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Co-abelian toroidal compactifications of torsion free

ball quotients

Azniv Kirkor Kasparian ∗

Abstract

Let X ′ = (B/Γ)′ be the toroidal compactification of the quotient B/Γ of the

complex 2-ball B by a torsion free lattice Γ < SU2,1. We say that B/Γ and X ′

are co-abelian if there is an abelian surface, birational to X ′. The present work

can be viewed as an illustration for the presence of a plenty of non-compact

co-abelian torsion free ball quotients B/Γ. More precisely, it shows that all the

admissible values 8π
2

3
n ∈ 8π

2

3
N for the volume of a quotient B/Γ by a torsion

free lattice Γ < SU2,1 are attained by co-abelian Picard modular B/Γn over

Q(
√
−3), vol(B/Γn) =

8π
2

3
n. The article provides three types of infinite series

µ′

n
: (B/Γn)

′ → (B/Γn−1)
′ of finite unramified coverings µ′

n
with abelian Galois

groups, relating co-abelian torsion free Picard modular toroidal compactifica-

tions (B/Γn)
′ over Q(

√
−3), with infinitely increasing volumes. The first type

is supported by mutually birational members (B/Γn)
′ with fixed number of

cusps. The second kind is with mutually birational (B/Γn)
′ and infinitely in-

creasing number of cusps. The third kind of series {µ′

n
}∞
n=1

relates mutually

non-birational (B/Γn)
′ with infinitely increasing number of cusps.

1 Introduction

Let B = {(z1, z2) ∈ C2 | |z1|2+ |z2|2 < 1} be the complex 2-ball and Γ be a discrete
subgroup of SU2,1. The quotient SU2,1/Γ has finite invariant volume exactly when
B/Γ has finite invariant volume. If so, we say that Γ is a lattice of SU2,1. The torsion
elements of a lattice Γ < SU2,1 are the ones of finite order, which are different from
the identity. The lattices Γ without torsion elements are said to be torsion free.

In [1], Ash-Mumford-Rapoport-Tsai construct smooth toroidal compactifications
of torsion free arithmetic quotients of bounded symmetric domains. Mok’s [14],
Hummel’s [12] and Hummel-Schroeder’s [11] extend the construction to arbitrary
(not necessarily arithmetic) torsion free lattices. .

Definition 1. The torsion free ball quotient B/Γ and its toroidal compactification
X ′ = (B/Γ)′ are co-abelian, if the minimal model X of X ′ is an abelian surface.
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In [13] was shown that any ball quotient B/Γ, birational to an abelian surface is
smooth and non-compact.

The study of the co-abelian torsion free toroidal compactifications is initiated by
Holzapfel in [10]. Let ξ : X ′ = (B/Γ)′ → X be the blow-down of the smooth rational
(−1)-curves on a torsion free toroidal compactification X ′ = (B/Γ)′ to its minimal
model X and D = ξ(T ) ⊂ X be the image of the toroidal compactifying divisor

T = (B/Γ)′ \ (B/Γ). By [1], T =
h∑
i=1

Ti is a union of disjoint, contractible, smooth

irreducible elliptic curves Ti.

Definition 2. A divisor D =
h∑
i=1

Di on a surface X is called an elliptic configuration,

if all the irreducible components Di of D are smooth elliptic curves.

The toroidal compactifying divisor T =
h∑
i=1

Ti and its image D = ξ(T ) =
h∑
i=1

ξ(Ti)

are elliptic configurations on the smooth surfaces X ′, respectively, X. The singular

locus Dsing =
∑

1≤i<j≤h
Di ∩Dj of an elliptic configuration D =

h∑
i=1

Di consists of the

intersection points of the different components.

Definition 3. An elliptic configuration D =
n∑
i=1

Di is intersecting if it has at least

one singular point.

The toroidal compactifying divisors T consist of disjoint smooth elliptic curves
and are always non-intersecting.

An arbitrary torsion free toroidal compactification X ′ = (B/Γ)′ with minimal
model X can be obtained from X by blowing up the singular points Dsing of D.
Thus, the pairs

(
X ′ = (B/Γ)′ , T

)
and (X,D) are in a bijective correspondence.

In [8] Holzapfel has established that any torsion free toroidal compactification
X ′ = (B/Γ)′ with minimal model X is subject to the proportionality condition

3c2(X)− c21(X) =
h∑

i=1

KX .Di +
h∑

i=1

|Di ∩Dsing| − 4|Dsing| (1)

on the Chern numbers c2(X), c21(X) of X and the elliptic configuration D = ξ(T ) ⊂
X. An example of Momot from [15] illustrates that for κ(X ′) = κ(X) = 1 the
elliptic configuration D is not supposed to be intersecting. In other words, a torsion
free toroidal compactification X ′ = (B/Γ)′ of Kodaira dimension κ(X ′) = 1 can be
a minimal surface.

In the case of an abelian surface X, the canonical bundle KX = OX is trivial, so
that KX .Di = 0 for any curve Di on X. By the adjunction formula, D2

i = 0 and Di

are not contractible. Therefore any co-abelian torsion free toroidal compactification
X ′ = (B/Γ)′ contain a smooth rational (−1)-curve and the elliptic configuration D
is always intersecting. Moreover, c2(X) = c1(X) = 0 vanish and the proportionality
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of the co-abelian X ′ = (B/Γ)′ reads as

h∑

i=1

|Di ∩Dsing| = 4|Dsing|. (2)

Recall that an isogeny of abelian varieties is an epimorphism with finite kernel.

Theorem 4. (Holzapfel) (i) (Theorem 2.5 [10]) The blow-up A′ of an abelian surface

A at the singular points Dsing of an intersecting elliptic configuration D =
h∑
i=1

Di ⊂ A

is a torsion free toroidal compactification A′ = (B/Γ)′ of a ball quotient B/Γ if and
only if D satisfies the proportionality condition (2).

(ii) (Corollary 2.8 [10]) The abelian minimal model A of a torsion free toroidal
compactification (B/Γ)′ is isogeneous to the Cartesian square E × E of an elliptic
curve E.

(iii) (Proposition 2.6 [10]) The isogenies of abelian surfaces pull back proportional
elliptic configurations to proportional elliptic configurations. Equivalently, if ξ : X ′ =
(B/Γ)′ → X is the blow-down of the smooth rational (−1)-curves to the abelian
minimal model X of X ′ and µ : Y → X is an isogeny of abelian surfaces, then the
fibered product Y ′ := Y ×X X ′, defined by the commutative diagram

Y Y ′ := Y ×X X ′

X X ′
❄

µ

✛pr1

❄

pr2

✛ ξ

is a torsion free toroidal compactification Y ′ = (B/Γo)
′. The first canonical projec-

tion pr1 : Y
′ → Y is the blow-down of the smooth rational (−1)-curves on Y ′ and the

second canonical projection pr2 : Y ′ → X ′ is unramified ker(µ)-Galois covering. In
particular, pr2 is a finite unramified abelian Galois covering, i.e., a finite unramified
Galois covering with abelian Galois group (ker(µ),+). The lattice Γo is a subgroup
of Γ of finite index.

From now on, we refer briefly to Y ′ := Y ×X X ′ as to an isogeny pull back of
X ′ = (B/Γ)′.

In order to recall the notion of a Picard modular torsion free toroidal compacti-
fication X ′ = (B/Γ)′, let us consider an imaginary quadratic number field Q(

√
−d)

with integers ring O−d and denote by M3×3(O−d) the set of 3 × 3-matrices with
entries from O−d. If O∗

−d is the units group of O−d, then the group

SU2,1(O−d) := {g ∈ SU2,1 ∩M3×3(O−d) | g−1 ∈M3×3(O−d)} =

= {g ∈ SU2,1 ∩M3×3(O−d) | det(g) ∈ O∗
−d}.

