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The logarithmic-canonical bundle Ω2

A′
(T ′) of a smooth toroidal compactification A′ =

(B/Γ)′ of a ball quotient B/Γ is known to be sufficiently ample over the Baily-Borel

compactification Â = B̂/Γ. The present work develops criteria for a subspace V ⊆

H0(A′,Ω2

A′
(T ′)) to be normally generated over Â, i.e., to determine a regular immer-

sive projective morphism of Â with normal image. These are applied to a specific
example A′

1
= (B/Γ1)

′ over the Gauss numbers. The first section organizes some pre-
liminaries. The second one provides two sufficient conditions for the normal generation
of a subspace V ⊆ H0(A′,Ω2

A′
(T ′)).
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1. PRELIMINARIES

Throughout, let B = {z = (z1, z2) ∈ ℂ2 ∣ ∣z1∣2 + ∣z2∣2 < 1} = SU2,1/S(U2 ×U1)
be the complex two dimensional ball and Γ ⊂ SU2,1 be a lattice, acting freely on B.
The compact B/Γ are of general type. The non-compact B/Γ admit smooth toroidal
compactification (B/Γ)′ by a disjoint union T ′ = ∪ℎ

i=1T
′
i of smooth irreducible

elliptic curves T ′
i . From now on, we concentrate on A′ = (B/Γ)′ with abelian

minimal model A. In such a case, the lattice Γ, the ball quotient B/Γ and its
compactifications are said to be co-abelian.
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The contraction � : A′ → A of the rational (−1)-curves on A′ restricts to
a biregular morphism � : T ′

i → �(T ′
i ) = Ti, as far as an abelian surface A does

not support rational curves. In such a way, � produces the multi-elliptic divisor

T = �(T ′) =
ℎ∑

i=1

Ti ⊂ A, i.e., a divisor with smooth elliptic irreducible components

Ti. According to Kobayashi hyperbolicity of B/Γ, any irreducible component of the
exceptional divisor of � intersects T ′ in at least two points. Therefore � : A′ → A is
the blow-up of A at the singular locus T sing =

∑
1≤i<j≤ℎ

Ti ∩ Tj of T . Holzapfel has

shown in [5] that the blow-up A′ of an abelian surface A at the singular locus T sing =
∑

1≤i<j≤ℎ

Ti∩Tj of a multi-elliptic divisor T =
ℎ∑

i=1

Ti is the toroidal compactification

A′ = (B/Γ)′ of a smooth ball quotient B/Γ if and only if A = E×E is the Cartesian
square of an elliptic curve E and

ℎ∑

i=1

card(Ti ∩ T sing) = 4card(T sing). (1.1)

In order to describe the smooth irreducible elliptic curves Ti on A and their in-
tersections, let us note that the inclusions Ti ⊂ A = E × E are morphisms of
abelian varieties. Consequently, they lift to affine linear maps of the corresponding
universal covers and

Ti = {(u+ �1(E), v + �1(E)) ∣ aiu+ biv + ci ∈ �1(E)}

for some ai, bi, ci ∈ ℂ. The fundamental group

�1(Ti) = {t ∈ ℂ ∣ bit+ �1(E) = −ait+ �1(E) = �1(E)} = a−1
i �1(E) ∩ b−1

i �1(E).

If Γ is an arithmetic lattice then the elliptic curve E has complex multiplication
by an imaginary quadratic number field K = ℚ(

√
−d), d ∈ ℕ. As a result, Γ is

commensurable with the full Picard modular group SU2,1(O−d) over the integers
ring O−d of ℚ(

√
−d). Such Γ are called Picard modular groups. Moreover, all

Ti are defined over K. For simplicity, we assume that �1(E) = O−d, in order
to have maximal endomorphism ring End(E) = O−d. Since K = ℚ(

√
−d) is

the fraction field of O−d, one can choose ai, bi ∈ O−d. Thus, �1(Ti) ⊇ O−d,
ai�1(E) + bi�1(E) ⊆ O−d and Ti has minimal fundamental group �1(Ti) = O−d

exactly when ai�1(E) + bi�1(E) = �1(E) = O−d. In particular, if K is of class
number 1, then all the smooth elliptic curves Ti ⊂ A = ℂ2/ (O−d ×O−d), defined
over K = ℚ(

√
−d), have minimal fundamental groups �1(Ti) = O−d. From now

on, we do not restrict the class number of K = ℚ(
√
−d), but confine only to smooth

irreducible elliptic curves Ti with minimal fundamental groups �1(Ti) = �1(E) =
O−d. If bi ∕= 0, then

T
(1)
i = {(bit+ �1(E),−ait− b−1

i ci + �1(E)) ∣ t ∈ ℂ} ⊆ Ti.
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Moreover, the complete pre-image of T
(1)
i in the universal cover Ã = ℂ2 of A is

�1(Ti)-invariant family of complex lines. Therefore, T
(1)
i is an elliptic curve and

coincides with Ti.

The notations from the next lemma will be used throughout:

Lemma 1. Let Ts = {(u + O−d, v + O−d) ∣ asu + bsv + cs ∈ Od} and Ds =
{(u+O−d, v+O−d) ∣ asu+bsv+cs+�s ∈ O−d} for 1 ≤ s ≤ 3 be elliptic curves with
minimal fundamental groups �1(Ts) = �1(Ds) = O−d on A = (ℂ/O−d)× (ℂ/O−d)
and

Δij := det

(
ai aj
bi bj

)
, Δ := det

⎛
⎝

a1 a2 a3
b1 b2 b3
c1 c2 c3

⎞
⎠ .

Then for any even permutation {i, j, l} of {1, 2, 3} there hold the following:

(i) the intersection number is Ti.Tj = N
ℚ(

√
−d)

ℚ (Δij), where N
ℚ(

√
−d)

ℚ :ℚ(
√
−d) →

ℚ stands for the norm;

(ii) Ti ∩ Tj ⊂ Dl if and only if �l ∈ O−d − Δ−1
ij Δ and both Δ−1

ij Δjl and

Δ−1
ij Δli belong to End(E) = O−d;

(iii) T1 ∩ T2 ∩ T3 = ∅ if and only if Δ ∕∈ Δ12O−d +Δ23O−d +Δ31O−d.

Proof. (i) If Ti∩Tj = ∅, then the liftings of Ti, Tj to the universal cover Ã = ℂ2

of A are discrete families of mutually parallel lines. In such a case, we say briefly
that Ti and Tj are parallel. That allows to choose aj = ai, bj = bi and to calculate

N
ℚ(

√
−d)

ℚ (Δij) = N
ℚ(

√
−d)

ℚ (0) = 0 = Ti.Tj . When Ti ∩ Tj ∕= ∅, one can move the
origin ǒA = (ǒE , ǒE) ∈ A in Ti ∩ Tj and represent

Ti = {(bit+O−d,−ait+O−d) ∣ t ∈ ℂ}, Tj = {(u+O−d, v+O−d) ∣ aju+bjv ∈ O−d}.

Then the intersection is

Ti ∩ Tj = {(bit+O−d,−ait+O−d) ∣Δijt ∈ O−d ⊂ ℂ} ≃

(Δ−1
ij O−d)/(b

−1
i O−d ∩ a−1

i O−d) =
(
Δ−1

ij O−d

)
/O−d ≃ O−d/ΔijO−d.

