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Abstract. The weight distribution {W(w)
C }nw=0 of a linear code C ⊂ Fn

q is
put in an explicit bijective correspondence with Duursma’s reduced polyno-

mial DC(t) ∈ Q[t] of C. We prove that the Riemann Hypothesis Analogue

for a linear code C requires the formal self-duality of C. Duursma’s reduced
polynomial DF (t) ∈ Z[t] of the function field F = Fq(X) of a curve X of genus

g over Fq is shown to provide a generating function
DF (t)

(1−t)(1−qt)
=
∞∑
i=0
Biti for

the numbers Bi of the effective divisors of degree i ≥ 0 of a virtual function

field of a curve of genus g − 1 over Fq .

Let Fq = ∪∞m=1Fqm be the algebraic closure of a finite field Fq andX/Fq ⊂ PN (Fq)
be a smooth irreducible projective curve of genus g, defined over Fq. Denote by
F = Fq(X) the function field of X over Fq and choose n different Fq-rational points
P1, . . . , Pn ∈ X(Fq) := X ∩ PN (Fq). Suppose that G is an effective divisor of F
of degree 2g − 2 < degG = m < n, whose support is disjoint from the support of
D = P1 + . . . + Pn. The space L(G) := H0(X,OX(G)) of the global holomorphic
sections of the line bundle, associated with G will be referred to as to the Riemann-
Roch space of G. We put l(G) := dimFq L(G) and observe that the evaluation
map

ED : L(G) −→ Fnq ,

ED(f) = (f(P1), . . . , f(Pn)) for ∀f ∈ L(G)

is an Fq-linear embedding. Its image C := im(ED) = EDL(G) is known as an
algebraic geometry code or Goppa code. The minimum distance of C is d(C) ≥
n−m. The equality d(C) = n−m holds if and only if there exists a rational function
fo ∈ L(G), vanishing at exactly m of the points P1, . . . , Pn. For an arbitrary s ∈ N
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let Ns(F ) := |X(Fqs)| be the number of the Fqs-rational points of X. Then the
formal power series

ZF (t) := exp

( ∞∑
s=1

Ns(F )

s
ts

)
is called the Hasse-Weil zeta function of F . It is well known (cf. Theorem 4.1.11
from [6]) that

ZF (t) =
LF (t)

(1− t)(1− qt)
for a polynomial LF (t) ∈ Z[t] of degree 2g. We refer to LF (t) as to the Hasse-Weil
polynomial of F .

In [2], [3] Duursma introduces the genus of a linear code C ⊂ Fnq as the deviation
g := n+ 1− k− d of its dimension k := dimFq C and minimum distance d from the

equality in Singleton bound. Let W(w)
C be the number of the codewords c ∈ C of

weight d ≤ w ≤ n. Then

WC(x, y) := xn +

n∑
w=d(C)

W(w)
C xn−wyw

is called the homogeneous weight enumerator of C. Denote byMn,s(x, y) the MDS-
weight enumerator of length n and minimum distance s. Put g⊥ for the genus of
the dual code C⊥ of C and r := g + g⊥. In [2], [3] Duursma proves that the
homogeneous weight enumerator

WC(x, y) = a0Mn,d(x, y) + a1Mn,d+1(x, y) + . . .+ arMn,d+r(x, y). (1)

of an arbitrary linear code C ⊂ Fnq has uniquely determined coordinates a0, . . . , ar ∈
Q with respect to the MDS-weight enumerators Mn,d+i(x, y), 0 ≤ i ≤ r. He refers

to PC(t) :=
r∑
i=0

ait
i ∈ Q[t] as to the ζ-polynomial of C. The present note establishes

that the difference

WC(x, y)−Mn,n+1−k(x, y) = (q − 1)

r−2∑
i=0

ci

(
n

d+ i

)
(x− y)n−d−iyd+i

of the homogeneous weight enumeratorWC(x, y) of C and the MDS-weight enumer-
atorMn,n+1−k(x, y) of the same length n and dimension k as C has uniquely deter-
mined coordinates c0, . . . , cr−2 ∈ Q with respect to (x− y)n−d−iyd+i, 0 ≤ i ≤ r− 2

(cf.Proposition 1). The polynomial DC(t) =
r−2∑
i=0

cit
i ∈ Q[t] is in a bijective corre-

spondence with PC(t) = (1 − t)(1 − qt)DC(t) + tg. Theorem 11.1 from Duursma’s
[4] expresses the generating function ζC,j(t) = DC,j(t) + htg+j−1ZF (t) for the j-th
support weights of C by a polynomial DC,j(t) and the Hasse-Weil ζ-function ZF (t)

of the function field F = Fq(Pj(Fq)) of the projective space Pj(Fq). In the case of
j = 1, Duursma’s DC,1(t) coincides with our DC(t) and that is why we call DC(t)
Duursma’s reduced polynomial of C.

The classical Hasse-Weil Theorem establishes that all the roots of the Hasse-Weil
polynomial LF (t) ∈ Z[t] of the function field Fq(X) of a curve X of genus g over

Fq are on the circle S
(

1√
q

)
:
{
z ∈ C

∣∣∣ |z| = 1√
q

}
(cf. Theorem 4.2.3 form [6]).

Suppose that there is a complete set of representatives G1, . . . , Gh of the linear
equivalence classes of the divisors of Fq(X) of degree 2g − 2 < degGi < n with
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Supp(Gi) ∩ Supp(D) = ∅ for ∀1 ≤ i ≤ n, D = P1 + . . .+ Pn. If Ci = EDL(Gi) are
the algebro-geometric Goppa codes, associated with these divisors, then according
to Theorem 12.1 from Duursma’s [4], the ζ-polynomials of Ci are related by the
equality ∑

tg−g(Ci)PCi(t) = LF (t).

to the Hasse-Weil polynomial LF (t) of F . Baring in mind this fact, Duursma says
that a linear code C ⊂ Fnq satisfies the Riemann Hypothesis Analogue if all the

roots of its zeta polynomial PC(t) =
r∑
i=0

ait
i ∈ Q[t] are on the circle S

(
1√
q

)
. Let

C be an Fq-linear code of dimension k and minimum distance d, which satisfies
the Riemann Hypothesis Analogue. Proposition 2 shows that C is formally self-
dual. Let us recall that C is formally self-dual if it has the same weight distribution

W(w)
C = W(w)

C⊥ , ∀0 ≤ w ≤ n as its dual code C⊥ ⊂ Fnq . In the light of Duursma’s
results and our Proposition 1, the formal self-duality of C turns to be equivalent

to the functional equation PC(t) = PC

(
1
qt

)
qgt2g for PC(t) and to the functional

equation DC(t) = DC

(
1
qt

)
qg−1t2g−2 for DC(t). Proposition 3 from the present

note expresses explicitly the homogeneous weight enumeratorWC(x, y) of a formally
self-dual code C ⊂ Fnq by the lowest half of the coefficients of DC(t) or by the

numbers W(d)
C , . . . ,W(k)

C of the codewords c ∈ C, whose weights are between the
minimum distance d of C and the dimension k.

In [1] Dodunekov and Landgev introduce the near-MDS code C ⊂ Fnq as the
ones with quadratic zeta polynomial PC(t). Kim and Hyun’s article [5] provides a
necessary and sufficient condition for a near-MDS code to satisfy the Riemann Hy-
pothesis Analogue. By Theorem 3 from Duursma’s [3], the zeta polynomial PC(t) of
a formally self-dual code C ⊂ Fnq is of even degree. Our Proposition 4 is a necessary
and sufficient condition for a formally self-dual code C ⊂ Fnq with zeta polynomial
PC(T ) of degPC(t) = 4 to be subject to the Riemann Hypothesis Analogue. In
analogy with the classical Hasse-Weil Theorem, we intend to express the Riemann
Hypothesis Analogue for a linear code C ⊂ Fnq in terms of the coefficients of the

power series expansion of log
[

PC(t)
(1−t)(1−qt)

]
.