The lattices Γ1 and Γ2 of SU2,1 are commensurable, if their intersection Γ1 ∩ Γ2 is
of finite index in Γ1 and Γ2.

3



Definition 5. The lattice Γ toroidal compactification X ′ = (B/Γ)′ are called Pi-
card modular over the imaginary quadratic number field Q(

√
−d), if the lattice Γ is

commensurable with SU2,1(O−d) for the integers ring O−d of Q(
√
−d)..

Any non-uniform arithmetic lattice Γ < SU2,1 is Picard modular over some
imaginary quadratic number field Q(

√
−d) (cf. [2]).

Here is a brief synopsis of the paper. The next section establishes that for any
torsion free lattice Γ < SU2,1 there is a torsion free lattice Γo with co-abelian quotient
B/Γo, such that vol(B/Γ) = vol(B/Γo) with respect to the Haar measure of SU2,1.
There follow two technical sections. More precisely, the third one studies the elliptic
curves on a product E1 × E2 of elliptic curves E1, E2. The fourth section describes

the pull-backs of elliptic curves under diagonal isogenies µ =

(
α 0
0 β

)
: E2×E2 →

E1 × E1 of Cartesian squares Ei × Ei of elliptic curves Ei. The final, fifth section
provides explicit isogeny series of co-abelian torsion free Picard modular toroidal
compactifications over Q(

√
−3), with infinitely increasing volumes. There are ones

with mutually birational terms and fixed number of cusps, as well as ones with
mutually birational terms and infinitely increasing number of cusps. After showing
that E2 × E2 and E1 × E1 with End(E1) 6= End(E2) are not birational, the article
constructs an infinite isogeny series of mutually non-birational co-abelian torsion free
toroidal compactifications with infinitely increasing volumes and infinitely increasing
number of cusps.

2 The volumes of torsion free ball quotients are attained

by co-abelian torsion free Picard modular ones over

Q(
√
−3)

Let us recall some results on the volumes of the local complex hyperbolic surfaces
B/Γ.

Theorem 6. (Hirzebruch [4], [5]) Let

Bn = {(z1, . . . , zn) ∈ Cn | |z1|2 + . . .+ |zn|2 = 1}

be the complex n-dimensional ball, Γ be a lattice of SUn,1 and e(Bn/Γ) be the Euler
number of Bn/Γ. Then the volume of Bn/Γ with respect to the Haar measure is

vol(Bn/Γ) =
(−π)n22n
(n+ 1)!

e (Bn/Γ) .

From now on, we denote by B := B2 the complex 2-dimensional ball and note
that for a torsion free lattice Γ of SU2,1, the Euler number e(B/Γ) ∈ Z is integral.

Combining with vol(B/Γ) = 8π2

3 e(B/Γ) ∈ R>0, one concludes that e(B/Γ) ∈ N and

vol(B/Γ) =
8π2

3
e(B/Γ) ∈ 8π2

3
N. (3)
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Theorem 7. (Hersonsky and Paulin [3]) The smallest volume of a compact quotient
B/Γ by a torsion free lattice Γ < SU2,1 is 8π2.

Theorem 8. (Parker [16]) The smallest volume of a non-compact quotient B/Γ by

a torsion free lattice Γ < SU2,1 is 8π2

3 .

Lemma 9. Suppose that the blow-down

ξ : (X ′ = (B/Γ, T = X ′ \ (B/Γ)) −→ (X,D = ξ(T ))

of the smooth rational (−1)-curves on a torsion free toroidal compactification pro-
duces the abelian surface X with the proportional elliptic configuration D. Then the
Euler number e(B/Γ) of B/Γ equals the number s of the smooth rational (−1)-curves
on X ′ and the number of the singular points of D.

Proof. The Euler number e(B/Γ) = e(B/Γ)′ since the toroidal compactifying divisor
T = (B/Γ)′ \ (B/Γ) of B/Γ consists of smooth irreducible elliptic curves Ti and
e(Ti) = 0. Recall that the abelian minimal model X of X ′ = (B/Γ)′ has vanishing
Euler number e(X) = 0 andX ′ is obtained fromX by blowing up s points. Therefore
e(X ′) = e(X) + s = s and e(B/Γ) = s.

Let O−3 = Z+ ω−3Z with ω−3 = e
πi
3 be the ring of Eisenstein integers, i.e., the

integers ring of the imaginary quadratic number field Q(
√
−3). Consider the elliptic

curve E−3 = C/O−3 and the abelian surface A−3 = E−3 × E−3. In [6] Hirzebruch

constructs a series {Xn}∞n=1 of minimal surfaces of general type with lim
n→∞

c21(Xn)
c2(Xn)

= 3.

The surfaces Xn are birational to branched covers of A−3, ramified over an elliptic

configuration DHir
−3 =

4∑
i=1

DHir
i ⊂ A−3 with a single singular point ǒA−3 . In [10]

Holzapfel shows that DHir
−3 is a proportional elliptic configuration on A−3, so that

the blow-up A′
−3 of A−3 at the origin ǒA−3 is a torsion free toroidal compactification

A′
−3 = (B/ΓHir

−3 )
′ with a single smooth rational (−1)-curve. Moreover, in [7] Holzapfel

proves that A′
−3 = (B/ΓHir

−3 )
′ is Picard modular over Q(

√
−3). By Lemma 9 the

non-compact co-abelian torsion free Hirzebruch’s example B/ΓHir
−3 has Euler number

e(B/ΓHir
−3 ) = 1 and minimal volume vol(B/ΓHir

−3 ) =
8π2

3 .
In [2], Emery and Stover express the minimal volume v−d,n of a quotient PUn,1/Γ

by a non-uniform Picard modular lattice Γ < PUn,1 over Q(
√
−d) by the L-function

L−d =
ζ−d

ζ
, associated with Dedekind zeta function ζ−d of Q(

√
−d) and the Riemann

zeta function ζ. They estimate the number of the isomorphism classes of the Picard
modular lattices Γ < PUn,1 over Q(

√
−d) with minimal volume vol(PUn,1/Γ) =

v−d,n, For all n ≥ 2, the non-uniform arithmetic lattices Γ < PUn,1 of smallest
vol(PUn,1/Γ) = v−d,n are shown to be Picard modular over Q(

√
−3). For an even

n = 2k, there are exactly two isomorphism classes of non-uniform lattices of PU2k,1

with minimal co-volume v−3,2k. For an odd n = 2k + 1 6≡ 7(mod 8) there is
a unique isomorphism class of non-uniform lattices of PU2k+1,1 with minimal co-
volume v−3,2k+1.
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The previous work [17] of Stover establishes that the minimal volume of a torsion

non-compact arithmetic quotient B2/Γ is π2

27 . Moreover, he proves that any torsion

free arithmetic B/Γ of vol(B/Γ) = 8π2

3 covers (at least) one of the two non-isomorphic
torsion Picard modular surfaces B2/Γ−3 or B2/Γ′

−3 over Q(
√
−3) with vol(B2/Γ−3) =

vol(B2/Γ′
−3) = π2

27 . Stover’s [17] provides a complete list of representatives of the

isomorphism classes of torsion free Γ < Γ−3 ∩ Γ′
−3 with vol(B/Γ) = 8π2

3 .
The non-compact quotients B2/Γ by torsion non-arithmetic lattices Γ < SU2,1

are not expected to be of minimal volume π2

27 .

