 < s < d. Since fs(zs,2-,) €

I(X,F,) is of minimal deg,_fs(xs,2-y) and deg,_ %ﬁ;fﬂ) < deg,, fs(xs,2-,), there

follows %ﬁ = OE € Fylzs,7-,]. As a result, &’575535) = 0 and T; is inseparable over

Fy (T (X))
U



Note that Lemma 1 (ii) establishes a sort of a generalization of the Implicit Function
Theorem, according to which any puncturing IL, : X — IL,(X) with an injective differential
at some point a € TI7 1 (IT, (X ))smeoth s a finite morphism.

For an arbitrary irreducible affine variety X/F, C En, defined over F,, let us denote
by

XD ={ae X | dTo(X,Fpw) < d}

the set of the points a € X, at which the finite Zariski tangent spaces are of minimum
distance < d. Similarly, put

XD ={aeX | d(T.(X,Fpw)=d} and

x(Ed) . {a e X ‘ d(X, IE‘qé(a)) > d}

The next proposition establishes that if an irreducible affine variety X admits a tangent
code To(X,Fs() of minimum distance > d + 1 then "almost all" finite Zariski tangent
spaces to X are of minimum distance > d + 1. If there is a non-finite puncturing IL, :
X — II,(X) at |y| = d variables, we show that all the tangent codes to X are of minimum
distance < d. When all the puncturings I, : X — IL,(X) at |y| = d variables are finite
and separable, the minimum distance of a finite Zariski tangent space to X is bounded
below by d + 1 at "almost all" the points of X.

Proposition 2. Let X/F, C En be an irreducible affine variety of dimension k € N,
defined over IFy.
(i) For an arbitrary natural number d < n — k + 1 the locus

18 a Zariski open subset of X.

(i) If there is a non-finite puncturing IL, : X — IL,(X) at |y| = d coordinates then
X = X&) Moreover, in the case of X @ £ @ the locus XD = XED 4s o Zariski dense,
Zariski open subset of X.

(iii) If for any v € (1"&’") the puncturing 11, : X — IL,(X) is finite and separable
then the subset X(24tY) C X is Zariski dense. In particular, if for any v € (1"&"”) the
puncturing 1L, + X — I1,(X) is a finite morphism with GCD(degIL,,charF,) = 1 for
degIL, := [F (X) : T (TL,(X))] then XZHY js a Zariski dense subset of X.

Proof. (i) Let us observe that a € X (2d+1) if and only if there is no tangent vector v €
To(X, F s ) \ {0} with Supp(v) C « for some v € (1"('1""). That amounts to

ker(dIly)q = {v € To(X,Fys)) | Supp(v) € v} = {0"}

and holds exactly when a € Etale(Il,) for Vy € (1";1"”).

10



Let I(X,Fy) = (f1,..., fm) 9Fy[z1,...,2,] for some fi,..., fm € Fy[z1,..., 2. Then
a € X4+ exactly when any d-tuple of columns of %(a) is linearly independent. In
other words, rk%(a) = rkM(a) =d forallie (1";l"”). By k=dimX >n—m

(I¢17~--»Iid)
there follows m > n — k > d and rk%(a) = d is equivalent to det g—g_(a) # 0 for some
v € ("™). Thus,

where ¢ : (1"&’") — (1"'6'1””) vary over all the maps of the collection of the subsets of
{1,...,n} of cardinality d in the family of the subsets of {1,...,m} of cardinality d. The

H S. = | H 9i ‘ gi € S; ¢, Siiz{detgiz ’ ,Y€<1,..a;7m)}'

(ii) We claim that at any point a € IL L(IT, (X)smooth) the Zariski tangent space
To(X,Fs)) contains a non-zero word, supported by 7. To this end, it suffices to es-
tablish that the differential

(dlly)a : Ta(X, F o) — T, (o) (T1(X), F s@))
of Il at a is non-injective. Assume the opposite, i.e., that ker(dIL,), = 0. Then
k < dim TQ(X, an(a)> < dim THW(a) (HW(X),Fqg(a)) = dimHW(X).

The morphism II, : X — II,(X) is not finite, so that dimII,(X) < dimX = k. That
leads to a contradiction and implies that ker(dIL,), # 0 for Va € I} L(IL, (X)smooth) - As

a result, I L(IL, (X)smoothy € X(54). According to (i), X(=9) is a Zariski closed subset of

X. The non-empty, Zariski open, Zariski dense subset II7*(IT, (X ysmoothy of X is Zariski
dense, so that

X = H;l(H'y(X)smooth) C X(£d) = X(Sd)’

whereas X = XS4 Now, X(@ = x(=d) 0 x(=d) = x 0 x(=d) = X(29) 5 a Zariski open
subset of X, whereas Zariski dense for X (@ =£ (.

11



(ili) According to Lemma 1 (iii), if IT, : X — II,(X) is a finite and separable morphism
or a finite morphism with GCD(degIL,, charF,) = 1 then Etale(IL,) ﬁH;l(H7 (X )smoothy
(. In particular, Etale(IL,) # (. Since Etale(IL,) is Zariski open by Lemma 1 (i), the

finite intersection X (2441 = ﬂ7€(1 ..... n)Etale(HV) of the non-empty, Zariski open subsets
d

Etale(Ily) C X is a non-empty, Zariski open, Zariski dense subset of the irreducible affine
variety X.
O

The proof of Proposition 2 (iii) reveals that for any point a € X (@) there exists a d-tuple
of indices v € (1"(‘1:’"), such that the puncturing II, : X — IL,(X) is not etale at a.

3.2 Reproducing the dimension and the minimum distance of a code

For an arbitrary Fg-linear [n, k, d]-code C' we provide explicit equations of a twisted em-

bedding X/F, ¢ F," of Ek, whose tangent codes T, (X, F s@)) at a generic point a € X
reproduce the length n, the dimension k£ and the minimum distance d of C.

Corollary 3. Let C be an Fy-linear [n, k,d]-code and o € (1"&’”) be a support of a non-
zero word ¢ € C'\ {0"}. Then there is a smooth irreducible k-dimensional affine variety
X/F, C En, isomorphic to Ek, such that 0" € X, Ton (X, Fy) = C, and c € T, (X, Fq5<a))
foralla e X.

In particular, X = X&) and T,(X, Fs) are [n, k, d]-codes at all the points a of the
Zariski open, Zariski dense subset () # X4 = X4 of X

Proof. Let H € M, pyxn(Fy) be a parity check matrix of the code C' with columns
Hs € Mgy,_iyx1(Fy) and o’ = o \ {04} for some o4 € 0. Since C' is of minimum distance
d, the columns of H, labeled by ¢’ are linearly independent. Bearing in mind that H is of
rk(H) = n — k, one concludes the existence of T € (i&'k"fj}?), such that the square matrix
Horyr = (Ho Hr) € M(y—pyx(n—k)(Fg) is non-singular. For any s € cUT and 1 <i <n—k
let fis(zs) == Hjsxs. In the case of s € {1,...,n} \ (cUT)and 1 <i <n —k take

fi,s(l‘s) = Hi,sxs + Z bi,s,r$; S IFq [ms]

r>2

for arbitrary r € N\ {1}, b; s, € F,. Consider the polynomials

fi(ze, . ) = ifzps(xs) = iHLSZS + Z Zbi,wac’; for V1<i<n-—k
s=1 s=1

s€{l,....,n}\(ocUT) >2

and the affine variety X := V(f1,..., fn—k) C En, defined over F,. Let us denote p :=
{1,...,n}\ (6’ UT) and observe that fj(zi,...,z,) = 0 are equivalent to > H; x5 =

s€o’'Ur
gi(z,) for some g;(x,) € Fylz,] and any 1 <i < n—k. Viewing x,/, as a column, formed

by the variables, labeled by ¢/ UT € (17’1:’,?), one can write the equations of X in the form
Ql(fcp)

HO'/UT Lolur =

In—k(2p)

12



The invertibility of H,/, allows to represent them in the form

91(7p)
Lolur = (HU/UT)_ s
In—k(2p)
Thus, the puncturing I,/ : X — Ek at o’ UT € (17;';’;) is biregular, with inverse
. 1 91(33/))
(orur)™ (xp) = | (Horur) »Lp
gn—k(xp)

In particular, X is a smooth irreducible affine variety of dimension dim X = k.
The tangent spaces T, (X, Fqs(a)) at all the points a € X are linear codes of length n and
8(f17--~7fn7k)

O(@1,yTn)

oUT € (nljk'fl). That is why ¢ € C with Supp(c) = o belongs to T, (X, F sw)) for Va € X

and the minimum distance d(7,(X,F s5w)) < d at Va € X. In other words, X = X(Ed), By

the very construction of f;(x1,...,x,) one has 0" € X and H(O”) = H, whereas

Ton(X,Fy) = C. As a result, 0" € X — x(d) ig non-empty and the finite Zariski
tangent space T, (X, F s)) to X at a generic point a is an [n, k, d]-code.

dimension k, whose parity check matrices (a) have columns H,y;, labeled by

O

The above proposition reveals that a single linear code C does not reflect global prop-
erties of the affine varieties X, tangent to C' at some point a € X. It illustrates how the
equations of X govern the behavior of a generic tangent code to X.

