DUURSMA'S REDUCED POLYNOMIAL

AZNIV KASPARIAN AND IVAN MARINOV

Azniv Kasparian, Ivan Marinov
Section of Algebra, Department of Mathematics and Informatics
Kliment Ohridski University of Sofia
James Bouchier Blvd., Sofia 1164, Bulgaria

(Communicated by Marcus Greferath)

Abstract

The weight distribution $\left\{\mathcal{W}_{C}^{(w)}\right\}_{w=0}^{n}$ of a linear code $C \subset \mathbb{F}_{q}^{n}$ is put in an explicit bijective correspondence with Duursma's reduced polynomial $D_{C}(t) \in \mathbb{Q}[t]$ of C. We prove that the Riemann Hypothesis Analogue for a linear code C requires the formal self-duality of C. Duursma's reduced polynomial $D_{F}(t) \in \mathbb{Z}[t]$ of the function field $F=\mathbb{F}_{q}(X)$ of a curve X of genus g over \mathbb{F}_{q} is shown to provide a generating function $\frac{D_{F}(t)}{(1-t)(1-q t)}=\sum_{i=0}^{\infty} \mathcal{B}_{i} t^{i}$ for the numbers \mathcal{B}_{i} of the effective divisors of degree $i \geq 0$ of a virtual function

 field of a curve of genus $g-1$ over \mathbb{F}_{q}.Let $\overline{\mathbb{F}_{q}}=\cup_{m=1}^{\infty} \mathbb{F}_{q^{m}}$ be the algebraic closure of a finite field \mathbb{F}_{q} and $X / \mathbb{F}_{q} \subset \mathbb{P}^{N}\left(\overline{\mathbb{F}_{q}}\right)$ be a smooth irreducible projective curve of genus g, defined over \mathbb{F}_{q}. Denote by $F=\mathbb{F}_{q}(X)$ the function field of X over \mathbb{F}_{q} and choose n different \mathbb{F}_{q}-rational points $P_{1}, \ldots, P_{n} \in X\left(\mathbb{F}_{q}\right):=X \cap \mathbb{P}^{N}\left(\mathbb{F}_{q}\right)$. Suppose that G is an effective divisor of F of degree $2 g-2<\operatorname{deg} G=m<n$, whose support is disjoint from the support of $D=P_{1}+\ldots+P_{n}$. The space $L(G):=H^{0}\left(X, \mathcal{O}_{X}(G)\right)$ of the global holomorphic sections of the line bundle, associated with G will be referred to as to the RiemannRoch space of G. We put $l(G):=\operatorname{dim}_{\mathbb{F}_{q}} L(G)$ and observe that the evaluation map

$$
\begin{gathered}
\mathcal{E}_{D}: L(G) \longrightarrow \mathbb{F}_{q}^{n} \\
\mathcal{E}_{D}(f)=\left(f\left(P_{1}\right), \ldots, f\left(P_{n}\right)\right) \quad \text { for } \quad \forall f \in L(G)
\end{gathered}
$$

is an \mathbb{F}_{q}-linear embedding. Its image $C:=\operatorname{im}\left(\mathcal{E}_{D}\right)=\mathcal{E}_{D} L(G)$ is known as an algebraic geometry code or Goppa code. The minimum distance of C is $d(C) \geq$ $n-m$. The equality $d(C)=n-m$ holds if and only if there exists a rational function $f_{o} \in L(G)$, vanishing at exactly m of the points P_{1}, \ldots, P_{n}. For an arbitrary $s \in \mathbb{N}$

[^0]let $N_{s}(F):=\left|X\left(\mathbb{F}_{q^{s}}\right)\right|$ be the number of the $\mathbb{F}_{q^{s}}$-rational points of X. Then the formal power series
$$
Z_{F}(t):=\exp \left(\sum_{s=1}^{\infty} \frac{N_{s}(F)}{s} t^{s}\right)
$$
is called the Hasse-Weil zeta function of F. It is well known (cf. Theorem 4.1.11 from [6]) that
$$
Z_{F}(t)=\frac{L_{F}(t)}{(1-t)(1-q t)}
$$
for a polynomial $L_{F}(t) \in \mathbb{Z}[t]$ of degree $2 g$. We refer to $L_{F}(t)$ as to the Hasse-Weil polynomial of F.

In [2], [3] Duursma introduces the genus of a linear code $C \subset \mathbb{F}_{q}^{n}$ as the deviation $g:=n+1-k-d$ of its dimension $k:=\operatorname{dim}_{\mathbb{F}_{q}} C$ and minimum distance d from the equality in Singleton bound. Let $\mathcal{W}_{C}^{(w)}$ be the number of the codewords $c \in C$ of weight $d \leq w \leq n$. Then

$$
\mathcal{W}_{C}(x, y):=x^{n}+\sum_{w=d(C)}^{n} \mathcal{W}_{C}^{(w)} x^{n-w} y^{w}
$$

is called the homogeneous weight enumerator of C. Denote by $\mathcal{M}_{n, s}(x, y)$ the MDSweight enumerator of length n and minimum distance s. Put g^{\perp} for the genus of the dual code C^{\perp} of C and $r:=g+g^{\perp}$. In [2], [3] Duursma proves that the homogeneous weight enumerator

$$
\begin{equation*}
\mathcal{W}_{C}(x, y)=a_{0} \mathcal{M}_{n, d}(x, y)+a_{1} \mathcal{M}_{n, d+1}(x, y)+\ldots+a_{r} \mathcal{M}_{n, d+r}(x, y) \tag{1}
\end{equation*}
$$

of an arbitrary linear code $C \subset \mathbb{F}_{q}^{n}$ has uniquely determined coordinates $a_{0}, \ldots, a_{r} \in$ \mathbb{Q} with respect to the MDS-weight enumerators $\mathcal{M}_{n, d+i}(x, y), 0 \leq i \leq r$. He refers to $P_{C}(t):=\sum_{i=0}^{r} a_{i} t^{i} \in \mathbb{Q}[t]$ as to the ζ-polynomial of C. The present note establishes that the difference

$$
\mathcal{W}_{C}(x, y)-\mathcal{M}_{n, n+1-k}(x, y)=(q-1) \sum_{i=0}^{r-2} c_{i}\binom{n}{d+i}(x-y)^{n-d-i} y^{d+i}
$$

of the homogeneous weight enumerator $\mathcal{W}_{C}(x, y)$ of C and the MDS-weight enumerator $\mathcal{M}_{n, n+1-k}(x, y)$ of the same length n and dimension k as C has uniquely determined coordinates $c_{0}, \ldots, c_{r-2} \in \mathbb{Q}$ with respect to $(x-y)^{n-d-i} y^{d+i}, 0 \leq i \leq r-2$ (cf.Proposition 1). The polynomial $D_{C}(t)=\sum_{i=0}^{r-2} c_{i} t^{i} \in \mathbb{Q}[t]$ is in a bijective correspondence with $P_{C}(t)=(1-t)(1-q t) D_{C}(t)+t^{g}$. Theorem 11.1 from Duursma's [4] expresses the generating function $\zeta_{C, j}(t)=D_{C, j}(t)+h t^{g+j-1} Z_{F}(t)$ for the j-th support weights of C by a polynomial $D_{C, j}(t)$ and the Hasse-Weil ζ-function $Z_{F}(t)$ of the function field $F=\mathbb{F}_{q}\left(\mathbb{P}^{j}\left(\overline{\mathbb{F}_{q}}\right)\right)$ of the projective space $\mathbb{P}^{j}\left(\overline{\mathbb{F}_{q}}\right)$. In the case of $j=1$, Duursma's $D_{C, 1}(t)$ coincides with our $D_{C}(t)$ and that is why we call $D_{C}(t)$ Duursma's reduced polynomial of C.

The classical Hasse-Weil Theorem establishes that all the roots of the Hasse-Weil polynomial $L_{F}(t) \in \mathbb{Z}[t]$ of the function field $\mathbb{F}_{q}(X)$ of a curve X of genus g over \mathbb{F}_{q} are on the circle $S\left(\frac{1}{\sqrt{q}}\right):\left\{z \in \mathbb{C}| | z \left\lvert\,=\frac{1}{\sqrt{q}}\right.\right\}$ (cf. Theorem 4.2.3 form [6]). Suppose that there is a complete set of representatives G_{1}, \ldots, G_{h} of the linear equivalence classes of the divisors of $\mathbb{F}_{q}(X)$ of degree $2 g-2<\operatorname{deg} G_{i}<n$ with
$\operatorname{Supp}\left(G_{i}\right) \cap \operatorname{Supp}(D)=\emptyset$ for $\forall 1 \leq i \leq n, D=P_{1}+\ldots+P_{n}$. If $C_{i}=\mathcal{E}_{D} L\left(G_{i}\right)$ are the algebro-geometric Goppa codes, associated with these divisors, then according to Theorem 12.1 from Duursma's [4], the ζ-polynomials of C_{i} are related by the equality

$$
\sum t^{g-g\left(C_{i}\right)} P_{C_{i}}(t)=L_{F}(t)
$$

to the Hasse-Weil polynomial $L_{F}(t)$ of F. Baring in mind this fact, Duursma says that a linear code $C \subset \mathbb{F}_{q}^{n}$ satisfies the Riemann Hypothesis Analogue if all the roots of its zeta polynomial $P_{C}(t)=\sum_{i=0}^{r} a_{i} t^{i} \in \mathbb{Q}[t]$ are on the circle $S\left(\frac{1}{\sqrt{q}}\right)$. Let C be an \mathbb{F}_{q}-linear code of dimension k and minimum distance d, which satisfies the Riemann Hypothesis Analogue. Proposition 2 shows that C is formally selfdual. Let us recall that C is formally self-dual if it has the same weight distribution $\mathcal{W}_{C}^{(w)}=\mathcal{W}_{C^{\perp}}^{(w)}, \forall 0 \leq w \leq n$ as its dual code $C^{\perp} \subset \mathbb{F}_{q}^{n}$. In the light of Duursma's results and our Proposition 1, the formal self-duality of C turns to be equivalent to the functional equation $P_{C}(t)=P_{C}\left(\frac{1}{q t}\right) q^{g} t^{2 g}$ for $P_{C}(t)$ and to the functional equation $D_{C}(t)=D_{C}\left(\frac{1}{q t}\right) q^{g-1} t^{2 g-2}$ for $D_{C}(t)$. Proposition 3 from the present note expresses explicitly the homogeneous weight enumerator $\mathcal{W}_{C}(x, y)$ of a formally self-dual code $C \subset \mathbb{F}_{q}^{n}$ by the lowest half of the coefficients of $D_{C}(t)$ or by the numbers $\mathcal{W}_{C}^{(d)}, \ldots, \mathcal{W}_{C}^{(k)}$ of the codewords $c \in C$, whose weights are between the minimum distance d of C and the dimension k.

In [1] Dodunekov and Landgev introduce the near-MDS code $C \subset \mathbb{F}_{q}^{n}$ as the ones with quadratic zeta polynomial $P_{C}(t)$. Kim and Hyun's article [5] provides a necessary and sufficient condition for a near-MDS code to satisfy the Riemann Hypothesis Analogue. By Theorem 3 from Duursma's [3], the zeta polynomial $P_{C}(t)$ of a formally self-dual code $C \subset \mathbb{F}_{q}^{n}$ is of even degree. Our Proposition 4 is a necessary and sufficient condition for a formally self-dual code $C \subset \mathbb{F}_{q}^{n}$ with zeta polynomial $P_{C}(T)$ of $\operatorname{deg} P_{C}(t)=4$ to be subject to the Riemann Hypothesis Analogue. In analogy with the classical Hasse-Weil Theorem, we intend to express the Riemann Hypothesis Analogue for a linear code $C \subset \mathbb{F}_{q}^{n}$ in terms of the coefficients of the power series expansion of $\log \left[\frac{P_{C}(t)}{(1-t)(1-q t)}\right]$.

