ANNUAL OF SOFIA UNIVERSITY „ST. KLIMENT OHRIDSKI"

FACULTY OF MATHEMATICS AND INFORMATICS
Volume 101

NORMALLY GENERATED SUBSPACES OF LOGARITHMIC CANONICAL SECTIONS

BORIS KOTZEV, AZNIV KASPARIAN

Abstract

The logarithmic-canonical bundle $\Omega_{A^{\prime}}^{2}\left(T^{\prime}\right)$ of a smooth toroidal compactification $A^{\prime}=$ $(\mathbb{B} / \Gamma)^{\prime}$ of a ball quotient \mathbb{B} / Γ is known to be sufficiently ample over the Baily-Borel compactification $\widehat{A}=\widehat{\mathbb{B} / \Gamma}$. The present work develops criteria for a subspace $V \subseteq$ $H^{0}\left(A^{\prime}, \Omega_{A^{\prime}}^{2}\left(T^{\prime}\right)\right)$ to be normally generated over \widehat{A}, i.e., to determine a regular immersive projective morphism of \widehat{A} with normal image. These are applied to a specific example $A_{1}^{\prime}=\left(\mathbb{B} / \Gamma_{1}\right)^{\prime}$ over the Gauss numbers. The first section organizes some preliminaries. The second one provides two sufficient conditions for the normal generation of a subspace $V \subseteq H^{0}\left(A^{\prime}, \Omega_{A^{\prime}}^{2}\left(T^{\prime}\right)\right)$.

Keywords: Modular forms, holomorphic sections of line bundles, abelian functions, sufficiently ample and normally generated line bundles.
2000 Math. Subject Classification: Primary 11F23, Secondary 14G35

1. PRELIMINARIES

Throughout, let $\mathbb{B}=\left\{z=\left.\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}<1\right\}=S U_{2,1} / S\left(U_{2} \times U_{1}\right)$ be the complex two dimensional ball and $\Gamma \subset S U_{2,1}$ be a lattice, acting freely on \mathbb{B}. The compact \mathbb{B} / Γ are of general type. The non-compact \mathbb{B} / Γ admit smooth toroidal compactification $(\mathbb{B} / \Gamma)^{\prime}$ by a disjoint union $T^{\prime}=\cup_{i=1}^{h} T_{i}^{\prime}$ of smooth irreducible elliptic curves T_{i}^{\prime}. From now on, we concentrate on $A^{\prime}=(\mathbb{B} / \Gamma)^{\prime}$ with abelian minimal model A. In such a case, the lattice Γ, the ball quotient \mathbb{B} / Γ and its compactifications are said to be co-abelian.

The contraction $\xi: A^{\prime} \rightarrow A$ of the rational (-1)-curves on A^{\prime} restricts to a biregular morphism $\xi: T_{i}^{\prime} \rightarrow \xi\left(T_{i}^{\prime}\right)=T_{i}$, as far as an abelian surface A does not support rational curves. In such a way, ξ produces the multi-elliptic divisor $T=\xi\left(T^{\prime}\right)=\sum_{i=1}^{h} T_{i} \subset A$, i.e., a divisor with smooth elliptic irreducible components T_{i}. According to Kobayashi hyperbolicity of \mathbb{B} / Γ, any irreducible component of the exceptional divisor of ξ intersects T^{\prime} in at least two points. Therefore $\xi: A^{\prime} \rightarrow A$ is the blow-up of A at the singular locus $T^{\text {sing }}=\sum_{1 \leq i<j \leq h} T_{i} \cap T_{j}$ of T. Holzapfel has shown in [5] that the blow-up A^{\prime} of an abelian surface A at the singular locus $T^{\text {sing }}=$ $\sum_{1 \leq i<j \leq h} T_{i} \cap T_{j}$ of a multi-elliptic divisor $T=\sum_{i=1}^{h} T_{i}$ is the toroidal compactification $A^{\prime}=(\mathbb{B} / \Gamma)^{\prime}$ of a smooth ball quotient \mathbb{B} / Γ if and only if $A=E \times E$ is the Cartesian square of an elliptic curve E and

$$
\begin{equation*}
\sum_{i=1}^{h} \operatorname{card}\left(T_{i} \cap T^{\operatorname{sing}}\right)=4 \operatorname{card}\left(T^{\operatorname{sing}}\right) \tag{1.1}
\end{equation*}
$$

In order to describe the smooth irreducible elliptic curves T_{i} on A and their intersections, let us note that the inclusions $T_{i} \subset A=E \times E$ are morphisms of abelian varieties. Consequently, they lift to affine linear maps of the corresponding universal covers and

$$
T_{i}=\left\{\left(u+\pi_{1}(E), v+\pi_{1}(E)\right) \mid a_{i} u+b_{i} v+c_{i} \in \pi_{1}(E)\right\}
$$

for some $a_{i}, b_{i}, c_{i} \in \mathbb{C}$. The fundamental group

$$
\pi_{1}\left(T_{i}\right)=\left\{t \in \mathbb{C} \mid b_{i} t+\pi_{1}(E)=-a_{i} t+\pi_{1}(E)=\pi_{1}(E)\right\}=a_{i}^{-1} \pi_{1}(E) \cap b_{i}^{-1} \pi_{1}(E)
$$

If Γ is an arithmetic lattice then the elliptic curve E has complex multiplication by an imaginary quadratic number field $K=\mathbb{Q}(\sqrt{-d}), d \in \mathbb{N}$. As a result, Γ is commensurable with the full Picard modular group $S U_{2,1}\left(\mathcal{O}_{-d}\right)$ over the integers ring \mathcal{O}_{-d} of $\mathbb{Q}(\sqrt{-d})$. Such Γ are called Picard modular groups. Moreover, all T_{i} are defined over K. For simplicity, we assume that $\pi_{1}(E)=\mathcal{O}_{-d}$, in order to have maximal endomorphism ring $\operatorname{End}(E)=\mathcal{O}_{-d}$. Since $K=\mathbb{Q}(\sqrt{-d})$ is the fraction field of \mathcal{O}_{-d}, one can choose $a_{i}, b_{i} \in \mathcal{O}_{-d}$. Thus, $\pi_{1}\left(T_{i}\right) \supseteq \mathcal{O}_{-d}$, $a_{i} \pi_{1}(E)+b_{i} \pi_{1}(E) \subseteq \mathcal{O}_{-d}$ and T_{i} has minimal fundamental group $\pi_{1}\left(T_{i}\right)=\mathcal{O}_{-d}$ exactly when $a_{i} \pi_{1}(E)+b_{i} \pi_{1}(E)=\pi_{1}(E)=\mathcal{O}_{-d}$. In particular, if K is of class number 1 , then all the smooth elliptic curves $T_{i} \subset A=\mathbb{C}^{2} /\left(\mathcal{O}_{-d} \times \mathcal{O}_{-d}\right)$, defined over $K=\mathbb{Q}(\sqrt{-d})$, have minimal fundamental groups $\pi_{1}\left(T_{i}\right)=\mathcal{O}_{-d}$. From now on, we do not restrict the class number of $K=\mathbb{Q}(\sqrt{-d})$, but confine only to smooth irreducible elliptic curves T_{i} with minimal fundamental groups $\pi_{1}\left(T_{i}\right)=\pi_{1}(E)=$ \mathcal{O}_{-d}. If $b_{i} \neq 0$, then

$$
T_{i}^{(1)}=\left\{\left(b_{i} t+\pi_{1}(E),-a_{i} t-b_{i}^{-1} c_{i}+\pi_{1}(E)\right) \mid t \in \mathbb{C}\right\} \subseteq T_{i}
$$

Moreover, the complete pre-image of $T_{i}^{(1)}$ in the universal cover $\widetilde{A}=\mathbb{C}^{2}$ of A is $\pi_{1}\left(T_{i}\right)$-invariant family of complex lines. Therefore, $T_{i}^{(1)}$ is an elliptic curve and coincides with T_{i}.

The notations from the next lemma will be used throughout:
Lemma 1. Let $T_{s}=\left\{\left(u+\mathcal{O}_{-d}, v+\mathcal{O}_{-d}\right) \mid a_{s} u+b_{s} v+c_{s} \in \mathcal{O}_{d}\right\}$ and $D_{s}=$ $\left\{\left(u+\mathcal{O}_{-d}, v+\mathcal{O}_{-d}\right) \mid a_{s} u+b_{s} v+c_{s}+\mu_{s} \in \mathcal{O}_{-d}\right\}$ for $1 \leq s \leq 3$ be elliptic curves with minimal fundamental groups $\pi_{1}\left(T_{s}\right)=\pi_{1}\left(D_{s}\right)=\mathcal{O}_{-d}$ on $A=\left(\mathbb{C} / \mathcal{O}_{-d}\right) \times\left(\mathbb{C} / \mathcal{O}_{-d}\right)$ and

$$
\Delta_{i j}:=\operatorname{det}\left(\begin{array}{cc}
a_{i} & a_{j} \\
b_{i} & b_{j}
\end{array}\right), \quad \Delta:=\operatorname{det}\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right) .
$$

Then for any even permutation $\{i, j, l\}$ of $\{1,2,3\}$ there hold the following:
(i) the intersection number is $T_{i} \cdot T_{j}=N_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{-d})}\left(\Delta_{i j}\right)$, where $N_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{-d})}: \mathbb{Q}(\sqrt{-d}) \rightarrow$ \mathbb{Q} stands for the norm;
(ii) $T_{i} \cap T_{j} \subset D_{l} \quad$ if and only if $\mu_{l} \in \mathcal{O}_{-d}-\Delta_{i j}^{-1} \Delta$ and both $\Delta_{i j}^{-1} \Delta_{j l}$ and $\Delta_{i j}^{-1} \Delta_{l i}$ belong to $\operatorname{End}(E)=\mathcal{O}_{-d} ;$
(iii) $T_{1} \cap T_{2} \cap T_{3}=\emptyset$ if and only if $\Delta \notin \Delta_{12} \mathcal{O}_{-d}+\Delta_{23} \mathcal{O}_{-d}+\Delta_{31} \mathcal{O}_{-d}$.

Proof. (i) If $T_{i} \cap T_{j}=\emptyset$, then the liftings of T_{i}, T_{j} to the universal cover $\widetilde{A}=\mathbb{C}^{2}$ of A are discrete families of mutually parallel lines. In such a case, we say briefly that T_{i} and T_{j} are parallel. That allows to choose $a_{j}=a_{i}, b_{j}=b_{i}$ and to calculate $N_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{-d})}\left(\Delta_{i j}\right)=N_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{-d})}(0)=0=T_{i} \cdot T_{j}$. When $T_{i} \cap T_{j} \neq \emptyset$, one can move the origin $\check{o}_{A}=\left(\check{o}_{E}, \check{o}_{E}\right) \in A$ in $T_{i} \cap T_{j}$ and represent
$T_{i}=\left\{\left(b_{i} t+\mathcal{O}_{-d},-a_{i} t+\mathcal{O}_{-d}\right) \mid t \in \mathbb{C}\right\}, \quad T_{j}=\left\{\left(u+\mathcal{O}_{-d}, v+\mathcal{O}_{-d}\right) \mid a_{j} u+b_{j} v \in \mathcal{O}_{-d}\right\}$.
Then the intersection is

$$
\begin{gathered}
T_{i} \cap T_{j}=\left\{\left(b_{i} t+\mathcal{O}_{-d},-a_{i} t+\mathcal{O}_{-d}\right) \mid \Delta_{i j} t \in \mathcal{O}_{-d} \subset \mathbb{C}\right\} \simeq \\
\left(\Delta_{i j}^{-1} \mathcal{O}_{-d}\right) /\left(b_{i}^{-1} \mathcal{O}_{-d} \cap a_{i}^{-1} \mathcal{O}_{-d}\right)=\left(\Delta_{i j}^{-1} \mathcal{O}_{-d}\right) / \mathcal{O}_{-d} \simeq \mathcal{O}_{-d} / \Delta_{i j} \mathcal{O}_{-d} .
\end{gathered}
$$