3.3 Inscription of Zariski tangent spaces in families of linear codes

Proposition 4. Let C — S be a family of Fy-linear codes C(a) C Fy, a € S of arbitrary
dimension and minimum distance, parameterized by a subset S C Fy. Then there exists a

(not necessarily irreducible) affine variety X C En, containing all the Fq-rational points
Fy of F," and such that T,(X,F,) C C(a) atVa € S.

Proof. Let us choose a family H — S of parity-check matrices H(a) € M,_p)xn(F,y) of
C(a) C Fy for all a € S and denote by H(a);; € F, the entries of these matrices. For an
arbitrary 8 € IFy, consider the Lagrange basis polynomial

t— o
g = ]I T
acFy\{8}

with Lfgq (t)(8) =1 and qu (t)|r,\ g5y = 0. Straightforwardly,
q—2

Ly, () =—t"""+1 and qu (t) =t =Y "Bt for VBETF;.

s=1
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Let us denote by

=n =n
o, :F," —F,"
®y(ay,...,a,) = (ab,...,ak) for Va=(a1,...,a,) €F,"

the Frobenius automorphism of degree p = charlF, and consider the polynomials

filxr, ... xp) =

YD o H@ Oy —al) | L (ah) . LY (ah) € By, ..., a)
bed,(S) | j=1

for 1 < i < n — k. The affine algebraic set X = V(f1,..., fa—k) C En is claimed to
satisfy the announced conditions. First of all, X passes through all the F,-rational points
[y of the affine space Fqn, as far as any a = (a1,...,a,) € Fy has components a; = a?
and fi(a1,...,a,) = 0 for V1 < i < n — k. The partial derivatives of f; are gicj_ =

> H(@;l(b))ijLR(m{’)...L%’; (z7) and their values at a € S C F} equal gg]:’ (a) =
bed,(S) !
H(®,'®,(a))ij = H(a)s;. Note that the composition of Lagrange interpolation polynomials
with the Frobenius automorphism ®,, is designed in such a way that to adjust

f1,- -5 fa—k)
O(x1,...,xn)

(a) = H(a)

at all the points a € S. By fi1,..., fa—x € I(X,Fy) = 7({f1,- .., fu—k)), the Zariski tangent
space T,(X,F;) C C(a) to X at an arbitrary point a € S is contained in the linear code
C(a) with parity check matrix %(a)

O

4  Families of genus reductions of a code

The genus of an Fy-linear [n, k, d]-code C' is defined as the deviation g :==n+1—-k —d
of its parameters from the equality in the Singleton Bound n +1 — k —d > 0. One of
the problems in coding theory is to obtain a linear code C’ of genus ¢’ = g — 1 > 0 from
the given linear code C of genus g > 1. We say that C’ is a genus reduction of C. There
are three standard ways for construction of a genus reduction C’. These are, respectively,
the length, the dimension and the weight reductions of C' with parameters [n — 1, k,d|,
[n,k+1,d], [n,k,d+1]. In the next three subsections we use the set up of tangent codes, in
order to construct families of length, dimension and weight reductions of C', parameterized
by appropriate Zariski dense subsets of appropriate affine spaces over E.

4.1 A family of length reductions of a linear code

Here is a simple lemma from coding theory, which will be used for the construction of a
family of length reductions of a linear code.
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Lemma 5. Let C be an Fy-linear code of genus g = n+1—k —d > 0 with a parity
check matric H = (Hy ... H,) € Mg, yxn(Fq). Then the image 11,(C) C Fp~! of the
puncturing II,, : C — 11,,(C) is an Fy-linear [n — 1, k, d]-code if and only if

of weight d with n € Supp(c). This holds exactly when II,(C) is of minimum distance d.
The dimension dimg, I1,(C) = dimg, C' = k, as far as ker I, NC' = {(0"" !, ¢,,) € C} =

{0™} whenever H,, # 0™.
O

Recall that a linear code C' C Fy is non-degenerate if it is not contained in a coordinate
hyperplane V(x;) = {a € F; |a; = 0} for some 1 <i < n.

Proposition 6. Let C be a non-degenerate Fy-linear [n, k,d]-code of genus g = n+ 1 —
k—d > 0. Then there exist a finite extension Fym O Fy, a smooth irreducible affine variety

X/Fgm C En, isomorphic to Ek and a non-empty, Zariski open, Zariski dense subset
S C X, such that 0" € X, Ton(X,Fym) = C ®p, Fgm, the puncturing I, : X — I1,,(X) at
Ty 1S a finite morphism and the images

(dn)aTa(X, F o)) = T,y (o) TIn(X), F o))
of the puncturings of To(X, Fqs(a)) at all the points a € S are [n — 1, k, d]-codes.

Proof. Let H' € M, _p)xn(Fq) be a parity check matrix of C' with columns H} for all
1 < j < n. After an appropriate permutation of the columns of H’, one can assume that
Hj, IR H] are linearly independent and form the identity matrix I,,_. Any finite union
of proper F,-linear subspaces of the linear space M (n— k)xl(E) over the infinite field F, has
non-empty complement and there exists

C1

Cn—k

Let us denote by Fym := Fy(ci, ..., cp—r) the definition field of ¢, put p := charF, for the
characteristic of IF; and consider the affine variety X =V (f1,..., fu—x) C En, cut by the
polynomials

k
i1, o Xk, Ty T) = ZH;SwS + T + cixiffl for V1<i<n-—k.
s=1

In order to construct a biregular morphism X — Ek, note that ¢,_r # 0 by the very
choice of ¢ and

XZV(fi_CCikfn—bfn—k 1§z§n—k‘—1>
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The equations
&

fi(x17'~-7xkamk+i7$n)_ fnfk:(xlv"'awk7xn) ==
Cn—k
u ¢ ¢
Z (Hl{,s - 1/1k,s> Lo+ Tppi — ——n =0
— Cn—k Cn—k
s=
for V1 <i <n—k —1 are equivalent to xg+; = Ygri(x1,..., 2k, Tp) for

k
C; C;
Vreri(T1, .o Thy Tn) :zZ( . ,’l_k’s—H{ﬁ) Ts+ ——Tp, V1<i<n—k—1.

Cp— Cp—
s—1 n—k n—k

We claim the existence of 1 < s < k with H’

n_ris 7 0, since otherwise the last row of

the parity check matrix H' of C is (0"!,1) and the non-degenerate code C' is contained
in the coordinate hyperplane with equation x, = 0. Up to a permutation of the first

k components of En, we assume that H;@—k,k # 0. Then f, g(x1,...,2,2,) = 0 is
equivalent to xy = ¥y (x1,...,TE_1,x,) for

k—1
(@1, . Tho1, @) = —(Hpy )" (Z Hy o ots+ Tn + cnkmg+1> .
s=1

Thus, X C En is cut by the equations
T — g1, Tp1,T0) = 0,
Thri — Vrri(T1, oy xp—1, Yp(x1, .o Tp—1, @), 2n) =0 for V1<i<n—k-1
and the puncturing I1, at « = {k,k+1,...,n—1} € (17;';’]?) provides a biregular morphism
I, : X — Ek. In particular, X is a smooth irreducible affine variety, defined over Fm.