For an arbitrary lattice Λ ⊂ ℂ, let us denote by ℱ(Λ) a Λ-fundamental domain on
ℂ. As far as ℱ(ΔijO−d) is the O−d/ΔijO−d-orbit of ℱ(O−d), the index equals

[O−d : ΔijO−d] =
volℱ(ΔijO−d)

volℱ(O−d)
=

volℱ(∣Δij ∣O−d)

volℱ(O−d)
= ∣Δij ∣2 = N

ℚ(
√
−d)

ℚ (Δij).

(ii) The intersection Ti ∩ Tj consists of the �1(A)-equivalence classes of the
solutions (u, v) ∈ ℂ2 of ∣∣∣∣

aiu+ biv = �1 − ci
aju+ bjv = �2 − cj
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for arbitrary �1, �2 ∈ �1(E) = O−d. A point

(Δ−1
ij (bicj − bjci) + Δ−1

ij (bj�1 − bi�2), Δ
−1
ij (ajci − aicj) + Δ−1

ij (ai�2 − aj�1))

belongs to the lifting of Dl if and only if

−Δ−1
ij Δjl�1 −Δ−1

ij Δli�2 +Δ−1
ij (ciΔjl + cjΔli) + cl + �l

= −Δ−1
ij Δjl�1 −Δ−1

ij Δli�2 +Δ−1
ij Δ+ �l ∈ �1(E) = O−d

for ∀�1, �2 ∈ �1(E). That, in turn, is equivalent to Δ−1
ij Δ+�l ∈ �1(E) = O−d and

Δ−1
ij Δjl,Δ

−1
ij Δli ∈ End(E) = O−d.

(iii) For arbitrary �1, �2, �3 ∈ �1(E) = O−d, the linear system

∣∣∣∣∣∣

a1u+ b1v = �1 − c1
a2u+ b2v = �2 − c2
a3u+ b3v = �3 − c3

has no solutions exactly when

det

⎛
⎝

a1 b1 �1 − c1
a2 b2 �2 − c2
a3 b3 �3 − c3

⎞
⎠ = Δ23�1 +Δ31�2 +Δ12�3 −Δ ∕= 0.

Lemma 1 is proved. □

The non-arithmetic lattices Γ ⊂ SU2,1 correspond to abelian surfaces A =
E × E, whose elliptic factors E have minimal endomorphism rings End(E) = ℤ.
Then the liftings of the elliptic curves Ti ⊂ A with �1(Ti) = �1(E) to the universal
cover Ã = ℂ2 of A are given by aiu+ biv + ci ∈ �1(E) with ai, bi ∈ ℤ. As a result,

the intersection numbers Ti.Tj = N
ℚ(

√
−d)

ℚ (Δij) are comparatively large and there

are very few chances for construction of a multi-elliptic divisor T =
ℎ∑

i=1

⊂ A, subject

to (1.1). This is a sort of a motivation for restricting our attention to the arithmetic
case.

The smooth irreducible elliptic curves T ′
i ⊂ A′ contract to the Γ-orbits �i =

Γ(p) ∈ ∂ΓB/Γ of the Γ-rational boundary points p ∈ ∂ΓB. These �i are called

cusps. The resulting Baily-Borel compactification Â = B̂/Γ = (B/Γ) ∪ (∂ΓB/Γ) is
a normal projective surface.

Definition 2. Let Γ be a Picard modular group,  ∈ Γ and Jac() = ∂(1,2)
∂(z1,z2)

be the Jacobian matrix of  = (1, 2) : B → B ⊂ ℂ2. The global holomorphic
functions � : B → ℂ with transformation law

∗(�)(z) = �(z) = [det Jac()]
−n

�(z) for ∀ ∈ Γ, ∀z ∈ B
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are called Γ-modular forms of weight n.

The Γ-modular forms of weight n constitute a ℂ-linear space, which is denoted
by [Γ, n].

Definition 3. A Γ-modular form � ∈ [Γ, n] is cuspidal if �(�i) = 0 at all the
cusps �i ∈ ∂ΓB/Γ.

The cuspidal Γ-modular forms of weight n form the subspace [Γ, n]cusp of [Γ, n].

For any natural number n there is a ℂ-linear embedding

jn : H0(B,OB) −→ H0
(
B,
(
Ω2

B

)⊗n
)

jn(�)(z) = �(z)(dz1 ∧ dz2)
⊗n

of the global holomorphic functions on the ball in the global holomorphic sections

of the n-th pluri-canonical bundle
(
Ω2

B

)⊗n
. It restricts to an isomorphism

jn : [Γ, n] −→ H0
(
B,
(
Ω2

B

)⊗n
)Γ

of the Γ-modular forms of weight n with the Γ-invariant holomorphic sections of
(
Ω2

B

)⊗n
. Note that the subspace H0

(
B,
(
Ω2

B

)⊗n
)Γ

of H0

(
B/Γ,

(
Ω2

B/Γ

)⊗n
)

acts

on Â = B̂/Γ, extending over the cusps ∂ΓB/Γ of codimension 2 in Â.

The tensor product Ω2
A′(T ′) = Ω2

A′ ⊗ℂ OA′(T ′) is called logarithmic canonical
bundle ofA′, while Ω2

A′(T ′)⊗n are referred to as logarithmic pluri-canonical bundles.
Hemperly has observed in [3] that

jn[Γ, n] = H0
(
B,
(
Ω2

B

)⊗n
)Γ

= H0
(
A′,Ω2

A′(T ′)⊗n
)

as long as the holomorphic sections from these spaces have one and the same coordi-
nate transformation law. A classical result of Baily-Borel establishes that Ω2

A′(T ′)

is sufficiently ample on Â. The present article provides sufficient conditions for the
ampleness of Ω2

A′(T ′) on Â.

Note that the canonical bundle

KA′ = �∗KA +OA′(L) = �∗OA +OA′(L) = OA′(L)

is associated with the exceptional divisor L = �−1(T sing) of � : A′ → A. If s
is a global meromorphic section of Ω2

A′ and t is a global meromorphic section of
OA′(T ′), then the tensoring

(s⊗ℂ t)
⊗(−n)

: H0
(
A′,Ω2

A′(T ′)⊗n
)
−→ ℒA′(n(L+ T ′))

is a ℂ-linear isomorphism with

ℒA′(n(L+ T ′)) = {f ∈ Mer(A′) ∣ (f) + n(L + T ′) ≥ 0}.
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The isomorphism �∗ : Mer(A) → Mer(A′) of the meromorphic function fields in-
duces a linear isomorphism

(�∗)−1
: ℒA′(n(L + T ′)) −→ ℒA(nT, nT

sing),

where mp : Div(A) → ℤ stands for the multiplicity at a point p ∈ A and

ℒA(nT, nT
sing) = {f ∈ Mer(A) ∣ (f) + nT ≥ 0, mp(f) + n ≥ 0 for ∀p ∈ T sing}.

The linear isomorphisms

�n := (�∗)−1(s⊗ℂ t)⊗(−n) : jn[Γ, n] −→ ℒA(nT, nT
sing)

are called transfers of modular forms of weight n to abelian functions.

For any � ∈ [Γ, 1], note that �(�i) ∕= 0 if and only if Ti ⊂ (�1j1(�))∞. Observe
also that �1j1[Γ, 1]cusp = {f ∈ ℒA(T, T

sing) ∣ (f)∞ = ∅} = ℂ and fix the cuspidal
form �o = (�1j1)

−1(1) of weight 1.