The last, third section is devoted to Duursma’s reduced polynomial DF (t) of the
function field F = Fq(X) of a curve X/Fq ⊂ PN (Fq) of genus g over Fq. Corollary
5.2 from Duursma’s [2] shows the existence ofDF (t). Explaining formula (10.1) from
[4], he mentions that DF (t) accounts for the contribution of the special divisors of
F to the zeta function ZF (t). The present article establishes that DF (t) ∈ Z[t] is
determined uniquely by its lowest g coefficients, which equal the numbers Ai of the
effective divisors of F of degree 0 ≤ i ≤ g − 1. Our Proposition 5 reveals that the
zeta function

DF (t)

(1− t)(1− qt)
=

∞∑
i=0

Biti,

associated with DF (t) has the properties of a generating function for the numbers
Bi of the effective divisors of degree i ≥ 0 of a virtual function field of genus g − 1
over Fq. There arises the following

Open Problem: To characterize the function fields F = Fq(X) of curves

X/Fq ⊂ PN (Fq) of genus g over Fq, for which there are curves Y/Fq ⊂ PM (Fq)
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of genus g − 1, defined over Fq with Hasse-Weil zeta function

ZFq(Y )(t) =
DF (t)

(1− t)(1− qt)
.

1. The homogeneous weight enumerator of an arbitrary code.

Proposition 1. Let C ⊂ Fnq be a linear code of dimension k = dimFq C, minimum

distance d and genus g = n + 1 − k − d ≥ 1, whose dual C⊥ ⊂ Fnq is of minimum

distance d⊥ and genus g⊥ = k + 1− d⊥ ≥ 1. If

DC(t) =

g+g⊥−2∑
i=0

cit
i ∈ Q[t]

is Duursma’s reduced polynomial of C and Mn,n+1−k(x, y) is MDS-weight enumer-
ator of length n, dimension k and minimum distance n+1−k, then the homogeneous
weight enumerator of C is

WC(x, y) =Mn,n+1−k(x, y) + (q − 1)

g+g⊥−2∑
i=0

ci

(
n

d+ i

)
(x− y)n−d−iyd+i. (2)

More precisely, Duursma’s reduced polynomial DC(t) =
g+g⊥−2∑
i=0

cit
i determines uni-

quely the weight distribution of C, according to

W(w)
C = (q − 1)

(
n

w

)w−d∑
i=0

(−1)w−d−i
(

w

d+ i

)
ci for d ≤ w ≤ d+ g − 1, (3)

W(w)
C =(q − 1)

(
n

w

)min(w−d,n−d−d⊥)∑
i=0

(−1)w−d−i
(

w

d+ i

)
ci

+

(
n

w

)w−n−1+k∑
j=0

(−1)j
(
w

j

)
(qw−n+k−j − 1) for d+ g ≤ w ≤ n.

(4)

Conversely, for ∀0 ≤ i ≤ g + g⊥ − 2 the numbers W(d)
C , . . . ,W(d+i)

C determine

uniquely the coefficient ci of Duursma’s reduced polynomial DC(t) =
g+g⊥−2∑
i=0

cit
i by

ci = (q − 1)−1
(

n

d+ i

)−1 d+i∑
w=d

(
n− w

n− d− i

)
W(w)
C (5)

for 0 ≤ i ≤ g − 1,

ci = (q − 1)−1
(

n

d+ i

)−1{d+g−1∑
w=d

(
n− w

n− d− i

)
W(w)
C

+

d+i∑
w=d+g

(
n− w

n− d− i

)W(w)
C −

(
n

w

)w−n−1+k∑
j=0

(−1)j
(
w

j

)
(qw−n+k−j − 1)


(6)

for g ≤ i ≤ g + g⊥ − 2.
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In particular,

(q − 1)

(
n

d+ i

)
ci ∈ Z

are integers for all 0 ≤ i ≤ g + g⊥ − 2.

The aforementioned formulae imply thatW(d)
C , . . . ,W(d+g+g⊥−2)

C determine uniquely
the homogeneous weight enumerator WC(x, y) of C by the formula

WC(x, y) =

d+g+g⊥−2∑
w=d

W(w)
C λw(x, y) + Λ(x, y), (7)

with explicit polynomials

λw(x, y) :=

d+g+g⊥−2∑
s=w

(
n− w
n− s

)
(x− y)n−sys for d ≤ w ≤ d+ g + g⊥ − 2 (8)

and

Λ(x, y) :=Mn,n+1−k(x, y)−
d+g+g⊥−2∑
w=d+g

M(w)
n,n+1−kλw(x, y). (9)

Proof. In the case of g = 0, note that C is an MDS-code andWC(x, y) =Mn,n+1−k(x, y).
Form now on, we assume that g > 0 and put r := g + g⊥. According to Proposi-
tion 9.2 from Duursma’s [2], the ζ-polynomials of C and C⊥ satisfy the functional
equation

PC⊥(t) = PC

(
1

qt

)
qgtg+g

⊥
(10)

and PC(1) = PC⊥(1) = 1. Therefore PC

(
1
q

)
= PC⊥(1)q−g =

(
1
q

)g
and the

polynomial PC(t) − tg ∈ Q[t] vanishes at t = 1 and t = 1
q . As a result, there is a

polynomial

Dc(t) :=
PC(t)− tg

(1− t)(1− qt)
=

r−2∑
i=0

cit
i ∈ Q[t]. (11)

Making use of (1), let us express

WC(x, y) =Mn,d+g(x, y) +

r∑
i=0

biMn,d+i(x, y)

by the coefficients of PC(t)− tg =
r∑
i=0

bit
i. The comparison of the coefficients of

PC(t)− tg = (1− t)(1− qt)DC(t). (12)

yields

bi = ci − (q + 1)ci−1 + qci−2 for ∀0 ≤ i ≤ r
with c−2 = c−1 = cr−1 = cr = 0. Therefore

WC(x, y) =Mn,d+g(x, y) +

r∑
i=0

ciMn,d+i(x, y)

−(q + 1)

r∑
i=0

ci−1Mn,d+i(x, y) + q

r∑
i=0

ci−2Mn,d+i(x, y).
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Setting j = i− 1, respectively, j = i− 2 in the last two sums, one obtains

WC(x, y) =Mn,d+g(x, y) +

r∑
i=0

ciMn,d+i(x, y)

−(q + 1)

r−1∑
j=−1

cjMn,d+j+1(x, y) + q

r−2∑
j=−2

cjMn,d+j+2(x, y),

whereas

WC(x, y) =Mn,d+g(x, y)

+

r−2∑
j=0

cj [Mn,d+j(x, y)− (q + 1)Mn,d+j+1(x, y) + qMn,d+j+2(x, y)].
(13)

Let us put

Wn,d+j(x, y) :=Mn,d+j(x, y)− (q + 1)Mn,d+j+1(x, y) + qMn,d+j+2(x, y)

and recall that the MDS-weight enumerator of length n and minimum distance d+j
equals

Mn,d+j(x, y) = xn +

n∑
w=d+j

M(w)
n,d+jx

n−wyw

with

M(w)
n,d+j =

(
n

w

)w−d−j∑
i=0

(−1)i
(
w

i

)
(qw+1−d−j−i − 1). (14)

Therefore

Wn,d+j(x, y) =M(d+j)
n,d+jx

n−d−jyd+j + [M(d+j+1)
n,d+j − (q + 1)M(d+j+1)

n,d+j+1]xn−d−j−1yd+j+1

+

n∑
w=d+j+2

[M(w)
n,d+j − (q + 1)M(w)

n,d+j+1 + qM(w)
n,d+j+2]xn−wyw.