Note that the puncturing II,, : X — IL,(X) at x, is a finite morphism, as far as the
equation

k
! 1
Frok(@1, oy wn) =Y Hpy g @o+ T+ g =0
s=1

implies the algebraic dependence of the element z,, + I(X,F,) € F,(X) over the function
field F,(IL,,(X)) = Fy(z1 + I(X,Fy), ..., 2n—1 + I(X,Fy)).

For the rest of the proof, we denote by T4(X,F s5w) or by Tir, (a)(Tln(X), Fs()) the
Zariski tangent spaces over the definition fields F o) = Fym(ai,...,an) of a € X over
Fym. Note that

of of

%(xl,...,a:n) = (Hy...H)_{Hy(z,)) = %(xn) (3)

with H,(z,) = H], + zhc depends only on z,. The columns of g—i(acn), labeled by 5 =
{k+1,...,n} € (L") form the matrix

1 0 0 crah

of 0 1 0 coxh
B o o0 ... 1 Cr—k—1Th
0 0 0 1+cy pah
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with determinant det %(wn) =1+ cy_gxh. Thus, at any a € X \ V (¢,_gzh + 1), the

matrix g—i(an) € Mn—kyxn(F @) is of rank rkg—i(an) =n — k. According to

fl»-"afn—k € I(XaE) :IV(flv"'afn—k) :T(<fla"'afn—k>)QE[xla"'amn]a

the Zariski tangent space T, (X, F s)) at @ € X is contained in the linear code C(a) with
parity check matrix %(a). Since X is smooth, dim T, (X, IE‘q5<a)) =dimX =k atVae X

and %(a) is a parity check matrix of T4(X,F sw)) if and only if rk%(a) =n—Fk In

particular, T, (X,F s@)) has parity check matrix g—ﬁ(a) at all the points a of the non-

empty, Zariski open, Zariski dense subset X \ V(¢,_xxh + 1) of X. Note that 0" € X =
V(fiyy fo—k) and 0" & V(c,—gah + 1), so that Ton(X,Fym) has parity check matrix
9(0) = H' and Tyn (X, Fgm) = C g, Fym.

Let II,, : C(a) — II,,C(a) be the puncturing at n and S, be the set of those a € X, at
which II,,C(a) is an [n — 1, k, d]-code. By Lemma 5,

S, = {a € X | Hy(an) & Uy () Span (H;)} .
We claim that
YV :i=X\S,={a€ X|Hpy(a,) € U)\E(l,.(.i.lefl)SpaHE(H:\)}
is a proper Zariski closed subset of X. If so, then S, = X \ Y and
Up:=So N[X\V(cnopat +1)] =X\ [Y UV (cp_rzt +1)]

are non-empty, Zariski open, Zariski dense subsets of X. By the very definition of U,, the
F s -linear spaces (dIl;)qT (X, F s)) are [n — 1,k,d]-codes at all a € U,. Towards the
study of Y, let

Yy = {a € X | Hy(an) € Spang—(H4)} = {a € X |rk(H}Hy(a,)) < d}

for V) € (1"C'l'f1_l) and represent Y = UAe(l ,,,,, n—l)Y)\. If

Gu(Ty) = det === () € Fym[xy,]

is the determinant of the matrix

afy

Dy (zn) = (HL,AHL,n(xn)) = (H;L,AH}/L,TL + xzcmn) € M(n—k)x(n—k) (Fgm [zn]),

formed by the rows of (H} Hy(xy)), labeled by p € (1""’(?—]“), then

1,....n—k
we ()

and therefore Y = U, _ (b n71)Y)\ are Zariski closed in X. The assumption

Yy=XnV <gu7>\(:zn)




for the irreducible affine variety X requires

X=Y\CV (gu,)\(xn)

1,....,n—k
v ) )
e ()

for some A\ € (1";1"_71171). Recall that the puncturing 11, : X — Ek at the (n — k)-tuple
a={k,k+1,...,n— 1} is biregular and consider the sequence of affine varieties

1,....n—k
w7

where 0"~ x F, = V(z1,...,25-1) C Ek. Then g, (z,) = 0 for Vi € (1""11"_’“), which
holds exactly when det(H), \H},,) = 0 and det(H,, yc,) = 0 for Vu € (1""’dn*k). As a
result, tk(H\c) < d for Hy € M;,_j)x(a—1)(Fq) of tkH} =d—1and ¢ € SpanE(Hf\). That
contradicts the choice of ¢ and shows that ¥ ¢ X.

Note that the puncturing II,, : X — II,,(X) has injective differentials

N0 xF) C X CV (g,u,)\(xn)

(dl,)q : To(X, ]Fqé(a)) — THn(a) (Hn(X),Fqs(a)) at Va € U,,

so that U, C Etale(Il,) is contained in the etale locus of II,. Intersecting U, with the
non-empty, Zariski open subset IT7 1 (IT,,(X)$™°°th) C X, one obtains a non-empty, Zariski
open, Zariski dense subset S := U, N II;; (I, (X)¥™°°") C X such that

(dnn)aTa (X: IFqé(a) ) = THn(CL) (Hn(X)a ]Fqé(a> )

are [n — 1, k, d]-codes at Va € S, according to Lemma 1 (ii).

4.2 A family of dimension reductions of a linear code

The next proposition provides a family of dimension reductions of an Fy-linear [n, k, d]-

code C of genus g = n+1—k —d > 0, which is parameterized by a non-empty, Zariski
open, Zariski dense subset of Ez(n_k). The codes from the family are not tangent to a

specific affine variety. We choose a parity check matrix of the original [n, k, d]-code C' and
project it on various hyperplanes in Fiqnfk, in order to obtain parity check matrices of
[n, k + 1, d]-codes over finite extensions of IF,.

Proposition 7. Let C be an Fy-linear [n, k,d]-code of genus g =n+1—k—d > 0. Then
there exist a Zariski open, Zariski dense subset W C E2(n_k) and a family C — W of
F w0 -linear [n, k + 1,d]-codes C(u,v), containing C" for ¥V(u,v) € W, u,v € ]F;qnfk.

Proof. Let H = (Hy ... Hy) € M(,_p)xn(Fy) be a parity check matrix of C' with columns
Hy,...,H, € Fg_k. For VA € (1(’1:’1") let us consider Z) := SpanE(H)\) ~ I{qu_l as an

irreducible affine subvariety of M,_jx1(Fy) ~ En_k and put
. . n—k
V(Q) = {(u’v) € ngni X IF7qni | Q(u,v) = (u,v) = Zusvs = 0}
s=1

18



Q(H_k)a given by the inner product in ?n_k. Observe that Z) x En_k,

V(Q) and, therefore, Z := V(Q) U (U)\e( ..... )Z)\ X IF > are proper affine subvarieties
—k)

for the quadric in F,

of EQ(n_k), due to the irreducibility of the affine space F, 2n and the assumption g > 0.
Thus, W = EQ(n_k) \ Z is a non-empty, Zariski open, Zariski dense subset of I[T2(n_k)
. —n—~k
For any (u,v) € W with u,v € F, ", note that u ¢ UAE(la'!i")Z)‘ = U)\E(ll,i..., )SpanF (H)y)
and o
ud My, ={zeF," " |{z,v) =0}

for the hyperplane H, C ngnik with gradient vector v. That allows to consider the F,-
linear maps

Lu,v : W_k — Ho,
Lun(y) =y — EZ Ziu for VyeF," " Y(u,v) e W,

which project }Fiqnik on H,, parallel to ker £, , = Spanﬂ(u). Let us consider the defini-

tion field F sy = Fg(ut, ..., un—k,v1,. .., vp) of (u,v) € W over Fy and the matrix

H(u,v) := (Lup(H1) ... Lup(Hn)) € M(n_g)xn(F @) The linear code C(u,v) with par-

ity check matrix H(u,v) contains C, as far as the E—linear map L, , transforms any
n

non-trivial linear dependence  c¢sHs = 0"k of the columns of H into a non-trivial lin-
s=1

n
ear dependence relation Y csLy(Hs) = 0% of the columns of H(u,v). In particular,
s=1
C(u,v) contains words of weight d and the minimum distance dC(u,v) < d. If there is a
non-zero word a € C(u,v) \ {0"} with Supp(a) C A ={A1,...,\g_1} € (lgl';’ln) then 0" =
d—1

Z ax,Luv(Hy,) = (E a,,\SH,\S> whereas > ay,Hy, = Aou € ker L, = Spanﬁ(u).
s=1
Accordlng tou ¢ SpanIF (H)), there follow \g = 0 and rkH) = rk(Hy,,...,Hy, ,) <d—1.