Towards the construction of abelian functions f ∈ ℒA(T, T
sing), let us recall

from [7] that any elliptic function g : E → ℙ1 can be represented as

g(z) = Co

k∏

i=1

�(z − �i)

�(z − �i)
, (1.2)

where

�(z) = z
∏

�∈�1(E)∖{0}

(
1− z

�

) z

�
+ 1

2
( z

� )
2

is the Weierstrass �-function, �i, �i, Co ∈ ℂ and
k∑

i=1

�i ≡
k∑

i=1

�i(mod �1(E)). The

points of E = ℂ/�1(E) are of the form a = a + �1(E) for some a ∈ ℂ. The
elliptic function (1.2) takes all the values from ℙ1 with one and a same multiplicity
k. Moreover, if g−1(x) = {pi(x) ∈ E ∣ 1 ≤ i ≤ k} for some x ∈ ℂ ⊂ ℙ1, then
k∑

i=1

pi(x) =
k∑

i=1

�i. Observe that � : ℂ → ℂ is a non-periodic entire function, but its

divisor (�)ℂ = �1(E) on ℂ is �1(E)-invariant. That enables to define the divisor
(�)E = ǒE of � on E. In global holomorphic coordinates (u, v) ∈ ℂ2, the divisor

(�(aiu+ biv + ci))ℂ2 = {(u, v) ∈ ℂ2 ∣ aiu+ biv + ci ∈ �1(E) = O−d}

is the complete pre-image of Ti in the universal cover Ã = ℂ2 of A. That allows to
define the divisor

(�(aiu+ biv + ci)) = (�(aiu+ biv + ci))A = Ti.
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Let f ∈ ℒA(T ) be an abelian function with pole divisor (f)∞ =
k∑

i=1

Ti, after

an eventual permutation of the irreducible components of T . Then

f∞ :=

k∏

i=1

�(aiu+ biv + ci) and f0 := ff∞ (1.3)

are (non-periodic) entire functions on ℂ2. Let � = �′

� be Weierstrass’ �-function,
� : �1(E) → ℂ be the ℤ-linear homomorphism, satisfying �(z + �) = �(z) + �(�)
for all z ∈ ℂ, � ∈ �1(E) and

"(�) =

{
1 for � ∈ 2�1(E),

−1 for � ∈ �1(E) ∖ 2�1(E).

Recall from [6] the �1(E)-transformation law

�(z + �)

�(z)
= "(�)e�(�)(z+

�

2
) for ∀� ∈ �1(E), ∀z ∈ ℂ.

Under the assumption (1.3), the �1(A)-periodicity of f is equivalent to

f0(u+ �, v)

f0(u, v)
=

f∞(u+ �, v)

f∞(u, v)
=

k∏

i=1

"(ai�)e
�(ai�)

(

aiu+biv+ci+
ai�

2

)

and

f0(u, v + �)

f0(u, v)
=

f∞(u, v + �)

f∞(u, v)
=

k∏

i=1

"(bi�)e
�(bi�)

(

aiu+biv+ci+
bi�

2

)

for ∀� ∈ �1(E) = O−d, ∀(u, v) ∈ ℂ2. We choose

f0(u, v) =
k∏

i=1

�(aiu+ biv + ci + �i)

and reduce the �1(A)-periodicity of f to

1=
f(u+�, v)

f(u, v)
=e

k
∑

i=1

�(ai�)�i

, 1=
f(u, v+�)

f(u, v)
=e

k
∑

i=1

�(bi�)�i ∀� ∈ O−d, ∀(u, v) ∈ ℂ2.

Let us mention that Holzapfel has studied f ∈ ℒA(T ) of the above form with at
most three non-parallel irreducible components of (f)∞, intersecting pairwise in
single points. The next lemma provides a sufficient (but not necessary) condition
for �1(A)-periodicity of a �-quotient, whose pole divisor has an arbitrary number
of irreducible components with arbitrary intersection numbers.
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Lemma 4. If

k∑

i=1

ai�i =

k∑

i=1

ai�i =

k∑

i=1

bi�i =

k∑

i=1

bi�i = 0 , (1.4)

then the �-quotient

f(u, v) =

k∏

i=1

�(aiu+ biv + ci + �i)

�(aiu+ biv + ci)
(1.5)

is O−d ×O−d -periodic.

Proof. Let us recall from [1] that the integers ring of an imaginary quadratic
number field ℚ(

√
−d) is of the form O−d = ℤ+ 2!ℤ for

2! =

{ √
−d for −d ∕≡ 1(mod 4),

−1+
√
−d

2 for −d ≡ 1(mod 4).

Any � ∈ O−d has unique representation � = x+ 2!y with

x =
2!� − 2!�

2! − 2!
∈ ℤ, y =

� − �

2! − 2!
∈ ℤ.

Legendre’s equality
�(2!)− 2!�(1) = 2�

√
−1,

(cf.[6]) implies that

�(�) = ��(1) +
� − �

2! − 2!
2�

√
−1 for ∀� ∈ O−d.

As a result,

k∑

i=1

�(ai�)�i =

(
k∑

i=1

ai�i

)
��(1) +

(
k∑

i=1

ai�i

)
2�

√
−1�

2! − 2!
−
(

k∑

i=1

ai�i

)
�2�

√
−1

2! − 2!
.

Lemma 4 is proved □

Mutually parallel smooth elliptic curves T1, . . . , Tk admit liftings

Ti = {(u+O−d, v +O−d) ∣ a1u+ b1v + ci ∈ O−d}.

For arbitrary �j ∈ ℂ with
k∑

i=1

�i = 0, the �-quotient

f(u, v) =

k∏

i=1

�(a1u+ b1v + ci + �i)

�(a1u+ b1v + ci)
(1.6)
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belongs to ℒA(T, T
sing) and has smooth pole divisor (f)∞ =

k∑
i=1

Ti. Following [4],

we say that (1.6) is a k-fold parallel �-quotient. A �-quotient (1.5) has smooth
pole divisor if and only if it is k-fold parallel.

Definition 5. A special �-quotient of order k is a function of the form (1.5),
which is subject to (1.4), has singular pole divisor (f)∞ and �i ∕∈ O−d for all
1 ≤ i ≤ k.

Lemma 6. If f ∈ ℒA(T, T
sing) is a special �-quotient of order k ≥ 2, then at

any point p ∈ (f)sing∞ the multiplicity mp(f)∞ satisfies

2 ≤ mp(f)∞ ≤
[
k + 1

2

]
,

where
[
k+1
2

]
is the greatest natural number, non-exceeding k+1

2 .

In particular, ℒA(T, T
isng) does not contain a special �-quotient of order 2.

Proof. The smoothness of the irreducible components T1, . . . , Tk of (f)∞ results
in (f)sing∞ ⊂ ∑

1≤i<j≤k

(Ti ∩ Tj) and implies that mp(f)∞ ≥ 2 for all p ∈ (f)sing∞ .