For an arbitrary lattice $\Lambda \subset \mathbb{C}$, let us denote by $\mathcal{F}(\Lambda)$ a Λ-fundamental domain on \mathbb{C}. As far as $\mathcal{F}\left(\Delta_{i j} \mathcal{O}_{-d}\right)$ is the $\mathcal{O}_{-d} / \Delta_{i j} \mathcal{O}_{-d}$-orbit of $\mathcal{F}\left(\mathcal{O}_{-d}\right)$, the index equals

$$
\left[\mathcal{O}_{-d}: \Delta_{i j} \mathcal{O}_{-d}\right]=\frac{\operatorname{vol} \mathcal{F}\left(\Delta_{i j} \mathcal{O}_{-d}\right)}{\operatorname{vol} \mathcal{F}\left(\mathcal{O}_{-d}\right)}=\frac{\operatorname{vol} \mathcal{F}\left(\left|\Delta_{i j}\right| \mathcal{O}_{-d}\right)}{\operatorname{vol} \mathcal{F}\left(\mathcal{O}_{-d}\right)}=\left|\Delta_{i j}\right|^{2}=N_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{-d})}\left(\Delta_{i j}\right) .
$$

(ii) The intersection $T_{i} \cap T_{j}$ consists of the $\pi_{1}(A)$-equivalence classes of the solutions $(u, v) \in \mathbb{C}^{2}$ of

$$
\left\lvert\, \begin{aligned}
& a_{i} u+b_{i} v=\lambda_{1}-c_{i} \\
& a_{j} u+b_{j} v=\lambda_{2}-c_{j}
\end{aligned}\right.
$$

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 19-41.
for arbitrary $\lambda_{1}, \lambda_{2} \in \pi_{1}(E)=\mathcal{O}_{-d}$. A point

$$
\left(\Delta_{i j}^{-1}\left(b_{i} c_{j}-b_{j} c_{i}\right)+\Delta_{i j}^{-1}\left(b_{j} \lambda_{1}-b_{i} \lambda_{2}\right), \Delta_{i j}^{-1}\left(a_{j} c_{i}-a_{i} c_{j}\right)+\Delta_{i j}^{-1}\left(a_{i} \lambda_{2}-a_{j} \lambda_{1}\right)\right)
$$

belongs to the lifting of D_{l} if and only if

$$
\begin{aligned}
& -\Delta_{i j}^{-1} \Delta_{j l} \lambda_{1}-\Delta_{i j}^{-1} \Delta_{l i} \lambda_{2}+\Delta_{i j}^{-1}\left(c_{i} \Delta_{j l}+c_{j} \Delta_{l i}\right)+c_{l}+\mu_{l} \\
& =-\Delta_{i j}^{-1} \Delta_{j l} \lambda_{1}-\Delta_{i j}^{-1} \Delta_{l i} \lambda_{2}+\Delta_{i j}^{-1} \Delta+\mu_{l} \in \pi_{1}(E)=\mathcal{O}_{-d}
\end{aligned}
$$

for $\forall \lambda_{1}, \lambda_{2} \in \pi_{1}(E)$. That, in turn, is equivalent to $\Delta_{i j}^{-1} \Delta+\mu_{l} \in \pi_{1}(E)=\mathcal{O}_{-d}$ and $\Delta_{i j}^{-1} \Delta_{j l}, \Delta_{i j}^{-1} \Delta_{l i} \in \operatorname{End}(E)=\mathcal{O}_{-d}$.
(iii) For arbitrary $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \pi_{1}(E)=\mathcal{O}_{-d}$, the linear system

$$
\left\lvert\, \begin{aligned}
& a_{1} u+b_{1} v=\lambda_{1}-c_{1} \\
& a_{2} u+b_{2} v=\lambda_{2}-c_{2} \\
& a_{3} u+b_{3} v=\lambda_{3}-c_{3}
\end{aligned}\right.
$$

has no solutions exactly when

$$
\operatorname{det}\left(\begin{array}{ccc}
a_{1} & b_{1} & \lambda_{1}-c_{1} \\
a_{2} & b_{2} & \lambda_{2}-c_{2} \\
a_{3} & b_{3} & \lambda_{3}-c_{3}
\end{array}\right)=\Delta_{23} \lambda_{1}+\Delta_{31} \lambda_{2}+\Delta_{12} \lambda_{3}-\Delta \neq 0
$$

Lemma 1 is proved.
The non-arithmetic lattices $\Gamma \subset S U_{2,1}$ correspond to abelian surfaces $A=$ $E \times E$, whose elliptic factors E have minimal endomorphism rings $\operatorname{End}(E)=\mathbb{Z}$. Then the liftings of the elliptic curves $T_{i} \subset A$ with $\pi_{1}\left(T_{i}\right)=\pi_{1}(E)$ to the universal cover $\widetilde{A}=\mathbb{C}^{2}$ of A are given by $a_{i} u+b_{i} v+c_{i} \in \pi_{1}(E)$ with $a_{i}, b_{i} \in \mathbb{Z}$. As a result, the intersection numbers $T_{i} \cdot T_{j}=N_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{-d)}}\left(\Delta_{i j}\right)$ are comparatively large and there are very few chances for construction of a multi-elliptic divisor $T=\sum_{i=1}^{h} \subset A$, subject to (1.1). This is a sort of a motivation for restricting our attention to the arithmetic case.

The smooth irreducible elliptic curves $T_{i}^{\prime} \subset A^{\prime}$ contract to the Γ-orbits $\kappa_{i}=$ $\Gamma(p) \in \partial_{\Gamma} \mathbb{B} / \Gamma$ of the Γ-rational boundary points $p \in \partial_{\Gamma} \mathbb{B}$. These κ_{i} are called cusps. The resulting Baily-Borel compactification $\widehat{A}=\widehat{\mathbb{B} / \Gamma}=(\mathbb{B} / \Gamma) \cup\left(\partial_{\Gamma} \mathbb{B} / \Gamma\right)$ is a normal projective surface.

Definition 2. Let Γ be a Picard modular group, $\gamma \in \Gamma$ and $\operatorname{Jac}(\gamma)=\frac{\partial\left(\gamma_{1}, \gamma_{2}\right)}{\partial\left(z_{1}, z_{2}\right)}$ be the Jacobian matrix of $\gamma=\left(\gamma_{1}, \gamma_{2}\right): \mathbb{B} \rightarrow \mathbb{B} \subset \mathbb{C}^{2}$. The global holomorphic functions $\delta: \mathbb{B} \rightarrow \mathbb{C}$ with transformation law

$$
\gamma^{*}(\delta)(z)=\delta \gamma(z)=[\operatorname{det} J a c(\gamma)]^{-n} \delta(z) \quad \text { for } \forall \gamma \in \Gamma, \forall z \in \mathbb{B}
$$

are called Γ-modular forms of weight n.
The Γ-modular forms of weight n constitute a \mathbb{C}-linear space, which is denoted by $[\Gamma, n]$.

Definition 3. A Γ-modular form $\delta \in[\Gamma, n]$ is cuspidal if $\delta\left(\kappa_{i}\right)=0$ at all the cusps $\kappa_{i} \in \partial_{\Gamma} \mathbb{B} / \Gamma$.

The cuspidal Γ-modular forms of weight n form the subspace $[\Gamma, n]_{\text {cusp }}$ of $[\Gamma, n]$.
For any natural number n there is a \mathbb{C}-linear embedding

$$
\begin{gathered}
j_{n}: H^{0}\left(\mathbb{B}, \mathcal{O}_{\mathbb{B}}\right) \longrightarrow H^{0}\left(\mathbb{B},\left(\Omega_{\mathbb{B}}^{2}\right)^{\otimes n}\right) \\
j_{n}(\delta)(z)=\delta(z)\left(d z_{1} \wedge d z_{2}\right)^{\otimes n}
\end{gathered}
$$

of the global holomorphic functions on the ball in the global holomorphic sections of the n-th pluri-canonical bundle $\left(\Omega_{\mathbb{B}}^{2}\right)^{\otimes n}$. It restricts to an isomorphism

$$
j_{n}:[\Gamma, n] \longrightarrow H^{0}\left(\mathbb{B},\left(\Omega_{\mathbb{B}}^{2}\right)^{\otimes n}\right)^{\Gamma}
$$

of the Γ-modular forms of weight n with the Γ-invariant holomorphic sections of $\left(\Omega_{\mathbb{B}}^{2}\right)^{\otimes n}$. Note that the subspace $H^{0}\left(\mathbb{B},\left(\Omega_{\mathbb{B}}^{2}\right)^{\otimes n}\right)^{\Gamma}$ of $H^{0}\left(\mathbb{B} / \Gamma,\left(\Omega_{\mathbb{B}}^{2} / \Gamma\right)^{\otimes n}\right)$ acts on $\widehat{A}=\widehat{\mathbb{B} / \Gamma}$, extending over the cusps $\partial_{\Gamma} \mathbb{B} / \Gamma$ of codimension 2 in \widehat{A}.

The tensor product $\Omega_{A^{\prime}}^{2}\left(T^{\prime}\right)=\Omega_{A^{\prime}}^{2} \otimes_{\mathbb{C}} \mathcal{O}_{A^{\prime}}\left(T^{\prime}\right)$ is called logarithmic canonical bundle of A^{\prime}, while $\Omega_{A^{\prime}}^{2}\left(T^{\prime}\right)^{\otimes n}$ are referred to as logarithmic pluri-canonical bundles. Hemperly has observed in [3] that

$$
j_{n}[\Gamma, n]=H^{0}\left(\mathbb{B},\left(\Omega_{\mathbb{B}}^{2}\right)^{\otimes n}\right)^{\Gamma}=H^{0}\left(A^{\prime}, \Omega_{A^{\prime}}^{2}\left(T^{\prime}\right)^{\otimes n}\right)
$$

as long as the holomorphic sections from these spaces have one and the same coordinate transformation law. A classical result of Baily-Borel establishes that $\Omega_{A^{\prime}}^{2}\left(T^{\prime}\right)$ is sufficiently ample on \widehat{A}. The present article provides sufficient conditions for the ampleness of $\Omega_{A^{\prime}}^{2}\left(T^{\prime}\right)$ on \widehat{A}.

Note that the canonical bundle

$$
K_{A^{\prime}}=\xi^{*} K_{A}+\mathcal{O}_{A^{\prime}}(L)=\xi^{*} \mathcal{O}_{A}+\mathcal{O}_{A^{\prime}}(L)=\mathcal{O}_{A^{\prime}}(L)
$$

is associated with the exceptional divisor $L=\xi^{-1}\left(T^{\text {sing }}\right)$ of $\xi: A^{\prime} \rightarrow A$. If s is a global meromorphic section of $\Omega_{A^{\prime}}^{2}$ and t is a global meromorphic section of $\mathcal{O}_{A^{\prime}}\left(T^{\prime}\right)$, then the tensoring

$$
\left(s \otimes_{\mathbb{C}} t\right)^{\otimes(-n)}: H^{0}\left(A^{\prime}, \Omega_{A^{\prime}}^{2}\left(T^{\prime}\right)^{\otimes n}\right) \longrightarrow \mathcal{L}_{A^{\prime}}\left(n\left(L+T^{\prime}\right)\right)
$$

is a \mathbb{C}-linear isomorphism with

$$
\mathcal{L}_{A^{\prime}}\left(n\left(L+T^{\prime}\right)\right)=\left\{f \in \mathfrak{M e r}\left(A^{\prime}\right) \mid(f)+n\left(L+T^{\prime}\right) \geq 0\right\} .
$$

The isomorphism $\xi^{*}: \mathfrak{M e r}(A) \rightarrow \mathfrak{M e r}\left(A^{\prime}\right)$ of the meromorphic function fields induces a linear isomorphism

$$
\left(\xi^{*}\right)^{-1}: \mathcal{L}_{A^{\prime}}\left(n\left(L+T^{\prime}\right)\right) \longrightarrow \mathcal{L}_{A}\left(n T, n T^{\mathrm{sing}}\right)
$$

where $m_{p}: \operatorname{Div}(A) \rightarrow \mathbb{Z}$ stands for the multiplicity at a point $p \in A$ and

$$
\mathcal{L}_{A}\left(n T, n T^{\text {sing }}\right)=\left\{f \in \mathfrak{M e r}(A) \mid(f)+n T \geq 0, m_{p}(f)+n \geq 0 \text { for } \forall p \in T^{\text {sing }}\right\}
$$

The linear isomorphisms

$$
\tau_{n}:=\left(\xi^{*}\right)^{-1}\left(s \otimes_{\mathbb{C}} t\right)^{\otimes(-n)}: j_{n}[\Gamma, n] \longrightarrow \mathcal{L}_{A}\left(n T, n T^{\mathrm{sing}}\right)
$$

are called transfers of modular forms of weight n to abelian functions.
For any $\delta \in[\Gamma, 1]$, note that $\delta\left(\kappa_{i}\right) \neq 0$ if and only if $T_{i} \subset\left(\tau_{1} j_{1}(\delta)\right)_{\infty}$. Observe also that $\tau_{1} j_{1}[\Gamma, 1]_{\text {cusp }}=\left\{f \in \mathcal{L}_{A}\left(T, T^{\text {sing }}\right) \mid(f)_{\infty}=\emptyset\right\}=\mathbb{C}$ and fix the cuspidal form $\eta_{o}=\left(\tau_{1} j_{1}\right)^{-1}(1)$ of weight 1 .