Theorem 10. For any admissible value 8π2

3 m ∈ 8π2

3 N of the volume of a quotient
B/Γ of B by a torsion free lattice Γ < SU2,1, there is a non-compact, co-abelian,
torsion free, Picard modular B/Γ−3,m over Q(

√
−3), with volume

vol(B/Γ−3,m) =
8π2

3
m.

Proof. The co-abelian torsion free toroidal compactification X ′
−3 = (B/ΓHir

−3 )
′ has

fundamental group π1(X
′
−3) ≃ (π1(A−3,+) = (O−3 × O−3,+). For an arbitrary

m ∈ N consider the order O−3,m = Z + mO−3 of Q(
√
−3) with conductor m =

[O−3 : O−3,m] and the elliptic curve E−3,m = C/O−3,m. Then

µm : A−3,m := E−3 × E−3,m −→ A−3 = E−3 × E−3,

µm(u+O−3, v +O−3,m) = (u+O−3, v +O−3)

is an isogeny of degree m. If ξ−3 : X ′
−3 → A−3 is the blow-down of the smooth

rational (−1)-curve on X ′
−3 then the fibered product

X ′
−3,m := A−3,m ×A−3 X

′
−3 = (B/Γ−3,m)

′

is a torsion free Picard modular toroidal compactification over Q(
√
−3), with abelian

minimal model A−3,m and the canonical projection pr2 : X ′
−3,m → X ′

−3 is an un-
ramified covering of degree m. Therefore

vol(B/Γ−3,m) = deg(pr2)vol(B/Γ
Hir
−3 ) =

8π2

3
m.

3 Elliptic curves on abelian surfaces

In order to study the co-abelian torsion free toroidal compactifications X ′ = (B/Γ)′

through their associated proportional elliptic configurations, let us make some con-
siderations, concerning the elliptic curves on abelian surfaces.

Let F be an elliptic curve on an abelian surface A. If ǒF is the origin of F , then
the translation τ(−ǒF ) : A → A by −ǒF ∈ A transforms F into the elliptic curve
F o with origin ǒF o = ǒA. The identical inclusion Id : (F o,+) →֒ (A,+) is a group

6



homomorphism. Consider the universal covering UF o : F̃ o = (C,+) → (F o,+) of
F o and fix the point 0 ∈ U−1

F o (ǒF o) = U−1
F o (ǒA). Similarly, let UA : Ã = (C2,+) →

(A,+) be the universal covering of A and fix the point (0, 0) ∈ U−1
A (ǒA). Since

UA is unramified and (Id ◦ UF o)∗π1(F̃ o) = {1π1(A)} = (UA)∗{1} = (UA)∗π1(Ã), the

holomorphic map Id ◦ UF o : F̃ o = C → A admits an affine linear lifting λ : F̃ o =
(C,+) → Ã = (C2,+) with λ(0) = (0, 0). In other words, there is a C-linear map

λ : F̃ o → Ã, closing the commutative diagram

C C2

F o A
❄
UFo

✲λ

❄
UA

✲Id

. (4)

If λ(1) = (a, b) ∈ C2 then (a, b) 6= (0, 0) and the line

L(a, b) := λ(C) = {(at, bt) | t ∈ C} ⊂ C2 = Ã

through the origin (0, 0) ∈ Ã covers the elliptic curve

(F o,+) = (L(a, b)/L(a, b) ∩ π1(A),+) ≃ (L(a, b) + π1(A)/π1(A),+) ≤ (A,+)

through the origin ǒA. From now on, we refer to (a, b) ∈ C2 \ {(0, 0)} as to the slope
vector of F o = {(at, bt) + π1(A) | t ∈ C}/π1(A) and F = F o + ǒF .

The non-zero C-linear map λ : C→ C2 is a C-linear embedding and restricts to
an embedding

λ : (π1(F ) = π1(F
o),+) −→ (L(a, b),+)

of Z-modules. The induced homomorphism Id∗ : π1(F o) → π1(A) of the fundamental
groups coincides with λ and λ(π1(F

o)) = L(a, b)∩π1(A). The commutative diagram
(4) reduces to

C L(a, b)

F o
❄

UFo

✲λ

�
�

�
�✠

ζa,b

for the L(a, b) ∩ π1(A)-Galois covering ζa,b : (L(a, b),+) → (F o,+).
If A = E1 × E2 is a product of elliptic curves and ab 6= 0 then the isomorphic

image λ(π1(F
o)) of π1(F ) = π1(F

o) is

λ(π1(F
o)) = L(a, b) ∩ (π1(E1)× π1(E2)) =

= {(at, bt) ∈ C2 | t ∈ a−1π1(E1) ∩ b−1π1(E2)},
so that

π1(F ) = π1(F
o) = a−1π1(E1) ∩ b−1π1(E2).

7



In the case of b = 0 one has

λ(π1(F
o)) = {(at, 0) ∈ C2 | t ∈ a−1π1(E1)},

whereas
π1(F ) = π1(F

o) = a−1π1(E1).

Note that
L(a, b) = {(u, v) ∈ C2 | bu− av = 0}

and the complete preimage

U−1
A (F o) = L(a, b) + (π1(E1)× π1(E2)) =

= {(u, v) ∈ C2 | bu− av ∈ aπ1(E2) + bπ1(E1)}.
As far as (aπ1(E2)+bπ1(E1),+) ≥ (aπ1(E2),+) ≃ (Z,+) is a Z-submodule of (C,+)
of rank ≥ 2, the quotient F ′ := (C,+)/(aπ1(E2) + bπ1(E1),+) is a smooth elliptic
curve. The map

ψ(a,b) : E1 × E2 −→ F ′

ψ(a,b)(u+ π1(E1), v + π1(E2)) = bu− av + aπ1(E2) + bπ1(E1)

is a homomorphism of abelian varieties with kernel ker(ψ(a,b)) = F o. The fibres of
ψ(a,b) are elliptic curves on E1 × E2, parallel to F . More precisely, for any point
(P,Q) = (p+ π1(E1), q + π1(E2)) ∈ E1 × E2, the fibre of ψ(a,b) through (P,Q) is

ψ−1
(a,b)ψ(a,b)(P,Q) = {(u+π1(E1), v+π1(E2)) | b(u−p)−a(v−q)+aπ1(E2)+bπ1(E1)}.

Note that the elliptic curve F o does not depend on the slope vector (a, b) but on its
class of proportionality {(ac, bc) ∈ C2 | c ∈ C∗}. Altogether, we have proved the
following

Proposition 11. An arbitrary elliptic curve F through the origin on the Cartesian
product E1 × E2 of elliptic curves E1, E2 is of the form

F = {(at+ π1(E1), bt+ π1(E2)) ∈ E1 × E2 | t ∈ C}

for some slope vector (a, b) ∈ C2 \ {(0, 0)}. The fundamental group

π1(F ) =





a−1π1(E1) ∩ b−1π1(E2) for a 6= 0, b 6= 0,

a−1π1(E1) for a 6= 0, b = 0,

b−1π1(E2) for a = 0, b 6= 0.

There is a natural fibration

ψ(a,b) : (E1 × E2,+) −→ F ′ = (C,+)/(aπ1(E2) + bπ1(E1),+),

ψ(a,b)(u+ π1(E1), v + π1(E2)) = bu− av + aπ1(E2) + bπ1(E1)

of E1 × E2 by elliptic curves, parallel to

F = ker(ψ(a,b)) = {(u+π1(E1), v+π1(E2)) ∈ E1×E2 | bu−av ∈ aπ1(E2)+bπ1(E1)}.
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We are going to consider Cartesian squares E×E of elliptic curves E. From now
on, let us denote by

E(a, b) := {(at+ π1(E), bt + π1(E)) | t ∈ C} =

= {(u+ π1(E), v + π1(E)) | bu− av ∈ aπ1(E) + bπ1(E)}
the elliptic curve on E × E through the origin ǒE×E, with slope vector (a, b) ∈
C2 \ {(0, 0)}.