That contradicts the fact that C is of minimum distance d and shows that C (u,v) is of
minimum distance dC(u,v) = d for ¥Y(u,v) € W.

There remains to be checked that rkH (u,v) = n —k — 1 for ¥(u,v) € W, in order to
derive that dimC(u,v) = k + 1 and to conclude the proof of the proposition. To this end,
note that L, ,(Hs) € H, for V1 < s < n, whereas Spang (Luw(H1)s -y Luw(Hp)) C Hy
and rkH (u,v) < dlm]Fq H, =n —k —1. On the other hand, Hy = L, ,(Hs) + <gf’>>u for
V1 < s < n imply that

F," ™" = Spang(Hy,.... Hy) C Spang(Luo(Hy). ..., Luw(Hy) ).
If rkH (u,v) <n—k —2 then
n— k < dimg-Spang—(Luw(H1), -, Lup(Hn),u) <tkH(u,0) +1<n—k—1
is an absurd, justifying rkH (u,v) =n — k — 1 and dimC(u,v) = k + 1 for V(u,v) € W.
O
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4.3 A family of weight reductions of a linear code

Let C be a linear [n, k, d]-code, which is not MDS. The next proposition establishes the
existence of a family C — U of [n, k]-codes C(a), a € U of minimum distance > d + 1,
parameterized by a non-empty, Zariski open, Zariski dense subset U C I[an. The codes
from C are defined by a polynomial parity check matrix in n variables, but are not tangent
to a specific affine subvariety of En

Proposition 8. Let C' be an Fy-linear [n, k, d]-code of genus g =n+1—k—d > 0. Then
there exist a finite extension Fgm 2 Fg, a non-empty, Zariski open, Zariski dense subset
U C Fqn and a family C — FT;L of linear codes C(a) C F™ go(a) Over the definition fields F o)
of a € F," over Fym, such that C(0") = C ®r, Fgm and C( ) are of length n, dimension k
and minimum distance > d + 1 at all the points a € U.

Proof. Let H' = (Hy...H,) € M@,_p)xn(Fy) be a parity check matrix of C' C Fy, whose

first n — k columns form a non-singular square matrix (H{,...,H) ,) € GL(n — k,Fy).
By an induction on d < j < n, we choose appropriate cg,...,c, € M(n_k)xl(ﬁq), in order
to set

H; ::HJ’- for 1<5<d-1,
Hj(zj) == Hj +xjc; for d<j<n
and to obtain a polynomial matrix
H(l’d, . ,xn) = (Hi - Hél_lﬂd(l’d) - Hn(l’n)) S M(nfk)xn(IETq[xda - ,xn])

Let Fgm = Fy(cij|1 <1 <n—k,d<j<n)be the common definition field of all the
entrles of ¢q,...,cp over Fy. At any point a € IFq , we consider the linear code C(a)
over the deﬁnition field Fq5<a) = Fym(ai,...,a,) of a over Fym, which has a parity check
matrix H(a) = H(ag,...,a,) € M(n_k)xn(an(a)). Our choice of H(zg, ..., xy,) is such that
H(0") = H', whereas C(0") = C xg, Fgm. It suffices to show the existence of non-empty,
Zariski open, Zariski dense subsets U’ C F,", U” C F,", such that C(a) are of minimum
distance > d + 1 at all a € U’ and C(b) are of dimension k at all b € U”| in order to have
a non-empty, Zariski open, Zariski dense subset U := U’ N U” C F,", at which the codes
C(a), a € U are of length n, dimension k£ and minimum distance > d + 1.

Regardless of the choice of cg,...,cn € M(,_ x1(Fq), let v :={1,...,n — k} and note
that

U":=TF," \V (det H,(zq, ..., Ty 1))

is a Zariski open subset of F, with dimC(b) = k at all b € U”. Since 0" € U”, the set U”
is non-empty and, therefore, Zariski dense in I,
By an induction on d < j < n, we choose ¢; € M(,,_t)x1(F;) and show the existence of a

non-empty, Zariski open, Zariski dense subset U; C Ej with tkHg(u) = d for Vj € ( " ’J)
and all u € U;. Then U’ := U, will be a non-empty, Zariski open, Zariski dense subset
of F,", such that C(a) is of minimum distance > d + 1 at all @ € U’. To this end, let

j=d, A:={1,...,d — 1} and note that SpanE(H;) ~ ]Fiqdil is a proper subspace of
M(n—k)xl(E) ~ ngnik, according to g > 0. That allows to choose

ca € Mn_pyx1(Fy) \ Spang—(H3})
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and to put Hy(zq) := H)+ z4cq. The family {Hd(ad)}adeE of columns is claimed to have
most one common entry Hg(kg) with SpanE(Hg), so that rkHyq)(z4) = d at all the
points of the non-empty, Zariski open, Zariski dense subset Uy := Fiqdil x (Fy \ {ka}) of
I[‘qu. Indeed, if Hy(zq) & SpanE(Hf\) for Vzq EE, there is nothing to be proved. In ge
case of Hy(kq) € SpanE(Hf\) for some k4 € Fy, let us move the origin of M, _px1(Fy)

at Hg(ka) € Mpm—pyx1(Fg). The 1-dimensional linear subspace Hgy(zq4) of M(n,k)xl(ﬁq)
intersects the (d — 1)-dimensional linear subspace SpanE(Hﬁ\) in more than one point if
and only if it is contained in SpanE(H 1). Then for arbitrary x4 # yq from F,, one has
(xq — ya)ca € SpanE(H/’\), contrary to the choice of ¢4 & SpanE(Hg\). That provides the
base of the induction.

Suppose that d+1 < j <nand ¢cq,...,cj—1 € M(n—k)xl(E) have been chosen in such

a way that there exists a non-empty, Zariski open, Zariski dense subset U;_1 C Ej_l with
rkHg(u) = d for Vf € (1""&]_1) and Vu € U;_1. Fix an arbitrary u € U;_; and choose

¢ € M(n—k)xl(]Fq)\ [U)\e(l,.&.;jIA)SpanE(H)\(u)) . (4)

proper subspaces SpanE(HA(u)) ~ Fiqdfl of the linear space M(n_k)xl(]ITq) ~ Fiqnfk over
the infinite field E has non-empty complement. We claim that
Wj_l = {’U) € Uj_l ’Cj ¢ UAE(l,.d.le—l)SpanE(H)\(UJ))}

is a Zariski open subset of U;_1. Indeed,

U/\e(l ,,,,, j—1){t S Uj—l ‘rk(H)\(t)Cj) =d— 1},

d—1

as far as tkHg(u) = d for VB € ("/71), Vu € Uj_1 implies tkH,(t) = d — 1 for VA €
(1"d';j;1), Vt € Ujfl. Now,
1,....,n—k
Uj_l \ Wj_l = UAE(I,.aijl—l) {t S Uj_l ‘ det(Hm,\(t)CMJ‘) =0, Vue ( d >} =