Making use of the MDS-weight distribution (14) and introducing

W(w)
n,d+j :=M(w)

n,d+j − (q + 1)M(w)
n,d+j+1 + qM(w)

n,d+j+2 for d+ j + 2 ≤ w ≤ n,

one expresses

Wn,d+j(x, y) =

(
n

d+ j

)
(q − 1)xn−d−jyd+j

−
(

n

d+ j + 1

)
(q − 1)(d+ j + 1)xn−d−j−1yd+j+1 +

n∑
w=d+j+2

W(w)
n,d+jx

n−wyw.

For any d+ j + 2 ≤ w ≤ n one has

W(w)
n,d+j =

(
n

w

)(
w

d+ j

)
(q − 1)(−1)w−d−j .

Baring in mind that (
n

w

)(
w

d+ j

)
=

(
n− d− j
w − d− j

)(
n

d+ j

)
,
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one obtains

Wn,d+j(x, y) =

(
n

d+ j

)
(q − 1)xn−d−jyd+j −

(
n

d+ j + 1

)
(q − 1)(d+ j + 1)xn−d−j−1yd+j+1+

+

n∑
w=d+j+2

(
n

d+ j

)(
n− d− j
w − d− j

)
(q − 1)(−1)w−d−jxn−wyw.

Then by the means of

(d+ j + 1)

(
n

d+ j + 1

)
= (n− d− j)

(
n

d+ j

)
,

one derives that

Wn,d+j(x, y) =

(
n

d+ j

)
(q − 1)

[
xn−d−jyd+j − (n− d− j)xn−d−j−1yd+j+1+

+

n∑
w=d+j+2

(−1)w−d−j
(
n− d− j
w − d− j

)
xn−wyw

 .
Introducing s := w − d− j, one expresses

n∑
w=d+j+2

(−1)w−d−j
(
n− d− j
w − d− j

)
xn−wyw =

n−d−j∑
s=2

(−1)s
(
n− d− j

s

)
xn−d−j−syd+j+s

and concludes that

Wn,d+j(x, y) =

(
n

d+ j

)
(q − 1)(x− y)n−d−jyd+j . (15)

The equality Wn,n−k(x, y) =
(
n
k

)
(q − 1)(x − y)kyn−k is exactly the claim (c) of

Lemma 1 from Kim and Nyun’s work [5]. Plugging in (15) in (13) and bearing in
mind that d+ g = n+ 1− k, one obtains (2).

In order to prove (3) and (4), let us put

VC(x, y) :=WC(x, y)−Mn,n+1−k(x, y)

and note that VC(x, y) =
n∑

w=d

V(w)
C xn−wyw with V(w)

C =W(w)
C for d ≤ w ≤ n− k,

V(w)
C =W(w)

C −M(w)
n,n+1−k =W(w)

C −
(
n

w

)w−n−1+k∑
i=0

(−1)i
(
w

i

)
(qw−n+k−i − 1)

for d+ g = n+ 1− k ≤ w ≤ n. Making use of (2), one expresses

VC(x, y) = (q − 1)

g+g⊥−2∑
i=0

ci

(
n

d+ i

) n−d−i∑
s=0

(
n− d− i

s

)
(−1)n−d−i−sxsyn−s

= (q − 1)

n−d∑
s=0

min(n−d−s,g+g⊥−2)∑
i=0

ci

(
n

d+ i

)(
n− d− i

s

)
(−1)n−d−i−s

xsyn−s,
after changing the summation order. Setting w := n− s, one obtains

VC(x, y) = (q−1)

n∑
w=d

min(w−d,n−d−d⊥)∑
i=0

ci

(
n

d+ i

)(
n− d− i
n− w

)
(−1)w−d−i

xn−wyw.



8 AZNIV KASPARIAN AND IVAN MARINOV

Then (
n

d+ i

)(
n− d− i
n− w

)
=

(
n

w

)(
w

d+ i

)
,

allows to concludes that

V(w)
C = (q − 1)

(
n

w

)min(w−d,n−d−d⊥)∑
i=0

ci

(
w

d+ i

)
(−1)w−d−i for ∀d ≤ w ≤ n,

which proves (3), (4).
Towards (5), (6), let us introduce z := x− y and express (2) in the form

VC(y + z, y) = (q − 1)

g+g⊥−2∑
i=0

ci

(
n

d+ i

)
zn−d−iyd+i. (16)

On the other hand,

VC(y + z, y) =

n∑
w=d

V(w)
C (y + z)n−wyw

=

n∑
w=d

n−w∑
s=0

(
n− w
s

)
V(w)
C yn−szs =

n−d∑
s=0

[
n−s∑
w=d

(
n− w
s

)
V(w)
C

]
yn−szs,

after changing the summation order. Comparing the coefficients of yd+izn−d−i in
the left and right hand side of (16), one obtains

d+i∑
w=d

(
n− w

n− d− i

)
V(w)
C = (q − 1)ci

(
n

d+ i

)
,

whereas

ci = (q − 1)−1
(

n

d+ i

)−1 d+i∑
w=d

(
n− w

n− d− i

)
V(w)
C .

Combining with (14), one justifies (5) and (6). These formulae imply also that
(q − 1)

(
n
d+i

)
ci ∈ Z are integers for all 0 ≤ i ≤ g + g⊥ − 2.

The substitution by (5), (6), (14) in (2) yields

WC(x, y) =Mn,n+1−k(x, y) +

g+g⊥−2∑
i=0

d+i∑
w=d

(
n− w

n− d− i

)
W(w)
C (x− y)n−d−iyd+i

−
g+g⊥−2∑
i=g

d+i∑
w=d+g

(
n− w

n− d− i

)
M(w)

n,n+1−k(x− y)n−d−iyd+i.

One exchanges the summation order in the double sums towards

WC(x, y) =Mn,n+1−k(x, y) +

d+g+g⊥−2∑
w=d

W(w)
C

g+g⊥−2∑
i=w−d

(
n− w

n− d− i

)
(x− y)n−d−iyd+i

−
d+g+g⊥−2∑
w=d+g

M(w)
n,n+1−k

g+g⊥−2∑
i=w−d

(
n− w

n− d− i

)
(x− y)n−d−iyd+i.

Introducing s := d+ i, one obtains (7) with (8) and (9).
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Comparing the coefficients of xn−dyd in the left and right hand sides of (2), one

obtains W(d)
C = (q − 1)

(
n
d

)
c0 for a linear code C of genus g ≥ 1. We claim that

c0 < 1. To this end, note that for any d-tuple {i1, . . . , id} ⊂ {1, . . . , n}, supporting
a word c ∈ C of weight d there are exactly q − 1 words c′ ∈ C with Supp(c′) =
Supp(c) = {i1, . . . , id}. That is due to the fact that the columns Hi1 , . . . ,Hid of an
arbitrary parity check matrix H of C are of rank d − 1 and there are no words of
weight ≤ d−1 in the right null space of the matrix (Hi1 . . . Hid). If ν is the number

of the supports of the words of C of weight d then ν(q − 1) =W(d)
C , whereas

c0 =
W(d)
C

(q − 1)
(
n
d

) =
ν(
n
d

) ≤ 1.