The last, third section is devoted to Duursma's reduced polynomial $D_{F}(t)$ of the function field $F=\mathbb{F}_{q}(X)$ of a curve $X / \mathbb{F}_{q} \subset \mathbb{P}^{N}\left(\overline{\mathbb{F}_{q}}\right)$ of genus g over \mathbb{F}_{q}. Corollary 5.2 from Duursma's [2] shows the existence of $D_{F}(t)$. Explaining formula (10.1) from [4], he mentions that $D_{F}(t)$ accounts for the contribution of the special divisors of F to the zeta function $Z_{F}(t)$. The present article establishes that $D_{F}(t) \in \mathbb{Z}[t]$ is determined uniquely by its lowest g coefficients, which equal the numbers \mathcal{A}_{i} of the effective divisors of F of degree $0 \leq i \leq g-1$. Our Proposition 5 reveals that the zeta function

$$
\frac{D_{F}(t)}{(1-t)(1-q t)}=\sum_{i=0}^{\infty} \mathcal{B}_{i} t^{i}
$$

associated with $D_{F}(t)$ has the properties of a generating function for the numbers \mathcal{B}_{i} of the effective divisors of degree $i \geq 0$ of a virtual function field of genus $g-1$ over \mathbb{F}_{q}. There arises the following

Open Problem: To characterize the function fields $F=\mathbb{F}_{q}(X)$ of curves $X / \mathbb{F}_{q} \subset \mathbb{P}^{N}\left(\overline{\mathbb{F}_{q}}\right)$ of genus g over \mathbb{F}_{q}, for which there are curves $Y / \mathbb{F}_{q} \subset \mathbb{P}^{M}\left(\overline{\mathbb{F}_{q}}\right)$
of genus $g-1$, defined over \mathbb{F}_{q} with Hasse-Weil zeta function

$$
Z_{\mathbb{F}_{q}(Y)}(t)=\frac{D_{F}(t)}{(1-t)(1-q t)}
$$

1. The homogeneous weight enumerator of an arbitrary code.

Proposition 1. Let $C \subset \mathbb{F}_{q}^{n}$ be a linear code of dimension $k=\operatorname{dim}_{\mathbb{F}_{q}} C$, minimum distance d and genus $g=n+1-k-d \geq 1$, whose dual $C^{\perp} \subset \mathbb{F}_{q}^{n}$ is of minimum distance d^{\perp} and genus $g^{\perp}=k+1-d^{\perp} \geq 1$. If

$$
D_{C}(t)=\sum_{i=0}^{g+g^{\perp}-2} c_{i} t^{i} \in \mathbb{Q}[t]
$$

is Duursma's reduced polynomial of C and $\mathcal{M}_{n, n+1-k}(x, y)$ is MDS-weight enumerator of length n, dimension k and minimum distance $n+1-k$, then the homogeneous weight enumerator of C is

$$
\begin{equation*}
\mathcal{W}_{C}(x, y)=\mathcal{M}_{n, n+1-k}(x, y)+(q-1) \sum_{i=0}^{g+g^{\perp}-2} c_{i}\binom{n}{d+i}(x-y)^{n-d-i} y^{d+i} \tag{2}
\end{equation*}
$$

More precisely, Duursma's reduced polynomial $D_{C}(t)=\sum_{i=0}^{g+g^{\perp}-2} c_{i} t^{i}$ determines uniquely the weight distribution of C, according to

$$
\begin{align*}
\mathcal{W}_{C}^{(w)}= & (q-1)\binom{n}{w} \sum_{i=0}^{w-d}(-1)^{w-d-i}\binom{w}{d+i} c_{i} \quad \text { for } \quad d \leq w \leq d+g-1 \tag{3}\\
\mathcal{W}_{C}^{(w)}= & (q-1)\binom{n}{w} \sum_{i=0}^{\min \left(w-d, n-d-d^{\perp}\right)}(-1)^{w-d-i}\binom{w}{d+i} c_{i} \\
& +\binom{n}{w} \sum_{j=0}^{w-n-1+k}(-1)^{j}\binom{w}{j}\left(q^{w-n+k-j}-1\right) \quad \text { for } \quad d+g \leq w \leq n \tag{4}
\end{align*}
$$

Conversely, for $\forall 0 \leq i \leq g+g^{\perp}-2$ the numbers $\mathcal{W}_{C}^{(d)}, \ldots, \mathcal{W}_{C}^{(d+i)}$ determine uniquely the coefficient c_{i} of Duursma's reduced polynomial $D_{C}(t)=\sum_{i=0}^{g+g^{\perp}-2} c_{i} t^{i}$ by

$$
\begin{equation*}
c_{i}=(q-1)^{-1}\binom{n}{d+i}^{-1} \sum_{w=d}^{d+i}\binom{n-w}{n-d-i} \mathcal{W}_{C}^{(w)} \tag{5}
\end{equation*}
$$

for $0 \leq i \leq g-1$,

$$
\begin{array}{r}
c_{i}=(q-1)^{-1}\binom{n}{d+i}^{-1}\left\{\sum_{w=d}^{d+g-1}\binom{n-w}{n-d-i} \mathcal{W}_{C}^{(w)}\right. \\
+\sum_{w=d+g}^{d+i}\binom{n-w}{n-d-i}\left[\mathcal{W}_{C}^{(w)}-\binom{n}{w} \sum_{j=0}^{w-n-1+k}(-1)^{j}\binom{w}{j}\left(q^{w-n+k-j}-1\right)\right] \tag{6}
\end{array}
$$

for $g \leq i \leq g+g^{\perp}-2$.

In particular,

$$
(q-1)\binom{n}{d+i} c_{i} \in \mathbb{Z}
$$

are integers for all $0 \leq i \leq g+g^{\perp}-2$.
The aforementioned formulae imply that $\mathcal{W}_{C}^{(d)}, \ldots, \mathcal{W}_{C}^{\left(d+g+g^{\perp}-2\right)}$ determine uniquely the homogeneous weight enumerator $\mathcal{W}_{C}(x, y)$ of C by the formula

$$
\begin{equation*}
\mathcal{W}_{C}(x, y)=\sum_{w=d}^{d+g+g^{\perp}-2} \mathcal{W}_{C}^{(w)} \lambda_{w}(x, y)+\Lambda(x, y) \tag{7}
\end{equation*}
$$

with explicit polynomials

$$
\begin{equation*}
\lambda_{w}(x, y):=\sum_{s=w}^{d+g+g^{\perp}-2}\binom{n-w}{n-s}(x-y)^{n-s} y^{s} \quad \text { for } \quad d \leq w \leq d+g+g^{\perp}-2 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Lambda(x, y):=\mathcal{M}_{n, n+1-k}(x, y)-\sum_{w=d+g}^{d+g+g^{\perp}-2} \mathcal{M}_{n, n+1-k}^{(w)} \lambda_{w}(x, y) \tag{9}
\end{equation*}
$$

Proof. In the case of $g=0$, note that C is an MDS-code and $\mathcal{W}_{C}(x, y)=\mathcal{M}_{n, n+1-k}(x, y)$. Form now on, we assume that $g>0$ and put $r:=g+g^{\perp}$. According to Proposition 9.2 from Duursma's [2], the ζ-polynomials of C and C^{\perp} satisfy the functional equation

$$
\begin{equation*}
P_{C^{\perp}}(t)=P_{C}\left(\frac{1}{q t}\right) q^{g} t^{g+g^{\perp}} \tag{10}
\end{equation*}
$$

and $P_{C}(1)=P_{C^{\perp}}(1)=1$. Therefore $P_{C}\left(\frac{1}{q}\right)=P_{C^{\perp}}(1) q^{-g}=\left(\frac{1}{q}\right)^{g}$ and the polynomial $P_{C}(t)-t^{g} \in \mathbb{Q}[t]$ vanishes at $t=1$ and $t=\frac{1}{q}$. As a result, there is a polynomial

$$
\begin{equation*}
D_{c}(t):=\frac{P_{C}(t)-t^{g}}{(1-t)(1-q t)}=\sum_{i=0}^{r-2} c_{i} t^{i} \in \mathbb{Q}[t] \tag{11}
\end{equation*}
$$

Making use of (1), let us express

$$
\mathcal{W}_{C}(x, y)=\mathcal{M}_{n, d+g}(x, y)+\sum_{i=0}^{r} b_{i} \mathcal{M}_{n, d+i}(x, y)
$$

by the coefficients of $P_{C}(t)-t^{g}=\sum_{i=0}^{r} b_{i} t^{i}$. The comparison of the coefficients of

$$
\begin{equation*}
P_{C}(t)-t^{g}=(1-t)(1-q t) D_{C}(t) \tag{12}
\end{equation*}
$$

yields

$$
b_{i}=c_{i}-(q+1) c_{i-1}+q c_{i-2} \quad \text { for } \quad \forall 0 \leq i \leq r
$$

with $c_{-2}=c_{-1}=c_{r-1}=c_{r}=0$. Therefore

$$
\begin{array}{r}
\mathcal{W}_{C}(x, y)=\mathcal{M}_{n, d+g}(x, y)+\sum_{i=0}^{r} c_{i} \mathcal{M}_{n, d+i}(x, y) \\
-(q+1) \sum_{i=0}^{r} c_{i-1} \mathcal{M}_{n, d+i}(x, y)+q \sum_{i=0}^{r} c_{i-2} \mathcal{M}_{n, d+i}(x, y)
\end{array}
$$

Setting $j=i-1$, respectively, $j=i-2$ in the last two sums, one obtains

$$
\begin{array}{r}
\mathcal{W}_{C}(x, y)=\mathcal{M}_{n, d+g}(x, y)+\sum_{i=0}^{r} c_{i} \mathcal{M}_{n, d+i}(x, y) \\
-(q+1) \sum_{j=-1}^{r-1} c_{j} \mathcal{M}_{n, d+j+1}(x, y)+q \sum_{j=-2}^{r-2} c_{j} \mathcal{M}_{n, d+j+2}(x, y)
\end{array}
$$

whereas

$$
\begin{array}{r}
\mathcal{W}_{C}(x, y)=\mathcal{M}_{n, d+g}(x, y) \\
+\sum_{j=0}^{r-2} c_{j}\left[\mathcal{M}_{n, d+j}(x, y)-(q+1) \mathcal{M}_{n, d+j+1}(x, y)+q \mathcal{M}_{n, d+j+2}(x, y)\right] \tag{13}
\end{array}
$$

Let us put

$$
\mathcal{W}_{n, d+j}(x, y):=\mathcal{M}_{n, d+j}(x, y)-(q+1) \mathcal{M}_{n, d+j+1}(x, y)+q \mathcal{M}_{n, d+j+2}(x, y)
$$

and recall that the MDS-weight enumerator of length n and minimum distance $d+j$ equals

$$
\mathcal{M}_{n, d+j}(x, y)=x^{n}+\sum_{w=d+j}^{n} \mathcal{M}_{n, d+j}^{(w)} x^{n-w} y^{w}
$$

with

$$
\begin{equation*}
\mathcal{M}_{n, d+j}^{(w)}=\binom{n}{w} \sum_{i=0}^{w-d-j}(-1)^{i}\binom{w}{i}\left(q^{w+1-d-j-i}-1\right) \tag{14}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
\mathcal{W}_{n, d+j}(x, y)=\mathcal{M}_{n, d+j}^{(d+j)} & x^{n-d-j} y^{d+j}+\left[\mathcal{M}_{n, d+j}^{(d+j+1)}-(q+1) \mathcal{M}_{n, d+j+1}^{(d+j+1)}\right] x^{n-d-j-1} y^{d+j+1} \\
& +\sum_{w=d+j+2}^{n}\left[\mathcal{M}_{n, d+j}^{(w)}-(q+1) \mathcal{M}_{n, d+j+1}^{(w)}+q \mathcal{M}_{n, d+j+2}^{(w)}\right] x^{n-w} y^{w}
\end{aligned}
$$