Towards the construction of abelian functions $f \in \mathcal{L}_{A}\left(T, T^{\text {sing }}\right)$, let us recall from [7] that any elliptic function $g: E \rightarrow \mathbb{P}^{1}$ can be represented as

$$
\begin{equation*}
g(z)=C_{o} \prod_{i=1}^{k} \frac{\sigma\left(z-\alpha_{i}\right)}{\sigma\left(z-\beta_{i}\right)} \tag{1.2}
\end{equation*}
$$

where

$$
\sigma(z)=z \prod_{\lambda \in \pi_{1}(E) \backslash\{0\}}\left(1-\frac{z}{\lambda}\right)^{\frac{z}{\lambda}+\frac{1}{2}\left(\frac{z}{\lambda}\right)^{2}}
$$

is the Weierstrass σ-function, $\alpha_{i}, \beta_{i}, C_{o} \in \mathbb{C}$ and $\sum_{i=1}^{k} \alpha_{i} \equiv \sum_{i=1}^{k} \beta_{i}\left(\bmod \pi_{1}(E)\right)$. The points of $E=\mathbb{C} / \pi_{1}(E)$ are of the form $\bar{a}=a+\pi_{1}(E)$ for some $a \in \mathbb{C}$. The elliptic function (1.2) takes all the values from \mathbb{P}^{1} with one and a same multiplicity k. Moreover, if $g^{-1}(x)=\left\{\overline{p_{i}(x)} \in E \mid 1 \leq i \leq k\right\}$ for some $x \in \mathbb{C} \subset \mathbb{P}^{1}$, then $\sum_{i=1}^{k} \overline{p_{i}(x)}=\sum_{i=1}^{k} \overline{\beta_{i}}$. Observe that $\sigma: \mathbb{C} \rightarrow \mathbb{C}$ is a non-periodic entire function, but its divisor $(\sigma)_{\mathbb{C}}=\pi_{1}(E)$ on \mathbb{C} is $\pi_{1}(E)$-invariant. That enables to define the divisor $(\sigma)_{E}=\check{o}_{E}$ of σ on E. In global holomorphic coordinates $(u, v) \in \mathbb{C}^{2}$, the divisor

$$
\left(\sigma\left(a_{i} u+b_{i} v+c_{i}\right)\right)_{\mathbb{C}^{2}}=\left\{(u, v) \in \mathbb{C}^{2} \mid a_{i} u+b_{i} v+c_{i} \in \pi_{1}(E)=\mathcal{O}_{-d}\right\}
$$

is the complete pre-image of T_{i} in the universal cover $\widetilde{A}=\mathbb{C}^{2}$ of A. That allows to define the divisor

$$
\left(\sigma\left(a_{i} u+b_{i} v+c_{i}\right)\right)=\left(\sigma\left(a_{i} u+b_{i} v+c_{i}\right)\right)_{A}=T_{i} .
$$

Let $f \in \mathcal{L}_{A}(T)$ be an abelian function with pole divisor $(f)_{\infty}=\sum_{i=1}^{k} T_{i}$, after an eventual permutation of the irreducible components of T. Then

$$
\begin{equation*}
f_{\infty}:=\prod_{i=1}^{k} \sigma\left(a_{i} u+b_{i} v+c_{i}\right) \text { and } f_{0}:=f f_{\infty} \tag{1.3}
\end{equation*}
$$

are (non-periodic) entire functions on \mathbb{C}^{2}. Let $\zeta=\frac{\sigma^{\prime}}{\sigma}$ be Weierstrass' ζ-function, $\eta: \pi_{1}(E) \rightarrow \mathbb{C}$ be the \mathbb{Z}-linear homomorphism, satisfying $\zeta(z+\lambda)=\zeta(z)+\eta(\lambda)$ for all $z \in \mathbb{C}, \lambda \in \pi_{1}(E)$ and

$$
\varepsilon(\lambda)=\left\{\begin{aligned}
1 & \text { for } \lambda \in 2 \pi_{1}(E) \\
-1 & \text { for } \lambda \in \pi_{1}(E) \backslash 2 \pi_{1}(E) .
\end{aligned}\right.
$$

Recall from [6] the $\pi_{1}(E)$-transformation law

$$
\frac{\sigma(z+\lambda)}{\sigma(z)}=\varepsilon(\lambda) e^{\eta(\lambda)\left(z+\frac{\lambda}{2}\right)} \quad \text { for } \quad \forall \lambda \in \pi_{1}(E), \forall z \in \mathbb{C}
$$

Under the assumption (1.3), the $\pi_{1}(A)$-periodicity of f is equivalent to

$$
\frac{f_{0}(u+\lambda, v)}{f_{0}(u, v)}=\frac{f_{\infty}(u+\lambda, v)}{f_{\infty}(u, v)}=\prod_{i=1}^{k} \varepsilon\left(a_{i} \lambda\right) e^{\eta\left(a_{i} \lambda\right)\left(a_{i} u+b_{i} v+c_{i}+\frac{a_{i} \lambda}{2}\right)}
$$

and

$$
\frac{f_{0}(u, v+\lambda)}{f_{0}(u, v)}=\frac{f_{\infty}(u, v+\lambda)}{f_{\infty}(u, v)}=\prod_{i=1}^{k} \varepsilon\left(b_{i} \lambda\right) e^{\eta\left(b_{i} \lambda\right)\left(a_{i} u+b_{i} v+c_{i}+\frac{b_{i} \lambda}{2}\right)}
$$

for $\forall \lambda \in \pi_{1}(E)=\mathcal{O}_{-d}, \forall(u, v) \in \mathbb{C}^{2}$. We choose

$$
f_{0}(u, v)=\prod_{i=1}^{k} \sigma\left(a_{i} u+b_{i} v+c_{i}+\mu_{i}\right)
$$

and reduce the $\pi_{1}(A)$-periodicity of f to

$$
1=\frac{f(u+\lambda, v)}{f(u, v)}=e^{\sum_{i=1}^{k} \eta\left(a_{i} \lambda\right) \mu_{i}}, 1=\frac{f(u, v+\lambda)}{f(u, v)}=e^{\sum_{i=1}^{k} \eta\left(b_{i} \lambda\right) \mu_{i}} \forall \lambda \in \mathcal{O}_{-d}, \forall(u, v) \in \mathbb{C}^{2} .
$$

Let us mention that Holzapfel has studied $f \in \mathcal{L}_{A}(T)$ of the above form with at most three non-parallel irreducible components of $(f)_{\infty}$, intersecting pairwise in single points. The next lemma provides a sufficient (but not necessary) condition for $\pi_{1}(A)$-periodicity of a σ-quotient, whose pole divisor has an arbitrary number of irreducible components with arbitrary intersection numbers.

Lemma 4. If

$$
\begin{equation*}
\sum_{i=1}^{k} a_{i} \mu_{i}=\sum_{i=1}^{k} \overline{a_{i}} \mu_{i}=\sum_{i=1}^{k} b_{i} \mu_{i}=\sum_{i=1}^{k} \overline{b_{i}} \mu_{i}=0 \tag{1.4}
\end{equation*}
$$

then the σ-quotient

$$
\begin{equation*}
f(u, v)=\prod_{i=1}^{k} \frac{\sigma\left(a_{i} u+b_{i} v+c_{i}+\mu_{i}\right)}{\sigma\left(a_{i} u+b_{i} v+c_{i}\right)} \tag{1.5}
\end{equation*}
$$

is $\mathcal{O}_{-d} \times \mathcal{O}_{-d}$-periodic.
Proof. Let us recall from [1] that the integers ring of an imaginary quadratic number field $\mathbb{Q}(\sqrt{-d})$ is of the form $\mathcal{O}_{-d}=\mathbb{Z}+2 \omega \mathbb{Z}$ for

$$
2 \omega=\left\{\begin{aligned}
\sqrt{-d} & \text { for }-d \not \equiv 1(\bmod 4) \\
\frac{-1+\sqrt{-d}}{2} & \text { for }-d \equiv 1(\bmod 4)
\end{aligned}\right.
$$

Any $\nu \in \mathcal{O}_{-d}$ has unique representation $\nu=x+2 \omega y$ with

$$
x=\frac{2 \omega \bar{\nu}-2 \bar{\omega} \nu}{2 \omega-2 \bar{\omega}} \in \mathbb{Z}, \quad y=\frac{\nu-\bar{\nu}}{2 \omega-2 \bar{\omega}} \in \mathbb{Z}
$$

Legendre's equality

$$
\eta(2 \omega)-2 \omega \eta(1)=2 \pi \sqrt{-1}
$$

(cf.[6]) implies that

$$
\eta(\nu)=\nu \eta(1)+\frac{\nu-\bar{\nu}}{2 \omega-2 \bar{\omega}} 2 \pi \sqrt{-1} \quad \text { for } \forall \nu \in \mathcal{O}_{-d}
$$

As a result,

$$
\sum_{i=1}^{k} \eta\left(a_{i} \lambda\right) \mu_{i}=\left(\sum_{i=1}^{k} a_{i} \mu_{i}\right) \lambda \eta(1)+\left(\sum_{i=1}^{k} a_{i} \mu_{i}\right) \frac{2 \pi \sqrt{-1} \lambda}{2 \omega-2 \bar{\omega}}-\left(\sum_{i=1}^{k} \overline{a_{i}} \mu_{i}\right) \frac{\bar{\lambda} 2 \pi \sqrt{-1}}{2 \omega-2 \bar{\omega}}
$$

Lemma 4 is proved

Mutually parallel smooth elliptic curves T_{1}, \ldots, T_{k} admit liftings

$$
T_{i}=\left\{\left(u+\mathcal{O}_{-d}, v+\mathcal{O}_{-d}\right) \mid a_{1} u+b_{1} v+c_{i} \in \mathcal{O}_{-d}\right\}
$$

For arbitrary $\mu_{j} \in \mathbb{C}$ with $\sum_{i=1}^{k} \mu_{i}=0$, the σ-quotient

$$
\begin{equation*}
f(u, v)=\prod_{i=1}^{k} \frac{\sigma\left(a_{1} u+b_{1} v+c_{i}+\mu_{i}\right)}{\sigma\left(a_{1} u+b_{1} v+c_{i}\right)} \tag{1.6}
\end{equation*}
$$

belongs to $\mathcal{L}_{A}\left(T, T^{\text {sing }}\right)$ and has smooth pole divisor $(f)_{\infty}=\sum_{i=1}^{k} T_{i}$. Following [4], we say that (1.6) is a k-fold parallel σ-quotient. A σ-quotient (1.5) has smooth pole divisor if and only if it is k-fold parallel.