If we assume that c0 = 1 then any d-tuple of columns of H is linearly dependent.
Bearing in mind that rkH = n− k, one concludes that d > n− k. Combining with
Singleton Bound d ≤ n − k + 1, one obtains d = n − k + 1. That contradicts the
assumption that C is not an MDS-code and proves that c0 < 1 for any Fq-linear
code C ⊂ Fnq of genus g ≥ 1. Note that c0 can be interpreted as the probability for
a d-tuple to support a word of weight d from C.

2. The Riemann Hypothesis Analogue and the formal self-duality of a
linear code. Recall that a linear code C ⊂ Fnq with dual C⊥ ⊂ Fnq is formally

self-dual if C and C⊥ have one and a same number W(w)
C = W(w)

C⊥ of codewords
of weight 0 ≤ w ≤ n. Let us mention some trivial consequences of the formal
self-duality of C. First of all, C and C⊥ have one and a same minimum distance
d = d(C) = d(C⊥) = d⊥. Further, C and C⊥ have one and a same cardinality

qdimC =

n∑
w=0

W(w)
C =

n∑
w=0

W(w)
C = qdimC⊥

,

so that k = dimC = dimC⊥ = k⊥ and the length n = k + k⊥ = 2k is an even

integer. The genera g = k + 1 − d = g⊥ also coincide. Let PC(t) =
2g∑
i=0

ait
i and

PC⊥ =
2g∑
i=0

a⊥i t
i be the zeta polynomials of C, respectively, of C⊥. The consecutive

comparison of the coefficients of xn−dyd, xn−d−1yd+1, . . . , xn−d−2gyd+2g from the
homogeneous polynomial

a0M2k,d(x, y) + a1M2k,d+1(x, y) + . . .+ a2gM2k,d+2g(x, y) =WC(x, y)

=WC⊥(x, y) = a⊥0M2k,d(x, y) + a⊥1M2k,d+1(x, y) + . . .+ a⊥2gM2k,d+2g(x, y)

in x, y yields ai = a⊥i for ∀0 ≤ i ≤ 2g. It is clear that ai = a⊥i for ∀0 ≤ i ≤ 2g suffices
for WC(x, y) = WC⊥(x, y), so that the formal self-duality of C is tantamount to
the coincidence PC(t) = PC⊥(t) of the zeta polynomials of C and C⊥. Duursma

has shown in Proposition 9.2 from [2] that Mac Williams identities for W(w)
C and

W(w)

C⊥ are equivalent to the functional equation (10) for the zeta polynomials PC(t),

PC⊥(t) of C,C⊥ ⊂ Fnq with genera g, g⊥. Thus, an Fq-linear code C ⊂ Fnq is formally
self-dual if and only if its zeta polynomial PC(t) satisfies the functional equation

PC(t) = PC

(
1

qt

)
qgt2g (17)

of the Hasse-Weil polynomial of the function field of a curve of genus g over Fq.
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Proposition 2. If a linear code C ⊂ Fnq satisfies the Riemann Hypothesis Analogue
then C is formally self-dual, i.e., the zeta polynomial PC(t) of C is subject to the
functional equation (17) of the Hasse-Weil polynomial of the function field of a
curve of genus g over Fq.

Proof. Let us assume that PC(t) of degree r := g + g⊥ satisfies the Riemann Hy-
pothesis Analogue, i.e.,

PC(t) = ar

r∏
j=1

(t− αj) ∈ Q[t]

for some αj ∈ C with |αj | = 1√
q for all 1 ≤ j ≤ r. If αj is a real root of PC(t) then

αj = ε√
q with ε = ±1. We claim that in the case of an even degree r = 2m, the

zeta polynomial PC(t) is of the form

PC(t) = a2m

m∏
i=1

(t− αi)(t− αi) (18)

or of the form

PC(t) = a2m

(
t2 − 1

q

)m−1∏
i=1

(t− αi)(t− αi), (19)

while for an odd degree r = 2m+ 1 one has

PC(t) = a2m+1

(
t− ε
√
q

) m∏
i=1

(t− αi)(t− αi) (20)

for some ε ∈ {±1}. Indeed, if αi ∈ C\R is a complex, non-real root of PC(t) ∈ Q[t] ⊂
R[t] then αi 6= αi is also a root of PC(t) and PC(t) is divisible by (t−αi)(t−αi). If

PC(t) = 0 has three real roots α1, α2, α3 ∈
{

1√
q ,−

1√
q

}
, then at least two of them

coincide. For α1 = α2 = ε√
q one has (t − α1)(t − α2) = (t − α1)(t − α1). Thus,

PC(t) has at most two real roots, which are not complex conjugate (or, equivalently,
equal) to each other and PC(t) is of the form (18), (19) or (20).

If PC(t) is of the form (18), then PC(t) = a2m
m∏
i=1

(
t2 − 2Re(αi) + 1

q

)
and (10)

reads as

PC⊥(t) = a2m

[
m∏
i=1

(
1

q
− 2Re(αi)t+ t2

)]
qg−m = PC(t)qg−m, (21)

after multiplying each of the factors 1
q2t2 −

2Re(αi)
qt + 1

q by qt2. If DC(t) is Duursma’s

reduced polynomial of C and DC⊥(t) is Duursma’s reduced polynomial of C⊥, then

(1−t)(1−qt)DC⊥(t)+tg
⊥

= PC⊥(t) = PC(t)qg−m = (1−t)(1−qt)qg−mDC(t)+qg−mtg

implies that

(1− t)(1− qt)[DC⊥(t)− qg−mDC(t)] = qg−mtg − tg
⊥
.

Plugging in t = 1, one concludes that qg−m = 1, whereas g = m. As a result,
g + g⊥ = 2m = 2g specifies that g = g⊥ and (21) yields PC(t) = PC⊥(t), which is
equivalent to the formal self-duality of C.



DUURSMA’S REDUCED POLYNOMIAL 11

If PC(t) is of the form (19) then (10) provides

PC⊥(t) = a2m

(
1

q
− t2

)[m−1∏
i=1

(
1

q
− 2Re(αi)t+ t2

)]
qg−m = −PC(t)qg−m. (22)

Expressing by Duursma’s reduced polynomials DC(t), DC⊥(t), one obtains

(1− t)(1− qt)DC⊥(t) + tg
⊥

= PC⊥(t) =

−PC(t)qg−m = −(1− t)(1− qt)qg−mDC(t)− qg−mtg,

whereas

(1− t)(1− qt)[DC⊥(t) + qg−mDC(t)] = −tg
⊥
− qg−mtg.

The substitution t = 1 in the last equality of polynomials yields −1 − qg−m = 0,
which is an absurd, justifying that a zeta polynomial PC(t), subject to the Riemann
Hypothesis Analogue cannot be of the form (19).

If PC(t) is of odd degree 2m+ 1, then (20) and (10) yield

PC⊥(t) = −ε√qa2m+1

(
t− ε
√
q

)[ m∏
i=1

(
1

q
− 2Re(αi)t+ t2

)]
qg−m−1

= −ε√qPC(t)qg−m−1

after multiplying 1
qt −

ε√
q by − ε√

q qt and each 1
q2t2 −

2Re(αi)
qt + 1

q by qt2. Expressing

by Duursma’s reduced polynomials

(1− t)(1− qt)DC⊥(t) + tg
⊥

= PC⊥(t) = −εqg−m− 1
2PC(t)

= −εqg−m− 1
2 (1− t)(1− qt)DC(t)− εqg−m− 1

2 tg,

one obtains

(1− t)(1− qt)
[
DC⊥(t) + εqg−m−

1
2DC(t)

]
= −tg

⊥
− εqg−m− 1

2 tg.