Suppose that mp(f)∞ = m for some 2 ≤ m ≤ k. After an eventual permutation of
T1, . . . , Tk, one can assume that p ∈ T1 ∩ . . . ∩ Tm and p ∕∈ Tm+1 + . . .+ Tk. Then

mp(f) + 1 = mp(f)0 −mp(f)∞ + 1 = mp(f)0 −m+ 1 ≥ 0

requires the existence of Dm+1, . . . , D2m−1 ⊂ (f)0 =
k∑

i=1

Di with p ∈ Dm+1 ∩ . . . ∩
D2m−1, after a further permutation of Dm+1, . . . , Dk. Now 2m − 1 ≤ k implies
that mp(f)∞ = m ≤

[
k+1
2

]
.

In particular, for k = 2 the inequality 2≤mp(f)∞≤
[
3
2

]
cannot be satisfied. □

Proposition 7. If

f(u, v) =

3∏

i=1

�(aiu+ biv + ci + �i)

�(aiu+ biv + ci)
(1.7)

is a special �-quotient from ℒA(T, T
sing), then T1∩T2∩T3 = ∅ and the intersection

numbers T1.T2 = T2.T3 = T3.T1 ∈ ℕ are equal.

Proof. By Lemma 6 there follows mp(f)∞ = 2 for ∀p ∈ (f)sing∞ . In particular,
(f)∞ = T1 + T2 + T3 has no triple point and T1 ∩ T2 ∩ T3 = ∅. Further, for
any p ∈ Ti ∩ Tj the condition mp(f) + 1 ≥ 0 requires that p ∈ Dl, therefore
�l ∈ O−d − Δ−1

ij Δ and Δ−1
ij Δjl,Δ

−1
ij Δli ∈ O−d, according to Lemma 1 (ii). A

cyclic change of the even permutation {i, j, l} by {j, l, i} and {l, i, j} results in
Δ−1

jl Δli,Δ
−1
jl Δij ∈ O−d and, respectively, Δ−1

li Δij ,Δ
−1
li Δjl ∈ O−d. Consequently,

Δ−1
ij Δjl,Δ

−1
ij Δli ∈ O∗

−d, whereas N
ℚ(

√
−d)

ℚ (Δij) = N
ℚ(

√
−d)

ℚ (Δjl) = N
ℚ(

√
−d)

ℚ (Δli).
Now, by Lemma 1 (i) it follows that Ti.Tj = Tj .Tl = Tl.Ti. □
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Definition 8. The divisor T1 + T2 + T3 with three smooth elliptic irreducible
components is called a triangle if T1 ∩ T2 ∩ T3 = ∅ and T1.T2 = T2.T3 = T3.T1 = 1.

Examples of special �-quotients with triangular pole divisors are constructed
by Holzapfel in [4]. We show that any triangular divisor can be realized as a pole
divisor of a special �-quotient f ∈ ℒA(T, T

sing) and provide a general formula for
such f .

Proposition 9. Let Ti = {(u + O−d, v + O−d) ∣ a′iu + b′iv + c′i ∈ O−d} with
1 ≤ i ≤ 3 be the smooth irreducible elliptic components of a triangle T1 + T2 + T3

and ai = Δ′
jla

′
i, bi = Δ′

jlb
′
i, ci = Δ′

jlc
′
i. Then a1 + a2 + a3 = 0, b1 + b2 + b3 = 0,

Δ−1
12 Δ ∕∈ O−d and for any � ∈ O−d the function

f(u, v) =

3∏

i=1

�(aiu+ biv + ci −Δ−1
12 Δ+ �)

�(aiu+ biv + ci)
(1.8)

is a special �-quotient from ℒA(T, T
sing) with pole divisor (f)∞ = T1 + T2 + T3.

Proof. Let v′i =

(
a′i
b′i

)
for 1 ≤ i ≤ 3. Expanding along the third row, one

obtains

0 =

∣∣∣∣∣∣

a′1 a′2 a′3
b′1 b′2 b′3
a′1 a′2 a′3

∣∣∣∣∣∣
= Δ′

23a
′
1 +Δ′

31a
′
2 +Δ′

12a
′
3 = 0,

0 =

∣∣∣∣∣∣

a′1 a′2 a′3
b′1 b′2 b′3
b′1 b′2 b′3

∣∣∣∣∣∣
= Δ′

23b
′
1 +Δ′

31b
′
2 +Δ′

12b
′
3 = 0,

and concludes that

v1 + v2 + v3 = Δ′
23v

′
1 +Δ′

31v
′
2 +Δ′

12v
′
3 = 02×1, Δ12 = Δ23 = Δ31. (1.9)

Now, according to Lemma 1 (iii), T1 ∩ T2 ∩ T3 = ∅ is equivalent to Δ ∕∈ Δ12O−d.
Then the condition mp(f)0 ≥ mp(f)∞ − 1 for ∀p ∈ (f)sing∞ reduces to Ti ∩ Tj ⊂ Dl

for any even permutation {i, j, l} of {1, 2, 3}. Making use of Lemma 1 (ii), one can
choose �1 = �2 = �3 = � −Δ−1

12 Δ ∕∈ O−d. Then (1.9) implies (1.4) from Lemma 4
and reveals that (1.8) is a special �-quotient from ℒA(T, T

sing). □

Definition 10. The special �-quotients (1.8) from ℒA(T, T
sing) with triangular

pole divisors (f)∞ = T1 + T2 + T3 are called triangular.

For elliptic curves Ti = {(u+O−d, v +O−d) ∣ aiu+ biv + ci ∈ O−d}, 1 ≤ i ≤ 2
with minimal fundamental groups �1(Ti) = �1(E) = O−d and intersection number
T1.T2 = 1, Lemma 1 (i) implies that

M =

(
a2 b2
a1 b1

)
∈ GL2(O−d).
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As a result, there arises an automorphism

' : A −→ A,

'(u +O−d, v +O−d) =

[
M

(
u
v

)
+

(
c2
c1

)]t

with '(T1) = E × ǒE , '(T2) = ǒE × E. Making use of �(�z) = ��(z) for ∀� ∈
O∗

−d, ∀z ∈ ℂ, one observes that any triangular �-quotient can be reduced by an
automorphism of A to the form

f012(u, v) =
�(u + a−1

0 c0)�(v + b−1
0 c0)�(a0u+ b0v)

�(u)�(v)�(a0u+ b0v + c0)
(1.10)

with a0, b0 ∈ O∗
−d, c0 ∕∈ O−d.

We are going to describe the complete divisor of a triangular �-quotient.

Definition 11. The divisor D =
2∑

i=0

Di −
2∑

i=0

Ti with smooth elliptic irreducible

components Di, Tj is called a tetrahedron (cf. Figure 1) if:

T
0

T
1 T2

D

D

D2

0

1

Figure 1: Tetrahedron

(i)
2∑

i=0

Ti is a triangle;

(ii) Di are parallel to Ti for all 0 ≤ i ≤ 2;

(iii) D0∩D1∩D2 = D0∩D1 = D1∩D2 = D2∩D0 = {p0} for some point p0 ∈ A;
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(iv)

(
2∑

i=0

Di

)
∩
(

2∑
i=0

Ti

)
=

(
2∑

i=0

Ti

)sing

⊂
(

2∑
i=0

Di

)smooth

.