4 Isogeny pull back of an elliptic curve

The isogenies of abelian surfaces lift to C-linear maps of the corresponding universal
covers. In particular, one can identify the isogenies

µ : Em × Em −→ E1 × E1

with their matrices µ ∈ GL(2,C). For simplicity, let us restrict to diagonal

µ =

(
α 0
0 β

)
.

Our aim is to construct unramified coverings µ′ : Y ′ = (B/Γ2)
′ → X ′ = (B/Γ1)

′

of co-abelian torsion free toroidal compactifications, induced by isogenies µ : Y → X

of the corresponding minimal models. If D =
h∑
i=1

Di ⊂ X is the image of the toroidal

compactifying divisor
h∑
i=1

Ti = T = (B/Γ1)
′ \ (B/Γ1) under the blow-down of the

smooth rational (−1)-curves on X ′, then µ−1(D) =
h∑
i=1

µ−1(Di) =
h∑
i=1

li∑
j=1

Dij ⊂ Y is

the image of the toroidal compactifying divisor (B/Γ2)
′\(B/Γ2) under the blow-down

of the smooth rational (−1)-curves. The number of the irreducible components of
µ−1(D) equals the number of the cusps of B/Γ2.

The following lemma provides a general expression for the number n(µ−1(F )) of
the irreducible components of an isogeny pull back µ−1(F ) of an elliptic curve F on
a Cartesian square of an elliptic curve.

Lemma 12. On the Cartesian square E1×E1 of an elliptic curve E1, let us consider
an elliptic curve F = E1(a, b)+(P,Q) ⊂ E1×E1 with slope vector (a, b) ∈ C2\{(0, 0)}
through (P,Q) = (p+π1(E1), q+π1(E1)) ∈ E1×E1 for some p, q ∈ C. Assume that
the elliptic curve E2 and the complex numbers α, β ∈ C∗ are subject to

απ1(E2) ⊆ π1(E1), βπ1(E2) ⊆ π1(E1).

Then the lattice Λ(F, µ) := aβπ1(E2)+ bαπ1(E2) of (C,+) is contained in the lattice
Λ(F ) := aπ1(E1) + bπ1(E1) of (C,+) and

µ =

(
α 0
0 β

)
: E2 × E2 −→ E1 × E1
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is an isogeny of degree

deg(µ) = [π1(E1) : απ1(E2)][π1(E1) : βπ1(E2)],

which pulls back F to a disjoint union

µ−1(F ) =
∑

aλ1+bλ2+Λ(F,µ)

[
E2(aβ, bα) +

(
p+ λ2
α

+ π1(E2),
q − λ1
β

+ π1(E2)

)]
(5)

of [Λ(F ) : Λ(F, µ)] smooth irreducible elliptic curves, parallel to E2(aβ, bα).

Proof. The assumptions απ1(E2) ⊆ π1(E1) and βπ1(E2) ⊆ π1(E1) suffice for the
diagonal µ : E2 ×E2 → E1 ×E1 to be a homomorphism of abelian varieties. Due to
α 6= 0, β 6= 0, the homomorphism µ is surjective and with a finite kernel. In other
words, µ is an isogeny. According to

ker(µ) =

(
1

α
π1(E1)/π1(E2)

)
×
(
1

β
π1(E1)/π1(E2)

)
,

µ is of degree

deg(µ) = | ker(µ)| = [π1(E1) : απ1(E2)][π1(E1) : βπ1(E2)].

In order to describe the pull back µ−1(F ) of F = E1(a, b) + (P,Q) under µ, let

us note that (Po, Qo) :=
(
p
α
+ π1(E2),

q
β
+ π1(E2)

)
∈ µ−1(P,Q). Straightforwardly,

µ−1(F ) = µ−1E1(a, b) + (Po, Qo) and the description of µ−1(F ) reduces to the de-
scription of the subgroup (µ−1E1(a, b),+) ≤ (E2 × E2,+).

Consider the group homomorphism

ψ1 : (E1 × E1,+) −→ (E1(a, b)
′,+) = (C/Λ(F ),+) ,

ψ1(u+ π1(E1), v + π1(E1)) = bu− av + aπ1(E1) + bπ1(E1) = bu− av + Λ(F )

with kernel ker(ψ1) = (E1(a, b),+). The composition

ψ1 ◦ µ : (E2 ×E2,+) −→ (E1(a, b)
′ = C/Λ(F ),+)

ψ1 ◦µ(u+π1(E2), v+π1(E2)) = bαu−aβv+aπ1(E1)+ bπ1(E1) = bαu−aβv+Λ(F )

is a group homomorphism with kernel

ker(ψ1 ◦ µ) = (ψ1 ◦ µ)−1(ǒ) = µ−1ψ−1
1 (ǒ) = µ−1 ker(ψ1) = µ−1E1(a, b).

Note that the group homomorphism

ψ2 : (E2 × E2,+) −→
(
E2(aβ, bα)

′ = C/Λ(F, µ),+
)
,

ψ2(u+π1(E2), v+π1(E2)) = bαu−aβv+aβπ1(E2)+bαπ1(E2) = bαu−aβv+Λ(F, µ)
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has kernel ker(ψ2) = E2(aβ, bα) ⊆ ker(ψ1 ◦ µ), due to Λ(F, µ) ⊆ Λ(F ). Therefore
ψ1 ◦ µ factors through ψ2 and the natural epimorphism

ν : (E2(aβ, bα)
′,+) −→ (E1(a, b)

′,+),

ν(x+ aβπ1(E2) + bαπ1(E2)) = x+ aπ1(E1) + bπ1(E1) for ∀x ∈ C.
In other words, there is a commutative diagram

E2 ×E2 E1 × E1

E2(aβ, bα)
′ E1(a, b)

′

✲µ

❄

ψ2

❄

ψ1

✲ν

of homomorphisms of additive groups. As a result,

µ−1E1(a, b) = (ψ1 ◦ µ)−1(ǒ) = (ν ◦ ψ2)
−1(ǒ) = ψ−1

2 ker(ν)

consists of | ker(ν)| smooth irreducible elliptic components, parallel to ker(ψ2) =
E2(aβ, bα). We claim that

ψ−1
2 (ker(ν)) =

∑

aλ1+bλ2+Λ(F,µ)

[
E2(aβ, bα) +

(
λ2
α

+ π1(E2),−
λ1
β

+ π1(E2)

)]
(6)

with a summation over all aλ1 + bλ2 + Λ(F, µ) ∈ Λ(F )/Λ(F, µ) = ker(ν). The

inclusion E2(aβ, bα) +
(
λ2
α

+ π1(E2),−λ1
β
+ π1(E2)

)
⊆ ψ−1

2 (ker(ν)) is immediate

for the group homomorphism ψ2 with ker(ψ2) = E2(aβ, bα) and for any aλ1 + bλ2+
Λ(F, µ) ∈ ker(ν). Towards the opposite inclusion

ψ−1
2 (ker(ν)) ⊆

∑

aλ1+bλ2+Λ(F,µ)

[
E2(aβ, bα) +

(
λ2
α

+ π1(E2),−
λ1
β

+ π1(E2)