Definition 5. A special σ-quotient of order k is a function of the form (1.5), which is subject to (1.4), has singular pole divisor $(f)_{\infty}$ and $\mu_{i} \notin \mathcal{O}_{-d}$ for all $1 \leq i \leq k$.

Lemma 6. If $f \in \mathcal{L}_{A}\left(T, T^{\operatorname{sing}}\right)$ is a special σ-quotient of order $k \geq 2$, then at any point $p \in(f)_{\infty}^{\text {sing }}$ the multiplicity $m_{p}(f)_{\infty}$ satisfies

$$
2 \leq m_{p}(f)_{\infty} \leq\left[\frac{k+1}{2}\right]
$$

where $\left[\frac{k+1}{2}\right]$ is the greatest natural number, non-exceeding $\frac{k+1}{2}$.
In particular, $\mathcal{L}_{A}\left(T, T^{\mathrm{isng}}\right)$ does not contain a special σ-quotient of order 2.
Proof. The smoothness of the irreducible components T_{1}, \ldots, T_{k} of $(f)_{\infty}$ results in $(f)_{\infty}^{\text {sing }} \subset \sum_{1 \leq i<j \leq k}\left(T_{i} \cap T_{j}\right)$ and implies that $m_{p}(f)_{\infty} \geq 2$ for all $p \in(f)_{\infty}^{\text {sing }}$. Suppose that $m_{p}(f)_{\infty}=m$ for some $2 \leq m \leq k$. After an eventual permutation of T_{1}, \ldots, T_{k}, one can assume that $p \in T_{1} \cap \ldots \cap T_{m}$ and $p \notin T_{m+1}+\ldots+T_{k}$. Then

$$
m_{p}(f)+1=m_{p}(f)_{0}-m_{p}(f)_{\infty}+1=m_{p}(f)_{0}-m+1 \geq 0
$$

requires the existence of $D_{m+1}, \ldots, D_{2 m-1} \subset(f)_{0}=\sum_{i=1}^{k} D_{i}$ with $p \in D_{m+1} \cap \ldots \cap$ $D_{2 m-1}$, after a further permutation of D_{m+1}, \ldots, D_{k}. Now $2 m-1 \leq k$ implies that $m_{p}(f)_{\infty}=m \leq\left[\frac{k+1}{2}\right]$.

In particular, for $k=2$ the inequality $2 \leq m_{p}(f)_{\infty} \leq\left[\frac{3}{2}\right]$ cannot be satisfied.
Proposition 7. If

$$
\begin{equation*}
f(u, v)=\prod_{i=1}^{3} \frac{\sigma\left(a_{i} u+b_{i} v+c_{i}+\mu_{i}\right)}{\sigma\left(a_{i} u+b_{i} v+c_{i}\right)} \tag{1.7}
\end{equation*}
$$

is a special σ-quotient from $\mathcal{L}_{A}\left(T, T^{\text {sing }}\right)$, then $T_{1} \cap T_{2} \cap T_{3}=\emptyset$ and the intersection numbers $T_{1} \cdot T_{2}=T_{2} \cdot T_{3}=T_{3} \cdot T_{1} \in \mathbb{N}$ are equal.

Proof. By Lemma 6 there follows $m_{p}(f)_{\infty}=2$ for $\forall p \in(f)_{\infty}^{\text {sing }}$. In particular, $(f)_{\infty}=T_{1}+T_{2}+T_{3}$ has no triple point and $T_{1} \cap T_{2} \cap T_{3}=\emptyset$. Further, for any $p \in T_{i} \cap T_{j}$ the condition $m_{p}(f)+1 \geq 0$ requires that $p \in D_{l}$, therefore $\mu_{l} \in \mathcal{O}_{-d}-\Delta_{i j}^{-1} \Delta$ and $\Delta_{i j}^{-1} \Delta_{j l}, \Delta_{i j}^{-1} \Delta_{l i} \in \mathcal{O}_{-d}$, according to Lemma 1 (ii). A cyclic change of the even permutation $\{i, j, l\}$ by $\{j, l, i\}$ and $\{l, i, j\}$ results in $\Delta_{j l}^{-1} \Delta_{l i}, \Delta_{j l}^{-1} \Delta_{i j} \in \mathcal{O}_{-d}$ and, respectively, $\Delta_{l i}^{-1} \Delta_{i j}, \Delta_{l i}^{-1} \Delta_{j l} \in \mathcal{O}_{-d}$. Consequently, $\Delta_{i j}^{-1} \Delta_{j l}, \Delta_{i j}^{-1} \Delta_{l i} \in \mathcal{O}_{-d}^{*}$, whereas $N_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{-d})}\left(\Delta_{i j}\right)=N_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{-d})}\left(\Delta_{j l}\right)=N_{\mathbb{Q}}^{\mathbb{Q}(\sqrt{-d})}\left(\Delta_{l i}\right)$. Now, by Lemma 1 (i) it follows that $T_{i} \cdot T_{j}=T_{j} \cdot T_{l}=T_{l} \cdot T_{i}$.

Definition 8. The divisor $T_{1}+T_{2}+T_{3}$ with three smooth elliptic irreducible components is called a triangle if $T_{1} \cap T_{2} \cap T_{3}=\emptyset$ and $T_{1} \cdot T_{2}=T_{2} \cdot T_{3}=T_{3} \cdot T_{1}=1$.

Examples of special σ-quotients with triangular pole divisors are constructed by Holzapfel in [4]. We show that any triangular divisor can be realized as a pole divisor of a special σ-quotient $f \in \mathcal{L}_{A}\left(T, T^{\text {sing }}\right)$ and provide a general formula for such f.

Proposition 9. Let $T_{i}=\left\{\left(u+\mathcal{O}_{-d}, v+\mathcal{O}_{-d}\right) \mid a_{i}^{\prime} u+b_{i}^{\prime} v+c_{i}^{\prime} \in \mathcal{O}_{-d}\right\}$ with $1 \leq i \leq 3$ be the smooth irreducible elliptic components of a triangle $T_{1}+T_{2}+T_{3}$ and $a_{i}=\Delta_{j l}^{\prime} a_{i}^{\prime}, b_{i}=\Delta_{j l}^{\prime} b_{i}^{\prime}, c_{i}=\Delta_{j l}^{\prime} c_{i}^{\prime}$. Then $a_{1}+a_{2}+a_{3}=0, b_{1}+b_{2}+b_{3}=0$, $\Delta_{12}^{-1} \Delta \notin \mathcal{O}_{-d}$ and for any $\nu \in \mathcal{O}_{-d}$ the function

$$
\begin{equation*}
f(u, v)=\prod_{i=1}^{3} \frac{\sigma\left(a_{i} u+b_{i} v+c_{i}-\Delta_{12}^{-1} \Delta+\nu\right)}{\sigma\left(a_{i} u+b_{i} v+c_{i}\right)} \tag{1.8}
\end{equation*}
$$

is a special σ-quotient from $\mathcal{L}_{A}\left(T, T^{\text {sing }}\right)$ with pole divisor $(f)_{\infty}=T_{1}+T_{2}+T_{3}$.
Proof. Let $v_{i}^{\prime}=\binom{a_{i}^{\prime}}{b_{i}^{\prime}}$ for $1 \leq i \leq 3$. Expanding along the third row, one obtains

$$
\begin{aligned}
& 0=\left|\begin{array}{rrr}
a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\
b_{1}^{\prime} & b_{2}^{\prime} & b_{3}^{\prime} \\
a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime}
\end{array}\right|=\Delta_{23}^{\prime} a_{1}^{\prime}+\Delta_{31}^{\prime} a_{2}^{\prime}+\Delta_{12}^{\prime} a_{3}^{\prime}=0, \\
& 0
\end{aligned}=\left|\begin{array}{ccc}
a_{1}^{\prime} & a_{2}^{\prime} & a_{3}^{\prime} \\
b_{1}^{\prime} & b_{2}^{\prime} & b_{3}^{\prime} \\
b_{1}^{\prime} & b_{2}^{\prime} & b_{3}^{\prime}
\end{array}\right|=\Delta_{23}^{\prime} b_{1}^{\prime}+\Delta_{31}^{\prime} b_{2}^{\prime}+\Delta_{12}^{\prime} b_{3}^{\prime}=0, ~ l
$$

and concludes that

$$
\begin{equation*}
v_{1}+v_{2}+v_{3}=\Delta_{23}^{\prime} v_{1}^{\prime}+\Delta_{31}^{\prime} v_{2}^{\prime}+\Delta_{12}^{\prime} v_{3}^{\prime}=0_{2 \times 1}, \quad \Delta_{12}=\Delta_{23}=\Delta_{31} \tag{1.9}
\end{equation*}
$$

Now, according to Lemma 1 (iii), $T_{1} \cap T_{2} \cap T_{3}=\emptyset$ is equivalent to $\Delta \notin \Delta_{12} \mathcal{O}_{-d}$. Then the condition $m_{p}(f)_{0} \geq m_{p}(f)_{\infty}-1$ for $\forall p \in(f)_{\infty}^{\operatorname{sing}}$ reduces to $T_{i} \cap T_{j} \subset D_{l}$ for any even permutation $\{i, j, l\}$ of $\{1,2,3\}$. Making use of Lemma 1 (ii), one can choose $\mu_{1}=\mu_{2}=\mu_{3}=\nu-\Delta_{12}^{-1} \Delta \notin \mathcal{O}_{-d}$. Then (1.9) implies (1.4) from Lemma 4 and reveals that (1.8) is a special σ-quotient from $\mathcal{L}_{A}\left(T, T^{\text {sing }}\right)$.

Definition 10. The special σ-quotients (1.8) from $\mathcal{L}_{A}\left(T, T^{\text {sing }}\right)$ with triangular pole divisors $(f)_{\infty}=T_{1}+T_{2}+T_{3}$ are called triangular.

For elliptic curves $T_{i}=\left\{\left(u+\mathcal{O}_{-d}, v+\mathcal{O}_{-d}\right) \mid a_{i} u+b_{i} v+c_{i} \in \mathcal{O}_{-d}\right\}, 1 \leq i \leq 2$ with minimal fundamental groups $\pi_{1}\left(T_{i}\right)=\pi_{1}(E)=\mathcal{O}_{-d}$ and intersection number $T_{1} \cdot T_{2}=1$, Lemma 1 (i) implies that

$$
M=\left(\begin{array}{ll}
a_{2} & b_{2} \\
a_{1} & b_{1}
\end{array}\right) \in G L_{2}\left(\mathcal{O}_{-d}\right)
$$

As a result, there arises an automorphism

$$
\begin{aligned}
\varphi: A & \longrightarrow A \\
\varphi\left(u+\mathcal{O}_{-d}, v+\mathcal{O}_{-d}\right) & =\left[M\binom{\bar{u}}{\bar{v}}+\binom{\overline{c_{2}}}{\overline{c_{1}}}\right]^{t}
\end{aligned}
$$

with $\varphi\left(T_{1}\right)=E \times \check{o}_{E}, \varphi\left(T_{2}\right)=\check{o}_{E} \times E$. Making use of $\sigma(\alpha z)=\alpha \sigma(z)$ for $\forall \alpha \in$ $\mathcal{O}_{-d}^{*}, \forall z \in \mathbb{C}$, one observes that any triangular σ-quotient can be reduced by an automorphism of A to the form

$$
\begin{equation*}
f_{012}(u, v)=\frac{\sigma\left(u+a_{0}^{-1} c_{0}\right) \sigma\left(v+b_{0}^{-1} c_{0}\right) \sigma\left(a_{0} u+b_{0} v\right)}{\sigma(u) \sigma(v) \sigma\left(a_{0} u+b_{0} v+c_{0}\right)} \tag{1.10}
\end{equation*}
$$

with $a_{0}, b_{0} \in \mathcal{O}_{-d}^{*}, c_{0} \notin \mathcal{O}_{-d}$.
We are going to describe the complete divisor of a triangular σ-quotient.
Definition 11. The divisor $D=\sum_{i=0}^{2} D_{i}-\sum_{i=0}^{2} T_{i}$ with smooth elliptic irreducible components D_{i}, T_{j} is called a tetrahedron (cf. Figure 1) if:

Figure 1: Tetrahedron
(i) $\sum_{i=0}^{2} T_{i}$ is a triangle;
(ii) D_{i} are parallel to T_{i} for all $0 \leq i \leq 2$;
(iii) $D_{0} \cap D_{1} \cap D_{2}=D_{0} \cap D_{1}=D_{1} \cap D_{2}=D_{2} \cap D_{0}=\left\{p_{0}\right\}$ for some point $p_{0} \in A$;
(iv) $\left(\sum_{i=0}^{2} D_{i}\right) \cap\left(\sum_{i=0}^{2} T_{i}\right)=\left(\sum_{i=0}^{2} T_{i}\right)^{\text {sing }} \subset\left(\sum_{i=0}^{2} D_{i}\right)^{\text {smooth }}$.