Definition 12. An inscribed (ordered) pair of triangles (cf. Figure 2) is a

divisor D =
2∑

i=0

Di −
2∑

i=0

Ti, such that:

(i)
2∑

i=0

Di and
2∑

i=0

Ti are triangles;

(ii) Di are parallel to Ti for all 0 ≤ i ≤ 2;

(iii)

(
2∑

i=0

Di

)
∩
(

2∑
i=0

Ti

)
=

(
2∑

i=0

Ti

)sing

⊂
(

2∑
i=0

Di

)smooth

.

‘

D0

T
0

T
1

T2

D

D
2

1

Figure 2: Inscribed (ordered) pair of triangles

An explicit calculation of the singular points of the complete divisor yields the
following

Corollary 13. Let (1.10) with a0, b0 ∈ O∗
−d, c0 ∕∈ O−d be a triangular �-

quotient with complete divisor (f012) =
2∑

i=0

Di −
2∑

i=0

Ti. Then:

(i) c0 +O−d ∈ E2−tor is a 2-torsion point if and only if (f012) is a tetrahedron;

(ii) c0 +O−d ∕∈ E2−tor exactly when (f012) is an inscribed pair of triangles.

In either case, the multiplicity mp(f012) = −1 at all p ∈ (f012)∞ ∩ T sing.
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In [4] Holzapfel introduces the idea for detecting the linear independence of
co-abelian modular forms by the poles of the corresponding transfers to abelian
functions. Instead of his strongly descending divisor condition, we use a natural
complete decreasing flag on [Γ, 1]. That enables to supply a criterion for some
modular forms to constitute a basis of [Γ, 1] and to show that [Γ, 1] has always a
basis of the considered form.

Observe that the subspaces

Vi = j1[Γ, 1]i := {! ∈ j1[Γ, 1] ∣!(�1) = . . . = !(�i−1) = 0}
of V1 = j1[Γ, 1] form a non-increasing flag

j1[Γ, 1] = V1 ⊇ V2 ⊇ . . . ⊇ Vm−1 ⊇ Vm ⊇ . . . ⊇ Vℎ ⊇ Vℎ+1 = j1[Γ, 1]cusp.

For any !, !′ ∈ Vi one has !
′(�i)!−!(�i)!

′ ∈ Vi+1, so that 0 ≤ dimℂ (Vi/Vi+1) ≤ 1
for all 1 ≤ i ≤ ℎ. We prove that there is a permutation of the cusps �1, . . . , �ℎ, so
that Vi/Vi+1 ≃ ℂ for 1 ≤ i ≤ m and Vm+1 = Vm+2 = . . . = Vℎ+1 = j1[Γ, 1]cusp ≃ ℂ.
If so, then dimℂ[Γ, 1] = m+ 1.

Proposition 14. If the pole divisors of fi ∈ ℒA(T, T
sing) are subject to

Ti ⊂ (fi)∞ ⊆ Ti + Ti+1 + . . .+ Tℎ for all 1 ≤ i ≤ m,

then !i = �−1
1 (fi) ∈ j1[Γ, 1] with 1 ≤ i ≤ m form a basis of a complement of

Vm+1 = j1[Γ, 1]m+1.

In particular, if Vm+1 = Vℎ+1 = j1[Γ, 1]cusp, then j1(�o), !1, . . . , !m is a ℂ-
basis of j1[Γ, 1].

Proof. It suffices to show that for arbitrary b1, . . . , bm ∈ ℂ the linear system

m∑

i=1

!i(�j)ti = bj , 1 ≤ j ≤ m (1.11)

has a unique solution (t1, . . . , tm). On one hand, that implies the linear inde-
pendence of !1, . . . , !m over ℂ. On the other hand, for any ! ∈ j1[Γ, 1] there is

uniquely determined
m∑
i=1

ci!i with !0 = !−
m∑
i=1

ci!i ∈ j1[Γ, 1]m+1 = Vm+1. In other

words, j1[Γ, 1] = Spanℂ(!1, . . . , !m) ⊕ Vm+1, so that !1, . . . , !m is a basis of the
complement Spanℂ(!1, . . . , !m) of Vm+1.

Towards the existence of a unique solution of (1.11), note that the requirement
Ti ⊂ (�1(!i))∞ ⊆ Ti + Ti+1 + . . . + Tℎ is equivalent to !i(�i) ∕= 0 and !i(�1) =
!i(�2) = . . . = !i(�i−1) = 0. Thus, (1.11) is of the form

⎛
⎜⎜⎜⎜⎝

!1(�1) . . . 0 . . . 0

!1(�i) . . . !i(�i) . . . 0

!1(�m) . . . !i(�m) . . . !m(�m)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

t1
...
ti
...
tm

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

b1
...
bi
...
bm

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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with non-degenerate, lower-triangular coefficient matrix and has unique solution
for all b1, . . . , bm ∈ ℂ.

In the case of Vm+1 = Vℎ+1 = j1[Γ, 1]cusp, note that j1[Γ, 1]cusp = ℂj1(�o) with
�1j1(�o) = 1 ∈ ℒA(T, T

sing), so that j1(�o), !1, . . . , !m is a ℂ-basis of j1[Γ, 1]. □

The next proposition establishes that j1[Γ, 1] has always a ℂ-basis of the con-
sidered form.

Proposition 15. Let Γ⊂ SU2,1 be a freely acting, co-abelian Picard modular
group and dimℂ[Γ, 1]=m+1. Then there is a permutation {�1,. . . ,�m, �m+1,. . . ,�ℎ}
of the Γ-cusps, such that

V1/V2 ≃ V2/V3 ≃ ⋅ ⋅ ⋅ ≃ Vm/Vm+1 ≃ ℂ, Vm+1 = Vm+2 = ⋅ ⋅ ⋅ = Vℎ+1 = j1[Γ, 1]cusp.

Any !i ∈ Vi ∖ Vi+1 transfers to �1(!i) ∈ ℒA(T, T
sing) with

Ti ⊂ (�1(!i))∞ ⊆ Ti + Ti+1 + ⋅ ⋅ ⋅+ Tℎ for 1 ≤ i ≤ m

and j1(�o), !1, . . . , !m is a ℂ-basis of V1 = j1[Γ, 1].

In particular, if Tℎ−1.Tℎ = 1 then Vℎ−1 = j1[Γ, 1]cusp and dim[Γ, 1] ≤ ℎ− 1.

Proof. If V1 = Vℎ+1, then there is nothing to be proved. From now on, we
assume that dimV1/Vℎ+1 = m ∈ ℕ. By induction on 1 ≤ i ≤ m, we establish the
existence of !j ∈ Vj ∖ Vj+1 for all 1 ≤ j ≤ i. First of all, for any !1 ∈ V1 ∖ Vℎ+1

there exists a cusp �1 with !1(�1) ∕= 0. Then for an arbitrary permutation of
the remaining cusps, one has !1 ∈ V1 ∖ V2. If we have chosen !j ∈ Vj ∖ Vj+1 for
1 ≤ j ≤ i − 1 and Vi ⊉ Vℎ+1, then for an arbitrary !i ∈ Vi ∖ Vℎ+1 there exists
a permutation of {�i, �i+1, . . . , �ℎ}, such that !i(�i) ∕= 0. Clearly, !i ∈ Vi ∖ Vi+1

and we have obtained a basis j1(�o), !1, . . . , !m of V1 = j1[Γ, 1]. The conditions
!i ∈ Vi ∖ Vi+1 amount to Ti ⊂ (�1(!i))∞ and Tj " (�1(!i))∞ for all 1 ≤ j ≤ i− 1.