)]
, (7)

let us pick up a point (u+ π1(E2), v + π1(E2)) ∈ ψ−1
2 (ker(ν)). Then

ψ2(u+ π1(E2), v + π1(E2)) = bαu− aβv + Λ(F, µ) = aλ1 + bλ2 + Λ(F, µ) ∈ ker(ν)

for some λ1, λ2 ∈ π1(E1). Straightforwardly,

(u+ π1(E2), v + π1(E2)) +

(
−λ2
α

+ π1(E2),
λ1
β

+ π1(E2)

)
∈ E2(aβ, bα) = ker(ψ2),

whereas

(u+ π1(E2), v + π1(E2)) ∈ E2(aβ, bα) +

(
λ2
α

+ π1(E2),−
λ1
β

+ π1(E2)

)
,

which suffices for (7) and (6). Altogether, we have proved that

µ−1(F ) = ψ−1
2 (ker(ν)) + (Po, Qo) =

=
∑

aλ1+bλ2+Λ(F,µ)

[
E2(aβ, bα) +

(
p+ λ2
α

+ π1(E2),
q − λ1
β

+ π1(E2)

)]
.
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In order to specify Lemma 12, let us recall that the integers ring O−d = Z +
ω−dZ of an imaginary quadratic number field Q(

√
−d) is a free Z-module of rank 2,

generated by 1 and

ω−d =

{√
−d for −d 6≡ 1mod 4,

1+
√
−d

2 for −d ≡ 1mod 4.

An order O of a number field K is a subring, which is a Z-module with O⊗ZQ = K.
The orders of an imaginary quadratic number field Q(

√
−d) are of the form

O−d,m = Z+mO−d = Z+mω−dZ

for some natural number m = [O−d : O−d,m], called the conductor of O−d,m. All the
orders O−d,m are Z-submodules of the maximal order O−d.

Lemma 13. If the fundamental group of an elliptic curve E−d,m = C/O−d,m is
an order O−d,m of Q(

√
−d), then the endomorphism ring R−d,m = End(E−d,m) =

O−d,m coincides with the fundamental group.

Proof. The period ratio mω−d of E−d,m belongs to the imaginary quadratic number
field Q(

√
−d), so that E−d,m has complex multiplication by Q(

√
−d). In other words,

R−d,m = O−d,c is an order of Q(
√
−d) with conductor c ∈ N. Note that mO−d is a

subring of R−d,m, according to (mO−d)O−d,m ⊆ mO−d ⊆ O−d,m. Bearing in mind
Z ⊆ R−d,m, one concludes that O−d,m ⊆ R−d,m ⊆ O−d. Therefore the conductor
c = [O−d : R−d,m] of R−d,m divides the conductor m = [O−d : O−d,m] of O−d,m.

On the other hand, 1 ∈ O−d,m implies that cO−d ⊆ R−d,m ⊆ O−d,m, whereas
R−d,m ⊆ O−d,m ⊆ O−d. As a result, m = [O−d : O−d,m] divides c = [O−d : R−d,m].

The natural numbers m = c coincide, as far as divide each other.

Note that αO−d,m ⊆ O−d for all α ∈ O−d. Therefore arbitrary α, β ∈ O−d \ {0}
provide an isogeny

µ =

(
α 0
0 β

)
: E−d,m × E−d,m −→ E−d × E−d

for E−d := E−d,1. The kernel

ker(µ) =

(
1

α
O−d/O−d,m

)
×
(
1

β
O−d/O−d,m

)

is of order | ker(µ)| = [O−d : αO−d,m][O−d : βO−d,m]. Making use of the inclusions
αO−d,m ⊆ αO−d ⊆ O−d, one computes that

[O−d : αO−d,m] = [O−d : αO−d][αO−d : αO−d,m] = |α|2m.

Therefore µ is of degree deg(µ) = | ker(µ)| = m2|α|2|β|2.
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For an arbitrary algebraic integer γ ∈ O−d = Z + ω−dZ there exist uniquely
determined x(γ), y(γ) ∈ Z with γ = x(γ) + ω−dy(γ). One checks immediately that

x : O−d −→ Z and y : O−d −→ Z

with x(γ) + ω−dy(γ) = γ for ∀γ ∈ O−d are epimorphisms of (O−d,+) on (Z,+).
We are going to specialize Lemma 12 in the case of a unique factorization domain

O−d, i.e., for
d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}.

If so, then for any a1, b1 ∈ O−d \ {0} there exists a greatest common divisor
GCD(a1, b1) ∈ O−d such that

a =
a1

GCD(a1, b1)
, b =

b1
GCD(a1, b1)

∈ O−d \ {0}

are relatively prime and E−d(a1, b1) = E−d(a, b). Form now on, for Q(
√
−d) of class

number 1 and E−d = (C,+)/(O−d,+), we label the elliptic curves E−d(a, b) through
the origin of E−d × E−d by relatively prime a, b ∈ O−d. Then aO−d + bO−d =
GCD(a, b)O−d = O−d implies the existence of ao, bo ∈ O−d with aao + bbo = 1. For
any γ ∈ O−d the equality aao + bbo = 1 is equivalent to a(ao + γb) + b(bo − γa) = 1,
so that ao, bo ∈ O−d with aao + bbo = 1 are not uniquely determined.

Corollary 14. Let O−d be the integers ring of an imaginary quadratic number field
Q(

√
−d) of class number 1, x : (O−d,+) −→ (Z,+), y : (O−d,+) −→ (Z,+) be

the epimorphisms, satisfying x(γ) + ω−dy(γ) = γ for ∀γ ∈ O−d, m be a natural
number, O−d,m = Z +mO−d be the order of Q(

√
−d) with conductor m, E−d,m =

(C,+)/(O−d,m,+) be the elliptic curve with fundamental group O−d,m and α, β ∈
O−d \{0}. For any relatively prime (a, b) ∈ O2

−d \{(0, 0)} consider the elliptic curve
F = E−d(a, b) + (P,Q) with P = p +O−d, Q = q +O−d ∈ E−d for some p, q ∈ C,
the lattice Λ(F, µ) = aβO−d,m+ bαO−d,m and some ao, bo ∈ O−d with aao+ bbo = 1.
Then the isogeny

µ =

(
α 0
0 β

)
: E−d,m × E−d,m −→ E−d × E−d

of degree deg(µ) = m2|α|2|β|2 pulls back F ⊂ E−d × E−d to a disjoint union

µ−1(F ) =
∑

λ+Λ(F,µ)

[
Em(aβ, bα) +

(
p+ boλ

α
+ Λm,

q − aoλ

β
+ Λm

)]
(8)

of [O−d : Λ(F, µ)] mutually parallel smooth irreducible elliptic curves.
Let

δ := GCD(aβ, bα), ξ :=
aβ

δ
, η :=

bα

δ
∈ O−d.

In the case of (x(ξ), x(η)) 6= (0, 0) introduce xo := GCD(x(ξ), x(η)) ∈ N and define
yo := GCD(y(ξ), y(η)) whenever (y(ξ), y(η)) 6= (0, 0). Then

[O−d : Λ(F, µ)] =
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=





|δ|2GCD(xo,m)GCD(yo,m) for (x(ξ), x(η)) 6= (0, 0), (y(ξ), y(η)) 6= (0, 0),

m|δ|2GCD(xo,m) for (x(ξ), x(η)) 6= (0, 0), y(ξ) = y(η) = 0,

m|δ|2GCD(yo,m) for x(ξ) = x(η) = 0, (y(ξ), y(η)) 6= (0, 0).

Proof. For (a, b) ∈ O2
−d \ {(0, 0)} with GCD(a, b) = 1 the lattice

Λ(F ) := aπ1(E1) + bπ1(E1) = aO−d + bO−d = O−d.

Formula (8) is an immediate consequence of (5) with

λ = 1.λ = (aao + bbo)λ = a(aoλ) + b(boλ) for λ ∈ O−d, λ1 = aoλ, λ2 = boλ.