Definition 12. An inscribed (ordered) pair of triangles (cf. Figure 2) is a divisor $D=\sum_{i=0}^{2} D_{i}-\sum_{i=0}^{2} T_{i}$, such that:
(i) $\sum_{i=0}^{2} D_{i}$ and $\sum_{i=0}^{2} T_{i}$ are triangles;
(ii) D_{i} are parallel to T_{i} for all $0 \leq i \leq 2$;
(iii) $\left(\sum_{i=0}^{2} D_{i}\right) \cap\left(\sum_{i=0}^{2} T_{i}\right)=\left(\sum_{i=0}^{2} T_{i}\right)^{\text {sing }} \subset\left(\sum_{i=0}^{2} D_{i}\right)^{\text {smooth }}$.

Figure 2: Inscribed (ordered) pair of triangles
An explicit calculation of the singular points of the complete divisor yields the following

Corollary 13. Let (1.10) with $a_{0}, b_{0} \in \mathcal{O}_{-d}^{*}, c_{0} \notin \mathcal{O}_{-d}$ be a triangular $\sigma-$ quotient with complete divisor $\left(f_{012}\right)=\sum_{i=0}^{2} D_{i}-\sum_{i=0}^{2} T_{i}$. Then:
(i) $c_{0}+\mathcal{O}_{-d} \in E_{2-\text { tor }}$ is a 2-torsion point if and only if $\left(f_{012}\right)$ is a tetrahedron;
(ii) $c_{0}+\mathcal{O}_{-d} \notin E_{2-t o r}$ exactly when $\left(f_{012}\right)$ is an inscribed pair of triangles.

In either case, the multiplicity $m_{p}\left(f_{012}\right)=-1$ at all $p \in\left(f_{012}\right)_{\infty} \cap T^{\text {sing }}$.

In [4] Holzapfel introduces the idea for detecting the linear independence of co-abelian modular forms by the poles of the corresponding transfers to abelian functions. Instead of his strongly descending divisor condition, we use a natural complete decreasing flag on $[\Gamma, 1]$. That enables to supply a criterion for some modular forms to constitute a basis of $[\Gamma, 1]$ and to show that $[\Gamma, 1]$ has always a basis of the considered form.

Observe that the subspaces

$$
V_{i}=j_{1}[\Gamma, 1]_{i}:=\left\{\omega \in j_{1}[\Gamma, 1] \mid \omega\left(\kappa_{1}\right)=\ldots=\omega\left(\kappa_{i-1}\right)=0\right\}
$$

of $V_{1}=j_{1}[\Gamma, 1]$ form a non-increasing flag

$$
j_{1}[\Gamma, 1]=V_{1} \supseteq V_{2} \supseteq \ldots \supseteq V_{m-1} \supseteq V_{m} \supseteq \ldots \supseteq V_{h} \supseteq V_{h+1}=j_{1}[\Gamma, 1]_{\text {cusp }}
$$

For any $\omega, \omega^{\prime} \in V_{i}$ one has $\omega^{\prime}\left(\kappa_{i}\right) \omega-\omega\left(\kappa_{i}\right) \omega^{\prime} \in V_{i+1}$, so that $0 \leq \operatorname{dim}_{\mathbb{C}}\left(V_{i} / V_{i+1}\right) \leq 1$ for all $1 \leq i \leq h$. We prove that there is a permutation of the cusps $\kappa_{1}, \ldots, \kappa_{h}$, so that $V_{i} / V_{i+1} \simeq \mathbb{C}$ for $1 \leq i \leq m$ and $V_{m+1}=V_{m+2}=\ldots=V_{h+1}=j_{1}[\Gamma, 1]_{\text {cusp }} \simeq \mathbb{C}$. If so, then $\operatorname{dim}_{\mathbb{C}}[\Gamma, 1]=m+1$.

Proposition 14. If the pole divisors of $f_{i} \in \mathcal{L}_{A}\left(T, T^{\text {sing }}\right)$ are subject to

$$
T_{i} \subset\left(f_{i}\right)_{\infty} \subseteq T_{i}+T_{i+1}+\ldots+T_{h} \quad \text { for all } \quad 1 \leq i \leq m
$$

then $\omega_{i}=\tau_{1}^{-1}\left(f_{i}\right) \in j_{1}[\Gamma, 1]$ with $1 \leq i \leq m$ form a basis of a complement of $V_{m+1}=j_{1}[\Gamma, 1]_{m+1}$.

In particular, if $V_{m+1}=V_{h+1}=j_{1}[\Gamma, 1]_{\text {cusp }}$, then $j_{1}\left(\eta_{o}\right), \omega_{1}, \ldots, \omega_{m}$ is a \mathbb{C} basis of $j_{1}[\Gamma, 1]$.

Proof. It suffices to show that for arbitrary $b_{1}, \ldots, b_{m} \in \mathbb{C}$ the linear system

$$
\begin{equation*}
\sum_{i=1}^{m} \omega_{i}\left(\kappa_{j}\right) t_{i}=b_{j}, \quad 1 \leq j \leq m \tag{1.11}
\end{equation*}
$$

has a unique solution $\left(t_{1}, \ldots, t_{m}\right)$. On one hand, that implies the linear independence of $\omega_{1}, \ldots, \omega_{m}$ over \mathbb{C}. On the other hand, for any $\omega \in j_{1}[\Gamma, 1]$ there is uniquely determined $\sum_{i=1}^{m} c_{i} \omega_{i}$ with $\omega_{0}=\omega-\sum_{i=1}^{m} c_{i} \omega_{i} \in j_{1}[\Gamma, 1]_{m+1}=V_{m+1}$. In other words, $j_{1}[\Gamma, 1]=\operatorname{Span}_{\mathbb{C}}\left(\omega_{1}, \ldots, \omega_{m}\right) \oplus V_{m+1}$, so that $\omega_{1}, \ldots, \omega_{m}$ is a basis of the complement $\operatorname{Span}_{\mathbb{C}}\left(\omega_{1}, \ldots, \omega_{m}\right)$ of V_{m+1}.

Towards the existence of a unique solution of (1.11), note that the requirement $T_{i} \subset\left(\tau_{1}\left(\omega_{i}\right)\right)_{\infty} \subseteq T_{i}+T_{i+1}+\ldots+T_{h}$ is equivalent to $\omega_{i}\left(\kappa_{i}\right) \neq 0$ and $\omega_{i}\left(\kappa_{1}\right)=$ $\omega_{i}\left(\kappa_{2}\right)=\ldots=\omega_{i}\left(\kappa_{i-1}\right)=0$. Thus, (1.11) is of the form

$$
\left(\begin{array}{ccccc}
\omega_{1}\left(\kappa_{1}\right) & \ldots & 0 & \ldots & 0 \\
\omega_{1}\left(\kappa_{i}\right) & \ldots & \omega_{i}\left(\kappa_{i}\right) & \ldots & 0 \\
& & & & \\
\omega_{1}\left(\kappa_{m}\right) & \ldots & \omega_{i}\left(\kappa_{m}\right) & \ldots & \omega_{m}\left(\kappa_{m}\right)
\end{array}\right)\left(\begin{array}{c}
t_{1} \\
\vdots \\
t_{i} \\
\vdots \\
t_{m}
\end{array}\right)=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{i} \\
\vdots \\
b_{m}
\end{array}\right)
$$

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 19-41.
with non-degenerate, lower-triangular coefficient matrix and has unique solution for all $b_{1}, \ldots, b_{m} \in \mathbb{C}$.

In the case of $V_{m+1}=V_{h+1}=j_{1}[\Gamma, 1]_{\text {cusp }}$, note that $j_{1}[\Gamma, 1]_{\text {cusp }}=\mathbb{C} j_{1}\left(\eta_{o}\right)$ with $\tau_{1} j_{1}\left(\eta_{o}\right)=1 \in \mathcal{L}_{A}\left(T, T^{\text {sing }}\right)$, so that $j_{1}\left(\eta_{o}\right), \omega_{1}, \ldots, \omega_{m}$ is a \mathbb{C}-basis of $j_{1}[\Gamma, 1]$.

The next proposition establishes that $j_{1}[\Gamma, 1]$ has always a \mathbb{C}-basis of the considered form.

Proposition 15. Let $\Gamma \subset S U_{2,1}$ be a freely acting, co-abelian Picard modular group and $\operatorname{dim}_{\mathbb{C}}[\Gamma, 1]=m+1$. Then there is a permutation $\left\{\kappa_{1}, \ldots, \kappa_{m}, \kappa_{m+1}, \ldots, \kappa_{h}\right\}$ of the Γ-cusps, such that
$V_{1} / V_{2} \simeq V_{2} / V_{3} \simeq \cdots \simeq V_{m} / V_{m+1} \simeq \mathbb{C}, \quad V_{m+1}=V_{m+2}=\cdots=V_{h+1}=j_{1}[\Gamma, 1]_{\text {cusp }}$.
Any $\omega_{i} \in V_{i} \backslash V_{i+1}$ transfers to $\tau_{1}\left(\omega_{i}\right) \in \mathcal{L}_{A}\left(T, T^{\text {sing }}\right)$ with

$$
T_{i} \subset\left(\tau_{1}\left(\omega_{i}\right)\right)_{\infty} \subseteq T_{i}+T_{i+1}+\cdots+T_{h} \quad \text { for } \quad 1 \leq i \leq m
$$

and $j_{1}\left(\eta_{o}\right), \omega_{1}, \ldots, \omega_{m}$ is a \mathbb{C}-basis of $V_{1}=j_{1}[\Gamma, 1]$.
In particular, if $T_{h-1} \cdot T_{h}=1$ then $V_{h-1}=j_{1}[\Gamma, 1]_{\text {cusp }}$ and $\operatorname{dim}[\Gamma, 1] \leq h-1$.
Proof. If $V_{1}=V_{h+1}$, then there is nothing to be proved. From now on, we assume that $\operatorname{dim} V_{1} / V_{h+1}=m \in \mathbb{N}$. By induction on $1 \leq i \leq m$, we establish the existence of $\omega_{j} \in V_{j} \backslash V_{j+1}$ for all $1 \leq j \leq i$. First of all, for any $\omega_{1} \in V_{1} \backslash V_{h+1}$ there exists a cusp κ_{1} with $\omega_{1}\left(\kappa_{1}\right) \neq 0$. Then for an arbitrary permutation of the remaining cusps, one has $\omega_{1} \in V_{1} \backslash V_{2}$. If we have chosen $\omega_{j} \in V_{j} \backslash V_{j+1}$ for $1 \leq j \leq i-1$ and $V_{i} \supseteq V_{h+1}$, then for an arbitrary $\omega_{i} \in V_{i} \backslash V_{h+1}$ there exists a permutation of $\left\{\kappa_{i}, \kappa_{i+1}, \ldots, \kappa_{h}\right\}$, such that $\omega_{i}\left(\kappa_{i}\right) \neq 0$. Clearly, $\omega_{i} \in V_{i} \backslash V_{i+1}$ and we have obtained a basis $j_{1}\left(\eta_{o}\right), \omega_{1}, \ldots, \omega_{m}$ of $V_{1}=j_{1}[\Gamma, 1]$. The conditions $\omega_{i} \in V_{i} \backslash V_{i+1}$ amount to $T_{i} \subset\left(\tau_{1}\left(\omega_{i}\right)\right)_{\infty}$ and $T_{j} \nsubseteq\left(\tau_{1}\left(\omega_{i}\right)\right)_{\infty}$ for all $1 \leq j \leq i-1$.