If Tℎ−1.Tℎ = 1, then up to an automorphism of A, one can assume that Tℎ−1 =
E × ǒE and Tℎ = ǒE × E. We claim that ℒA((E × ǒE) + (ǒE × E)) = ℂ, so
that dimℂ[Γ, 1] = m + 1 ≤ ℎ − 1. Indeed, for an arbitrary Q ∈ E ∖ ǒE the
restriction f ∣E×Q is an elliptic function of order 1. Therefore f ∣E×Q ≡ C(Q) ∈ ℂ
is a constant. Similarly, f ∣P×E ≡ C′(P ) ∈ ℂ for any P ∈ E ∖ ǒE . As a result,
C′(P ) = f(P,Q) = C(Q) for all Q ∈ E and f ∣A is constant. □

Proposition 16. (Holzapfel [5]) Let us fix the half-periods !1 = 1
2 , !2 = i

2 ,
!3 = !1 + !2 of the lattice �1(E) = O−1 = ℤ + iℤ, the 2-torsion points Q0 :=
0(modℤ+ iℤ) ∈ E, Qj := !j(modℤ+ iℤ) ∈ E for 1 ≤ j ≤ 3 and Qij := (Qi, Qj) ∈
A. Consider the elliptic curves

Tk = {(u+ �1(E), v + �1(E)) ∣u − ikv ∈ �1(E)} for 1 ≤ k ≤ 4,

T4+k = {(u+ �1(E), v + �1(E)) ∣u − !k ∈ �1(E)} for 1 ≤ k ≤ 2,
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T6+k = {(u+ �1(E), v + �1(E)) ∣ v − !k ∈ �1(E)} for 1 ≤ k ≤ 2.

Then the blow-up of A at the singular points

S1 = Q00, S2 = Q33, S3 = Q11, S4 = Q12, S5 = Q21, S6 = Q22

of T
(6,8)√
−1

=
8∑

k=1

Tk is the toroidal compactification (B/Γ1)
′
of a ball quotient B/Γ1

by a freely acting Picard modular group Γ1 over the Gaussian integers ℤ[i].

The self-intersection matrix M(6, 8) ∈ ℤ6×8 of T
(6,8)√
−1

is defined to have entries

M(6, 8)ij = 1 for Si ∈ Tj and M(6, 8)ij = 0 for Si ∕∈ Tj. Straightforwardly,

M(6, 8) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 1 0 1 1 0 1 0
1 0 1 0 1 0 0 1
1 0 1 0 0 1 1 0
0 1 0 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Q Q

Q

T

T

T

T

T

T

T

T

22

11 12

1

3

4

2

7

6

8

5

Q
11

Figure 3: The incidence relations of T
(6,8)√
−1

and
2∑

i=1

2∑
j=1

Qij ⊂
(
T

(6,8)√
−1

)sing
.

According to Q00, Q33 ∈ Tk or ∀1 ≤ k ≤ 4, there are no triangles Ti + Tj +

Tk ⊂ T
(6,8)√
−1

with 1 ≤ i < j ≤ 4, 1 ≤ i < j < k ≤ 8. Bearing in mind that
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(
T

(6,8)√
−1

)sing
∩
(

8∑
k=5

Tk

)
=

2∑
i=1

2∑
j=1

Qij , one makes use of Figure 3 and recognizes

the triangles T2k−1 + T4+m + T6+m, T2k + T4+m + T9−m with 1 ≤ k,m ≤ 2.
An immediate application of Proposition 9 with � = 2!m and, respectively, � =
!3 + !m + (−1)k+1!3−m, yields the following

Corollary 17. The space ℒA

(
T

(6,8)√
−1

,
(
T

(6,8)√
−1

)sing)
contains the binary parallel

f56(u, v) =
�(u − !1 − �1)�(u − !2 + �1)

�(u − !1)�(u − !2)
,

f78(u, v) =
�(v − !1 − �2)�(v − !2 + �2)

�(v − !1)�(v − !2)

and the triangular �-quotients

f2k−1,4+m,6+m(u, v)

=
�(u + (−1)kiv + !3)�(−u + !m + !3)�((−1)k+1iv + (−1)ki!m + !3)

�(u + (−1)kiv)�(−u+ !m)�((−1)k+1iv + (−1)ki!m)

f2k,4+m,9−m(u, v)

=
�(u + (−1)k+1v + !3)�(−u + !m + !3)�((−1)kv + (−1)k+1!3−m + !3)

�(u + (−1)k+1v)�(−u + !m)�((−1)kv + (−1)k+1!3−m)

with arbitrary 1 ≤ k,m ≤ 2.

Proposition 14 provides the following

Corollary 18. If fpq and fijk are the binary parallel and triangular �-quotients

from the space ℒA

(
T

(6,8)√
−1

,
(
T

(6,8)√
−1

)sing)
and !pq = �−1

1 (fpq), !ijk = �−1
1 (fijk),

then
!157, !258, !368, !467, !56, !78, j1(�o)

is a ℂ-basis of j1[Γ1, 1].

In particular, dimℂ[Γ, 1] = 7.

2. SUFFICIENT CONDITIONS FOR THE NORMAL GENERATION OF A
SPACE OF LOGARITHMIC CANONICAL SECTIONS

Definition 19. A holomorphic line bundle ℰ on an algebraic variety X is suf-
ficiently ample if the holomorphic sections of a sufficiently large tensor power ℰ⊗m

provide a projective embedding of X.
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Definition 20. A holomorphic line bundle ℰ over an algebraic variety X is
globally generated if the global holomorphic sections of ℰ determine a regular pro-
jective morphism.

A subspace V ⊆ H0(X, ℰ) is globally generated if some (and therefore any)
basis of V provides a regular projective morphism X → ℙ(V ).

Definition 21. A holomorphic line bundle ℰ over an algebraic manifold X
is normally generated if ℰ is globally generated and H0(X, ℰ) defines a projective
immersion of X with normal image.

A subspace V ⊆ H0(X, ℰ) is normally generated if it is globally generated and
the morphism X → ℙ(V ) is a projective immersion with normal image.

The normal generation of a sufficiently ample line bundle is a classical topic un-
der study. Various works provide normally generated and non-normally generated
line bundles over curves and abelian varieties. According to [2], if ℰ is a sufficiently
ample line bundle on an abelian variety of dimension n, then ℰ⊗(n−1) is normally
generated. In particular, any sufficiently ample line bundle on an abelian surface
is normally generated.

Our aim is to provide sufficient conditions for the normal generation of a sub-
space V ⊆ H0(A′,Ω2

A′(T ′)) over the Baily-Borel compactification Â. That cannot
be derived from the normal generation of a subspace W ⊆ H0(A, ℰ) of holomorphic
sections of a line bundle ℰ → A. Namely, �∗W cannot be a normally generated
space of global holomorphic sections of �∗ℰ , as far as the morphism, associated with
�∗W is not immersive on the exceptional divisor L = �−1(T sing) of � : A′ → A.

Corollary 22. Let X be an irreducible normal projective variety X and f : X →
Y be a finite, regular, generically injective morphism onto Y . Then f : X → Y is
a regular immersion with normal image Y .