Towards the explicit calculation of the index [O−d : Λ(F, µ)], one makes use of
the inclusion mO−d ⊆ O−d,m and observes that

Λ(F, µ) = aβO−d,m + bαO−d,m ⊇ aβmO−d + bαmO−d = m(aβO−d + bαO−d) =

= mGCD(aβ, bα)O−d = mδO−d.

The sequence of inclusions mδO−d ⊆ Λ(F, µ) ⊆ O−d provides

[O−d : Λ(F, µ)] =
[O−d : mδO−d]

[Λ(F, µ) : mδO−d]
=

m2|δ|2
[Λ(F, µ) : mδO−d]

. (9)

The algebraic integers ξ = aβ
δ

, η = bα
δ

∈ O−d are relatively prime in O−d and the
lattice

δ−1Λ(F, µ) = ξO−d,m + ηO−d,m =

= ξ(Z+mω−dZ) + η(Z+mω−dZ) = (ξZ+ ηZ) +mω−d(ξZ+ ηZ)

contains mO−d = mGCD(ξ, η)O−d = ξ(mO−d) + η(mO−d) by mO−d ⊆ O−d,m.
Therefore the quotient

δ−1Λ(F, µ)/mO−d = [(ξZ+ ηZ) +mω−d(ξZ+ ηZ)]/mO−d ⊇

⊇ [(ξZ+ ηZ) +mO−d]/mO−d.

On the other hand, mω−d(ξZ+ ηZ) ⊆ mO−d implies the opposite inclusion

δ−1Λ(F, µ)/mO−d = [(ξZ+ ηZ) +mω−d(ξZ+ ηZ)]/mO−d ⊆

⊆ [(ξZ+ ηZ) +mO−d]/mO−d,

whereas the coincidence

δ−1Λ(F, µ)/mO−d = [(ξZ+ ηZ) +mO−d]/mO−d ≃ (ξZ+ ηZ)/[(ξZ+ ηZ)∩mO−d].

As a result,

[δ−1Λ(F, µ) : mO−d] = [(ξZ + ηZ) : (ξZ+ ηZ) ∩mO−d]. (10)
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Towards the calculation of the last index, consider the group epimorphism

f : (O−d,+) −→ (Zm × Zm,+),

f(γ) = (x(γ) +mZ, y(γ) +mZ) for ∀γ ∈ O−d.

Its kernel is ker(f) = mZ+mω−dZ = m(Z+ ω−dZ) = mO−d. Let us denote

x1 := x(ξ), y1 := y(ξ), x2 := x(η), y2 := y(η) ∈ Z

and observe that the lattice

ξZ+ ηZ = {(x1 + y1ω−d)z1 + (x2 + y2ω−d)z2 | z1, z2 ∈ Z},

ξZ+ ηZ = {(x1z1 + x2z2) + ω−d(y1z1 + y2z2) | z1, z2 ∈ Z}. (11)

Assume that (x1, x2) 6= (0, 0), (y1, y2) 6= (0, 0) and put xo := GCD(x1, x2) ∈ N,
yo := GCD(y1, y2) ∈ N. Then

x′1 :=
x1
xo
, x′2 :=

x2
xo

∈ Z

are relatively prime, as well as

y′1 :=
y1
yo
, y′2 :=

y2
yo

∈ Z.

That allows to describe the lattice ξZ+ ηZ in the form

ξZ+ ηZ = {xo(x′1z1 + x′2z1) + ω−dyo(y
′
1z1 + y′2z2) | z1, z2 ∈ Z}. (12)

According to x′1Z+x
′
2Z = GCD(x′1, x

′
2)Z = Z, the image of x : (ξZ+ηZ,+) → (Z,+)

is the free Z-module xoZ. Similarly, y′1Z + y′2Z = GCD(y′1, y
′
2))Z = Z reveals that

the image of y : (ξZ + ηZ,+) → (Z,+) is yoZ. Therefore the group homomorphism

f : (ξZ+ ηZ,+) −→ (Zm × Zm,+)

has image

f(ξZ+ ηZ) = [(xoZ+mZ)/mZ]× [(yoZ+mZ)/mZ] =

= [GCD(xo,m)Z/mZ]× [GCD(yo,m)Z/mZ] = Z m
GCD(xo,m)

× Z m
GCD(yo,m)

of cardinality

|f(ξZ+ ηZ)| = m2

GCD(xo,m)GCD(yo,m)
.

By the Isomorphism Theorem

(ξZ+ ηZ)/[(ξZ + ηZ) ∩mO−d] = (ξZ+ ηZ)/[(ξZ + ηZ) ∩ ker(f)] ≃ f(ξZ+ ηZ),

one concludes that

[δ−1Λ(F, µ) : mO−d] = [(ξZ+ ηZ) : (ξZ+ ηZ) ∩mO−d] =
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= |f(ξZ+ ηZ)| = m2

GCD(xo,m)GCD(yo,m)
.

Putting together with (9), one obtains that

[O−d : Λ(F, µ)] = |δ|2GCD(xo,m)GCD(yo,m)

for (x1, x2) 6= (0, 0), (y1, y2) 6= (0, 0).

If (y1, y2) = (0, 0) then (x1, x2) 6= (0, 0), as far as the pair
(
aβ
δ
, bα
δ

)
= (ξ, η) =

(x1 + y1ω−d, x2 + y2ω−d) 6= (0, 0). By (11) one has ξZ + ηZ = x1Z + x2Z =
GCD(x1, x2)Z = xoZ. Note that

(ξZ+ ηZ) ∩mO−d = xoZ ∩ (mZ+mω−dZ) =

= xoZ ∩mZ = LCM(xo,m)Z =
xom

GCD(xo,m)
Z

for the least common multiple LCM(xo,m) of xo ∈ Z \ {0} and m ∈ N. As a result,
(10) reads as

[δ−1Λ(F, µ) : mO−d] =

[
xoZ :

xom

GCD(xo,m)
Z

]
=

m

GCD(xo,m)

and (9) provides

[O−d : Λ(F, µ)] = m|δ|2GCD(xo,m) for (x1, x2) 6= (0, 0), y1 = y2 = 0.

In a similar vein, for (x1, x2) = (0, 0) there follows (y1, y2) 6= (0, 0). According
to (11), ξZ+ ηZ = ω−d(y1Z+ y2Z) = ω−dGCD(y1, y2)Z = ω−dyoZ. Therefore

(ξZ+ηZ)∩mO−d = ω−dyoZ∩(mZ+mω−dZ) = ω−dyoZ∩ω−dmZ = ω−d(yoZ∩mZ) =

= ω−dLCM(yo,m)Z =
yom

GCD(yo,m)
ω−dZ

and (10) provides

[δ−1Λ(F, µ) : mO−d] =

[
ω−dyoZ :

yom

GCD(y0,m)
ω−dZ

]
=

m

GCD(yo,m)
.

By (9), one has

[O−d : Λ(F, µ)] = m|δ|2GCD(yo,m) for x1 = x2 = 0, (y1, y2) 6= (0, 0).