The substitution t = 1 implies −1 − εqg−m− 1
2 = 0, which is an absurd, as far as

qx = 1 if and only if x = 0, while g −m− 1
2 cannot vanish for integers g,m. Thus,

none zeta polynomial of odd degree satisfies the Riemann Hypothesis Analogue.

Proposition 3. The following conditions are equivalent for a linear code C ⊂ Fnq :
(i) C is formally self-dual, i.e., the zeta polynomial PC(t) of C satisfies the

functional equation

PC(t) = PC

(
1

qt

)
qgt2g

of the Hasse-Weil polynomial of the function field of a curve of genus g over Fq;

(ii) Duursma’s reduced polynomial DC(t) =
g+g⊥−2∑
i=0

cit
i satisfies the functional

equation

DC(t) = DC

(
1

qt

)
qg−1t2g−2 (23)

of the Hasse-Weil polynomial of the function field of a curve of genus g−1 over Fq;
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(iii) the coefficients of Duursma’s reduced polynomial DC(t) =
g+g⊥−2∑
i=0

cit
i of C

satisfy the equalities

cg−1+i = qicg−1−i for ∀1 ≤ i ≤ g − 1; (24)

(iv) the dual code C⊥ ⊂ Fnq of C has dimension dimFq C
⊥ = dimFq C = k, genus

g(C⊥) = g(C) = g and the homogeneous weight enumerator of C is

WC(x, y) =M2k,k+1(x, y) +

g−1∑
j=0

cg−1−jwj(x, y), (25)

where

wj(x, y) := (q − 1)

(
2k

k + j

)[
(x− y)k+jyk−j + qj(x− y)k−jyk+j

]
(26)

for 1 ≤ j ≤ g − 1.

w0(x, y) := (q − 1)

(
2k

k

)
(x− y)kyk. (27)

(v) the dual code C⊥ ⊂ Fnq of C has dimension dimFq C
⊥ = dimFq C = k, genus

g(C⊥) = g(C) = g and the homogeneous weight enumerator

WC(x, y) =M2k,k+1(x, y) +

k−1∑
w=d

W(w)
C ϕw(x, y) +W(k)

C (x− y)kyk (28)

with

ϕw(x, y) :=

k−1∑
s=w

(
2k − w
s− w

)[
(x− y)2k−sys + qk−s(x− y)sy2k−s

]
+

(
2k − w
k

)
(x−y)kyk

(29)
for d ≤ w ≤ k − 1, so that C can be obtained from an MDS-code of the same
length 2k and dimension k by removing and adjoining appropriate words, depending

explicitly on the numbers W(d)
C ,W(d+1)

C , . . . ,W(k)
C of the codeword of C of weight

≤ k = dimFq C.

Proof. Towards (i)⇒ (ii), one substitutes by PC(t) = (1− t)(1− qt)DC(t) + tg in
(17), in order to obtain

(1− t)(1− qt)DC(t) + tg = (qt− 1)(t− 1)

[
DC

(
1

qt

)
qg−1t2g−2

]
+ tg,

whereas (23).
Conversely, (ii)⇒ (i) is justified by

PC(t) = (1− t)(1− qt)DC(t) + tg =

= (t− 1)(qt− 1)

[
DC

(
1

qt

)
qg−1t2g−2

]
+ tg

=

[(
1− 1

t

)
t

] [(
1− 1

qt

)
qt

] [
DC

(
1

qt

)
qg−1t2g−2

]
+
qgt2g

qgtg

=

[(
1− q

qt

)(
1− 1

qt

)
DC

(
1

qt

)
+

1

(qt)g

]
qgt2g = PC

(
1

qt

)
qgt2g.

That proves the equivalence (i)⇔ (ii).
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Towards (ii)⇔ (iii), note that the functional equation of DC(t) reads as

2g−2∑
i=0

cit
i = DC(t) = DC

(
1

qt

)
qg−1t2g−2 =

(
2g−2∑
i=0

ci
qiti

)
qg−1t2g−2

=

2g−2∑
i=0

ciq
g−1−it2g−2−i =

2g−2∑
j=0

c2g−2−jq
−g+1+jtj .

Comparing the coefficients of the left-most and the right-most side, one expresses
the formal self-duality of C by the relations

cj = q−g+1+jc2g−2−j for ∀0 ≤ j ≤ 2g − 2.

Let i := g − 1− j, in order to transform the above conditions to

cg−1+i = qicg−1−i for ∀ − g + 1 ≤ i ≤ g − 1. (30)

For any −g + 1 ≤ i ≤ −1 note that cg−1+i = qicg−1−i is equivalent to cg−1−i =
q−icg−1+i and follows from (30) with 1 ≤ −i ≤ g − 1. In the case of i = 0, (30)
holds trivially and (30) amounts to (24). That proves the equivalence of (ii) with
(iii).

Towards (iii)⇒ (iv), one introduces a new variable z := x− y and expresses (2)
in the form

VC(y + z, y) :=WC(y + z, y)−M2k,k+1(y + z, y) = (q − 1)

2g−2∑
i=0

ci

(
2k

d+ i

)
yd+iz2k−d−i

= (q − 1)

g−1∑
i=0

ci

(
2k

d+ i

)
yd+iz2k−d−i + (q − 1)

2g−2∑
i=g

ci

(
2k

d+ i

)
yd+iz2k−d−i.

Let us change the summation index of the first sum to 0 ≤ j := g − 1− i ≤ g − 1,
put 1 ≤ j := i− g + 1 ≤ g − 1 in the second sum and make use of d+ g = k + 1, in
order to obtain

VC(y + z, y)

= (q − 1)

g−1∑
j=0

cg−1−j

(
2k

k − j

)
yk−jzk+j + (q − 1)

g−1∑
j=1

cj+g−1

(
2k

k + j

)
yk+jzk−j .

(31)

Extracting the term with j = 0 from the first sum, one expresses

VC(y + z, y) = (q − 1)cg−1

(
2k

k

)
ykzk

+

g−1∑
j=1

(q − 1)

(
2k

k + j

)[
cg−1−jy

k−jzk+j + cg−1+jy
k+jzk−j

] (32)

for an arbitrary Fq-linear code C ⊂ Fnq . If C is formally self-dual, then plugging in
by (24) in (32) and making use of (26), (27), one gets

VC(y + z, y) =

g−1∑
j=0

cg−1−jwj(y + z, y).

Substituting z := x− y and VC(x, y) :=WC(x, y)−M2k,k+1(x, y), one derives the
equality (25) for the homogeneous weight enumerator of a formally self-dual linear
code C ⊂ F2k

q .
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In order to justify that (iv) suffices for the formal self-duality of C, we use that
(25) with (26) and (27) is equivalent to

VC(y + z, y) =

g−1∑
j=1

cg−1−j(q − 1)

(
2k

k + j

)
yk−jzk+j

+cg−1(q − 1)

(
2k

k

)
ykzk +

g−1∑
j=1

cg−1−j(q − 1)

(
2k

k + j

)
yk+jzk−j

(33)

Comparing the coefficients of yk+jzk−j with 1 ≤ j ≤ g − 1 from (32) and (33), one
concludes that

cg−1+j = cg−1−jq
j for ∀1 ≤ j ≤ g − 1.

These are exactly the relations (24) and imply the formal self-duality of C.