If $T_{h-1} \cdot T_{h}=1$, then up to an automorphism of A, one can assume that $T_{h-1}=$ $E \times \check{o}_{E}$ and $T_{h}=\check{o}_{E} \times E$. We claim that $\mathcal{L}_{A}\left(\left(E \times \check{o}_{E}\right)+\left(\check{o}_{E} \times E\right)\right)=\mathbb{C}$, so that $\operatorname{dim}_{\mathbb{C}}[\Gamma, 1]=m+1 \leq h-1$. Indeed, for an arbitrary $Q \in E \backslash \check{o}_{E}$ the restriction $\left.f\right|_{E \times Q}$ is an elliptic function of order 1. Therefore $\left.f\right|_{E \times Q} \equiv C(Q) \in \mathbb{C}$ is a constant. Similarly, $\left.f\right|_{P \times E} \equiv C^{\prime}(P) \in \mathbb{C}$ for any $P \in E \backslash \check{o}_{E}$. As a result, $C^{\prime}(P)=f(P, Q)=C(Q)$ for all $Q \in E$ and $\left.f\right|_{A}$ is constant.

Proposition 16. (Holzapfel [5]) Let us fix the half-periods $\omega_{1}=\frac{1}{2}, \omega_{2}=\frac{i}{2}$, $\omega_{3}=\omega_{1}+\omega_{2}$ of the lattice $\pi_{1}(E)=\mathcal{O}_{-1}=\mathbb{Z}+i \mathbb{Z}$, the 2 -torsion points $Q_{0}:=$ $0(\bmod \mathbb{Z}+i \mathbb{Z}) \in E, Q_{j}:=\omega_{j}(\bmod \mathbb{Z}+i \mathbb{Z}) \in E$ for $1 \leq j \leq 3$ and $Q_{i j}:=\left(Q_{i}, Q_{j}\right) \in$ A. Consider the elliptic curves

$$
\begin{gathered}
T_{k}=\left\{\left(u+\pi_{1}(E), v+\pi_{1}(E)\right) \mid u-i^{k} v \in \pi_{1}(E)\right\} \quad \text { for } \quad 1 \leq k \leq 4 \\
T_{4+k}=\left\{\left(u+\pi_{1}(E), v+\pi_{1}(E)\right) \mid u-\omega_{k} \in \pi_{1}(E)\right\} \quad \text { for } \quad 1 \leq k \leq 2
\end{gathered}
$$

$$
T_{6+k}=\left\{\left(u+\pi_{1}(E), v+\pi_{1}(E)\right) \mid v-\omega_{k} \in \pi_{1}(E)\right\} \quad \text { for } \quad 1 \leq k \leq 2
$$

Then the blow-up of A at the singular points

$$
S_{1}=Q_{00}, \quad S_{2}=Q_{33}, \quad S_{3}=Q_{11}, \quad S_{4}=Q_{12}, \quad S_{5}=Q_{21}, \quad S_{6}=Q_{22}
$$

of $T_{\sqrt{-1}}^{(6,8)}=\sum_{k=1}^{8} T_{k}$ is the toroidal compactification $\left(\mathbb{B} / \Gamma_{1}\right)^{\prime}$ of a ball quotient \mathbb{B} / Γ_{1} by a freely acting Picard modular group Γ_{1} over the Gaussian integers $\mathbb{Z}[i]$.

The self-intersection matrix $M(6,8) \in \mathbb{Z}_{6 \times 8}$ of $T_{\sqrt{-1}}^{(6,8)}$ is defined to have entries $M(6,8)_{i j}=1$ for $S_{i} \in T_{j}$ and $M(6,8)_{i j}=0$ for $S_{i} \notin T_{j}$. Straightforwardly,

$$
M(6,8)=\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right)
$$

Figure 3: The incidence relations of $T_{\sqrt{-1}}^{(6,8)}$ and $\sum_{i=1}^{2} \sum_{j=1}^{2} Q_{i j} \subset\left(T_{\sqrt{-1}}^{(6,8)}\right)^{\text {sing }}$.
According to $Q_{00}, Q_{33} \in T_{k}$ or $\forall 1 \leq k \leq 4$, there are no triangles $T_{i}+T_{j}+$ $T_{k} \subset T_{\sqrt{-1}}^{(6,8)}$ with $1 \leq i<j \leq 4,1 \leq i<j<k \leq 8$. Bearing in mind that Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 19-41.
$\left(T_{\sqrt{-1}}^{(6,8)}\right)^{\text {sing }} \cap\left(\sum_{k=5}^{8} T_{k}\right)=\sum_{i=1}^{2} \sum_{j=1}^{2} Q_{i j}$, one makes use of Figure 3 and recognizes the triangles $T_{2 k-1}+T_{4+m}+T_{6+m}, T_{2 k}+T_{4+m}+T_{9-m}$ with $1 \leq k, m \leq 2$. An immediate application of Proposition 9 with $\nu=2 \omega_{m}$ and, respectively, $\nu=$ $\omega_{3}+\omega_{m}+(-1)^{k+1} \omega_{3-m}$, yields the following

Corollary 17. The space $\mathcal{L}_{A}\left(T_{\sqrt{-1}}^{(6,8)},\left(T_{\sqrt{-1}}^{(6,8)}\right)^{\text {sing }}\right)$ contains the binary parallel

$$
\begin{aligned}
f_{56}(u, v) & =\frac{\sigma\left(u-\omega_{1}-\mu_{1}\right) \sigma\left(u-\omega_{2}+\mu_{1}\right)}{\sigma\left(u-\omega_{1}\right) \sigma\left(u-\omega_{2}\right)} \\
f_{78}(u, v) & =\frac{\sigma\left(v-\omega_{1}-\mu_{2}\right) \sigma\left(v-\omega_{2}+\mu_{2}\right)}{\sigma\left(v-\omega_{1}\right) \sigma\left(v-\omega_{2}\right)}
\end{aligned}
$$

and the triangular σ-quotients

$$
\begin{aligned}
& f_{2 k-1,4+m, 6+m}(u, v) \\
& =\frac{\sigma\left(u+(-1)^{k} i v+\omega_{3}\right) \sigma\left(-u+\omega_{m}+\omega_{3}\right) \sigma\left((-1)^{k+1} i v+(-1)^{k} i \omega_{m}+\omega_{3}\right)}{\sigma\left(u+(-1)^{k} i v\right) \sigma\left(-u+\omega_{m}\right) \sigma\left((-1)^{k+1} i v+(-1)^{k} i \omega_{m}\right)} \\
& f_{2 k, 4+m, 9-m}(u, v) \\
& =\frac{\sigma\left(u+(-1)^{k+1} v+\omega_{3}\right) \sigma\left(-u+\omega_{m}+\omega_{3}\right) \sigma\left((-1)^{k} v+(-1)^{k+1} \omega_{3-m}+\omega_{3}\right)}{\sigma\left(u+(-1)^{k+1} v\right) \sigma\left(-u+\omega_{m}\right) \sigma\left((-1)^{k} v+(-1)^{k+1} \omega_{3-m}\right)}
\end{aligned}
$$

with arbitrary $1 \leq k, m \leq 2$.
Proposition 14 provides the following
Corollary 18. If $f_{p q}$ and $f_{i j k}$ are the binary parallel and triangular σ-quotients from the space $\mathcal{L}_{A}\left(T_{\sqrt{-1}}^{(6,8)},\left(T_{\sqrt{-1}}^{(6,8)}\right)^{\text {sing }}\right)$ and $\omega_{p q}=\tau_{1}^{-1}\left(f_{p q}\right)$, $\omega_{i j k}=\tau_{1}^{-1}\left(f_{i j k}\right)$, then

$$
\omega_{157}, \quad \omega_{258}, \quad \omega_{368}, \quad \omega_{467}, \quad \omega_{56}, \quad \omega_{78}, \quad j_{1}\left(\eta_{o}\right)
$$

is a \mathbb{C}-basis of $j_{1}\left[\Gamma_{1}, 1\right]$.
In particular, $\operatorname{dim}_{\mathbb{C}}[\Gamma, 1]=7$.

2. SUFFICIENT CONDITIONS FOR THE NORMAL GENERATION OF A SPACE OF LOGARITHMIC CANONICAL SECTIONS

Definition 19. A holomorphic line bundle \mathcal{E} on an algebraic variety X is sufficiently ample if the holomorphic sections of a sufficiently large tensor power $\mathcal{E}^{\otimes m}$ provide a projective embedding of X.

Definition 20. A holomorphic line bundle \mathcal{E} over an algebraic variety X is globally generated if the global holomorphic sections of \mathcal{E} determine a regular projective morphism.

A subspace $V \subseteq H^{0}(X, \mathcal{E})$ is globally generated if some (and therefore any) basis of V provides a regular projective morphism $X \rightarrow \mathbb{P}(V)$.

Definition 21. A holomorphic line bundle \mathcal{E} over an algebraic manifold X is normally generated if \mathcal{E} is globally generated and $H^{0}(X, \mathcal{E})$ defines a projective immersion of X with normal image.

A subspace $V \subseteq H^{0}(X, \mathcal{E})$ is normally generated if it is globally generated and the morphism $X \rightarrow \mathbb{P}(V)$ is a projective immersion with normal image.

The normal generation of a sufficiently ample line bundle is a classical topic under study. Various works provide normally generated and non-normally generated line bundles over curves and abelian varieties. According to [2], if \mathcal{E} is a sufficiently ample line bundle on an abelian variety of dimension n, then $\mathcal{E}^{\otimes(n-1)}$ is normally generated. In particular, any sufficiently ample line bundle on an abelian surface is normally generated.

Our aim is to provide sufficient conditions for the normal generation of a subspace $V \subseteq H^{0}\left(A^{\prime}, \Omega_{A^{\prime}}^{2}\left(T^{\prime}\right)\right)$ over the Baily-Borel compactification \widehat{A}. That cannot be derived from the normal generation of a subspace $W \subseteq H^{0}(A, \mathcal{E})$ of holomorphic sections of a line bundle $\mathcal{E} \rightarrow A$. Namely, $\xi^{*} W$ cannot be a normally generated space of global holomorphic sections of $\xi^{*} \mathcal{E}$, as far as the morphism, associated with $\xi^{*} W$ is not immersive on the exceptional divisor $L=\xi^{-1}\left(T^{\text {sing }}\right)$ of $\xi: A^{\prime} \rightarrow A$.

Corollary 22. Let X be an irreducible normal projective variety X and $f: X \rightarrow$ Y be a finite, regular, generically injective morphism onto Y. Then $f: X \rightarrow Y$ is a regular immersion with normal image Y.

Proof. If $f: X \rightarrow Y$ is a regular morphism of degree $d \in \mathbb{N}$, then the generic fiber of f consists of d points, while the exceptional ones are constituted by $\leq d$ points. In particular, for $d=1$, any regular, generically injective morphism is bijective onto its image. As a result, $f: X \rightarrow Y$ is a regular immersion with normal image.