1,....n—k
Upe(tin [Uj_l nv <det(HM7>\c#,j) ‘vu e < ) ))} =

1. j—1 1...,n—k
Uji-1NV H det(H 3,25 ‘v’“ ( d—1 > - ( d >

is a Zariski closed subset of U;_1, so that

1,...,5—1 I,....,n—k
Ui\ V [T det(Huoacums) ‘V/“ < d—1 > - < d )
Ae(l’}i‘jl_l)
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is Zariski open in U;_1. According to u € W,_; for the point u € U; J 1, used in the choice
(4) of ¢j, Wj_1 # 0 is non-empty and, therefore, Zariski dense in IF . Note that

o 1,...,79
U = {(w,wj) € W1 x Fy|rkHg(w,w;) =d for Ve < ) y J)} =

{(ijj) € W1 x Fy |rk(Hx(w)Hj(w;)) =d  for VA€ <17 ';Z"_jli 1)}

has complement

where hy \ (24, ..., z;) = det(Hyx(xq, ..., xj—1)Huj(x;)) € E[wd, co ) If

1,51 1...on—k
Zj:=V H hu(A))\(:nd,...,xj)‘V,u: ( J-1 >—>< d >
then

(W1 xF) \Uj = (Wj_1 xFg) N [UAE(L.&.,}II)V <hM ‘Vu € < . ))}
(W] 1 xFy)N

is Zariski closed in W;_1 x Fy, so that U; = (W;—1 x Fy) \ Z; is Zariski open in W;_1 x F,
and in EJ. The assumption U; = () implies Wj_1 X F, C Z; and holds exactly when

hM(A)A = det(Hu()\)A(iﬁd, e ’xj_l)H//,L(A)j + :chﬂ()\)j) =
det(HM(/\)’A(l‘d, ceey xjfl)H;/L(A)j) + x; det(Hu()\)7)\(l'd, - ,$j,1)CM(A)j)

is independent of z; for VA € (1"6'1"_j1_1), Yu : (1”&"—]'1_1) — (1"";1"_’“). That, in turn, is

equivalent to det(H, \(zq,...,xj-1)cu;) = 0 for Vu € (1"“’;_’“), VA € (1"C‘l"j1_1) and spe-

cializes to det(H, \(u)cy;) = 0 at the point u € Uj_1, used in the choice (4) of ¢;. As
a result, tk(Hy(u)c;) < d for VA € (1"('1"31_1). The inductive hypothesis tkHg(u) = d for

vB € (Y1) requires rkHy (u) = d — 1 for VA € (7771) and tk(Hy (u)e;) < d is equiv-
alent to Cj € SpanE(HA(u)) for VA € ( v = 1) That contradlcts the choice (4) of ¢; and

shows that U; # () is Zariski dense in Fq
[l
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5 Simultaneous decoding of tangent codes with fixed error
support. Gradient codes.

5.1 The decoding morphism of the bundle of the received words in the
bundle of the tangent codes

An important problem in the theory of error correcting codes is the decoding with fixed
error support j € (1";’”). The hard part of the aforementioned procedure is the description
of the space of the received words with error support j. The present section discusses
a simultaneous decoding of tangent codes with fixed error support j. In general, the
proposed algorithm requires the construction of a Groebner basis and has exponential
growth. However, for certain classes of twisted embeddings Ek ~ X/F, C En, the parity
check matrices of the spaces Err(T, (X, F sw), ) of the received words with T5 (X, F s )-
error support j are obtained from the parity check matrices of T, (X, Fqs(a)) by erasing t
rows and ¢t columns (cf.Corollary 14).

We say that C' has unique decoding with error support j if for any w € Fy there exists at
most one e € Ty with support Supp(e) C j and w —e € C.

Recall that a code C' has unique decoding with error weight ¢ if for any w € Fy there

exists at most one word e € Fy of weight wt(e) < t with w —e € C. For any a =
(a1,...,an) € Fy and j € (1"{’") let us denote by a¥) := (aj,,...,a;) € F,
by a7 € Fg‘*t the collection of the components of a, labeled by j, respectively, by
—j = {1,...,n} \ j and express a = (a¥),a(™?). If H € Myxn(F,) is a parity check
matrix of C and i C {1,...,m}, j C {1,...,n} then put H(i,j) € M y;(F,) for the
matrix, formed by the entries H, g of H with a € i and 8 € j. Let

respectively,

Err(C,j) :={w € F;|Je € Fy, Supp(e) Cj, w—eecC}

be the set of the received words, whose C-error is supported by j € (1t") The next
lemma comprises some trivial observations from coding theory, which are used for decoding
tangent codes with fixed error support j € (lt”) It can be useful when the probability

1,...,n

; ) is considerably larger than the

for the occurrence of a specific error support j € (
one for any other i € (1t") \ {7}

Lemma 10. If C is an Fy-linear [n, k,d]-code with parity check matric H € My, xn(Fy)
then for any j € (1t") with t < d — 1 there exists i € (1tm) with det H(i,j) # 0.
Denoting

M(Zvj) = _H(ivj)_lH(i7_'j) € Mtx(n—t)(Fq)a

N(i,j) := H(=i,§)M(i, §) + H(=i, 7)) € Mn—t)x(n—t)(Fg),

one 6$p7’€$$68
C = {(M(i,§)c'™, )y e FL x B! | N (4, j)c ™) = 0}, (5)

Err(C, j) = {(w?, w™) € By x Fp~* | N(i, j)w™) = 0} (6)
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and obtains an Fq-linear decoding map
DecY) : Err(C, j) — C,

Dec?) (w) = Dec) (wW) | w9 = (M (i, )w7)  w™))

with Supp(w — DecY) (w)) C j for Yw € Err(C, j).
For any j € (1";’”) the code C' has unique decoding with error support j.
If ¢ > 2 then C' has unique decoding with error weight t if and only if d > 2t 4 1.

t
g 9\ ( HG5) o H(i ) DNy
¢ )T\ H(=ig) H(=i =) )\ oD ) = o

H(i,j)™* Ot (m—t) >
.. U € My, sxm(F
( —H (=i, j)H(i,5)7" Iy xm(Fq)

rk(H;) = t, so that there exists i € (1""’m) with det H (7, j) # 0. The left multiplication of

by the matrix

provides (5) and TI;(C) = {c(™) ¢ Fp—t | N(i,5)c(™) = 0}. Moreover, the puncturing
II; : C = I1;(C) is an Fy-linear isomorphism with inverse

H]‘_1|Hj(C) : Hj(C) — C,
Hj_l(c(ﬁj)) = (M(i, )™, 7)) for Vel e T1;(O).
Straightforward verification establishes that the space
Err(C,j) = {(w", ™) € Fy x T~ | N (i, j)e ™) = 0} = 11 (I1;(C))

of the received words, whose C-error is supported by j coincides with the complete preimage
of IL;(C) in Fy under II;. The composition

Dec) = I |y, ()11 : Exx(C, j) — C,

Dec?) (w1 = Hj_l(w(ﬁj)) = (M (i, j)w™), w9

is a correctly defined Fy-linear decoding map.

In order to show that C' has unique decoding with error support j € (1";’"), suppose
that there exists w € Fy with w = ¢+ e = ¢+ ¢ for some ¢,¢ € C and e,e € Fy with
Supp(e) C j, Supp(e) C j. Then the word € — e = ¢ — ¢ € C has support Supp(c — ¢) =
Supp(e — e) C j of cardinality |j| = t < d, which requires ¢ = ¢ and shows that the
decoding with error support j is unique for all j € (17:") with ¢t <d — 1.

It is well known that if d > 2t + 1 then C' has unique decoding with error weight ¢.
In order to show that for ¢t + 1 < d < 2t the decoding of C with error weight ¢ is not
unique, let us fix a word ¢ € C with Supp(c) =i = {i1,...,iq} € (1"&"") and note that
d—t <t <d. Then the choice of

e, = ¢ci,, €,:=0 for V1<s<d-—t,

s

24



ei, €EFy\{—ci.}, e, i=e;, +e, for d—t+1<s<t,
e, =0, e, =

s

—¢;. for t+1<s<d and

er=¢.:=0 for rei
supplies a received word e = e+c with Supp(e) = {i1,..., 4}, Supp(€) = {ig—t+1,...,%4} €

(1";’"), which is decoded by 0" and ¢ # 0" with error weight ¢.
O

Note that the decoding map Dect) : Err(C,j) — C has Fg-linear extension Decl) :
Fy — Fy, but its values over Fy \ Err(C, j) are not supposed to belong to C.

Definition 11. Let X/F, C E be an irreducible affine variety, defined over IFy.
(i) The fibration
779X = [ To(X,Fpw) — X
acX
with 7= (a) = T, (X, Fs) for Va € X is called the bundle of the tangent codes to X.
(ii) If
Err (T, (X, Fp50), J) == {w € F, @ |36 € Flsa), Supp(e) Cj, w—e € To(X,F o)}

is the F s -linear space of the recewed words, whose T.(X, Fq5<a))—er7‘0r s supported by
je (1";’n) then

mp Brn(TOX, §) i= [ Bre(Ta(X,Fpw), j) — X
aceX

with 75 (a) = Err(T,(X, F5@),J) for Va € X is the bundle of the received words, whose
TS X -error is supported by j.