Towards (iv)⇔ (v), it suffices to put E(x, y) :=
g−1∑
j=0

cg−1−jwj(x, y) and to derive

that E(x, y) =
k−1∑
w=d

W(w)
C ϕw(x, y) +W(k)

C (x − y)kyk. More precisely, introducing

i := g − 1− j, one expresses

E(x, y) =

g−2∑
i=0

ci(q − 1)

(
2k

d+ i

)[
(x− y)2k−d−iyd+i + qg−1−i(x− y)d+iy2k−d−i

]
+cg−1(q − 1)

(
2k

k

)
(x− y)kyk.

Plugging in by (5) and exchanging the summation order, one gets

E(x, y) =

k−1∑
w=d

g−2∑
i=w−d

(
2k − w
d+ i− w

)
W(w)
C [(x− y)2k−d−iyd+i + qg−1−i(x− y)d+iy2k−d−i]

+

k∑
w=d

(
2k − w
k

)
W(w)
C (x− y)kyk.

Introducing s := d+ i and extracting W(w)
C as coefficients, one obtains

E(x, y) =

k−1∑
w=d

W(w)
C ϕw(x, y) +W(k)

C (x− y)kyk.

Let C ⊂ Fnq be an Fq-linear code of genus g, whose dual C⊥ ⊂ Fnq is of genus

g⊥. In [1], Dodunekov and Landgev introduce the near-MDS linear codes C as the
ones with zeta polynomial PC(t) ∈ Q[t] of degree degPC(t) := g + g⊥ = 2. Thus,
C is a near-MDS code if and only if it has constant Duursma’s reduced polynomial
DC(t) = c0 ∈ Q. Kim an Hyun prove in [5]) that a near-MDS code C satisfies the
Riemann Hypothesis Analogue exactly when

1

(
√
q + 1)2

≤ c0 ≤
1

(
√
q − 1)2

.

The next proposition characterizes the formally-self-dual codes C ⊂ Fnq of genus
2, which satisfy the Riemann Hypothesis Analogue. By Proposition 3 (iii), C is
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a formally self-dual linear code of genus 2 exactly when its Duursma’s reduced
polynomial is

DC(t) = c0 + c1t+ qc0t
2

for some c0, c1 ∈ Q, 0 < c0 < 1.

Proposition 4. A formally self-dual linear code C ⊂ F2k
q with a quadratic Du-

ursma’s reduced polynomial DC(t) = c0 + c1t+ qc0t
2 ∈ Q[t], 0 < c0 < 1 satisfies the

Riemann Hypothesis Analogue if and only if

[(q + 1)c0 + c1]2 ≥ 4c0, (34)

q − 4
√
q + 1 ≤ c1

c0
≤ q + 4

√
q + 1, (35)

c1 ≤ min

(
1

(
√
q − 1)2

− 2
√
qc0,

1

(
√
q + 1)2

+ 2
√
qc0

)
. (36)

Proof. According to (18) from the proof of Proposition 2, the zeta polynomial

PC(t) = (1− t)(1− qt)(qc0t2 + c1t+ c0) + t2

satisfies the Riemann Hypothesis Analogue if and only if there exist ϕ,ψ ∈ [0, 2π)
with

PC(t) = q2c0

(
t− eiϕ
√
q

)(
t− e−iϕ

√
q

)(
t− eiψ
√
q

)(
t− e−iψ

√
q

)
.

Comparing the coefficients of t and t2 from PC(t), one expresses this condition by
the equalities

c1 − (q + 1)c0 = −2
√
qc0[cos(ϕ) + cos(ψ)],

1 + 2qc0 − (q + 1)c1 = 2qc0[1 + 2 cos(ϕ) cos(ψ)].

These are equivalent to

cos(ϕ) + cos(ψ) =
(q + 1)c0 − c1

2
√
qc0

and

cos(ϕ) cos(ψ) =
1− (q + 1)c1

4qc0
.

In other words, the quadratic equation

f(t) := t2 +
c1 − (q + 1)c0

2
√
qc0

t+
1− (q + 1)c1

4qc0
∈ Q[t]

has roots −1 ≤ t1 = cos(ϕ) ≤ t2 = cos(ψ) ≤ 1. This, in turn, holds exactly when
the discriminant

D(f) =

[
c1 − (q + 1)c0

2
√
qc0

]2
− 4[1− (q + 1)c1]

4qc0
≥ 0 (37)

is non-negative, the vertex

− 1 ≤ (q + 1)c0 − c1
4
√
qc0

≤ 1 (38)

belongs to the segment [−1, 1] and the values of f(t) at the ends of this segment
are non-negative,

f(1) ≥ 0, f(−1) ≥ 0. (39)
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The equivalence of (37) to (34) is straightforward. Since C is of minimum distance

d = k− 1 and W(k−1)
C = (q− 1)

(
2k
k−1
)
c0 ∈ N, the constant term c0 > 0 of DC(t) is a

positive rational number and one can multiply (38) by −4
√
qc0 < 0, add (q + 1)c0

to all the terms and rewrite it in the form

(q − 4
√
q + 1)c0 ≤ c1 ≤ (q + 4

√
q + 1)c0.

Making use of c0 > 0, one observes that the above inequalities are tantamount to
(35). Finally,

4qc0f(1) = 4qc0+2
√
q[c1−(q+1)c0]+1−(q+1)c1 = (−c1−2

√
qc0)(

√
q−1)2+1 ≥ 0

and

4qc0f(−1) = 4qc0−2
√
q[c1−(q+1)c0]+1−(q+1)c1 = (2

√
qc0−c1)(

√
q+1)2+1 ≥ 0

can be expressed as (36).

3. Duursma’s reduced polynomial of a function field. Let F = Fq(X) be
the function field of a curve X of genus g over Fq and hg := h(F ) be the class
number of F , i.e., the number of the linear equivalence classes of the divisors of
F of degree 0. The present section introduces an additive decomposition of the
Hasse-Weil polynomial LF (t) ∈ Z[t] of F , which associates to F a sequence {hi}g−1i=1

of virtual class numbers hi of function fields of curves of genus i over Fq.

Lemma 3.1. The following conditions are equivalent for a polynomial Lg(t) ∈ Q[t]
of degree degLg(t) = 2g:

(i) Lg(t) satisfies the functional equation

Lg(t) = Lg

(
1

qt

)
qgt2g

of the Hasse-Weil polynomial of the function field of a curve of genus g over Fq;

(ii) Lg−1(t) :=
Lg(t)− Lg(1)tg

(1− t)(1− qt)
is a polynomial with rational coefficients of degree 2g − 2, satisfying the functional
equation

Lg−1(t) = Lg−1

(
1

qt

)
qg−1t2g−2

of the Hasse-Weil polynomial of the function field of a curve of genus g−1 over Fq;

(iii) Lg(t) =

g∑
i=0

hit
i(1−t)g−i(1−qt)g−i

for some rational numbers hi ∈ Q.