Our specific considerations will be based on the following immediate consequence of Corollary 22

Corollary 23. Let X be an irreducible normal projective variety, $\mathcal{E} \rightarrow X$ be e holomorphic line bundle over X and $V \subseteq H^{0}(X, \mathcal{E})$ be a space of global holomorphic sections of \mathcal{E}. If $f: X \rightarrow \mathbb{P}(V)$ is a finite, regular, generically injective morphism then V is normally generated.

Lemma 24. A subspace $V \subseteq H^{0}\left(A^{\prime}, \Omega_{A^{\prime}}^{2}\left(T^{\prime}\right)\right)$, containing the cuspidal form $j_{1}\left(\eta_{o}\right)$, is globally generated over \widehat{A} if and only if it satisfies simultaneously the following two geometric conditions:
(i) for any irreducible component T_{i} of T there is $\omega_{i} \in V$ with $\left(\tau_{1}\left(\omega_{i}\right)\right)_{\infty} \supset T_{i}$;
(ii) for any $p \in T^{\text {sing }}$ there exists $\omega_{p} \in V$ with $m_{p}\left(\tau_{1}\left(\omega_{p}\right)\right)=-1$.

Proof. The space V is globally generated over \widehat{A} exactly when for any point $q \in \widehat{A}$ there is $v_{q} \in V$ with $v_{q}(q) \neq 0$. If $q \in(\widehat{\mathbb{B} / \Gamma}) \backslash\left(L \cup \sum_{i=1}^{h} \kappa_{i}\right)$, then $j_{1}\left(\eta_{o}\right)(q) \neq 0$. A modular form $\omega_{i} \in V$ does not vanish on the cusp κ_{i} if and only if $T_{i} \subset\left(\tau_{1}\left(\omega_{i}\right)\right)_{\infty}$. A modular form $\omega_{p} \in V$ takes non-zero values on the rational (-1)-curve $\xi^{-1}(p)$ exactly when the multiplicity $m_{p}\left(\tau_{1}\left(\omega_{p}\right)\right)=-1$.

From now on, we say briefly that a modular form $\omega \in H^{0}\left(A^{\prime}, \Omega_{A^{\prime}}^{2}\left(T^{\prime}\right)\right)$ is binary parallel or triangular if its transfer $\tau_{1}(\omega) \in \mathcal{L}_{A}\left(T, T^{\text {sing }}\right)$ is binary parallel or, respectively, triangular.

Proposition 25. Let us suppose that the subspace $V \subseteq H^{0}\left(A^{\prime}, \Omega_{A^{\prime}}^{2}\left(T^{\prime}\right)\right)$ contains the cuspidal form $j_{1}\left(\eta_{o}\right)$, two binary parallel forms ω_{13}, ω_{24}, a triangular ω_{012} with $T_{0} \cap T_{3} \cap T_{4}=\emptyset$ and satisfies the following three conditions:
(i) for any $i \notin\{0,1, \ldots, 4\}$ there exists $\omega_{i} \in V$ with $\left(\tau_{1}\left(\omega_{i}\right)\right)_{\infty} \supset T_{i}$;
(ii) for any $p \in T^{\text {sing }} \backslash\left(\sum_{j=0}^{4} T_{j}\right)$ there exists $\omega_{p} \in V$ with $m_{p}\left(\tau_{1}\left(\omega_{p}\right)\right)=-1$;
(iii) for any $1 \leq i<j \leq h$ there is $\omega_{i j} \in V$, such that $\left(\tau_{1}\left(\omega_{i j}\right)\right)_{\infty}$ contains exactly one of T_{i} or T_{j}.

Then V is normally generated.

Proof. In the presence of Corollary 23, it suffices to establish that the projective morphism $f: \widehat{A} \rightarrow \mathbb{P}(V)$, associated with V is regular, finite and generically injective. Assumption (i) from the present proposition and $\left(\tau_{1}\left(\omega_{i j}\right)\right)_{\infty}=T_{i}+T_{j}$, $\left(\tau_{1}\left(\omega_{012}\right)\right)_{\infty}=T_{0}+T_{1}+T_{2}$ imply assumption (i) from Lemma 24. Further, noone $p \in T^{\text {sing }} \cap\left(T_{1}+T_{3}\right)$ belongs to $\left(\tau_{1}\left(\omega_{13}\right)\right)_{0}=D_{1}+D_{3}$, as far as T_{1}, T_{3}, D_{1} and D_{3} are mutually parallel and distinct. Therefore, $m_{p}\left(\tau_{1}\left(\omega_{13}\right)\right)=-1$. Similarly, $m_{p}\left(\tau_{1}\left(\omega_{24}\right)\right)=-1$ for $p \in T^{\text {sing }} \cap\left(T_{2}+T_{4}\right)$. By Corollary $13, m_{p}\left(\tau_{1}\left(\omega_{012}\right)\right)=-1$ for all $p \in T^{\operatorname{sing}} \cap\left(\sum_{i=0}^{2} T_{i}\right)$. Combining with assumption (ii) from the present proposition, one obtains (ii) from Lemma 24. That allows to conclude that $f: \widehat{A} \rightarrow \mathbb{P}(V)$ is regular.

The assumption (iii) guarantees that $f: \widehat{A} \rightarrow f(\widehat{A}) \subset \mathbb{P}(V)$ is finite. First of all, on $\widehat{A} \backslash\left[L+\left(\partial_{\Gamma} \mathbb{B} / \Gamma\right)\right]=(\mathbb{B} / \Gamma) \backslash L=A \backslash T$, the morphism

$$
\left(\frac{\omega_{13}}{j_{1}\left(\eta_{o}\right)}=f_{13} \circ \xi=f_{13}, \frac{\omega_{24}}{j_{1}\left(\eta_{o}\right)}=f_{24} \circ \xi=f_{24}\right):(\mathbb{B} / \Gamma) \backslash L=A \backslash T \longrightarrow \mathbb{C}^{2}
$$

is of degree 4. More precisely, if

$$
\begin{equation*}
f_{13}(u, v)=\frac{\sigma\left(u-\mu_{1}\right) \sigma\left(u-c_{3}+\mu_{1}\right)}{\sigma(u) \sigma\left(u-c_{3}\right)}, f_{24}(u, v)=\frac{\sigma\left(v-\mu_{2}\right) \sigma\left(v-c_{4}+\mu_{2}\right)}{\sigma(v) \sigma\left(v-c_{4}\right)} \tag{2.1}
\end{equation*}
$$

then for any $x, y \in \mathbb{P}^{1}$ the fiber is

$$
\left(f_{13}, f_{24}\right)^{-1}(x, y)=\left\{\left(P_{i}(x), Q_{j}(y)\right) \mid 1 \leq i, j \leq 2\right\}
$$

with

$$
P_{1}(x)+P_{2}(x)=\overline{c_{3}}, \quad Q_{1}(y)+Q_{2}(y)=\overline{c_{4}} .
$$

The condition (iii) provides the injectiveness of $f: \partial_{\Gamma} \mathbb{B} / \Gamma \rightarrow f\left(\partial_{\Gamma} \mathbb{B} / \Gamma\right)$, which suffices for $f: L \rightarrow f(L)$ to be discrete and, therefore, finite. Otherwise, f contracts some irreducible component $\xi^{-1}(p), p \in T^{\operatorname{sing}}$ of L. If $p \in T_{i} \cap T_{j}$ then $\kappa_{i}, \kappa_{j} \in$ $\xi^{-1}(p)$, whereas $f\left(\kappa_{i}\right)=f\left(\kappa_{j}\right)$. Thus, $f: L \cup\left(\partial_{\Gamma} \mathbb{B} / \Gamma\right) \rightarrow f\left(L \cup\left(\partial_{\Gamma} \mathbb{B} / \Gamma\right)\right)$ and, therefore, $f: \widehat{A} \rightarrow f(\widehat{A})$ is a finite regular morphism.

The generic injectiveness of the projective morphism $f: \widehat{A} \rightarrow f(\widehat{A})$ follows from the generic injectiveness of the affine morphism

$$
F=\left(\frac{\omega_{13}}{j_{1}\left(\eta_{o}\right)}=f_{13}, \frac{\omega_{24}}{j_{1}\left(\eta_{o}\right)}=f_{24}, \frac{\omega_{012}}{j_{1}\left(\eta_{o}\right)}=f_{012}\right):(\mathbb{B} / \Gamma) \backslash L=A \backslash T \longrightarrow \mathbb{C}^{3}
$$

This, in turn, is equivalent to the generic injectiveness of the rational surjective morphism

$$
F=\left(f_{13}, f_{24}, f_{012}\right): A \longrightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Let us consider also the rational surjection $F_{1}=\left(f_{13}, f_{24}\right): A \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ and its factorization

through F and the projection $\operatorname{pr}_{12}: \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ onto the first two factors. The irreducible components T_{1} and T_{2} of the triangle $T_{0}+T_{1}+T_{2}$ have intersection number $T_{1} \cdot T_{2}=1$. That allows to assume that $T_{1}=\check{o}_{E} \times E, T_{2}=E \times \check{o}_{E}$ and (1.10).

Suppose that $F: A \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ is not generically injective. By $F_{1}=\mathrm{pr}_{12} \circ F$ and $\operatorname{deg} F_{1}=4$, the generic fiber of F on $F_{1}^{-1}(x, y)$ consists of 2 or 4 points. In either case, for any $(x, y) \in \mathbb{P}^{1} \times \mathbb{P}^{1}$ there holds at least one of the following pairs of relations:

$$
\text { Case (i): } \left.\begin{array}{rl}
\quad f_{012}\left(P_{1}(x), Q_{2}(y)\right) & =f_{012}\left(P_{2}(x), Q_{1}(y)\right), \\
& f_{012}\left(P_{1}(x), Q_{1}(y)\right)
\end{array}\right) f_{012}\left(P_{2}(x), Q_{2}(y)\right) ;
$$

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 19-41.

Case (ii): $f_{012}\left(P_{1}(x), Q_{2}(y)\right)=f_{012}\left(P_{2}(x), Q_{2}(y)\right)$,

$$
f_{012}\left(P_{1}(x), Q_{1}(y)\right)=f_{012}\left(P_{2}(x), Q_{1}(y)\right) ;
$$

Case (iii): $f_{012}\left(P_{1}(x), Q_{2}(y)\right)=f_{012}\left(P_{1}(x), Q_{1}(y)\right)$,

$$
f_{012}\left(P_{2}(x), Q_{2}(y)\right)=f_{012}\left(P_{2}(x), Q_{1}(y)\right)
$$

We claim that the relations from at least one case are satisfied identically on $\mathbb{P}^{1} \times \mathbb{P}^{1}$. Otherwise, the locus of either case is a proper analytic subvariety of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and their union is also a proper analytic subvariety of $\mathbb{P}^{1} \times \mathbb{P}^{1}$. The contradiction implies that for any $(x, y) \in \mathbb{P}^{1} \times \mathbb{P}^{1}$ there holds identically at least one of the Cases (i), (ii) or (iii). Note that (ii) and (iii) are equivalent under the transposition of the factors of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and, respectively, of $A=E \times E$.

Without loss of generality, one can suppose that $P_{1}(\infty)=\check{o}_{E}$ and $P_{2}(\infty)=\overline{c_{3}}$. In Case (i), up to a relabeling of $Q_{1}(y), Q_{2}(y)$, one has $Q_{1}(\infty)=\check{o}_{E}, Q_{2}(\infty)=\overline{c_{4}}$. Then

$$
\infty=f_{012}\left(\check{o}_{E}, \check{o}_{E}\right)=f_{012}\left(P_{1}(\infty), Q_{1}(\infty)\right)=f_{012}\left(P_{2}(\infty), Q_{2}(\infty)\right)=f_{012}\left(\overline{c_{3}}, \overline{c_{4}}\right)
$$

However, $\overline{c_{3}} \neq \check{o}_{E}, \overline{c_{4}} \neq \check{o}_{E}$ and $T_{3} \cap T_{4}=\left\{\left(\overline{c_{3}}, \overline{c_{4}}\right)\right\} \nsubseteq T_{0}$ reveal that $f_{012}\left(\overline{c_{3}}, \overline{c_{4}}\right) \neq$ ∞, so that Case (i) does not hold identically on A. Similarly, in Case (ii), there follows

$$
\infty=f_{012}\left(\check{o}_{E}, \overline{c_{4}}\right)=f_{012}\left(P_{1}(\infty), Q_{2}(\infty)\right)=f_{012}\left(P_{2}(\infty), Q_{2}(\infty)\right)=f_{012}\left(\overline{c_{3}}, \overline{c_{4}}\right)
$$

The contradiction implies that $F: A \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ is generically injective.