(iii) For an arbitrary subset S C X, a bundle morphism ¥ : Err(TYX, j)|s — T¢X|s
of the corresponding restrictions is a map, which closes the commutative diagram

Err(TCX, j)|s —— TCX|s

B

and has F s -linear restrictions
U Err(T,(X,F 5(a)) Jj) — T, (X,an(a)) for Yae€S.

We use the term bundle of the tangent codes for T¢X := [Huex Ta(X,Fs50) since the

notion of a tangent bundle of X is coined in the literature for TX := [[,c x Ta(X,Fy).
The next proposition observes that the decoding maps of the tangent codes with fixed

error support j € (lt") form a bundle morphism and identifies the bundle Err(T¢ X, j)

of the received words with 7 X-error supported by j with the bundle of the tangent codes
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of an appropriate affine variety Y; C IFTL. The hard part of the decoding procedure is the
description of Err(T¢X, 7). The proof of Proposition 12 makes use of a Groebner basis,
in order to justify the coincidence of bundles TCYj|U]. = Err(T°X, J)u; over a Zariski
open, Zariski dense subset U; C X smooth YjsmOOth. Bearing in mind the high complexity
of the construction of a Groebner basis, one concludes that the tangent codes set up itself
is useless for decoding problems, in general. Applications are possible only over specific
affine varieties X, for which the description of Y} is immediate. Corollary 14 illustrates
the possibility for such a choice of equations of X, for which the polynomial parity check
matrix of the bundle TCYJ-|U]. = Err(TCX,j)|Uj is obtained from the one for TCX\UJ. by
deleting ¢ rows and ¢ columns,

Proposition 12. Let X/F, C Fin be an irreducible affine variety, defined over F, with
non-empty subset X1 = {a € X|d(Tu(X,Fpw@)) > t+ 1} and some generators
fiyeo s fm €EFglzr, o mn] of I(X,Fy) = (f1..., fm) 9Fglz1, ..., 2.
(i) For any j € (lt") there exist a Zariski open covering X =1 = Ui€(1 m)X(i,j)
t

by X(i,7) == XEHD\ vV (det %) and bundle morphisms

Dec(™) Efr(Tchj)’X(i’j) — TCX’X(i’j)’

—1
Decm(w):(— (gf‘m(w») e <>>w<ﬁ”,w”’) for W€<1"'g’m>’
j -7

which decode simultaneously the received words with TC X -error supported by j.
(ii) For any j € ( moM) with —j = {1,...,n}\j let II; : IFTL — En_t be the puncturing

at j and T1;(X) be the Zariski closure ofH (X) in ]ngnit. Then the cylinder

with base m mn Eﬂ is an irreducible (k + t)-dimensional affine variety, containing X,
Uj — X(>t+1) N H (H (X)smooth) C X smooth N Ysmooth
1s a non-empty, Zariski open, Zariski dense subset of X and the bundles
TV, |y, = T°F, x TCT;(X) |y, = Ere(TCX, j)|v,

coincide over U;. In particular, dimp Err(T,(X,F 5(0)) j) =k+t forVa e Uj.

45(a)

Proof. (i) By (2) from the proof of Proposition 2 (i),

xCt+1) _ Nje(m) |:UZ-€(1,“£, ) <X \V (d t dfi >>}

Oz
Uie(1m) <X\V (d t gi)) for Vje ( )
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Therefore

X € U (X (00 2)) -,
t "'Uj

and the Zariski open subset X (1) — Uie (b m)X(i,j) of X is covered by the Zariski
t

open subsets X (i,7) € X. At any a € X(4, j) the tangent code To(X,F s)) has a parity

check matrix %(a) with det gg:; (a) # 0. The application of Lemma 10 yields F s -linear

decoding maps

Dec(®J) s Err(T,(X,F 5(@) Jj) — Ta(X;F 5)),

. 1 . .
Dec®) (@, (1)) = (_ ( gﬁ (a)> ofi Ofi ﬁa>,w<w>>
J

0z

with error support j for Va € X (i, j).
(i) By its very definition,

Y =I5 (X)) = {a = (a9,a) € F," [T(a) = o) € I;(X)} = F,' x I;(X)

is isomorphic to the product of the affine space Et with IT;(X) CF, " and that is why we
say that Yj is the cylinder with base IL;(X) in F,". Let 109 .= I( X, F)NFy[z-;]<F,[x—]
be the j-th elimination ideal of I(X,F,) and

VO (I = o) € E'ﬂ—t lg(a™) =0 for Vge I}

be the affine variety of 1™/ in IEan_t. The Closure Theorem 3 from Chapter 3, §2 of 3]
asserts that IL;(X) = V(ﬁj)(I(ﬁj)) and justifies

V;=VIM) = {a=(a",a) e F" | g(a"™)=0 for VgeID}. — (7)

In particular, 1(7) R, Fylz;] CI(Y;,Fy) <Fylan, ..., zn).

By Hilbert’s Nullstellensatz, IV(ﬁj)( 109y = p(I09)) 9 F,[x—;] for the radical +(17)
of I in Fy[x—;]. We claim that r( (7)) = 109 and 1) is a prime ideal of F,[z—;].
Indeed, if fN € 109 .= [(X,F,) NFy[z-;] for some f € Fy[z—;] and N € N then fV ¢
I(X,F,). The absolute ideal I(X, E) F,[z1,...,2,) of the irreducible variety X  F,"
is prime, so that f € I(X,F,) NTF,z-;] = (*) and r(I)) = 179) is a radical ideal.
If fg € I C I(X,F,) for some f,g € Fylz—;] then f € I(X,F,) NFylz-;] = I or
g€ I(X,F, ) n F, [ ]] I9) and 109 < F [« ﬁj] is a prime ideal. As a result, the variety
0;(X) = V) (109)) with absolute ideal I(I1;(X),F,) = I™7) is irreducible, as well as its
product Fq x IT;(X) ~ Y; with the affine space Et.

In order to relate the bundles T°Y; and Err(7T°X, j), note that II; : X — IL;(X)
are finite morphisms for Vj € (1"{’"), according to Proposition 2 (ii) and X&) £ g,
Therefore dimIT;(X) = dim I1;(X) = dim X = k, dimY; = dimII;(X)+t = k+¢. Observe
that 109 .= (fy,.. .,fm>EﬂF7q[:cﬁj] admits a generating set g1,...,q1 € Fylz1,...,2y]
with coefficients from F,. In order to obtain such ¢i,...,g;, one can apply Buchberger’s
algorithm to the generating set f1,..., fm € Fy[z1,...,z,] of I(X,F,) <Fy[z1,...,7,] and

F
F,
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to construct a Groebner basis fi,..., fm, fimt1s- -+, fs € Fglz1,..., 2] of I(X,F,) with
respect to a lexicographic order with x; > x—;. By Elimination Theorem 2 from Chapter
3,8§10f[3],9:={f1,..., fs}NFy[z-;] is a Groebner basis of I(™7) = I(X,F,)NF,[z-;] with
respect to the induced lexicographic order. In particular, g = {g1,..., 91} C Fqlz1,..., zy]
is a generating set of I() = I(T1;(X),F,)<F,[z-;] with coefficients from F, and the Zariski
tangent spaces Ty(IL;(X),F s@) C IFZ&_(;) to II;(X) have parity check matrices 82—5;(6).
According to I9) = (gy,...,g) € I(Y;,F,), the Zariski tangent spaces T, (Y}, F @) toY;
are contained in the F s@)-linear codes of length n with parity check matrix %(a(ﬁj)).