The immediate application of Corollary 14 to Hirzebruch’s proportional elliptic
configuration

DHir
−3 = E−3(1, 0) + E−3(0, 1) + E−3(1, 1) + E−3

(
1, e

πi
3

)
⊂ A−3

from [6] yields the following
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Corollary 15. Let us consider the ring O−3 of Eisenstein integers, the elliptic curve
E−3,m = C/O−d,m, whose fundamental group O−d,m = Z+mO−3 is the order O−d,m
of Q(

√
−3) with conductor m ∈ N, E−3 := E−3,1 and the isogeny

µ =

(
α 0
0 1

)
: E−d,m × E−d,m −→ E−3 × E−3

of the corresponding Cartesian squares. Denote by

n(µ−1(F )) = [O−3 : aO−d,m + bαO−d,m]

the number of the irreducible components of the pull-back µ−1(F ) of an elliptic curve
F = E−3(a, b) + (P,Q) ⊂ E−3 × E−3 by µ and put x : (O−3,+) → (Z,+), y :
(O−3,+) → (Z,+) for the epimorphisms with x(α) + ω−3y(α) = α for all α ∈ O−3,

ω−3 := e
πi
3 . Then µ is of degree deg(µ) = m2|α|2 and

n(µ−1E−3(1, 0)) = m, n(µ−1E−3(0, 1)) = m|α|2,

n(µ−1E−3(1, 1)) = GCD(y(α),m), n
(
µ−1E−3

(
1, e

πi
3

))
= GCD(x(α) + y(α),m).

In particular, the proportional elliptic configuration µ−1DHir
−3 ⊂ E−d,m × E−d,m

has

h(µ−1DHir
−3 ) = m+m|α|2 +GCD(y(α),m) +GCD(x(α) + y(α),m)

smooth elliptic irreducible components.

For m = 1 and E−3,1 = E−3 one has deg(µ) = |α|2 and h(µ−1DHir
−3 ) = |α|2 + 3

cusps of the non-compact torsion free ball quotients B/Γµ, associated with µ−1DHir
−3 .

Note that the irreducible components of DHir
−3 , different from E−3(0, 1) pull back to

irreducible smooth elliptic curves and only the number of the irreducible components
of µ−1E−3(0, 1) increases with |α|2. In order to obtain a proportional elliptic confi-
guration D ⊂ A−3, whose pull backs µ−1D ⊂ A−3 have fixed number of irreducible
components and infinitely increasing number of singular points |α|2 → ∞, one maps

isomorphically DHir
−3 into a proportional elliptic configuration D

(1,4)
−3 ⊂ A−3 without

irreducible components, parallel to E−3(0, 1). More precisely, the linear transforma-
tion

g =

(
1 e

πi
3

0 1

)
∈ GL(2,O−3) < Aut(A−3)

maps DHir
−3 = E−3(1, 0) +E−3(0, 1) +E−3(1, 1) +E−3

(
1, e

πi
3

)
onto the proportional

elliptic configuration

D
(1,4)
−3 = E−3(1, 0) + E−3

(
e

πi
3 , 1

)
+ E−3

(√
−3e−

πi
3 , 1

)
+ E−3(1, 1). (13)

In analogy with Corollary 15 one has

17



Corollary 16. Let us consider the ring O−3 of Eisenstein integers, the elliptic curve
Em = C/O−3,m, whose fundamental group is the order O−3,m = Z + mO−3 of
Q(

√
−3) with conductor m ∈ N, E−3 := E−3,1, the isogeny

µ =

(
α 0
0 1

)
: E−3,m × E−3,m −→ E−3 × E−3,

and the epimorphisms x : (O−3,+) → (Z,+), y : (O−3,+) → (Z,+) of additive

groups with x(α) + ω−3y(α) = α for ∀α ∈ O−3, ω−3 := e
πi
3 . Denote by

n(µ−1(F )) = [O−3 : aO−3,m + bαO−3,m]

the number of the irreducible components of the pull back µ−1(F ) of an elliptic curve
F = E−3(a, b) + (P,Q) ⊂ E−3 × E−3 by µ. Then deg(µ) = m|α|2,

n
(
µ−1E−3

(
e

πi
3 , 1

))
= GCD(x(α),m),

n
(
µ−1E−3

(√
−3e−

πi
3 , 1

))
=

{
1 for α 6∈

√
−3O−3,

3 for α ∈
√
−3O−3,

and the number of the irreducible components of the proportional elliptic configuration

µ−1D
(1,4)
−3 ⊂ E−d,m × E−d,m is

h
(
µD

(1,4)
−3

)
=

{
m+GCD(x(α),m) +GCD(y(α),m) + 1 for α 6∈

√
−3O−3,

m+GCD(x(α),m) +GCD(y(α),m) + 3 for α ∈
√
−3O−3

In particular, if m = 1 then

n(µ−1D
(1,4)
−3 ) =

{
4 for α 6∈

√
−3O−3,

6 for α ∈
√
−3O−3.

5 Isogeny series of co-abelian torsion free ball quotients

with infinitely increasing volumes

The previous considerations provide infinite isogeny series (B/Γn)
′ of torsion free

toroidal compactifications with infinitely increasing volumes.

Corollary 17. For an arbitrary sequence {γn}∞n=1 ⊂ O−3 \ (O∗
−3 ∪ {0}), consider

the sequence {αn =
n∏
j=1

γj}∞n=1 ⊂ O−3 and the isogenies

λn =

(
γn 0
0 −1

)
: E−3 × E−3 −→ E−3 × E−3 for ∀n ∈ N.

(i) Then

(B/ΓHir
−3 )

′ (B/Γ1)
′ (B/Γ2)

′ . . .✛λ′1 ✛λ′2 ✛ λ′3
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is an infinite isogeny sequence of torsion free, Picard modular toroidal compactifica-
tions over Q(

√
−3), birational to E−3 × E−3, with infinitely increasing volume

vol(B/Γn) =
8π2

3
|αn|2 =

8π2

3

n∏

j=1

|γj|2

and infinitely increasing number of cusps

h(B/Γn) = |αn|2 + 3 =
n∏

j=1

|γj |2 + 3.

(ii) If {γn}∞n=1 ⊂ O−3 \ (O−3 ∪
√
−3O−3) then

(B/Γ
(1,4)
−3 )′ (B/Γ

(1,4)
1 )′ (B/Γ

(1,4)
2 )′ . . .✛λ′1 ✛λ′2 ✛ λ′3

is an infinite isogeny series of torsion free, Picard modular toroidal compactifications
over Q(

√
−3), birational to E−3 × E−3, with four cusps and infinitely increasing

volume

vol(B/Γ(1,4)
n ) =

8π2

3
|αn|2 =

8π2

3

n∏

j=1

|γj |2.

Corollary 17 follows from Corollaries 15 and 16 with µn = λn . . . λ2λ1.
In order to construct isogeny series with infinitely increasing volumes and non-

birational terms, we proceed with a characterization of the birational Cartesian
squares of elliptic curves.

Lemma 18. Let E1 and E2 be elliptic curves. Then any birational map

f : E2 × E2 −→ E1 × E1

is biregular.