Making use of the MDS-weight distribution (14) and introducing

$$
\mathcal{W}_{n, d+j}^{(w)}:=\mathcal{M}_{n, d+j}^{(w)}-(q+1) \mathcal{M}_{n, d+j+1}^{(w)}+q \mathcal{M}_{n, d+j+2}^{(w)} \quad \text { for } \quad d+j+2 \leq w \leq n
$$

one expresses

$$
\begin{array}{r}
\mathcal{W}_{n, d+j}(x, y)=\binom{n}{d+j}(q-1) x^{n-d-j} y^{d+j} \\
-\binom{n}{d+j+1}(q-1)(d+j+1) x^{n-d-j-1} y^{d+j+1}+\sum_{w=d+j+2}^{n} \mathcal{W}_{n, d+j}^{(w)} x^{n-w} y^{w}
\end{array}
$$

For any $d+j+2 \leq w \leq n$ one has

$$
\mathcal{W}_{n, d+j}^{(w)}=\binom{n}{w}\binom{w}{d+j}(q-1)(-1)^{w-d-j}
$$

Baring in mind that

$$
\binom{n}{w}\binom{w}{d+j}=\binom{n-d-j}{w-d-j}\binom{n}{d+j}
$$

one obtains

$$
\begin{aligned}
& \mathcal{W}_{n, d+j}(x, y)=\binom{n}{d+j}(q-1) x^{n-d-j} y^{d+j}-\binom{n}{d+j+1}(q-1)(d+j+1) x^{n-d-j-1} y^{d+j+1}+ \\
&+\sum_{w=d+j+2}^{n}\binom{n}{d+j}\binom{n-d-j}{w-d-j}(q-1)(-1)^{w-d-j} x^{n-w} y^{w} .
\end{aligned}
$$

Then by the means of

$$
(d+j+1)\binom{n}{d+j+1}=(n-d-j)\binom{n}{d+j},
$$

one derives that

$$
\begin{aligned}
\mathcal{W}_{n, d+j}(x, y)=\binom{n}{d+j}(q-1) & {\left[x^{n-d-j} y^{d+j}-(n-d-j) x^{n-d-j-1} y^{d+j+1}+\right.} \\
& \left.+\sum_{w=d+j+2}^{n}(-1)^{w-d-j}\binom{n-d-j}{w-d-j} x^{n-w} y^{w}\right] .
\end{aligned}
$$

Introducing $s:=w-d-j$, one expresses

$$
\sum_{w=d+j+2}^{n}(-1)^{w-d-j}\binom{n-d-j}{w-d-j} x^{n-w} y^{w}=\sum_{s=2}^{n-d-j}(-1)^{s}\binom{n-d-j}{s} x^{n-d-j-s} y^{d+j+s}
$$

and concludes that

$$
\begin{equation*}
\mathcal{W}_{n, d+j}(x, y)=\binom{n}{d+j}(q-1)(x-y)^{n-d-j} y^{d+j} . \tag{15}
\end{equation*}
$$

The equality $\mathcal{W}_{n, n-k}(x, y)=\binom{n}{k}(q-1)(x-y)^{k} y^{n-k}$ is exactly the claim (c) of Lemma 1 from Kim and Nyun's work [5]. Plugging in (15) in (13) and bearing in mind that $d+g=n+1-k$, one obtains (2).

In order to prove (3) and (4), let us put

$$
\mathcal{V}_{C}(x, y):=\mathcal{W}_{C}(x, y)-\mathcal{M}_{n, n+1-k}(x, y)
$$

and note that $\mathcal{V}_{C}(x, y)=\sum_{w=d}^{n} \mathcal{V}_{C}^{(w)} x^{n-w} y^{w}$ with $\mathcal{V}_{C}^{(w)}=\mathcal{W}_{C}^{(w)}$ for $d \leq w \leq n-k$,

$$
\mathcal{V}_{C}^{(w)}=\mathcal{W}_{C}^{(w)}-\mathcal{M}_{n, n+1-k}^{(w)}=\mathcal{W}_{C}^{(w)}-\binom{n}{w} \sum_{i=0}^{w-n-1+k}(-1)^{i}\binom{w}{i}\left(q^{w-n+k-i}-1\right)
$$

for $d+g=n+1-k \leq w \leq n$. Making use of (2), one expresses

$$
\begin{aligned}
& \mathcal{V}_{C}(x, y)=(q-1) \sum_{i=0}^{g+g^{\perp}-2} c_{i}\binom{n}{d+i} \sum_{s=0}^{n-d-i}\binom{n-d-i}{s}(-1)^{n-d-i-s} x^{s} y^{n-s} \\
= & (q-1) \sum_{s=0}^{n-d}\left[\sum_{i=0}^{\min \left(n-d-s, g+g^{\perp}-2\right)} c_{i}\binom{n}{d+i}\binom{n-d-i}{s}(-1)^{n-d-i-s}\right] x^{s} y^{n-s},
\end{aligned}
$$

after changing the summation order. Setting $w:=n-s$, one obtains

$$
\mathcal{V}_{C}(x, y)=(q-1) \sum_{w=d}^{n}\left[\sum_{i=0}^{\min \left(w-d, n-d-d^{\perp}\right)} c_{i}\binom{n}{d+i}\binom{n-d-i}{n-w}(-1)^{w-d-i}\right] x^{n-w} y^{w} .
$$

Then

$$
\binom{n}{d+i}\binom{n-d-i}{n-w}=\binom{n}{w}\binom{w}{d+i}
$$

allows to concludes that

$$
\mathcal{V}_{C}^{(w)}=(q-1)\binom{n}{w} \sum_{i=0}^{\min \left(w-d, n-d-d^{\perp}\right)} c_{i}\binom{w}{d+i}(-1)^{w-d-i} \quad \text { for } \quad \forall d \leq w \leq n
$$

which proves (3), (4).
Towards (5), (6), let us introduce $z:=x-y$ and express (2) in the form

$$
\begin{equation*}
\mathcal{V}_{C}(y+z, y)=(q-1) \sum_{i=0}^{g+g^{\perp}-2} c_{i}\binom{n}{d+i} z^{n-d-i} y^{d+i} \tag{16}
\end{equation*}
$$

On the other hand,

$$
\begin{array}{r}
\mathcal{V}_{C}(y+z, y)=\sum_{w=d}^{n} \mathcal{V}_{C}^{(w)}(y+z)^{n-w} y^{w} \\
=\sum_{w=d}^{n} \sum_{s=0}^{n-w}\binom{n-w}{s} \mathcal{V}_{C}^{(w)} y^{n-s} z^{s}=\sum_{s=0}^{n-d}\left[\sum_{w=d}^{n-s}\binom{n-w}{s} \mathcal{V}_{C}^{(w)}\right] y^{n-s} z^{s}
\end{array}
$$

after changing the summation order. Comparing the coefficients of $y^{d+i} z^{n-d-i}$ in the left and right hand side of (16), one obtains

$$
\sum_{w=d}^{d+i}\binom{n-w}{n-d-i} \mathcal{V}_{C}^{(w)}=(q-1) c_{i}\binom{n}{d+i}
$$

whereas

$$
c_{i}=(q-1)^{-1}\binom{n}{d+i}^{-1} \sum_{w=d}^{d+i}\binom{n-w}{n-d-i} \mathcal{V}_{C}^{(w)}
$$

Combining with (14), one justifies (5) and (6). These formulae imply also that $(q-1)\binom{n}{d+i} c_{i} \in \mathbb{Z}$ are integers for all $0 \leq i \leq g+g^{\perp}-2$.

The substitution by (5), (6), (14) in (2) yields

$$
\begin{array}{r}
\mathcal{W}_{C}(x, y)=\mathcal{M}_{n, n+1-k}(x, y)+\sum_{i=0}^{g+g^{\perp}-2} \sum_{w=d}^{d+i}\binom{n-w}{n-d-i} \mathcal{W}_{C}^{(w)}(x-y)^{n-d-i} y^{d+i} \\
-\sum_{i=g}^{g+g^{\perp}-2} \sum_{w=d+g}^{d+i}\binom{n-w}{n-d-i} \mathcal{M}_{n, n+1-k}^{(w)}(x-y)^{n-d-i} y^{d+i} .
\end{array}
$$

One exchanges the summation order in the double sums towards

$$
\begin{array}{r}
\mathcal{W}_{C}(x, y)=\mathcal{M}_{n, n+1-k}(x, y)+\sum_{w=d}^{d+g+g^{\perp}-2} \mathcal{W}_{C}^{(w)} \sum_{i=w-d}^{g+g^{\perp}-2}\binom{n-w}{n-d-i}(x-y)^{n-d-i} y^{d+i} \\
-\sum_{w=d+g}^{d+g+g^{\perp}-2} \mathcal{M}_{n, n+1-k}^{(w)} \sum_{i=w-d}^{g+g^{\perp}-2}\binom{n-w}{n-d-i}(x-y)^{n-d-i} y^{d+i}
\end{array}
$$

Introducing $s:=d+i$, one obtains (7) with (8) and (9).

Comparing the coefficients of $x^{n-d} y^{d}$ in the left and right hand sides of (2), one obtains $\mathcal{W}_{C}^{(d)}=(q-1)\binom{n}{d} c_{0}$ for a linear code C of genus $g \geq 1$. We claim that $c_{0}<1$. To this end, note that for any d-tuple $\left\{i_{1}, \ldots, i_{d}\right\} \subset\{1, \ldots, n\}$, supporting a word $c \in C$ of weight d there are exactly $q-1$ words $c^{\prime} \in C$ with $\operatorname{Supp}\left(c^{\prime}\right)=$ $\operatorname{Supp}(c)=\left\{i_{1}, \ldots, i_{d}\right\}$. That is due to the fact that the columns $H_{i_{1}}, \ldots, H_{i_{d}}$ of an arbitrary parity check matrix H of C are of rank $d-1$ and there are no words of weight $\leq d-1$ in the right null space of the matrix $\left(H_{i_{1}} \ldots H_{i_{d}}\right)$. If ν is the number of the supports of the words of C of weight d then $\nu(q-1)=\mathcal{W}_{C}^{(d)}$, whereas

$$
c_{0}=\frac{\mathcal{W}_{C}^{(d)}}{(q-1)\binom{n}{d}}=\frac{\nu}{\binom{n}{d}} \leq 1
$$

If we assume that $c_{0}=1$ then any d-tuple of columns of H is linearly dependent. Bearing in mind that $\operatorname{rk} H=n-k$, one concludes that $d>n-k$. Combining with Singleton Bound $d \leq n-k+1$, one obtains $d=n-k+1$. That contradicts the assumption that C is not an MDS-code and proves that $c_{0}<1$ for any \mathbb{F}_{q}-linear code $C \subset \mathbb{F}_{q}^{n}$ of genus $g \geq 1$. Note that c_{0} can be interpreted as the probability for a d-tuple to support a word of weight d from C.