On the other hand, %ﬁj(a(ﬂj)) are parity check matrices of Ty, () (IL;(X),F5@)) C IFZ;(;

mooth

for VII;(a) € IL;(X). Thus, at any a € Hj_l(Hj(X) ) one has

t4 k= dimY) < dim T (Y}, F50) < 1 — rkaag(aw')) _
)

n—[n—t-— dimTHj(a)(Hj(X),]Fqé(a))] =t —{—dlmHJ(X) =t+k,

smooth

whereas H]._I(W ) C Y'jSmooth and

L —+| 99
Tu(Yj Fgo) = {(w, w7 € Fisoy x Fri D

7t —
T ) (Fq ,Fqs(a)) X THj(a) (Hj (X), Fqs(a))

a

(a7 = 0} =

at all the points a of the non-empty, Zariski open, Zariski dense subset

mooth

U; == XG0 T (I ()00t € I (I (X)smeethy < 1y (I ()™

of X. Any a € U; C X (D) g contained in some

L. of; Ofs 1.....m
X = X (=D CX =0 e = Etale(IL,
(4,9) \ V ( det oz, ) < \ V[ det oz, ‘ o€ ; tale(I1;)

by (i) and Lemma 1 (i). Therefore §) # U; C Etale(II;) N H;l(ﬂj(X)smOOth), so that
Lemma 1 (ii) applies to provide U; C Etale(II;) N H;l(Hj (X )smooth)y € xsmooth anq the
invertibility of the [ 5(a)-linear maps

IL; = (dIlj)q : To(X, Fs@) — Ty a) T (X), F o)) = T, (a) (I (X)), Foa))

at Va € U;. Note that at an arbitrary point a € X (i, j) the inverse map is

H;l : THj(a) (Hj (X), Fqs(a)) — Ta(X, Fq5(a))a

Hj—l(v(ﬂj)) _ (_ <8fZ (a)) 8fl(a)v(w)’v(w))

81‘j 8xﬁj
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9_(a(9))v(™7) = 0}. Thus,

for all v(79) € Ty i(a yILi(X), F 5<a)) = {v) e F7y; 5(a)

T
dfz afi
amj( a) m(a)
H = , € Mt1yxn(Fyse)
0 (9&3.]' (CL)

is a parity check matrix of Ty (X, F s()) with det H (7, j) = det gg; (a) # 0 and the applica-
tion of Lemma 10 to H yields

Err(To(X,F @), 5) =

, G (i
{w), ) € Fosn X Fgity | 5, (a )™ = 0} = Tu(Y;, Fysto))
at Va € X(i,7). The decoding maps Dec(#7) = =7 ‘Tn (a)(Hj(X)vIFqé(a))Hj from the proof of

10 take values in T¢X at all the points a € X (i, ])
0l

5.2 The bundle of the received words

As an immediate consequence of the proof of Proposition 12, we obtain the following

Corollary 13. Let X C En be an irreducible affine variety with X Y £ () and

I(X,E):<f1,-~-,fm>4Fq[$1,...,$n] forsome fla"')meFq[:L‘la---al'n]-

Suppose that fi,..., fm, fmt1s---» fs € Fylw1,...,z,] is a Groebner basis of 1(X,F,)
with respect to a lexicographic order with x; > x—; for some j € (1t") and put g =
{gla cee 7gl} = {f17 cee afmaferl? ) fs} N ]Fq[lﬂ—.J] Then fOT' any a € X(Zaj) = X(ZH_D \
Vv (det ng;) with i € (1";’5) the space of the received words with To(X,F s )-error sup-
ported by j is

dg

Err(T,(X, Fqé(@) J) = {( w9 ) € Ft gl X Fn&(«f) 833—|j

(a9 = 0}

and the decoding morphism of bundles
Dec™) : Err(TCX, j) x5 — T°X|x(.)
restricts to F s -linear maps

Dec™) ; Err(T,(X,F #@)sJ) = Ta(X,F o),

-1
J

O:L;J
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The algorithms, constructing Groebner bases of I(X,Fy) = (fg, ..., fm)<Fy[z1, .. ., 2],
containing fi,..., fin are of exponential growth and it is worthless to decode tangent
codes by the means of Corollary 13. Instead, one can choose such equations fg,..., fm €
Fy[z1,...,2s) of X, which are a priori known to form a Groebner basis with respect to an
appropriate lexicographic order. Here is an example

Corollary 14. Let H € M(,_j)xn(Fq) be a parity check matriz of an Fy-linear code C' of
length n, dimension k and minimum distance >t + 1 with

Hijj =0 for Vi<j<i<n—k and

Hi;=1 for Vi<i<n-—k.

For arbitrary polynomials hi(ziy1,...,2n) € (Tit1,...,2p)% N Fylxit1, ..., zn] without
terms of total degree < 2, consider the polynomials

n
filxi, iv1, ..., xy) =z + Z Hisxs + hi(xig1,...,xpn) for 1<i<n-—k.
s=i+1

Then:

(1)) X =V (f1,..., fo—r)/Fq C En is a smooth irreducible k-dimensional affine variety,
isomorphic to Ek with 0" € X and Ton (X, Fy) = C;

(ii) f1,- .., fa—k is a Groebner basis of (f1,..., fa—k)<9Fq[x1, ..., x| with respect to the
lezicographic order with x1 > ... > Ty > XTyp1 > ... > Ty,

(iii) X ZHY) £ 0 is a Zariski open, Zariski dense subset of X ;

() at any a € XY the space Err(T, (X, Fos),7) of the received words with

To(X,F jsa))-error, supported by j = {1,...,t} € (1"1‘5"") consists of the solutions w € L

of the homogeneous linear system

a(ft+17 s 7fn—k) Wi+1 _ '
I Tts1,- 5 Tn) (@1, an) |- = O(n—k—t)x1; (8)

Wn,

(v) the decoding morphism of bundles Dec : Err(TCX, )| xzer1y — TCX |y is

given by B
Dec(w) = <— (Wi <wE<w>>) 07 <m<w>>w<ﬂj>,w<ﬂ”> | (9)

8acj ax_.j

withi = {1,....t} € (8, G = {1, th € (%57, =i = {1, n}\j = {41, )
over the entire Zariski open, Zariski dense subset X 1T of X .

Proof. (i) By an induction on the number of the equations n—k > 1, we prove the existence
of polynomials g1, ..., gn—k € Fg[Tn_k+1,...,2s], such that

X =V, faok) = {q1(a"), - .- gnoi(a”),a") |Va" == (an—rs1, - - an) € Fg }. (10)
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Then the puncturing Il : Fqn —F, atd={1,....n—k} € (11;_’111) is an isomorphism of
affine varieties with inverse

_ —k
I 1(a”) = (q1(d"),...,gn—k(a"),a") for Va" = (an_gi1,...,an) €EF, .

In particular, X is a smooth irreducible k-dimensional affine variety, defined over F,. To

n
this end, note that for n — k = 1 and g1(x2,...,zy) := — > Hiszs + hi(xa,...,2z,) one
s=2

has X =V (f1) = {(g1(a"),a”) |Va" := (ag,...,a,) € En_l}. If we assume that

k1
V(flv cee fn—k—l) = {(gll(a,)v ce 79’1’1,7]671(0’,)7 a/) ‘Va, = (an_lw R an) € IE‘q }
for some ¢i,...,9/, .1 € Fglxn—k,...,zy] then introducing
n
gn—k(mn—k‘-i—la ce ,l’n) == Z Hn—k’,sxs - hn—k(xn—k—‘rla .- 7$n) and
s=n—k+1
Qi(mn—k+17~-’ﬂfn) = g'/z(gn—k(xn—k—i-la‘--axn),xn—k+la--~7$n) for V1 <i< n—k— 1)

one concludes that

V(fla s 7fnfk717 fnfk) =
—k
{(gl (a'”)7 cee 7gn—k’—1(a/”)7 gn—k'(a”)a a”) |va” = (an—k—l—h sy Cln) S IE‘q }

and proves (10).

(ii) The leading terms of f; with respect to the lexicographic order with 1 > ... > x,
are LT(f;) = x; for V1 < i < n — k. These are pairwise relatively prime monomials,
ie., LCM(LT(f;),LT(f;)) = xixz; = LT(f;)LT(f;) for V1 < i < j < n — k. Combining
Theorem 3 with Proposition 4 from Chapter 2, § 9, [3], one concludes that fi,..., f_k is
a Groebner basis of (f1,..., fa_r) 9F4[z1,...,7,] with respect to the lexicographic order
with z1 > ... > z,.