Proof. If f : X → Y is a regular morphism of degree d ∈ ℕ, then the generic
fiber of f consists of d points, while the exceptional ones are constituted by ≤ d
points. In particular, for d = 1, any regular, generically injective morphism is
bijective onto its image. As a result, f : X → Y is a regular immersion with
normal image.

Our specific considerations will be based on the following immediate conse-
quence of Corollary 22

Corollary 23. Let X be an irreducible normal projective variety, ℰ → X be e
holomorphic line bundle over X and V ⊆ H0(X, ℰ) be a space of global holomorphic
sections of ℰ. If f : X → ℙ(V ) is a finite, regular, generically injective morphism
then V is normally generated.

Lemma 24. A subspace V ⊆ H0(A′,Ω2
A′(T ′)), containing the cuspidal form

j1(�o), is globally generated over Â if and only if it satisfies simultaneously the
following two geometric conditions:
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(i) for any irreducible component Ti of T there is !i ∈ V with (�1(!i))∞ ⊃ Ti;

(ii) for any p ∈ T sing there exists !p ∈ V with mp(�1(!p)) = −1.

Proof. The space V is globally generated over Â exactly when for any point

q ∈ Â there is vq ∈ V with vq(q) ∕= 0. If q ∈
(
B̂/Γ

)
∖
(
L∪

ℎ∑
i=1

�i

)
, then j1(�o)(q) ∕= 0.

A modular form !i ∈ V does not vanish on the cusp �i if and only if Ti ⊂ (�1(!i))∞.
A modular form !p ∈ V takes non-zero values on the rational (−1)-curve �−1(p)
exactly when the multiplicity mp(�1(!p)) = −1. □

From now on, we say briefly that a modular form ! ∈ H0(A′,Ω2
A′(T ′)) is

binary parallel or triangular if its transfer �1(!) ∈ ℒA(T, T
sing) is binary parallel

or, respectively, triangular.

Proposition 25. Let us suppose that the subspace V ⊆ H0(A′,Ω2
A′(T ′)) con-

tains the cuspidal form j1(�o), two binary parallel forms !13, !24, a triangular !012

with T0 ∩ T3 ∩ T4 = ∅ and satisfies the following three conditions:

(i) for any i ∕∈ {0, 1, . . . , 4} there exists !i ∈ V with (�1(!i))∞ ⊃ Ti;

(ii) for any p ∈ T sing ∖
( 4∑

j=0

Tj

)
there exists !p ∈ V with mp(�1(!p)) = −1;

(iii) for any 1 ≤ i < j ≤ ℎ there is !ij ∈ V , such that (�1(!ij))∞ contains exactly
one of Ti or Tj.

Then V is normally generated.

Proof. In the presence of Corollary 23, it suffices to establish that the projec-
tive morphism f : Â → ℙ(V ), associated with V is regular, finite and generically
injective. Assumption (i) from the present proposition and (�1(!ij))∞ = Ti + Tj ,
(�1(!012))∞ = T0 + T1 + T2 imply assumption (i) from Lemma 24. Further, no-
one p ∈ T sing ∩ (T1 + T3) belongs to (�1(!13))0 = D1 + D3, as far as T1, T3, D1

and D3 are mutually parallel and distinct. Therefore, mp(�1(!13)) = −1. Similarly,
mp(�1(!24)) = −1 for p ∈ T sing∩(T2+T4). By Corollary 13, mp(�1(!012)) = −1 for

all p ∈ T sing∩
(

2∑
i=0

Ti

)
. Combining with assumption (ii) from the present proposi-

tion, one obtains (ii) from Lemma 24. That allows to conclude that f : Â → ℙ(V )
is regular.

The assumption (iii) guarantees that f : Â → f(Â) ⊂ ℙ(V ) is finite. First of
all, on Â ∖ [L+ (∂ΓB/Γ)] = (B/Γ) ∖ L = A ∖ T , the morphism

(
!13

j1(�o)
= f13 ∘ � = f13,

!24

j1(�o)
= f24 ∘ � = f24

)
: (B/Γ) ∖ L = A ∖ T −→ ℂ2
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is of degree 4. More precisely, if

f13(u, v) =
�(u − �1)�(u − c3 + �1)

�(u)�(u − c3)
, f24(u, v) =

�(v − �2)�(v − c4 + �2)

�(v)�(v − c4)
, (2.1)

then for any x, y ∈ ℙ1 the fiber is

(f13, f24)
−1(x, y) = {(Pi(x), Qj(y)) ∣ 1 ≤ i, j ≤ 2}

with
P1(x) + P2(x) = c3, Q1(y) +Q2(y) = c4.

The condition (iii) provides the injectiveness of f : ∂ΓB/Γ → f (∂ΓB/Γ), which
suffices for f : L → f(L) to be discrete and, therefore, finite. Otherwise, f contracts
some irreducible component �−1(p), p ∈ T sing of L. If p ∈ Ti ∩ Tj then �i, �j ∈
�−1(p), whereas f(�i) = f(�j). Thus, f : L ∪ (∂ΓB/Γ) → f (L ∪ (∂ΓB/Γ)) and,

therefore, f : Â → f(Â) is a finite regular morphism.

The generic injectiveness of the projective morphism f : Â → f(Â) follows
from the generic injectiveness of the affine morphism

F =

(
!13

j1(�o)
= f13,

!24

j1(�o)
= f24,

!012

j1(�o)
= f012

)
: (B/Γ) ∖ L = A ∖ T −→ ℂ3.

This, in turn, is equivalent to the generic injectiveness of the rational surjective
morphism

F = (f13, f24, f012) : A −→ ℙ1 × ℙ1 × ℙ1.

Let us consider also the rational surjection F1 = (f13, f24) : A → ℙ1 × ℙ1 and its
factorization

A ℙ1 × ℙ1 × ℙ1

ℙ1 × ℙ1

?

F1

-F

�
�

�
��+

pr12

through F and the projection pr12 : ℙ1×ℙ1×ℙ1 → ℙ1×ℙ1 onto the first two factors.
The irreducible components T1 and T2 of the triangle T0+T1+T2 have intersection
number T1.T2 = 1. That allows to assume that T1 = ǒE × E, T2 = E × ǒE and
(1.10).

Suppose that F : A → ℙ1×ℙ1×ℙ1 is not generically injective. By F1 = pr12∘F
and degF1 = 4, the generic fiber of F on F−1

1 (x, y) consists of 2 or 4 points. In
either case, for any (x, y) ∈ ℙ1 × ℙ1 there holds at least one of the following pairs
of relations:

Case (i): f012(P1(x), Q2(y)) = f012(P2(x), Q1(y)),

f012(P1(x), Q1(y)) = f012(P2(x), Q2(y));
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Case (ii): f012(P1(x), Q2(y)) = f012(P2(x), Q2(y)),

f012(P1(x), Q1(y)) = f012(P2(x), Q1(y));

Case (iii): f012(P1(x), Q2(y)) = f012(P1(x), Q1(y)),

f012(P2(x), Q2(y)) = f012(P2(x), Q1(y)).

We claim that the relations from at least one case are satisfied identically on
ℙ1×ℙ1. Otherwise, the locus of either case is a proper analytic subvariety of ℙ1×ℙ1

and their union is also a proper analytic subvariety of ℙ1 × ℙ1. The contradiction
implies that for any (x, y) ∈ ℙ1×ℙ1 there holds identically at least one of the Cases
(i), (ii) or (iii). Note that (ii) and (iii) are equivalent under the transposition of the
factors of ℙ1 × ℙ1 and, respectively, of A = E × E.