2. The Riemann Hypothesis Analogue and the formal self-duality of a

 linear code. Recall that a linear code $C \subset \mathbb{F}_{q}^{n}$ with dual $C^{\perp} \subset \mathbb{F}_{q}^{n}$ is formally self-dual if C and C^{\perp} have one and a same number $\mathcal{W}_{C}^{(w)}=\mathcal{W}_{C^{\perp}}^{(w)}$ of codewords of weight $0 \leq w \leq n$. Let us mention some trivial consequences of the formal self-duality of C. First of all, C and C^{\perp} have one and a same minimum distance $d=d(C)=d\left(C^{\perp}\right)=d^{\perp}$. Further, C and C^{\perp} have one and a same cardinality$$
q^{\operatorname{dim} C}=\sum_{w=0}^{n} \mathcal{W}_{C}^{(w)}=\sum_{w=0}^{n} \mathcal{W}_{C}^{(w)}=q^{\operatorname{dim} C^{\perp}}
$$

so that $k=\operatorname{dim} C=\operatorname{dim} C^{\perp}=k^{\perp}$ and the length $n=k+k^{\perp}=2 k$ is an even integer. The genera $g=k+1-d=g^{\perp}$ also coincide. Let $P_{C}(t)=\sum_{i=0}^{2 g} a_{i} t^{i}$ and $P_{C^{\perp}}=\sum_{i=0}^{2 g} a_{i}^{\perp} t^{i}$ be the zeta polynomials of C, respectively, of C^{\perp}. The consecutive comparison of the coefficients of $x^{n-d} y^{d}, x^{n-d-1} y^{d+1}, \ldots, x^{n-d-2 g} y^{d+2 g}$ from the homogeneous polynomial

$$
\begin{array}{r}
a_{0} \mathcal{M}_{2 k, d}(x, y)+a_{1} \mathcal{M}_{2 k, d+1}(x, y)+\ldots+a_{2 g} \mathcal{M}_{2 k, d+2 g}(x, y)=\mathcal{W}_{C}(x, y) \\
=\mathcal{W}_{C^{\perp}}(x, y)=a_{0}^{\perp} \mathcal{M}_{2 k, d}(x, y)+a_{1}^{\perp} \mathcal{M}_{2 k, d+1}(x, y)+\ldots+a_{2 g}^{\perp} \mathcal{M}_{2 k, d+2 g}(x, y)
\end{array}
$$

in x, y yields $a_{i}=a_{i}^{\perp}$ for $\forall 0 \leq i \leq 2 g$. It is clear that $a_{i}=a_{i}^{\perp}$ for $\forall 0 \leq i \leq 2 g$ suffices for $\mathcal{W}_{C}(x, y)=\mathcal{W}_{C^{\perp}}(x, y)$, so that the formal self-duality of C is tantamount to the coincidence $P_{C}(t)=P_{C^{\perp}}(t)$ of the zeta polynomials of C and C^{\perp}. Duursma has shown in Proposition 9.2 from [2] that Mac Williams identities for $\mathcal{W}_{C}^{(w)}$ and $\mathcal{W}_{C^{\perp}}^{(w)}$ are equivalent to the functional equation (10) for the zeta polynomials $P_{C}(t)$, $P_{C}(t)$ of $C, C^{\perp} \subset \mathbb{F}_{q}^{n}$ with genera g, g^{\perp}. Thus, an \mathbb{F}_{q}-linear code $C \subset \mathbb{F}_{q}^{n}$ is formally self-dual if and only if its zeta polynomial $P_{C}(t)$ satisfies the functional equation

$$
\begin{equation*}
P_{C}(t)=P_{C}\left(\frac{1}{q t}\right) q^{g} t^{2 g} \tag{17}
\end{equation*}
$$

of the Hasse-Weil polynomial of the function field of a curve of genus g over \mathbb{F}_{q}.

Proposition 2. If a linear code $C \subset \mathbb{F}_{q}^{n}$ satisfies the Riemann Hypothesis Analogue then C is formally self-dual, i.e., the zeta polynomial $P_{C}(t)$ of C is subject to the functional equation (17) of the Hasse-Weil polynomial of the function field of a curve of genus g over \mathbb{F}_{q}.
Proof. Let us assume that $P_{C}(t)$ of degree $r:=g+g^{\perp}$ satisfies the Riemann Hypothesis Analogue, i.e.,

$$
P_{C}(t)=a_{r} \prod_{j=1}^{r}\left(t-\alpha_{j}\right) \in \mathbb{Q}[t]
$$

for some $\alpha_{j} \in \mathbb{C}$ with $\left|\alpha_{j}\right|=\frac{1}{\sqrt{q}}$ for all $1 \leq j \leq r$. If α_{j} is a real root of $P_{C}(t)$ then $\alpha_{j}=\frac{\varepsilon}{\sqrt{q}}$ with $\varepsilon= \pm 1$. We claim that in the case of an even degree $r=2 m$, the zeta polynomial $P_{C}(t)$ is of the form

$$
\begin{equation*}
P_{C}(t)=a_{2 m} \prod_{i=1}^{m}\left(t-\alpha_{i}\right)\left(t-\overline{\alpha_{i}}\right) \tag{18}
\end{equation*}
$$

or of the form

$$
\begin{equation*}
P_{C}(t)=a_{2 m}\left(t^{2}-\frac{1}{q}\right) \prod_{i=1}^{m-1}\left(t-\alpha_{i}\right)\left(t-\overline{\alpha_{i}}\right) \tag{19}
\end{equation*}
$$

while for an odd degree $r=2 m+1$ one has

$$
\begin{equation*}
P_{C}(t)=a_{2 m+1}\left(t-\frac{\varepsilon}{\sqrt{q}}\right) \prod_{i=1}^{m}\left(t-\alpha_{i}\right)\left(t-\overline{\alpha_{i}}\right) \tag{20}
\end{equation*}
$$

for some $\varepsilon \in\{ \pm 1\}$. Indeed, if $\alpha_{i} \in \mathbb{C} \backslash \mathbb{R}$ is a complex, non-real root of $P_{C}(t) \in \mathbb{Q}[t] \subset$ $\mathbb{R}[t]$ then $\overline{\alpha_{i}} \neq \alpha_{i}$ is also a root of $P_{C}(t)$ and $P_{C}(t)$ is divisible by $\left(t-\alpha_{i}\right)\left(t-\overline{\alpha_{i}}\right)$. If $P_{C}(t)=0$ has three real roots $\alpha_{1}, \alpha_{2}, \alpha_{3} \in\left\{\frac{1}{\sqrt{q}},-\frac{1}{\sqrt{q}}\right\}$, then at least two of them coincide. For $\alpha_{1}=\alpha_{2}=\frac{\varepsilon}{\sqrt{q}}$ one has $\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right)=\left(t-\alpha_{1}\right)\left(t-\overline{\alpha_{1}}\right)$. Thus, $P_{C}(t)$ has at most two real roots, which are not complex conjugate (or, equivalently, equal) to each other and $P_{C}(t)$ is of the form (18), (19) or (20).

If $P_{C}(t)$ is of the form (18), then $P_{C}(t)=a_{2 m} \prod_{i=1}^{m}\left(t^{2}-2 \operatorname{Re}\left(\alpha_{i}\right)+\frac{1}{q}\right)$ and (10) reads as

$$
\begin{equation*}
P_{C^{\perp}}(t)=a_{2 m}\left[\prod_{i=1}^{m}\left(\frac{1}{q}-2 \operatorname{Re}\left(\alpha_{i}\right) t+t^{2}\right)\right] q^{g-m}=P_{C}(t) q^{g-m} \tag{21}
\end{equation*}
$$

after multiplying each of the factors $\frac{1}{q^{2} t^{2}}-\frac{2 \operatorname{Re}\left(\alpha_{i}\right)}{q t}+\frac{1}{q}$ by $q t^{2}$. If $D_{C}(t)$ is Duursma's reduced polynomial of C and $D_{C^{\perp}}(t)$ is Duursma's reduced polynomial of C^{\perp}, then $(1-t)(1-q t) D_{C^{\perp}}(t)+t^{g^{\perp}}=P_{C^{\perp}}(t)=P_{C}(t) q^{g-m}=(1-t)(1-q t) q^{g-m} D_{C}(t)+q^{g-m} t^{g}$ implies that

$$
(1-t)(1-q t)\left[D_{C^{\perp}}(t)-q^{g-m} D_{C}(t)\right]=q^{g-m} t^{g}-t^{g^{\perp}}
$$

Plugging in $t=1$, one concludes that $q^{g-m}=1$, whereas $g=m$. As a result, $g+g^{\perp}=2 m=2 g$ specifies that $g=g^{\perp}$ and (21) yields $P_{C}(t)=P_{C^{\perp}}(t)$, which is equivalent to the formal self-duality of C.

If $P_{C}(t)$ is of the form (19) then (10) provides

$$
\begin{equation*}
P_{C^{\perp}}(t)=a_{2 m}\left(\frac{1}{q}-t^{2}\right)\left[\prod_{i=1}^{m-1}\left(\frac{1}{q}-2 \operatorname{Re}\left(\alpha_{i}\right) t+t^{2}\right)\right] q^{g-m}=-P_{C}(t) q^{g-m} \tag{22}
\end{equation*}
$$

Expressing by Duursma's reduced polynomials $D_{C}(t), D_{C^{\perp}}(t)$, one obtains

$$
\begin{array}{r}
(1-t)(1-q t) D_{C^{\perp}}(t)+t^{g^{\perp}}=P_{C^{\perp}}(t)= \\
-P_{C}(t) q^{g-m}=-(1-t)(1-q t) q^{g-m} D_{C}(t)-q^{g-m} t^{g}
\end{array}
$$

whereas

$$
(1-t)(1-q t)\left[D_{C^{\perp}}(t)+q^{g-m} D_{C}(t)\right]=-t^{g^{\perp}}-q^{g-m} t^{g}
$$

The substitution $t=1$ in the last equality of polynomials yields $-1-q^{g-m}=0$, which is an absurd, justifying that a zeta polynomial $P_{C}(t)$, subject to the Riemann Hypothesis Analogue cannot be of the form (19).

If $P_{C}(t)$ is of odd degree $2 m+1$, then (20) and (10) yield

$$
\begin{array}{r}
P_{C^{\perp}}(t)=-\varepsilon \sqrt{q} a_{2 m+1}\left(t-\frac{\varepsilon}{\sqrt{q}}\right)\left[\prod_{i=1}^{m}\left(\frac{1}{q}-2 \operatorname{Re}\left(\alpha_{i}\right) t+t^{2}\right)\right] q^{g-m-1} \\
=-\varepsilon \sqrt{q} P_{C}(t) q^{g-m-1}
\end{array}
$$

after multiplying $\frac{1}{q t}-\frac{\varepsilon}{\sqrt{q}}$ by $-\frac{\varepsilon}{\sqrt{q}} q t$ and each $\frac{1}{q^{2} t^{2}}-\frac{2 \operatorname{Re}\left(\alpha_{i}\right)}{q t}+\frac{1}{q}$ by $q t^{2}$. Expressing by Duursma's reduced polynomials

$$
\begin{array}{r}
(1-t)(1-q t) D_{C^{\perp}}(t)+t^{g^{\perp}}=P_{C^{\perp}}(t)=-\varepsilon q^{g-m-\frac{1}{2}} P_{C}(t) \\
\quad=-\varepsilon q^{g-m-\frac{1}{2}}(1-t)(1-q t) D_{C}(t)-\varepsilon q^{g-m-\frac{1}{2}} t^{g}
\end{array}
$$

one obtains

$$
(1-t)(1-q t)\left[D_{C^{\perp}}(t)+\varepsilon q^{g-m-\frac{1}{2}} D_{C}(t)\right]=-t^{g^{\perp}}-\varepsilon q^{g-m-\frac{1}{2}} t^{g}
$$

The substitution $t=1$ implies $-1-\varepsilon q^{g-m-\frac{1}{2}}=0$, which is an absurd, as far as $q^{x}=1$ if and only if $x=0$, while $g-m-\frac{1}{2}$ cannot vanish for integers g, m. Thus, none zeta polynomial of odd degree satisfies the Riemann Hypothesis Analogue.