Proof. Towards (i)⇒ (ii), let us note that the polynomial Mg(t) := Lg(t)−Lg(1)tg

vanishes at t = 1, so that it is divisible by 1− t. Further,

Mg(t) = Lg(t)− Lg(1)tg =

[
Lg

(
1

qt

)
− Lg(1)

qgtg

]
qgt2g = Mg

(
1

qt

)
qgt2g

satisfies the functional equation of the Hasse-Weil polynomial of the function field

of a curve of genus g over Fq. In particular, Mg

(
1
q

)
= Mg(1) q

g

q2g = 0 and Mg(t) is
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divisible by the linear polynomial q
(

1
q − t

)
= 1 − qt, which is relatively prime to

1− t in Q[t]. As a result,

Lg−1(t) :=
Mg(t)

(1− t)(1− qt)
∈ Q[t]

is a polynomial of degree degLg−1(t) = 2g − 2. Straightforwardly,

Lg−1

(
1

qt

)
qg−1t2g−2 =

[
Mg

(
1

qt

)
:

(
1− 1

qt

)(
1− 1

t

)]
qg−1t2g−2

=
Mg(t)

qt2
:

(qt− 1)(t− 1)

qt2
=

Mg(t)

(1− t)(1− qt)
= Lg−1(t)

satisfies the functional equation of the Hasse-Weil polynomial of the function field
of a curve of genus g − 1 over Fq.

The implication (ii) ⇒ (i) follows from the functional equation of Lg−1(t), ap-
plied to Lg(t) = (1− t)(1− qt)Lg−1(t) + Lg(1)tg. Namely,

Lg

(
1

qt

)
qgt2g

=

[(
1− 1

qt

)
qt

] [(
1− 1

t

)
t

] [
Lg−1

(
1

qt

)
qg−1t2g−2

]
+
Lg(1)

qgtg
qgt2g

= (qt− 1)(t− 1)Lg−1(t) + Lg(1)tg

= (1− t)(1− qt)Lg−1(t) + Lg(1)tg = Lg(t).

We derive (i) ⇒ (iii) by an induction on g, making use of (ii). More precisely,

for g = 1 one has L0(t) := L1(t)−L1(1)t
(1−t)(1−qt) ∈ Q[t] of degree degL0(t) = 0 or L0 ∈ Q.

Then

L1(t) = (1− t)(1− qt)L0 + L1(1)t =

1∑
i=0

hit
i(1− t)1−i(1− qt)1−i

with h0 := L0 ∈ Q and h1 := L1(1) ∈ Q. In the general case, (ii) provides a
polynomial

Lg−1(t) :=
Lg(t)− Lg(1)tg

(1− t)(1− qt)
,

subject to the functional equation

Lg−1(t) = Lg−1

(
1

qt

)
qg−1t2g−2

of the Hasse-Weil polynomial of the function field of a curve of genus g− 1 over Fq.
By the inductional hypothesis, there exist h′i ∈ Q, 0 ≤ i ≤ g − 1 with

Lg−1(t) =

g−1∑
i=0

h′it
i(1− t)g−1−i(1− qt)g−1−i.

Then

Lg(t) = (1− t)(1− qt)Lg−1(t) + Lg(1)tg =

g∑
i=0

hit
i(1− t)g−i(1− qt)g−i

with hi := h′i ∈ Q for 0 ≤ i ≤ g − 1 and hg := Lg(1) ∈ Q justifies (i)⇒ (iii).
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Towards (iii) ⇒ (i), let us assume that Lg(t) =
g∑
i=0

hit
i(1 − t)g−i(1 − qt)g−i.

Then

L

(
1

qt

)
qgt2g =

[
g∑
i=0

hi
qiti

(
1− 1

qt

)g−i(
1− 1

t

)g−i]
qgt2g

=

g∑
i=0

[
hi
qiti

qit2i
] [(

1− 1

qt

)
qt

]g−i [(
1− 1

t

)
t

]g−i
=

g∑
i=0

hit
i(qt− 1)g−i(t− 1)g−i = Lg(t)

satisfies the functional equation of the Hasse-Weil polynomial of the function field
of a curve of genus g over Fq.

Proposition 5. Let F = Fq(X) be the function field of a smooth irreducible curve

X/Fq ⊂ PN (Fq) of genus g, defined over Fq, with h(F ) linear equivalence classes
of divisors of degree 0, Ai effective divisors of degree i ≥ 0, Hasse-Weil polyno-
mial LF (t) ∈ Q[t] and Duursma’s reduced polynomial DF (t) ∈ Q[t], defined by the
equality

LF (t) = (1− t)(1− qt)DF (t) + h(F )tg.

Then:

(i) DF (t) =
g−2∑
i=0

Ai(ti + qg−1−it2g−2−i) + Ag−1tg−1 ∈ Z[t] is a polynomial with

integral coefficients, which is uniquely determined by A0 = 1,A1, . . . ,Ag−1;
(ii) the equality

DF (t)

(1− t)(1− qt)
=

∞∑
i=0

Biti (40)

of formal power series of t holds for

Bi =

i∑
j=0

Aj
(
qi−j+1 − 1

q − 1

)
(41)

for 0 ≤ i ≤ g − 1,

Bi =

g−1∑
j=0

Aj
(
qi−j+1 − 1

q − 1

)
+

i∑
j=g

A2g−2−j

(
qi−g+2 − qj−g+1

q − 1

)
(42)

for g ≤ i ≤ 2g − 3,

Bi = DF (1)

(
qi−g+2 − 1

q − 1

)
(43)

for i ≥ 2g − 2;
(iii) the natural numbers Bi, i ≥ 0 from (ii) satisfy the relations

Bi = qi−g+2B2g−4−i +DF (1)

(
qi−g+2 − 1

q − 1

)
for ∀g − 1 ≤ i ≤ 2g − 4; (44)

Bi = DF (1)

(
qi−g+2 − 1

q − 1

)
for ∀i ≥ 2g − 3. (45)
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(iv) the number h(F ) of the linear equivalence classes of the divisors of F of
degree 0 satisfies the inequilities

(
√
q − 1)2g ≤ h(F ) ≤ (

√
q + 1)2g

Proof. (i) By Theorem 4.1.6. (ii) and Theorem 4.1.11 from [6], the Hasse-Weil zeta
function of F is the generating function

ZF (t) =
LF (t)

(1− t)(1− qt)
=

∞∑
j=0

Ajtj

of the sequence {Ai}∞i=0. According to Lemma 3.1 and LF (1) = h(F ),

DF (t) :=
LF (t)− h(F )tg

(1− t)(1− qt)

is a polynomial of degDF (t) = 2g − 2, subject to the functional equation of the
Hasse-Weil polynomial of the function field of a curve of genus g− 1 over Fq. Thus,

ZF (t) = DF (t) +
h(F )tg

(1− t)(1− qt)
=

∞∑
j=0

Ajtj . (46)

Let l(G) is the dimension of the space H0(X,OX(G)) of the global holomorphic
sections of the line bundle OX(G) → X, associated with a divisor G ∈ Div(F ).
Riemann-Roch Theorem asserts that

l(G) = l(KX −G) + deg(G)− g + 1

for a canonical divisor KX of X. For any j ≥ g − 1, suppose that G1, . . . , Gh(F ) ∈
Div(F ) is a complete set of representatives of the linear equivalence classes of the
divisors of F of degree j. Then

Aj =

h(F )∑
ν=1

ql(Gν) − 1

q − 1
= qj−g+1

h(F )∑
ν=1

(
ql(KY −Gν) − 1

q − 1

)
+ h(F )

(
qj−g+1 − 1

q − 1

)
(47)

for g ≤ j ≤ 2g − 2 and

Aj = h(F )

(
qj−g+1 − 1

q − 1

)
for ∀j ≥ 2g − 1. (48)

Note that KY −G1, . . . ,KY −Gh(F ) is a complete set of representatives of the linear
equivalence classes of the divisors of F of degree 2g − 2− j, so that

A2g−2−j =

h(F )∑
ν=1

ql(KY −Gν) − 1

q − 1
. (49)

Plugging in by (49) in (47), one obtains

Aj = qj−g+1A2g−2−j + h(F )