(iit) By Proposition 2 (i), X(Z*+1) is a Zariski open subset of X. It suffices to show that
0" € XD in order to conclude that X (=t+1) # () is non-empty and, therefore, Zariski
dense in the irreducible affine variety X. Straightforward verification establishes that
0" € X =V(f1, ., fak) and 5L(07) = Fft=dostd (0n) = H € M,y (Fy). According
to fi,..., fu—k € I(X,F,), the Zariski tangent space Ton(X,F,) to X at the origin 0™ is
contained in the linear code C' with parity check matrix H. Since X is smooth and k-
dimensional, dimp, To» (X, F,) = dimp, C = k, whereas Ty (X,F,;) = C. By assumption,
C is of minimum distance > ¢ + 1, so that 0" € X(&t+1),

(iv) Note that the Singleton Bound for C reads as t +1 < n + 1 — k and guarantees
that ¢ <n — k. Now, an immediate application of Corollary 13 provides (8).
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(v) At an arbitrary point a € X, the Jacobian matrix %(a) has an invertible minor

1 %(@) + Hiz %ﬁ;(a) + Hyz ... g—’ﬁ(a) + Hy
Ohy Ohg
ety o | 0 EOF s G
8(1}1,...,1})
0 0 0 1

of order ¢t with rows, labeled by i = {1,...,t} € (ltn_k) and columns, labeled by j
{1,...,t} € (1"%"71). In the notations from Proposition 12 (i), that implies X (Zt+1)

X(i,7) == XEHD\ v (%) C XEHD  whereas X (21 = X(4,5). Thus, the decoding

bundle morphism is defined over the entire X Z**1) by formula (9).

N

O

5.3 Gradient codes

Q) = <f177fm>ﬂ is gen-
= (a’lv"‘7an) S X with

Let X C En be an affine variety, whose absolute ideal (X

erated by fi,...,fm € Fy[z1,...,2,]. Then for any point a
definition field F s@) = Fq(a1,...,a,) over Fy, the ideal

I(X,an(a)) = {g S IFq(;(a)[xl,... ,an] ]g(b) =0,Vbe X}

of X over F sw) is generated by fi,..., fm. The gradient of g € I(X, an(a>) is the ordered
n-tuple
99 99

grad(g) := <8x1 e 8:):) € F 500 [T1, ..., zn]"

of its partial derivatives. The subset

0 0
GradaI(X, FqS(a)) = {grada(g) = (61.?17 ey &gg> € }FZ(;((L)

g€ I(Xans(a))}
of IF'ZM) is an F s -linear code, which we call the gradient code to X at a. The fibration

e GradCI(X) = H Grad,I (X, an(a)) — X
aceX

with 77 1(a) = Grad,I(X, Fs@) for Va € X will be referred to as the bundle of the
gradient codes to X.

Lemma 15. Let X/FF, C IEan be an affine variety, defined over Fy. Then the dual
(T X)* = Grad®I(X) (11)

of the bundle TX of the tangent codes to X is the bundle GradCI(X) of the gradient
codes to X.
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Proof. The equality (11) is meant as a coincidence T, (X, Ian(a))l = GradoI (X, F ) of
the fibres at all the points a € X. By the very definition, if f1,..., fn, € Fglz1,..., 2] is
a generating set of I(X,[F,) then T, (X, IFq(sm))l is the linear code with a generator matrix

af( ) grada(fl)
Oz grada(fm)
Therefore
To(X,F ) Z)\ grad,(f;) = grad, Z)\ [ ’ Aj € F s
J=1

is a subspace of GradaI(X,Ian(a)) as far as Z Nifi € I(X,F 5(a))
Conversely, any g € I(X,F @) = (f1,.. fm) <Fs (@21, ..., 2] is of the form g =

m m
> g;f; for some g; € F s [21,...,2n]. Its gradient grad(g) = >_ fjerad(g;) + gjgrad(f;)
j=1 j=1

has value

grad, (g Zgg Jerad, (f;) € Spang ;  (grad,(f;) |1 < j < m) = To(X, Fys)

at a € X, as far as Vf; € I(X,Fp@) C I(a,F ). That suffices for the inclusion
Grad,I(X,Fs(w) € Tu(X, Fysw) " and T,(X,F, (a)) = GradoI (X, F ).
O

The union [[ Gradl(X, Fq,s(a)) of the subspaces
aeX

GradI(X,F s)) = {grad(g) | g € [(X,Fs)} C Fpo (21, .., zn]"
can be viewed as a sheaf of sections

grad(g) : X(Fq,s(a>) — GradCI(X)|X(]Fq5<a)),

b — grad,(g).

In such a way, the gradient codes appear to be of a similar nature with the algebro-
geometric Goppa codes, which consist of the values of the global sections of line bundles
over curves Y/F, C PN (F,), at ordered n-tuples of F,-rational points of Y. For a systematic
study of the algebro geometric Goppa codes see [16] [14], 19] or [7].

For an arbitrary integer 1 < s < n, let us consider the loci

X2 = {ae X | dgrad,I(X,Fw)) > s},

X0 :={ae X | dlgrad,[(X,Fpw)) < s},

at which the gradient codes to X are of minimum distance > s, respectively, < s. The
next proposition shows that the presence of a non-zero polynomial h € I(X,F,) in at most
d variables is sufficient for the presence of an upper bound d on the minimum distance of
a gradient code to a generic point of X.
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Proposition 16. Let X/F, C En be an irreducible affine variety, defined over Fy. If there
exists a non-zero polynomial h € 1(X,F,)NFylzs] of |8] = d variables and 115 : X — Ed

is the puncturing at the complement =3 of B then

>d+1 — in
X4 C MoH(I (X)) ¢ X,

so that X(r_ad) 1s Zariski dense in X.

Proof. Let fi,..., fm € Fylz1,...,2,] be a generating set of I(X,F,) < Fylz1,...,xn],
G-pp C Fylr1,...,z,] be a Groebner basis of (f1,..., fim)r, <Fglz1,...,2,] With respect
to a lexicographic order with -3 > 23 and Gg := G55 NFylzg] = {g1,...,q}. By the
Elimination Theorem 2 from Chapter 3, §1 of 3], G is a Groebner basis of the elimination
ideal I'®) := I(X,F,) NF,zg]. The presence of a non-zero polynomial h € I'®) implies
that the set Gz # ) is non-empty. The proof of Proposition 12 (ii) has established that the
absolute ideal I(TI_5(X),F,) = 1) = <Gﬂ>1€ of the Zanskl closure TI_3(X) of TI_4(X) in

Ed coincides with (%) = <G5>— Therefore TI_5(X) & IE‘ is an irreducible affine variety
of dimension dimII-5(X) < d.

For any g; € G C I(IT.5(X),F,) C I(X,F,) and a € X note that grad,(g;) € F,"
is a word of weight < d, as far as ¢g; € Fy[zg] depends on at most |3| = d variables. In
X( d+1)

particular, for a € grad

there follows gradp_(,)(9:) = grad,(gi)(a) = O1x,. Thus,

gradp_,(q)(91)

a(gla"‘7gl) >d+1
T(Hﬁlg(a)) = . = Oan at Va (S Xér_ad )
gradp_, (o) (91)
and X gad—i_l) is contained in the affine variety
dg; _
Z::V( 9 ‘ 1<i<l, 1§j§n) CF,"
8{[,‘j
We claim that '
Z C I (I 5(X)™%). (12)

. oG .
Indeed, if a € Z then Wg(l‘[ﬁﬁ(a)) = Oyxn, and Tnﬁﬁ(-a) (I-5(X), Fs)) = Fgé(a). According
to dimIT-3(X) < d there follows II_5(a) € II_5(X)*"8, which is equivalent to (12). Thus,

Xg(i‘éﬂ) - H:é(ﬂjg(X)smg) for the proper affine subvariety H:é(ﬂﬁg(X)Sing) ¢ X. Now

- m — in (>d+1 <d+1
T4 (TT 5 (X)™m00h) = X\ I (I 5( X)) € X\ X207 = x50

for the non-empty, Zariski open subset H:é(ﬂﬁﬁ(X)smOOth) of X, so that Xg(rad Y is Zariski
dense in X.
O
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