Proposition 3. The following conditions are equivalent for a linear code $C \subset \mathbb{F}_{q}^{n}$:
(i) C is formally self-dual, i.e., the zeta polynomial $P_{C}(t)$ of C satisfies the functional equation

$$
P_{C}(t)=P_{C}\left(\frac{1}{q t}\right) q^{g} t^{2 g}
$$

of the Hasse-Weil polynomial of the function field of a curve of genus g over \mathbb{F}_{q};
(ii) Duursma's reduced polynomial $D_{C}(t)=\sum_{i=0}^{g+g^{\perp}-2} c_{i} t^{i}$ satisfies the functional equation

$$
\begin{equation*}
D_{C}(t)=D_{C}\left(\frac{1}{q t}\right) q^{g-1} t^{2 g-2} \tag{23}
\end{equation*}
$$

of the Hasse-Weil polynomial of the function field of a curve of genus $g-1$ over \mathbb{F}_{q};
(iii) the coefficients of Duursma's reduced polynomial $D_{C}(t)=\sum_{i=0}^{g+g^{\perp}-2} c_{i} t^{i}$ of C satisfy the equalities

$$
\begin{equation*}
c_{g-1+i}=q^{i} c_{g-1-i} \quad \text { for } \quad \forall 1 \leq i \leq g-1 \tag{24}
\end{equation*}
$$

(iv) the dual code $C^{\perp} \subset \mathbb{F}_{q}^{n}$ of C has dimension $\operatorname{dim}_{\mathbb{F}_{q}} C^{\perp}=\operatorname{dim}_{\mathbb{F}_{q}} C=k$, genus $g\left(C^{\perp}\right)=g(C)=g$ and the homogeneous weight enumerator of C is

$$
\begin{equation*}
\mathcal{W}_{C}(x, y)=\mathcal{M}_{2 k, k+1}(x, y)+\sum_{j=0}^{g-1} c_{g-1-j} w_{j}(x, y) \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{j}(x, y):=(q-1)\binom{2 k}{k+j}\left[(x-y)^{k+j} y^{k-j}+q^{j}(x-y)^{k-j} y^{k+j}\right] \tag{26}
\end{equation*}
$$

for $1 \leq j \leq g-1$.

$$
\begin{equation*}
w_{0}(x, y):=(q-1)\binom{2 k}{k}(x-y)^{k} y^{k} \tag{27}
\end{equation*}
$$

(v) the dual code $C^{\perp} \subset \mathbb{F}_{q}^{n}$ of C has dimension $\operatorname{dim}_{\mathbb{F}_{q}} C^{\perp}=\operatorname{dim}_{\mathbb{F}_{q}} C=k$, genus $g\left(C^{\perp}\right)=g(C)=g$ and the homogeneous weight enumerator

$$
\begin{equation*}
\mathcal{W}_{C}(x, y)=\mathcal{M}_{2 k, k+1}(x, y)+\sum_{w=d}^{k-1} \mathcal{W}_{C}^{(w)} \varphi_{w}(x, y)+\mathcal{W}_{C}^{(k)}(x-y)^{k} y^{k} \tag{28}
\end{equation*}
$$

with
$\varphi_{w}(x, y):=\sum_{s=w}^{k-1}\binom{2 k-w}{s-w}\left[(x-y)^{2 k-s} y^{s}+q^{k-s}(x-y)^{s} y^{2 k-s}\right]+\binom{2 k-w}{k}(x-y)^{k} y^{k}$
for $d \leq w \leq k-1$, so that C can be obtained from an MDS-code of the same length $2 k$ and dimension k by removing and adjoining appropriate words, depending explicitly on the numbers $\mathcal{W}_{C}^{(d)}, \mathcal{W}_{C}^{(d+1)}, \ldots, \mathcal{W}_{C}^{(k)}$ of the codeword of C of weight $\leq k=\operatorname{dim}_{\mathbb{F}_{q}} C$.
Proof. Towards $(i) \Rightarrow(i i)$, one substitutes by $P_{C}(t)=(1-t)(1-q t) D_{C}(t)+t^{g}$ in (17), in order to obtain

$$
(1-t)(1-q t) D_{C}(t)+t^{g}=(q t-1)(t-1)\left[D_{C}\left(\frac{1}{q t}\right) q^{g-1} t^{2 g-2}\right]+t^{g}
$$

whereas (23).
Conversely, $(i i) \Rightarrow(i)$ is justified by

$$
\begin{array}{r}
P_{C}(t)=(1-t)(1-q t) D_{C}(t)+t^{g}= \\
=(t-1)(q t-1)\left[D_{C}\left(\frac{1}{q t}\right) q^{g-1} t^{2 g-2}\right]+t^{g} \\
=\left[\left(1-\frac{1}{t}\right) t\right]\left[\left(1-\frac{1}{q t}\right) q t\right]\left[D_{C}\left(\frac{1}{q t}\right) q^{g-1} t^{2 g-2}\right]+\frac{q^{g} t^{2 g}}{q^{g} t^{g}} \\
=\left[\left(1-\frac{q}{q t}\right)\left(1-\frac{1}{q t}\right) D_{C}\left(\frac{1}{q t}\right)+\frac{1}{(q t)^{g}}\right] q^{g} t^{2 g}=P_{C}\left(\frac{1}{q t}\right) q^{g} t^{2 g} .
\end{array}
$$

That proves the equivalence $(i) \Leftrightarrow(i i)$.

Towards $(i i) \Leftrightarrow(i i i)$, note that the functional equation of $D_{C}(t)$ reads as

$$
\begin{aligned}
\sum_{i=0}^{2 g-2} c_{i} t^{i}=D_{C}(t) & =D_{C}\left(\frac{1}{q t}\right) q^{g-1} t^{2 g-2}=\left(\sum_{i=0}^{2 g-2} \frac{c_{i}}{q^{i} t^{i}}\right) q^{g-1} t^{2 g-2} \\
& =\sum_{i=0}^{2 g-2} c_{i} q^{g-1-i} t^{2 g-2-i}=\sum_{j=0}^{2 g-2} c_{2 g-2-j} q^{-g+1+j} t^{j}
\end{aligned}
$$

Comparing the coefficients of the left-most and the right-most side, one expresses the formal self-duality of C by the relations

$$
c_{j}=q^{-g+1+j} c_{2 g-2-j} \quad \text { for } \quad \forall 0 \leq j \leq 2 g-2
$$

Let $i:=g-1-j$, in order to transform the above conditions to

$$
\begin{equation*}
c_{g-1+i}=q^{i} c_{g-1-i} \quad \text { for } \forall-g+1 \leq i \leq g-1 \tag{30}
\end{equation*}
$$

For any $-g+1 \leq i \leq-1$ note that $c_{g-1+i}=q^{i} c_{g-1-i}$ is equivalent to $c_{g-1-i}=$ $q^{-i} c_{g-1+i}$ and follows from (30) with $1 \leq-i \leq g-1$. In the case of $i=0$, (30) holds trivially and (30) amounts to (24). That proves the equivalence of (ii) with (iii).

Towards $(i i i) \Rightarrow(i v)$, one introduces a new variable $z:=x-y$ and expresses (2) in the form

$$
\begin{aligned}
\mathcal{V}_{C}(y+z, y): & =\mathcal{W}_{C}(y+z, y)-\mathcal{M}_{2 k, k+1}(y+z, y)=(q-1) \sum_{i=0}^{2 g-2} c_{i}\binom{2 k}{d+i} y^{d+i} z^{2 k-d-i} \\
& =(q-1) \sum_{i=0}^{g-1} c_{i}\binom{2 k}{d+i} y^{d+i} z^{2 k-d-i}+(q-1) \sum_{i=g}^{2 g-2} c_{i}\binom{2 k}{d+i} y^{d+i} z^{2 k-d-i}
\end{aligned}
$$

Let us change the summation index of the first sum to $0 \leq j:=g-1-i \leq g-1$, put $1 \leq j:=i-g+1 \leq g-1$ in the second sum and make use of $d+g=k+1$, in order to obtain

$$
\begin{equation*}
=(q-1) \sum_{j=0}^{g-1} c_{g-1-j}\binom{2 k}{k-j} y^{k-j} z^{k+j}+(q-1) \sum_{j=1}^{g-1} c_{j+g-1}\binom{2 k}{k+j} y^{k+j} z^{k-j} . \tag{31}
\end{equation*}
$$

Extracting the term with $j=0$ from the first sum, one expresses

$$
\begin{array}{r}
\mathcal{V}_{C}(y+z, y)=(q-1) c_{g-1}\binom{2 k}{k} y^{k} z^{k} \\
+\sum_{j=1}^{g-1}(q-1)\binom{2 k}{k+j}\left[c_{g-1-j} y^{k-j} z^{k+j}+c_{g-1+j} y^{k+j} z^{k-j}\right] \tag{32}
\end{array}
$$

for an arbitrary \mathbb{F}_{q}-linear code $C \subset \mathbb{F}_{q}^{n}$. If C is formally self-dual, then plugging in by (24) in (32) and making use of (26), (27), one gets

$$
\mathcal{V}_{C}(y+z, y)=\sum_{j=0}^{g-1} c_{g-1-j} w_{j}(y+z, y)
$$

Substituting $z:=x-y$ and $\mathcal{V}_{C}(x, y):=\mathcal{W}_{C}(x, y)-\mathcal{M}_{2 k, k+1}(x, y)$, one derives the equality (25) for the homogeneous weight enumerator of a formally self-dual linear code $C \subset \mathbb{F}_{q}^{2 k}$.

In order to justify that (iv) suffices for the formal self-duality of C, we use that (25) with (26) and (27) is equivalent to

$$
\begin{array}{r}
\mathcal{V}_{C}(y+z, y)=\sum_{j=1}^{g-1} c_{g-1-j}(q-1)\binom{2 k}{k+j} y^{k-j} z^{k+j} \tag{33}\\
+c_{g-1}(q-1)\binom{2 k}{k} y^{k} z^{k}+\sum_{j=1}^{g-1} c_{g-1-j}(q-1)\binom{2 k}{k+j} y^{k+j} z^{k-j}
\end{array}
$$

Comparing the coefficients of $y^{k+j} z^{k-j}$ with $1 \leq j \leq g-1$ from (32) and (33), one concludes that

$$
c_{g-1+j}=c_{g-1-j} q^{j} \quad \text { for } \quad \forall 1 \leq j \leq g-1
$$

These are exactly the relations (24) and imply the formal self-duality of C.
Towards $(i v) \Leftrightarrow(v)$, it suffices to put $\mathcal{E}(x, y):=\sum_{j=0}^{g-1} c_{g-1-j} w_{j}(x, y)$ and to derive that $\mathcal{E}(x, y)=\sum_{w=d}^{k-1} \mathcal{W}_{C}^{(w)} \varphi_{w}(x, y)+\mathcal{W}_{C}^{(k)}(x-y)^{k} y^{k}$. More precisely, introducing $i:=g-1-j$, one expresses

$$
\begin{array}{r}
\mathcal{E}(x, y)=\sum_{i=0}^{g-2} c_{i}(q-1)\binom{2 k}{d+i}\left[(x-y)^{2 k-d-i} y^{d+i}+q^{g-1-i}(x-y)^{d+i} y^{2 k-d-i}\right] \\
+c_{g-1}(q-1)\binom{2 k}{k}(x-y)^{k} y^{k}
\end{array}
$$

Plugging in by (5) and exchanging the summation order, one gets

$$
\begin{array}{r}
\mathcal{E}(x, y)=\sum_{w=d}^{k-1} \sum_{i=w-d}^{g-2}\binom{2 k-w}{d+i-w} \mathcal{W}_{C}^{(w)}\left[(x-y)^{2 k-d-i} y^{d+i}+q^{g-1-i}(x-y)^{d+i} y^{2 k-d-i}\right] \\
+\sum_{w=d}^{k}\binom{2 k-w}{k} \mathcal{W}_{C}^{(w)}(x-y)^{k} y^{k}
\end{array}
$$