(
qj−g+1 − 1

q − 1

)
for g ≤ j ≤ 2g − 2, (50)

whereas

ZF (t) =

g−1∑
j=0

Ajtj +

2g−2∑
j=g

qj−g+1A2g−2−jt
j + h(F )

∞∑
j=g

(
qj−g+1 − 1

q − 1

)
tj ,
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Putting i := 2g − 2 − j in the second sum and i := j − g in the third sum, one
expresses

ZF (t) =

g−2∑
i=0

Ai(ti + qg−1−it2g−2−i) +Ag−1tg−1

+h(F )

[
qtg

q − 1

( ∞∑
i=0

qiti

)
− tg

q − 1

( ∞∑
i=0

ti

)]
,

Summing up the geometric progressions

∞∑
i=0

qiti =
1

1− qt
,

∞∑
i=0

ti =
1

1− t
,

one derives

ZF (t) =

g−2∑
i=0

Ai(ti + qg−1−it2g−2−i) +Ag−1tg−1 + h(F )
tg

(1− t)(1− qt)
,

whereas

DF (t) =

g−2∑
i=0

Ai(ti + qg−1−it2g−2−i) +Ag−1tg−1.

In particular, DF (t) ∈ Z[t] has integral coefficients.
(ii) Let us expand

1

1− t
=

∞∑
i=0

ti,
1

1− qt
=

∞∑
i=0

qiti

as sums of geometric progressions and note that

1

(1− t)(1− qt)
=

∞∑
i=0

(1 + q + . . .+ qi)ti =

∞∑
i=0

(
qi+1 − 1

q − 1

)
ti.

Then represent Duursma’s reduced polynomial in the form

DF (t) =

g−1∑
j=0

Ajtj +

2g−2∑
j=g

A2g−2−jq
j−g+1tj . (51)

Now, the comparison of the coefficients of ti, i ≥ 0 from the left hand side and the
right hand side of (40) provides (41), (42) and

Bi =

g−1∑
j=0

Aj
(
qi−j+1 − 1

q − 1

)
+

2g−2∑
j=g

A2g−2−jq
j−g+1

(
qi−j+1 − 1

q − 1

)
for i ≥ 2g − 2.

The last formula can be expressed in the form

Bi =
qi+1

q − 1

q−1∑
j=0

Ajq−j +

2g−2∑
j=g

A2g−2−jq
j−g+1q−j

− 1

q − 1

g−1∑
j=0

Aj +

2g−2∑
j=g

A2g−2q
j−g+1


=

qi+1

q − 1
DF

(
1

q

)
− 1

q − 1
DF (1).
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According to Lemma 3.1 (i) ⇒ (ii), Duursma’s reduced polynomial of F satis-

fies the functional equation DF (t) = DF

(
1
qt

)
qg−1t2g−2. In particular, DF (1) =

DF

(
1
q

)
qg−1 and there follows (43).

(iii) Due to Ai ≥ 0 for ∀i ≥ 0, Bi are sums of non-negative integers. Moreover,

Bi ≥ Ai
(
qi+1

q−1

)
≥ A0 = 1 > 0 for ∀i ≥ 0 reveals that all Bi are natural numbers.

Towards (44), let us introduce the polynomial ψ(t) :=
g−2∑
j=0

Ajtj ∈ Z[t] and express

DF (t) =

g−2∑
j=0

Ajtj + qg−1t2g−2

g−2∑
j=0

Aj(qt)−j
+Ag−1tg−1

= ψ(t) + ψ

(
1

qt

)
qg−1t2g−2 +Ag−1tg−1.

In particular,

DF (1) = ψ(1) + ψ

(
1

q

)
qg−1 +Ag−1. (52)

Straightforwardly,

Bg−1 − qBg−3

=
qg

q − 1

g−2∑
j=0

Ajq−j
− 1

q − 1

g−2∑
j=0

Aj

+Ag−1 −
qg−1

q − 1

g−2∑
j=0

Ajq−j
+

q

q − 1

g−2∑
j=0

Aj


= ψ

(
1

q

)
qg−1 + ψ(1) +Ag−1 = DF (1).

That proves (44) for i = g−1. In the case of g ≤ i ≤ 2g−4 note that 0 ≤ 2g−4−i ≤
g − 4 and

(q − 1)(Bi − qi−g+2B2g−4−i)

=

g−1∑
j=0

Aj(qi−j+1 − 1) +

i∑
j=g

A2g−2−j(q
i−g+2 − qj−g+1)−

2g−4−i∑
j=0

Aj(qg−1−j − qi−g+2).

Changing the summation index of the second sum to s := 2g − 2− j, one obtains

(q − 1)(Bi − qi−g+2B2g−4−i)

= qi+1

g−1∑
j=0

Ajq−j
−

g−1∑
j=0

Aj

+ qi−g+2

 g−2∑
s=2g−2−i

As


−qg−1

 g−2∑
s=2g−2−i

Asq−s
− qg−1

2g−4−i∑
j=0

Ajq−j
+ qi−g+2

2g−4−i∑
j=0

Aj

 .
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An appropriate grouping of the sums yields

(q − 1)(Bi − qi−g+2B2g−4−i)

= ψ

(
1

q

)
qi+1 +Ag−1qi−g+2 − ψ(1)−Ag−1 + ψ(1)qi−g+2 − ψ

(
1

q

)
qg−1

= (qi−g+2 − 1)

[
ψ(1) + ψ

(
1

q

)
qg−1 +Ag−1

]
= DF (1)(qi−g+2 − 1).

That justifies (44).
Note that (45) with i ≥ 2g − 2 coincides with (43). In the case of i = 2g − 3,

(q − 1)B2g−3 =

g−1∑
j=0

Aj(q2g−2−j − 1) +

g−2∑
s=1

As(qg−1 − qg−1−s),

after changing the summation index of the second sum to s := 2g − 2− j. Then

(q − 1)B2g−3

= q2g−2

g−2∑
j=0

Ajq−j
−

g−2∑
j=0

Aj

+Ag−1(qg−1 − 1) + qg−1

g−2∑
j=0

Aj

− qg−1
g−2∑
j=0

Ajq−j


= (qg−1 − 1)

[
ψ(1) + ψ

(
1

q

)
qg−1 +Ag−1

]
= DF (1)(qg−1 − 1),

which is tantamount to (45) with i = 2g − 3.
(iv) By the Hasse-Weil Theorem, all the roots of LF (t) belong to the circle

S
(

1√
q

)
=
{
z ∈ C | |z| = 1√

q

}
. The proof of Proposition 2 specifies that

LF (t) = a2g

g∏
j=1

(
t− eiϕj
√
q

)(
t− e−iϕj

√
q

)

for some ϕj ∈ [0, 2π). The functional equation LF (t) = LF

(
1
qt

)
qgt2g implies that

a2g = qga0. Combining with a0 = LF (0) = 1, one gets

LF (t) =

g∏
j=1

(
√
qt− eiϕj )(√qt− e−iϕj ) =

g∏
j=1

(qt2 − 2
√
q cosϕjt+ 1).

The substitution t = 1 provides

h(F ) = LF (1) =

g∏
j=1

(q − 2
√
q cosϕj + 1).

However, cosϕj ∈ [−1, 1] requires

(
√
q − 1)2 ≤ q − 2

√
q cosϕj + 1 ≤ (

√
q + 1)2,

whereas

(
√
q − 1)2g ≤ h(F ) = LF (1) =

g∏
j=1

(q − 2
√
q cosϕj + 1) ≤ (

√
q + 1)2g.
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