Without loss of generality, one can suppose that P1(∞) = ǒE and P2(∞) = c3.
In Case (i), up to a relabeling of Q1(y), Q2(y), one has Q1(∞) = ǒE , Q2(∞) = c4.
Then

∞ = f012(ǒE , ǒE) = f012(P1(∞), Q1(∞)) = f012(P2(∞), Q2(∞)) = f012(c3, c4).

However, c3 ∕= ǒE , c4 ∕= ǒE and T3 ∩ T4 = {(c3, c4)} " T0 reveal that f012(c3, c4) ∕=
∞, so that Case (i) does not hold identically on A. Similarly, in Case (ii), there
follows

∞ = f012(ǒE , c4) = f012(P1(∞), Q2(∞)) = f012(P2(∞), Q2(∞)) = f012(c3, c4).

The contradiction implies that F : A → ℙ1 × ℙ1 × ℙ1 is generically injective. □

Here is another sufficient condition for a subspace V ⊆ H0(A′,Ω2
A′(T ′)) to be

normally generated.

Proposition 26. Let V be a subspace of H0(A′,Ω2
A′(T ′)), containing the cus-

pidal form j1(�o), a binary parallel !13, triangular !012, !234 with T0 ∩T1 ∩T4 = ∅
and satisfying the following three conditions:

(i) for any i ∕∈ {0, 1, . . .4} there exists !i ∈ V with (�1(!i))∞ ⊃ Ti;

(ii) for any p ∈ T sing ∖
(

4∑
j=0

Tj

)
there exists !p ∈ V with mp(�1(!p)) = −1;

(iii) for any 1 ≤ i < j ≤ ℎ there is !ij ∈ V , such that (�1(!ij))∞ contains exactly
one of Ti or Tj.

Then V is normally generated.

Proof. As in Proposition 25, first we establish the regularity of the projective
morphism f : Â → f(Â).
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Further, f : Â → f(Â) is finite, as far as the fibers of its restriction on (B/Γ) ∖
L = A ∖ T are contained in the fibers of

(
!13

j1(�o)
= f13,

!012

j1(�o)
= f012

)
: A ∖ T −→ ℂ2.

Let f012(u, v) be of the form (1.10) and f13 be as in (2.1). Then for any x, y ∈ ℙ1

the fiber
(f13, f012)

−1(x, y) = {(Pi(x), Qij(x, y)) ∣ 1 ≤ i, j ≤ 2}
with

P1(x) + P2(x) = c3, Qi1(x, y) +Qi2(x, y) = −a0b
−1
0 Pi(x)− b−1

0 c0

consists of at most four points. The reason is that for any fixed Pi(x) ∈ E the
elliptic function f012(Pi(x), ) is of order 2. Thus, (f13, f012) : A ∖ T → ℂ2 is finite.
The assumption (iii) implies that f : L ∪ (∂ΓB/Γ) → f (L ∪ (∂ΓB/Γ)) is finite, so
that f : Â → f(Â) is a finite regular morphism.

We derive the generic injectiveness of f : Â → f(Â) from the generic injective-
ness of the affine morphism

F =

(
!13

j1(�o)
= f13,

!012

j1(�o)
= f012,

!234

j1(�o)
= f234

)
: (B/Γ) ∖ L = A ∖ T −→ ℂ3.

To this end, let us factor the rational surjection F1 = (f13, f012) : A → ℙ1 × ℙ1

through the rational surjection F = (f13, f012, f234) : A → ℙ1 × ℙ1 × ℙ1 and the
projection pr12 : ℙ1 × ℙ1 × ℙ1 → ℙ1 × ℙ1, along the commutative diagram

A ℙ1 × ℙ1 × ℙ1

ℙ1 × ℙ1

?

F1

-F

�
�

�
��+

pr12
.

If F is not generically injective, then at least one of the following three cases holds
identically on ℙ1 × ℙ1:

Case (i): f234(P1(x), Q12(x, y)) = f234(P2(x), Q21(x, y)),

f234(P1(x), Q11(x, y)) = f234(P2(x), Q22(x, y));

Case (ii): f234(P1(x), Q12(x, y)) = f234(P2(x), Q22(x, y)),

f234(P1(x), Q11(x, y)) = f234(P2(x), Q21(x, y));

Case (iii): f234(P1(x), Q12(x, y)) = f234(P1(x), Q11(x, y)),

f234(P2(x), Q22(x, y)) = f234(P2(x), Q21(x, y)).

In either case, denote by P1(∞) = ǒE and P2(∞) = c3 the poles of the elliptic
function f13 and note that T1 = P1(∞) × E, T3 = P2(∞) × E. Further, let
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Qi1(∞,∞) = ǒE , so that T2 = E × Q11(∞,∞) = E × Q21(∞,∞). Finally, let
Qi2(∞,∞) = −a0b

−1
0 Pi(∞)− b−1

0 c0, in order to have

{q10} = T1 ∩ T0 = {(P1(∞), Q12(∞,∞))},

{q30} = T3 ∩ T0 = {(P2(∞), Q22(∞,∞))}.

Denote also

{q12} = T1 ∩ T2 = {(P1(∞), Q11(∞,∞))},

{q32} = T3 ∩ T2 = {(P2(∞), Q21(∞,∞))}.
Bearing in mind that (f234)∞ = T2 + T3 + T4, note that f234(qij) = ∞ whenever
{i, j}∩{2, 3, 4} ∕= ∅. In the Case (i) one has f234(q10) = f234(q32) = ∞. If q10 ∈ T2,
then q10 ∈ T0 ∩ T1 ∩ T2, contrary to the assumption that T0 + T1 + T2 is a triangle.
On the other hand, T3 ∩ T1 = ∅ guarantees that q10 ∕∈ T3. Therefore q10 ∈ T4 and
q10 ∈ T0 ∩ T1 ∩ T4 = ∅. The contradiction rejects the Case (i). If the first relation
of Case (ii) is identical on ℙ1 × ℙ1, then f234(q10) = f234(q30) = ∞. As in the
Case (i), that leads to an absurd. Finally, f234(q10) = f234(q12) = ∞ contradicts
the hypotheses and establishes that F = (f13, f012, f234) : A → ℙ1 × ℙ1 × ℙ1 is
generically injective. □

An immediate application of Proposition 26 to the example from Proposition 16
yields the following

Corollary 27. In the terms of Proposition 16, the subspace

V1 = Spanℂ(j1(�o), !56, !157, !267, !368, !458) ⊂ H0(A′
1,Ω

2
A′

1

(T ′))

is normally generated, i.e., determines a regular projective immersion

f : B̂/Γ1 → ℙ(V1) = ℙ5

with normal image.

If one applies Proposition 25 to the cuspidal form j1(�o), the binary parallel
!56, !78 and triangular !157, then one needs to adjoin the triangular !2,4+k,9−k,
!3,4+l,6+l, !4,4+m,9−m for some k, l,m ∈ {1, 2}. The span of these modular forms is
7-dimensional and depletes the entire [Γ1, 1]. It is clear that the normal generation
of V1 implies the normal generation of H0(A′

1,Ω
2
A′

1

(T ′)) = j1[Γ1, 1].
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