Introducing $s:=d+i$ and extracting $\mathcal{W}_{C}^{(w)}$ as coefficients, one obtains

$$
\mathcal{E}(x, y)=\sum_{w=d}^{k-1} \mathcal{W}_{C}^{(w)} \varphi_{w}(x, y)+\mathcal{W}_{C}^{(k)}(x-y)^{k} y^{k}
$$

Let $C \subset \mathbb{F}_{q}^{n}$ be an \mathbb{F}_{q}-linear code of genus g, whose dual $C^{\perp} \subset \mathbb{F}_{q}^{n}$ is of genus g^{\perp}. In [1], Dodunekov and Landgev introduce the near-MDS linear codes C as the ones with zeta polynomial $P_{C}(t) \in \mathbb{Q}[t]$ of degree $\operatorname{deg} P_{C}(t):=g+g^{\perp}=2$. Thus, C is a near-MDS code if and only if it has constant Duursma's reduced polynomial $D_{C}(t)=c_{0} \in \mathbb{Q}$. Kim an Hyun prove in [5]) that a near-MDS code C satisfies the Riemann Hypothesis Analogue exactly when

$$
\frac{1}{(\sqrt{q}+1)^{2}} \leq c_{0} \leq \frac{1}{(\sqrt{q}-1)^{2}}
$$

The next proposition characterizes the formally-self-dual codes $C \subset \mathbb{F}_{q}^{n}$ of genus 2, which satisfy the Riemann Hypothesis Analogue. By Proposition 3 (iii), C is
a formally self-dual linear code of genus 2 exactly when its Duursma's reduced polynomial is

$$
D_{C}(t)=c_{0}+c_{1} t+q c_{0} t^{2}
$$

for some $c_{0}, c_{1} \in \mathbb{Q}, 0<c_{0}<1$.
Proposition 4. A formally self-dual linear code $C \subset \mathbb{F}_{q}^{2 k}$ with a quadratic $D u$ ursma's reduced polynomial $D_{C}(t)=c_{0}+c_{1} t+q c_{0} t^{2} \in \mathbb{Q}[t], 0<c_{0}<1$ satisfies the Riemann Hypothesis Analogue if and only if

$$
\begin{gather*}
{\left[(q+1) c_{0}+c_{1}\right]^{2} \geq 4 c_{0},} \tag{34}\\
q-4 \sqrt{q}+1 \leq \frac{c_{1}}{c_{0}} \leq q+4 \sqrt{q}+1 \tag{35}\\
c_{1} \leq \min \left(\frac{1}{(\sqrt{q}-1)^{2}}-2 \sqrt{q} c_{0}, \frac{1}{(\sqrt{q}+1)^{2}}+2 \sqrt{q} c_{0}\right) \tag{36}
\end{gather*}
$$

Proof. According to (18) from the proof of Proposition 2, the zeta polynomial

$$
P_{C}(t)=(1-t)(1-q t)\left(q c_{0} t^{2}+c_{1} t+c_{0}\right)+t^{2}
$$

satisfies the Riemann Hypothesis Analogue if and only if there exist $\varphi, \psi \in[0,2 \pi)$ with

$$
P_{C}(t)=q^{2} c_{0}\left(t-\frac{e^{i \varphi}}{\sqrt{q}}\right)\left(t-\frac{e^{-i \varphi}}{\sqrt{q}}\right)\left(t-\frac{e^{i \psi}}{\sqrt{q}}\right)\left(t-\frac{e^{-i \psi}}{\sqrt{q}}\right) .
$$

Comparing the coefficients of t and t^{2} from $P_{C}(t)$, one expresses this condition by the equalities

$$
\begin{array}{r}
c_{1}-(q+1) c_{0}=-2 \sqrt{q} c_{0}[\cos (\varphi)+\cos (\psi)] \\
1+2 q c_{0}-(q+1) c_{1}=2 q c_{0}[1+2 \cos (\varphi) \cos (\psi)]
\end{array}
$$

These are equivalent to

$$
\cos (\varphi)+\cos (\psi)=\frac{(q+1) c_{0}-c_{1}}{2 \sqrt{q} c_{0}}
$$

and

$$
\cos (\varphi) \cos (\psi)=\frac{1-(q+1) c_{1}}{4 q c_{0}}
$$

In other words, the quadratic equation

$$
f(t):=t^{2}+\frac{c_{1}-(q+1) c_{0}}{2 \sqrt{q} c_{0}} t+\frac{1-(q+1) c_{1}}{4 q c_{0}} \in \mathbb{Q}[t]
$$

has roots $-1 \leq t_{1}=\cos (\varphi) \leq t_{2}=\cos (\psi) \leq 1$. This, in turn, holds exactly when the discriminant

$$
\begin{equation*}
D(f)=\left[\frac{c_{1}-(q+1) c_{0}}{2 \sqrt{q} c_{0}}\right]^{2}-\frac{4\left[1-(q+1) c_{1}\right]}{4 q c_{0}} \geq 0 \tag{37}
\end{equation*}
$$

is non-negative, the vertex

$$
\begin{equation*}
-1 \leq \frac{(q+1) c_{0}-c_{1}}{4 \sqrt{q} c_{0}} \leq 1 \tag{38}
\end{equation*}
$$

belongs to the segment $[-1,1]$ and the values of $f(t)$ at the ends of this segment are non-negative,

$$
\begin{equation*}
f(1) \geq 0, \quad f(-1) \geq 0 \tag{39}
\end{equation*}
$$

The equivalence of (37) to (34) is straightforward. Since C is of minimum distance $d=k-1$ and $\mathcal{W}_{C}^{(k-1)}=(q-1)\binom{2 k}{k-1} c_{0} \in \mathbb{N}$, the constant term $c_{0}>0$ of $D_{C}(t)$ is a positive rational number and one can multiply (38) by $-4 \sqrt{q} c_{0}<0$, add $(q+1) c_{0}$ to all the terms and rewrite it in the form

$$
(q-4 \sqrt{q}+1) c_{0} \leq c_{1} \leq(q+4 \sqrt{q}+1) c_{0} .
$$

Making use of $c_{0}>0$, one observes that the above inequalities are tantamount to (35). Finally,
$4 q c_{0} f(1)=4 q c_{0}+2 \sqrt{q}\left[c_{1}-(q+1) c_{0}\right]+1-(q+1) c_{1}=\left(-c_{1}-2 \sqrt{q} c_{0}\right)(\sqrt{q}-1)^{2}+1 \geq 0$ and
$4 q c_{0} f(-1)=4 q c_{0}-2 \sqrt{q}\left[c_{1}-(q+1) c_{0}\right]+1-(q+1) c_{1}=\left(2 \sqrt{q} c_{0}-c_{1}\right)(\sqrt{q}+1)^{2}+1 \geq 0$ can be expressed as (36).
3. Duursma's reduced polynomial of a function field. Let $F=\mathbb{F}_{q}(X)$ be the function field of a curve X of genus g over \mathbb{F}_{q} and $h_{g}:=h(F)$ be the class number of F, i.e., the number of the linear equivalence classes of the divisors of F of degree 0 . The present section introduces an additive decomposition of the Hasse-Weil polynomial $L_{F}(t) \in \mathbb{Z}[t]$ of F, which associates to F a sequence $\left\{h_{i}\right\}_{i=1}^{g-1}$ of virtual class numbers h_{i} of function fields of curves of genus i over \mathbb{F}_{q}.

Lemma 3.1. The following conditions are equivalent for a polynomial $L_{g}(t) \in \mathbb{Q}[t]$ of degree $\operatorname{deg} L_{g}(t)=2 g$:
(i) $L_{g}(t)$ satisfies the functional equation

$$
L_{g}(t)=L_{g}\left(\frac{1}{q t}\right) q^{g} t^{2 g}
$$

of the Hasse-Weil polynomial of the function field of a curve of genus g over \mathbb{F}_{q};

$$
\begin{equation*}
L_{g-1}(t):=\frac{L_{g}(t)-L_{g}(1) t^{g}}{(1-t)(1-q t)} \tag{ii}
\end{equation*}
$$

is a polynomial with rational coefficients of degree $2 g-2$, satisfying the functional equation

$$
L_{g-1}(t)=L_{g-1}\left(\frac{1}{q t}\right) q^{g-1} t^{2 g-2}
$$

of the Hasse-Weil polynomial of the function field of a curve of genus $g-1$ over \mathbb{F}_{q};

$$
\begin{equation*}
L_{g}(t)=\sum_{i=0}^{g} h_{i} t^{i}(1-t)^{g-i}(1-q t)^{g-i} \tag{iii}
\end{equation*}
$$

for some rational numbers $h_{i} \in \mathbb{Q}$.
Proof. Towards $(i) \Rightarrow(i i)$, let us note that the polynomial $M_{g}(t):=L_{g}(t)-L_{g}(1) t^{g}$ vanishes at $t=1$, so that it is divisible by $1-t$. Further,

$$
M_{g}(t)=L_{g}(t)-L_{g}(1) t^{g}=\left[L_{g}\left(\frac{1}{q t}\right)-\frac{L_{g}(1)}{q^{g} t^{g}}\right] q^{g} t^{2 g}=M_{g}\left(\frac{1}{q t}\right) q^{g} t^{2 g}
$$

satisfies the functional equation of the Hasse-Weil polynomial of the function field of a curve of genus g over \mathbb{F}_{q}. In particular, $M_{g}\left(\frac{1}{q}\right)=M_{g}(1) \frac{q^{g}}{q^{2 g}}=0$ and $M_{g}(t)$ is
divisible by the linear polynomial $q\left(\frac{1}{q}-t\right)=1-q t$, which is relatively prime to $1-t$ in $\mathbb{Q}[t]$. As a result,

$$
L_{g-1}(t):=\frac{M_{g}(t)}{(1-t)(1-q t)} \in \mathbb{Q}[t]
$$

is a polynomial of degree $\operatorname{deg} L_{g-1}(t)=2 g-2$. Straightforwardly,

$$
\begin{array}{r}
L_{g-1}\left(\frac{1}{q t}\right) q^{g-1} t^{2 g-2}=\left[M_{g}\left(\frac{1}{q t}\right):\left(1-\frac{1}{q t}\right)\left(1-\frac{1}{t}\right)\right] q^{g-1} t^{2 g-2} \\
=\frac{M_{g}(t)}{q t^{2}}: \frac{(q t-1)(t-1)}{q t^{2}}=\frac{M_{g}(t)}{(1-t)(1-q t)}=L_{g-1}(t)
\end{array}
$$

satisfies the functional equation of the Hasse-Weil polynomial of the function field of a curve of genus $g-1$ over \mathbb{F}_{q}.