Proof. Let us denote Aj = Ej × Ej for 1 ≤ j ≤ 2 and put by Df the non-empty
Zariski open subset of A2, on which f is defined and biregular. In other words, Df is
the intersection of the regularity domain of f with the image of the regularity domain
of f−1 under f−1. Assume that Df 6= A2. The abelian surface A2 = ∪P∈E2P × E2

foliates by elliptic curves P×E2, isomorphic to E2. The Zariski closed subset A2\Df

contains at most finitely many P1 ×E2, . . . , Pk ×E2. For any P ∈ E2 \ {P1, . . . , Pk}
the biregular restriction f : (P × E2) ∩ Df → f((P × E2) ∩ Df ) can be viewed

as a birational map f : (P × E2) > f((P × E2) ∩Df ) in the Zariski closures

f((P × E2) ∩ Df ) of f((P ×E2)∩Df ) in A1. The elliptic curves P ×E2 are smooth,
so that

f : P × E2 −→ f((P × E2) ∩Df )

are biregular for ∀P ∈ E2 \ {P1, . . . , Pk}. Thus, ∪P∈E2\{P1,...,Pk}(P × E2) ⊆ Df .
In order to justify the biregularity of f on A2, let us consider the other natural
foliation A2 = ∪Q∈E2E2 × Q of A2. The restrictions f : E2 × Q → f(E2 × Q)
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are biregular for all but at most finitely many Q ∈ E2 \ {Q1, . . . , Ql}. As a result,
∪Q∈E2\{Q1,...,Ql}(E2 ×Q) ⊆ Df and

A2\Df ⊆
(
∪ki=1(Pi × E2)

)
∩
(
∪lj=1(E2 ×Qj)

)
= {(Pi, Qj) | 1 ≤ i ≤ k, 1 ≤ j ≤ l}

is at most a finite set of points. Now,

[
∪ki=1Pi × (E2 \ {Q1, . . . , Ql})

]
∪
[
∪lj=1(E2 \ {P1, . . . , Pk})×Qj

]
⊂ Df ,

contrary to the choice of
[
∪ki=1Pi × E2

]
∪
[
∪lj=1E2 ×Qj

]
⊆ (A2 \ Df ). The contra-

diction justifies that A2 = Df and f : A2 → f(A2) is a biregular map. The Cartesian
square A2 = E2×E2 of the elliptic curve E2 is a projective variety, so that the image
f(A2) of f : A2 → A1 is Zariski closed in A1. On the other hand, the morphism
f : A2 → A1 of abelian varieties is a group homomorphism, after an appropriate
choice of an origin ǒA1 of A1. The only Zariski dense abelian subvariety of (A1,+)
is A1 itself, so that f(A2) = A1 and f : A2 → A1 is biregular.

Lemma 19. Let Ej , 1 ≤ j ≤ 2 be elliptic curves with different endomorphism rinds
End(E1) = R1 6= R2 = End(E2). Then the abelian surfaces A1 = E1 × E1 and
A2 = E2 ×E2 are not birational.

In particular, if O−d,m, O−d,n are orders of an imaginary quadratic number field
Q(

√
−d) with different conductors m,n ∈ N and E−d,m := C/O−d,m, E−d,n =

C/O−d,n, then the abelian surfaces E−d,m × E−d,m and E−d,n × E−d,n are not bira-
tional.

Proof. Assume the opposite and consider a birational map f : A2 → A1. By Lemma
18, f is biregular. After moving the origin ǒA1 of A1 at f(ǒA2), the isomorphism
f : (A2,+) → (A1,+) is a group homomorphism and

f =

(
a b
c d

)
∈ GL(2,C)

is represented by a non-singular matrix. The elliptic curve E2× ǒE2 is a subgroup of
(A2,+). The homomorphism f : (A2,+) → (A1,+) maps it isomorphically onto an
elliptic curve f(E2 × ǒE2) = E1(a, b) ⊂ A1 through the origin ǒA1 with slope vector
(a, b) ∈ C2 \ {(0, 0)}. The induced map f∗ : π1(E2 × ǒE2) → π1(E1(a, b)) of the
fundamental groups is a group isomorphism that allows to identify

π1(E2) = π1(E2 × ǒE2) = π1(E1(a, b)) = a−1π1(E1) ∩ b−1π1(E1).

For an arbitrary r1 ∈ R1 = End(E1), one has

r1π1(E2) = r1(a
−1π1(E1) ∩ b−1π1(E1)) = a−1(r1π1(E1)) ∩ b−1(r1π1(E1)) =

= a−1π1(E1) ∩ b−1π1(E1) = π1(E2),
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so that r1 ∈ R2 = End(E2) and R1 ⊆ R2. Similar considerations for the isomorphism
f−1 : (A1,+) → (A2,+) of abelian surfaces yields R2 ⊆ R1, whereas R1 = R2. The
contradiction justifies that A1 = E1 × E1 and A2 = E2 × E2 are not birational for
End(E1) = R1 6= R2 = End(E2).

Let Q(
√
−d be an imaginary quadratic number field and E−d,k = C/O−d,k be

the elliptic curve, whose fundamental group is the order O−d,k of Q(
√
−d) with

conductor k ∈ N. Lemma 13 has established the coincidence R−d,k = End(E−d,k) =
π1(E−d,k) = O−d,k. of the endomorphism ring and the fundamental group of E−d,k.
Therefore R−d,m = O−d,m 6= O−d,n = R−d,n for different m,n ∈ N and the abelian
surface E−d,m × E−d,m is not birational to the abelian surface E−d,n × E−d,n.

Let O−3,m be the order of the imaginary quadratic number field Q(
√
−3) with

conductor m ∈ N and E−3,m := C/O−3,m be the elliptic curve with fundamental
group O−3,m. An arbitrary sequence {kn}∞n=1 ⊂ N \ {1} gives rise to a strictly

increasing sequence {mn :=
n∏
j=1

kj} ⊂ N and a sequence

I2 : E−d,mn
× E−d,mn

−→ E−d,mn−1 × E−d,mn−1

of isogenies of non-birational abelian surfaces, as far as

O−3,mn = Z+mnO−3 = Z+mn−1knO−3  Z+mn−1O−3 = O−3,mn−1 .

Applying Corollaries 15 and 16 with α = 1 and m = mn, one obtains the following

Corollary 20. For an arbitrary sequence {kn}∞n=1 ⊂ N \ {1} consider the strictly

increasing sequence {mn :=
n∏
j=1

kj}∞n=1 ⊂ N and the isogenies

λn := I2 : E−d,mn
× E−d,mn

−→ E−d,mn−1 × E−d,mn−1 .

(i) Then

(B/ΓHir
−3 )

′ (B/Γ1)
′ (B/Γ2)

′ . . .✛λ′1 ✛λ′2 ✛ λ′3

is an infinite isogeny sequence of co-abelian, torsion free, Picard modular toroidal
compactifications over Q(

√
−3), with mutually non-birational terms, infinitely in-

creasing volume

vol(B/Γn) =
8π2

3
m2
n =

8π2

3

n∏

j=1

k2j

and infinitely increasing number of cusps

h(B/Γn) = 3mn + 1 =

n∏

j=1

kj + 1.
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(ii) The infinite isogeny series

(B/Γ
(1,4)
−3 )′ (B/Γ

(1,4)
1 )′ (B/Γ

(1,4)
2 )′ . . .✛λ′1 ✛λ′2 ✛ λ′3

consists of mutually non-birational, co-abelian, torsion free, Picard modular terms
over Q(

√
−3), with infinitely increasing volume

vol(B/Γ(1,4)
n ) =

8π2

3
m2
n =

8π2

3

n∏

j=1

k2j

and infinitely increasing number of cusps

h(B/Γ(1,4)
n ) = 2mn + 2 =

n∏

j=1

kj + 2.

The constructions from Corollaries 17 and 20 can be carried over with an ar-
bitrary proportional elliptic configuration D ⊂ C2/O2

−d, defined over an imaginary

quadratic number field Q(
√
−d) of class number CL(Q(

√
−d)) = 1. For instance,

they are applicable to Holzapfel’s example

DHolz
−1 = E−1(1, 0) + E−1(0, 1) + [E−1(−1, 1) +Q03]+

E−1(−1− i, 1) + E−1(−1, 1 − i) + [E−1(−i, 1) +Q03] ⊂ A−1

(14)

from [9] with A−1 = E−1 × E−1, E−1 = C/(Z + Zi), Q03 = (Q0, Q3), Q0 = ǒE−1 ,
Q3 =

1+i
2 + (Z+ Zi) and (DHolz

−1 )sing = {Q00, Q03, Q30}.
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