Here is another sufficient condition for a subspace $V \subseteq H^{0}\left(A^{\prime}, \Omega_{A^{\prime}}^{2}\left(T^{\prime}\right)\right)$ to be normally generated.

Proposition 26. Let V be a subspace of $H^{0}\left(A^{\prime}, \Omega_{A^{\prime}}^{2}\left(T^{\prime}\right)\right)$, containing the cuspidal form $j_{1}\left(\eta_{o}\right)$, a binary parallel ω_{13}, triangular ω_{012}, ω_{234} with $T_{0} \cap T_{1} \cap T_{4}=\emptyset$ and satisfying the following three conditions:
(i) for any $i \notin\{0,1, \ldots 4\}$ there exists $\omega_{i} \in V$ with $\left(\tau_{1}\left(\omega_{i}\right)\right)_{\infty} \supset T_{i}$;
(ii) for any $p \in T^{\text {sing }} \backslash\left(\sum_{j=0}^{4} T_{j}\right)$ there exists $\omega_{p} \in V$ with $m_{p}\left(\tau_{1}\left(\omega_{p}\right)\right)=-1$;
(iii) for any $1 \leq i<j \leq h$ there is $\omega_{i j} \in V$, such that $\left(\tau_{1}\left(\omega_{i j}\right)\right)_{\infty}$ contains exactly one of T_{i} or T_{j}.

Then V is normally generated.
Proof. As in Proposition 25, first we establish the regularity of the projective morphism $f: \widehat{A} \rightarrow f(\widehat{A})$.

Further, $f: \widehat{A} \rightarrow f(\widehat{A})$ is finite, as far as the fibers of its restriction on $(\mathbb{B} / \Gamma) \backslash$ $L=A \backslash T$ are contained in the fibers of

$$
\left(\frac{\omega_{13}}{j_{1}\left(\eta_{o}\right)}=f_{13}, \frac{\omega_{012}}{j_{1}\left(\eta_{o}\right)}=f_{012}\right): A \backslash T \longrightarrow \mathbb{C}^{2}
$$

Let $f_{012}(u, v)$ be of the form (1.10) and f_{13} be as in (2.1). Then for any $x, y \in \mathbb{P}^{1}$ the fiber

$$
\left(f_{13}, f_{012}\right)^{-1}(x, y)=\left\{\left(P_{i}(x), Q_{i j}(x, y)\right) \mid 1 \leq i, j \leq 2\right\}
$$

with

$$
P_{1}(x)+P_{2}(x)=\overline{c_{3}}, \quad Q_{i 1}(x, y)+Q_{i 2}(x, y)=-a_{0} b_{0}^{-1} P_{i}(x)-b_{0}^{-1} \overline{c_{0}}
$$

consists of at most four points. The reason is that for any fixed $P_{i}(x) \in E$ the elliptic function $f_{012}\left(P_{i}(x)\right.$, $)$ is of order 2. Thus, $\left(f_{13}, f_{012}\right): A \backslash T \rightarrow \mathbb{C}^{2}$ is finite. The assumption (iii) implies that $f: L \cup\left(\partial_{\Gamma} \mathbb{B} / \Gamma\right) \rightarrow f\left(L \cup\left(\partial_{\Gamma} \mathbb{B} / \Gamma\right)\right)$ is finite, so that $f: \widehat{A} \rightarrow f(\widehat{A})$ is a finite regular morphism.

We derive the generic injectiveness of $f: \widehat{A} \rightarrow f(\widehat{A})$ from the generic injectiveness of the affine morphism

$$
F=\left(\frac{\omega_{13}}{j_{1}\left(\eta_{o}\right)}=f_{13}, \frac{\omega_{012}}{j_{1}\left(\eta_{o}\right)}=f_{012}, \frac{\omega_{234}}{j_{1}\left(\eta_{o}\right)}=f_{234}\right):(\mathbb{B} / \Gamma) \backslash L=A \backslash T \longrightarrow \mathbb{C}^{3}
$$

To this end, let us factor the rational surjection $F_{1}=\left(f_{13}, f_{012}\right): A \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ through the rational surjection $F=\left(f_{13}, f_{012}, f_{234}\right): A \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ and the projection $\operatorname{pr}_{12}: \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$, along the commutative diagram

If F is not generically injective, then at least one of the following three cases holds identically on $\mathbb{P}^{1} \times \mathbb{P}^{1}$:

Case (i): $\quad f_{234}\left(P_{1}(x), Q_{12}(x, y)\right)=f_{234}\left(P_{2}(x), Q_{21}(x, y)\right)$,

$$
f_{234}\left(P_{1}(x), Q_{11}(x, y)\right)=f_{234}\left(P_{2}(x), Q_{22}(x, y)\right)
$$

Case (ii): $f_{234}\left(P_{1}(x), Q_{12}(x, y)\right)=f_{234}\left(P_{2}(x), Q_{22}(x, y)\right)$,

$$
f_{234}\left(P_{1}(x), Q_{11}(x, y)\right)=f_{234}\left(P_{2}(x), Q_{21}(x, y)\right)
$$

Case (iii): $f_{234}\left(P_{1}(x), Q_{12}(x, y)\right)=f_{234}\left(P_{1}(x), Q_{11}(x, y)\right)$,

$$
f_{234}\left(P_{2}(x), Q_{22}(x, y)\right)=f_{234}\left(P_{2}(x), Q_{21}(x, y)\right)
$$

In either case, denote by $P_{1}(\infty)=\check{o}_{E}$ and $P_{2}(\infty)=\overline{c_{3}}$ the poles of the elliptic function f_{13} and note that $T_{1}=P_{1}(\infty) \times E, T_{3}=P_{2}(\infty) \times E$. Further, let
$Q_{i 1}(\infty, \infty)=\check{o}_{E}$, so that $T_{2}=E \times Q_{11}(\infty, \infty)=E \times Q_{21}(\infty, \infty)$. Finally, let $Q_{i 2}(\infty, \infty)=-a_{0} b_{0}^{-1} P_{i}(\infty)-b_{0}^{-1} \overline{c_{0}}$, in order to have

$$
\begin{aligned}
& \left\{q_{10}\right\}=T_{1} \cap T_{0}=\left\{\left(P_{1}(\infty), Q_{12}(\infty, \infty)\right)\right\} \\
& \left\{q_{30}\right\}=T_{3} \cap T_{0}=\left\{\left(P_{2}(\infty), Q_{22}(\infty, \infty)\right)\right\}
\end{aligned}
$$

Denote also

$$
\begin{aligned}
& \left\{q_{12}\right\}=T_{1} \cap T_{2}=\left\{\left(P_{1}(\infty), Q_{11}(\infty, \infty)\right)\right\} \\
& \left\{q_{32}\right\}=T_{3} \cap T_{2}=\left\{\left(P_{2}(\infty), Q_{21}(\infty, \infty)\right)\right\}
\end{aligned}
$$

Bearing in mind that $\left(f_{234}\right)_{\infty}=T_{2}+T_{3}+T_{4}$, note that $f_{234}\left(q_{i j}\right)=\infty$ whenever $\{i, j\} \cap\{2,3,4\} \neq \emptyset$. In the Case (i) one has $f_{234}\left(q_{10}\right)=f_{234}\left(q_{32}\right)=\infty$. If $q_{10} \in T_{2}$, then $q_{10} \in T_{0} \cap T_{1} \cap T_{2}$, contrary to the assumption that $T_{0}+T_{1}+T_{2}$ is a triangle. On the other hand, $T_{3} \cap T_{1}=\emptyset$ guarantees that $q_{10} \notin T_{3}$. Therefore $q_{10} \in T_{4}$ and $q_{10} \in T_{0} \cap T_{1} \cap T_{4}=\emptyset$. The contradiction rejects the Case (i). If the first relation of Case (ii) is identical on $\mathbb{P}^{1} \times \mathbb{P}^{1}$, then $f_{234}\left(q_{10}\right)=f_{234}\left(q_{30}\right)=\infty$. As in the Case (i), that leads to an absurd. Finally, $f_{234}\left(q_{10}\right)=f_{234}\left(q_{12}\right)=\infty$ contradicts the hypotheses and establishes that $F=\left(f_{13}, f_{012}, f_{234}\right): A \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ is generically injective.

An immediate application of Proposition 26 to the example from Proposition 16 yields the following

Corollary 27. In the terms of Proposition 16, the subspace

$$
V_{1}=\operatorname{Span}_{\mathbb{C}}\left(j_{1}\left(\eta_{o}\right), \omega_{56}, \omega_{157}, \omega_{267}, \omega_{368}, \omega_{458}\right) \subset H^{0}\left(A_{1}^{\prime}, \Omega_{A_{1}^{\prime}}^{2}\left(T^{\prime}\right)\right)
$$

is normally generated, i.e., determines a regular projective immersion

$$
f: \widehat{\mathbb{B} / \Gamma_{1}} \rightarrow \mathbb{P}\left(V_{1}\right)=\mathbb{P}^{5}
$$

with normal image.
If one applies Proposition 25 to the cuspidal form $j_{1}\left(\eta_{o}\right)$, the binary parallel ω_{56}, ω_{78} and triangular ω_{157}, then one needs to adjoin the triangular $\omega_{2,4+k, 9-k}$, $\omega_{3,4+l, 6+l}, \omega_{4,4+m, 9-m}$ for some $k, l, m \in\{1,2\}$. The span of these modular forms is 7 -dimensional and depletes the entire $\left[\Gamma_{1}, 1\right]$. It is clear that the normal generation of V_{1} implies the normal generation of $H^{0}\left(A_{1}^{\prime}, \Omega_{A_{1}^{\prime}}^{2}\left(T^{\prime}\right)\right)=j_{1}\left[\Gamma_{1}, 1\right]$.

ACKNOWLEDGEMENTS. The research was partially supported by the Sofia University Science Fund through Contract 171/05.2008.

3. REFERENCES

1. Borevich, Z. I., I. R. Shafarevich: Number theory. Nauka, 1985.
2. Ewald, G., U. Wessels: On the ampleness of invertible sheaves in complete projective toric varieties. Results Math., 19, 1991, 275-278.
3. Hemperly, J.: The parabolic contribution to the number of independent automorphic forms on a certain bounded domain. Amer. J. Math., 94, 1972, 1078-1100.
4. Holzapfel, R.-P.: Jacobi theta embedding of a hyperbolic 4-space with cusps. In : Third International Conference in Geometry, Integrability and Quantization, Varna, June 14-23, 2001, pp. 11-63.
5. Holzapfel, R.-P.: Complex hyperbolic surfaces of abelian type. Serdica Math. J., 30, 2004, 207-238.
6. Lang, S.: Elliptic functions. Addison-Wesley, 1973.
7. Privalov, I. I.: Introduction to the theory of functions of a complex variable, GITTL, Moscow, 1940 (In Russian).

Received on March 20, 2008

```
Boris Kotzev
Faculty of Mathematics and Informatics
"St. Kl. Ohridski" University of Sofia
5 blvd. J. Bourchier, BG-1164 Sofia
BULGARIA
e-mail: bkotzev@fmi.uni-sofia.bg
```

Azniv Kasparian
Faculty of Mathematics and Informatics
"St. Kl. Ohridski" University of Sofia
5 blvd. J. Bourchier, BG-1164 Sofia BULGARIA
e-mail: kasparia@fmi.uni-sofia.bg