The implication $(i i) \Rightarrow(i)$ follows from the functional equation of $L_{g-1}(t)$, applied to $L_{g}(t)=(1-t)(1-q t) L_{g-1}(t)+L_{g}(1) t^{g}$. Namely,

$$
\begin{array}{r}
L_{g}\left(\frac{1}{q t}\right) q^{g} t^{2 g} \\
=\left[\left(1-\frac{1}{q t}\right) q t\right]\left[\left(1-\frac{1}{t}\right) t\right]\left[L_{g-1}\left(\frac{1}{q t}\right) q^{g-1} t^{2 g-2}\right]+\frac{L_{g}(1)}{q^{g} t^{g}} q^{g} t^{2 g} \\
=(q t-1)(t-1) L_{g-1}(t)+L_{g}(1) t^{g} \\
=(1-t)(1-q t) L_{g-1}(t)+L_{g}(1) t^{g}=L_{g}(t)
\end{array}
$$

We derive $(i) \Rightarrow(i i i)$ by an induction on g, making use of (ii). More precisely, for $g=1$ one has $L_{0}(t):=\frac{L_{1}(t)-L_{1}(1) t}{(1-t)(1-q t)} \in \mathbb{Q}[t]$ of degree $\operatorname{deg} L_{0}(t)=0$ or $L_{0} \in \mathbb{Q}$. Then

$$
L_{1}(t)=(1-t)(1-q t) L_{0}+L_{1}(1) t=\sum_{i=0}^{1} h_{i} t^{i}(1-t)^{1-i}(1-q t)^{1-i}
$$

with $h_{0}:=L_{0} \in \mathbb{Q}$ and $h_{1}:=L_{1}(1) \in \mathbb{Q}$. In the general case, (ii) provides a polynomial

$$
L_{g-1}(t):=\frac{L_{g}(t)-L_{g}(1) t^{g}}{(1-t)(1-q t)}
$$

subject to the functional equation

$$
L_{g-1}(t)=L_{g-1}\left(\frac{1}{q t}\right) q^{g-1} t^{2 g-2}
$$

of the Hasse-Weil polynomial of the function field of a curve of genus $g-1$ over \mathbb{F}_{q}. By the inductional hypothesis, there exist $h_{i}^{\prime} \in \mathbb{Q}, 0 \leq i \leq g-1$ with

$$
L_{g-1}(t)=\sum_{i=0}^{g-1} h_{i}^{\prime} t^{i}(1-t)^{g-1-i}(1-q t)^{g-1-i}
$$

Then

$$
L_{g}(t)=(1-t)(1-q t) L_{g-1}(t)+L_{g}(1) t^{g}=\sum_{i=0}^{g} h_{i} t^{i}(1-t)^{g-i}(1-q t)^{g-i}
$$

with $h_{i}:=h_{i}^{\prime} \in \mathbb{Q}$ for $0 \leq i \leq g-1$ and $h_{g}:=L_{g}(1) \in \mathbb{Q}$ justifies $(i) \Rightarrow(i i i)$.

Towards $(i i i) \Rightarrow(i)$, let us assume that $L_{g}(t)=\sum_{i=0}^{g} h_{i} t^{i}(1-t)^{g-i}(1-q t)^{g-i}$. Then

$$
\begin{array}{r}
L\left(\frac{1}{q t}\right) q^{g} t^{2 g}=\left[\sum_{i=0}^{g} \frac{h_{i}}{q^{i} t^{i}}\left(1-\frac{1}{q t}\right)^{g-i}\left(1-\frac{1}{t}\right)^{g-i}\right] q^{g} t^{2 g} \\
=\sum_{i=0}^{g}\left[\frac{h_{i}}{q^{i} t^{i}} q^{i} t^{2 i}\right]\left[\left(1-\frac{1}{q t}\right) q t\right]^{g-i}\left[\left(1-\frac{1}{t}\right) t\right]^{g-i} \\
=\sum_{i=0}^{g} h_{i} t^{i}(q t-1)^{g-i}(t-1)^{g-i}=L_{g}(t)
\end{array}
$$

satisfies the functional equation of the Hasse-Weil polynomial of the function field of a curve of genus g over \mathbb{F}_{q}.

Proposition 5. Let $F=\mathbb{F}_{q}(X)$ be the function field of a smooth irreducible curve $X / \mathbb{F}_{q} \subset \mathbb{P}^{N}\left(\overline{\mathbb{F}_{q}}\right)$ of genus g, defined over \mathbb{F}_{q}, with $h(F)$ linear equivalence classes of divisors of degree $0, \mathcal{A}_{i}$ effective divisors of degree $i \geq 0$, Hasse-Weil polynomial $L_{F}(t) \in \mathbb{Q}[t]$ and Duursma's reduced polynomial $D_{F}(t) \in \mathbb{Q}[t]$, defined by the equality

$$
L_{F}(t)=(1-t)(1-q t) D_{F}(t)+h(F) t^{g} .
$$

Then:
(i) $D_{F}(t)=\sum_{i=0}^{g-2} \mathcal{A}_{i}\left(t^{i}+q^{g-1-i} t^{2 g-2-i}\right)+\mathcal{A}_{g-1} t^{g-1} \in \mathbb{Z}[t]$ is a polynomial with integral coefficients, which is uniquely determined by $\mathcal{A}_{0}=1, \mathcal{A}_{1}, \ldots, \mathcal{A}_{g-1}$;
(ii) the equality

$$
\begin{equation*}
\frac{D_{F}(t)}{(1-t)(1-q t)}=\sum_{i=0}^{\infty} \mathcal{B}_{i} t^{i} \tag{40}
\end{equation*}
$$

of formal power series of t holds for

$$
\begin{equation*}
\mathcal{B}_{i}=\sum_{j=0}^{i} \mathcal{A}_{j}\left(\frac{q^{i-j+1}-1}{q-1}\right) \tag{41}
\end{equation*}
$$

for $0 \leq i \leq g-1$,

$$
\begin{equation*}
\mathcal{B}_{i}=\sum_{j=0}^{g-1} \mathcal{A}_{j}\left(\frac{q^{i-j+1}-1}{q-1}\right)+\sum_{j=g}^{i} \mathcal{A}_{2 g-2-j}\left(\frac{q^{i-g+2}-q^{j-g+1}}{q-1}\right) \tag{42}
\end{equation*}
$$

for $g \leq i \leq 2 g-3$,

$$
\begin{equation*}
\mathcal{B}_{i}=D_{F}(1)\left(\frac{q^{i-g+2}-1}{q-1}\right) \tag{43}
\end{equation*}
$$

for $i \geq 2 g-2$;
(iii) the natural numbers $\mathcal{B}_{i}, i \geq 0$ from (ii) satisfy the relations

$$
\begin{gather*}
\mathcal{B}_{i}=q^{i-g+2} \mathcal{B}_{2 g-4-i}+D_{F}(1)\left(\frac{q^{i-g+2}-1}{q-1}\right) \quad \text { for } \quad \forall g-1 \leq i \leq 2 g-4 \tag{44}\\
\mathcal{B}_{i}=D_{F}(1)\left(\frac{q^{i-g+2}-1}{q-1}\right) \quad \text { for } \quad \forall i \geq 2 g-3 \tag{45}
\end{gather*}
$$

(iv) the number $h(F)$ of the linear equivalence classes of the divisors of F of degree 0 satisfies the inequilities

$$
(\sqrt{q}-1)^{2 g} \leq h(F) \leq(\sqrt{q}+1)^{2 g}
$$

Proof. (i) By Theorem 4.1.6. (ii) and Theorem 4.1.11 from [6], the Hasse-Weil zeta function of F is the generating function

$$
Z_{F}(t)=\frac{L_{F}(t)}{(1-t)(1-q t)}=\sum_{j=0}^{\infty} \mathcal{A}_{j} t^{j}
$$

of the sequence $\left\{\mathcal{A}_{i}\right\}_{i=0}^{\infty}$. According to Lemma 3.1 and $L_{F}(1)=h(F)$,

$$
D_{F}(t):=\frac{L_{F}(t)-h(F) t^{g}}{(1-t)(1-q t)}
$$

is a polynomial of $\operatorname{deg} D_{F}(t)=2 g-2$, subject to the functional equation of the Hasse-Weil polynomial of the function field of a curve of genus $g-1$ over \mathbb{F}_{q}. Thus,

$$
\begin{equation*}
Z_{F}(t)=D_{F}(t)+\frac{h(F) t^{g}}{(1-t)(1-q t)}=\sum_{j=0}^{\infty} \mathcal{A}_{j} t^{j} \tag{46}
\end{equation*}
$$

Let $l(G)$ is the dimension of the space $H^{0}\left(X, \mathcal{O}_{X}(G)\right)$ of the global holomorphic sections of the line bundle $\mathcal{O}_{X}(G) \rightarrow X$, associated with a divisor $G \in \operatorname{Div}(F)$. Riemann-Roch Theorem asserts that

$$
l(G)=l\left(K_{X}-G\right)+\operatorname{deg}(G)-g+1
$$

for a canonical divisor K_{X} of X. For any $j \geq g-1$, suppose that $G_{1}, \ldots, G_{h(F)} \in$ $\operatorname{Div}(F)$ is a complete set of representatives of the linear equivalence classes of the divisors of F of degree j. Then

$$
\begin{equation*}
\mathcal{A}_{j}=\sum_{\nu=1}^{h(F)} \frac{q^{l\left(G_{\nu}\right)}-1}{q-1}=q^{j-g+1} \sum_{\nu=1}^{h(F)}\left(\frac{q^{l\left(K_{Y}-G_{\nu}\right)}-1}{q-1}\right)+h(F)\left(\frac{q^{j-g+1}-1}{q-1}\right) \tag{47}
\end{equation*}
$$

for $g \leq j \leq 2 g-2$ and

$$
\begin{equation*}
\mathcal{A}_{j}=h(F)\left(\frac{q^{j-g+1}-1}{q-1}\right) \quad \text { for } \quad \forall j \geq 2 g-1 . \tag{48}
\end{equation*}
$$

Note that $K_{Y}-G_{1}, \ldots, K_{Y}-G_{h(F)}$ is a complete set of representatives of the linear equivalence classes of the divisors of F of degree $2 g-2-j$, so that

$$
\begin{equation*}
\mathcal{A}_{2 g-2-j}=\sum_{\nu=1}^{h(F)} \frac{q^{l\left(K_{Y}-G_{\nu}\right)}-1}{q-1} . \tag{49}
\end{equation*}
$$

Plugging in by (49) in (47), one obtains

$$
\begin{equation*}
\mathcal{A}_{j}=q^{j-g+1} \mathcal{A}_{2 g-2-j}+h(F)\left(\frac{q^{j-g+1}-1}{q-1}\right) \quad \text { for } \quad g \leq j \leq 2 g-2 \tag{50}
\end{equation*}
$$

whereas

$$
Z_{F}(t)=\sum_{j=0}^{g-1} \mathcal{A}_{j} t^{j}+\sum_{j=g}^{2 g-2} q^{j-g+1} \mathcal{A}_{2 g-2-j} t^{j}+h(F) \sum_{j=g}^{\infty}\left(\frac{q^{j-g+1}-1}{q-1}\right) t^{j}
$$

Putting $i:=2 g-2-j$ in the second sum and $i:=j-g$ in the third sum, one expresses

$$
\begin{aligned}
& Z_{F}(t)=\sum_{i=0}^{g-2} \mathcal{A}_{i}\left(t^{i}+q^{g-1-i} t^{2 g-2-i}\right)+\mathcal{A}_{g-1} t^{g-1} \\
& \quad+h(F)\left[\frac{q t^{g}}{q-1}\left(\sum_{i=0}^{\infty} q^{i} t^{i}\right)-\frac{t^{g}}{q-1}\left(\sum_{i=0}^{\infty} t^{i}\right)\right]
\end{aligned}
$$

Summing up the geometric progressions

$$
\sum_{i=0}^{\infty} q^{i} t^{i}=\frac{1}{1-q t}, \quad \sum_{i=0}^{\infty} t^{i}=\frac{1}{1-t}
$$

one derives

$$
Z_{F}(t)=\sum_{i=0}^{g-2} \mathcal{A}_{i}\left(t^{i}+q^{g-1-i} t^{2 g-2-i}\right)+\mathcal{A}_{g-1} t^{g-1}+h(F) \frac{t^{g}}{(1-t)(1-q t)}
$$

whereas

$$
D_{F}(t)=\sum_{i=0}^{g-2} \mathcal{A}_{i}\left(t^{i}+q^{g-1-i} t^{2 g-2-i}\right)+\mathcal{A}_{g-1} t^{g-1}
$$

In particular, $D_{F}(t) \in \mathbb{Z}[t]$ has integral coefficients.
(ii) Let us expand

$$
\frac{1}{1-t}=\sum_{i=0}^{\infty} t^{i}, \quad \frac{1}{1-q t}=\sum_{i=0}^{\infty} q^{i} t^{i}
$$

as sums of geometric progressions and note that

$$
\frac{1}{(1-t)(1-q t)}=\sum_{i=0}^{\infty}\left(1+q+\ldots+q^{i}\right) t^{i}=\sum_{i=0}^{\infty}\left(\frac{q^{i+1}-1}{q-1}\right) t^{i}
$$

Then represent Duursma's reduced polynomial in the form

$$
\begin{equation*}
D_{F}(t)=\sum_{j=0}^{g-1} \mathcal{A}_{j} t^{j}+\sum_{j=g}^{2 g-2} \mathcal{A}_{2 g-2-j} q^{j-g+1} t^{j} \tag{51}
\end{equation*}
$$

Now, the comparison of the coefficients of $t^{i}, i \geq 0$ from the left hand side and the right hand side of (40) provides (41), (42) and

$$
\mathcal{B}_{i}=\sum_{j=0}^{g-1} \mathcal{A}_{j}\left(\frac{q^{i-j+1}-1}{q-1}\right)+\sum_{j=g}^{2 g-2} \mathcal{A}_{2 g-2-j} q^{j-g+1}\left(\frac{q^{i-j+1}-1}{q-1}\right) \quad \text { for } i \geq 2 g-2
$$

The last formula can be expressed in the form

$$
\begin{array}{r}
\mathcal{B}_{i}=\frac{q^{i+1}}{q-1}\left(\sum_{j=0}^{q-1} \mathcal{A}_{j} q^{-j}+\sum_{j=g}^{2 g-2} \mathcal{A}_{2 g-2-j} q^{j-g+1} q^{-j}\right)-\frac{1}{q-1}\left(\sum_{j=0}^{g-1} \mathcal{A}_{j}+\sum_{j=g}^{2 g-2} \mathcal{A}_{2 g-2} q^{j-g+1}\right) \\
=\frac{q^{i+1}}{q-1} D_{F}\left(\frac{1}{q}\right)-\frac{1}{q-1} D_{F}(1)
\end{array}
$$

According to Lemma $3.1(i) \Rightarrow(i i)$, Duursma's reduced polynomial of F satisfies the functional equation $D_{F}(t)=D_{F}\left(\frac{1}{q t}\right) q^{g-1} t^{2 g-2}$. In particular, $D_{F}(1)=$ $D_{F}\left(\frac{1}{q}\right) q^{g-1}$ and there follows (43).
(iii) Due to $\mathcal{A}_{i} \geq 0$ for $\forall i \geq 0, \mathcal{B}_{i}$ are sums of non-negative integers. Moreover, $\mathcal{B}_{i} \geq \mathcal{A}_{i}\left(\frac{q^{i+1}}{q-1}\right) \geq \mathcal{A}_{0}=1>0$ for $\forall i \geq 0$ reveals that all \mathcal{B}_{i} are natural numbers. Towards (44), let us introduce the polynomial $\psi(t):=\sum_{j=0}^{g-2} \mathcal{A}_{j} t^{j} \in \mathbb{Z}[t]$ and express

$$
\begin{aligned}
D_{F}(t)=\sum_{j=0}^{g-2} \mathcal{A}_{j} t^{j} & +q^{g-1} t^{2 g-2}\left[\sum_{j=0}^{g-2} \mathcal{A}_{j}(q t)^{-j}\right]+\mathcal{A}_{g-1} t^{g-1} \\
& =\psi(t)+\psi\left(\frac{1}{q t}\right) q^{g-1} t^{2 g-2}+\mathcal{A}_{g-1} t^{g-1}
\end{aligned}
$$

In particular,

$$
\begin{equation*}
D_{F}(1)=\psi(1)+\psi\left(\frac{1}{q}\right) q^{g-1}+\mathcal{A}_{g-1} \tag{52}
\end{equation*}
$$

Straightforwardly,

$$
\begin{array}{r}
q^{g}\left(\sum_{j=0}^{g-2} \mathcal{A}_{j} q^{-j}\right)-\frac{1}{q-1}\left(\sum_{j=0}^{g-2} \mathcal{A}_{j}\right)+\mathcal{A}_{g-1}-\frac{q^{g-1}}{q-1}\left(\sum_{j=0}^{g-2} \mathcal{A}_{j} q^{-j}\right)+\frac{q}{q-1}\left(\sum_{j=0}^{g-2} \mathcal{A}_{j}\right) \\
=\psi\left(\frac{1}{q}\right) q^{g-1}+\psi(1)+\mathcal{A}_{g-1}=D_{F}(1)
\end{array}
$$

That proves (44) for $i=g-1$. In the case of $g \leq i \leq 2 g-4$ note that $0 \leq 2 g-4-i \leq$ $g-4$ and

$$
=\sum_{j=0}^{g-1} \mathcal{A}_{j}\left(q^{i-j+1}-1\right)+\sum_{j=g}^{i} \mathcal{A}_{2 g-2-j}\left(q^{i-g+2}-q^{j-g+1}\right)-\sum_{j=0}^{(q-1)\left(\mathcal{B}_{i}-q^{i-g+2} \mathcal{B}_{2 g-4-i}\right)} \mathcal{A}_{j}\left(q^{g-1-j}-q^{i-g+2}\right)
$$

Changing the summation index of the second sum to $s:=2 g-2-j$, one obtains

$$
\begin{array}{r}
(q-1)\left(\mathcal{B}_{i}-q^{i-g+2} \mathcal{B}_{2 g-4-i}\right) \\
=q^{i+1}\left(\sum_{j=0}^{g-1} \mathcal{A}_{j} q^{-j}\right)-\left(\sum_{j=0}^{g-1} \mathcal{A}_{j}\right)+q^{i-g+2}\left(\sum_{s=2 g-2-i}^{g-2} \mathcal{A}_{s}\right) \\
-q^{g-1}\left(\sum_{s=2 g-2-i}^{g-2} \mathcal{A}_{s} q^{-s}\right)-q^{g-1}\left(\sum_{j=0}^{2 g-4-i} \mathcal{A}_{j} q^{-j}\right)+q^{i-g+2}\left(\sum_{j=0}^{2 g-4-i} \mathcal{A}_{j}\right) .
\end{array}
$$

An appropriate grouping of the sums yields

$$
\begin{array}{r}
(q-1)\left(\mathcal{B}_{i}-q^{i-g+2} \mathcal{B}_{2 g-4-i}\right) \\
=\psi\left(\frac{1}{q}\right) q^{i+1}+\mathcal{A}_{g-1} q^{i-g+2}-\psi(1)-\mathcal{A}_{g-1}+\psi(1) q^{i-g+2}-\psi\left(\frac{1}{q}\right) q^{g-1} \\
=\left(q^{i-g+2}-1\right)\left[\psi(1)+\psi\left(\frac{1}{q}\right) q^{g-1}+\mathcal{A}_{g-1}\right]=D_{F}(1)\left(q^{i-g+2}-1\right)
\end{array}
$$

That justifies (44).
Note that (45) with $i \geq 2 g-2$ coincides with (43). In the case of $i=2 g-3$,

$$
(q-1) \mathcal{B}_{2 g-3}=\sum_{j=0}^{g-1} \mathcal{A}_{j}\left(q^{2 g-2-j}-1\right)+\sum_{s=1}^{g-2} \mathcal{A}_{s}\left(q^{g-1}-q^{g-1-s}\right)
$$

after changing the summation index of the second sum to $s:=2 g-2-j$. Then

$$
\begin{array}{r}
=q^{2 g-2}\left(\sum_{j=0}^{g-2} \mathcal{A}_{j} q^{-j}\right)-\left(\sum_{j=0}^{g-2} \mathcal{A}_{j}\right)+\mathcal{A}_{g-1}\left(q^{g-1}-1\right)+q^{g-1}\left(\sum_{j=0}^{g-2} \mathcal{A}_{j}\right)-q^{g-1}\left(\sum_{j=0}^{g-2} \mathcal{A}_{j} q^{-j}\right) \\
=\left(q^{g-1}-1\right)\left[\psi(1)+\psi\left(\frac{1}{q}\right) q^{g-1}+\mathcal{A}_{g-1}\right]=D_{F}(1)\left(q^{g-1}-1\right)
\end{array}
$$

which is tantamount to (45) with $i=2 g-3$.
(iv) By the Hasse-Weil Theorem, all the roots of $L_{F}(t)$ belong to the circle $S\left(\frac{1}{\sqrt{q}}\right)=\left\{z \in \mathbb{C}| | z \left\lvert\,=\frac{1}{\sqrt{q}}\right.\right\}$. The proof of Proposition 2 specifies that

$$
L_{F}(t)=a_{2 g} \prod_{j=1}^{g}\left(t-\frac{e^{i \varphi_{j}}}{\sqrt{q}}\right)\left(t-\frac{e^{-i \varphi_{j}}}{\sqrt{q}}\right)
$$

for some $\varphi_{j} \in[0,2 \pi)$. The functional equation $L_{F}(t)=L_{F}\left(\frac{1}{q t}\right) q^{g} t^{2 g}$ implies that $a_{2 g}=q^{g} a_{0}$. Combining with $a_{0}=L_{F}(0)=1$, one gets

$$
L_{F}(t)=\prod_{j=1}^{g}\left(\sqrt{q} t-e^{i \varphi_{j}}\right)\left(\sqrt{q} t-e^{-i \varphi_{j}}\right)=\prod_{j=1}^{g}\left(q t^{2}-2 \sqrt{q} \cos \varphi_{j} t+1\right)
$$

The substitution $t=1$ provides

$$
h(F)=L_{F}(1)=\prod_{j=1}^{g}\left(q-2 \sqrt{q} \cos \varphi_{j}+1\right)
$$

However, $\cos \varphi_{j} \in[-1,1]$ requires

$$
(\sqrt{q}-1)^{2} \leq q-2 \sqrt{q} \cos \varphi_{j}+1 \leq(\sqrt{q}+1)^{2}
$$

whereas

$$
(\sqrt{q}-1)^{2 g} \leq h(F)=L_{F}(1)=\prod_{j=1}^{g}\left(q-2 \sqrt{q} \cos \varphi_{j}+1\right) \leq(\sqrt{q}+1)^{2 g}
$$

REFERENCES

[1] S. Dodunekov and I. Landgev, Near MDS-codes, Journal of Geometry, 54 (1995), 30-43.
[2] I. Duursma, Weight distribution of geometric Goppa codes, Transections of the American Mathematical Society, 351 (1999), 3609-3639.
[3] I. Duursma, From weight enumerators to zeta functions, Discrete Applied Mathematics, 111 (2001), 55-73.
[4] I. Duursma Combinatorics of the two-variable zeta function in Finite Fields and Applications Lecture Notes in Computational Sciences 2948, Springer, Berlin, (2004), 109-136.
[5] D. Ch. Kim and J. Y. Hyun, A Riemann hypothesis analogue for near-MDS codes, Discrete Applied Mathematics, 160 (2012), 2440-2444.
[6] H. Niederreiter and Ch. Xing, Algebraic geometry in Coding Theory and Cryptography, Princeton University Press, 2009.

Received xxxx 20xx; revised xxxx 20xx.
E-mail address: kasparia@fmi.uni-soifa.bg
E-mail address: ivan.boychev.marinov@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary: 94B27, 14G50; Secondary: 11 T71.
 Key words and phrases. Homogeneous weight enumerator of a linear code, Duursma's zeta polynomial and Duursma's reduced polynomial of a linear code, Riemann Hypothesis Analogue for linear codes, formally self-dual linear codes, Hasse-Weil polynomial and Duursma's reduced polynomial of a function field of one variable.

 Supported by Contract 015/9.04.2014 with the Scientific Foundation of the University of Sofia.

