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ON THE VERTEX FOLKMAN NUMBERS Fv(2, . . . , 2; q)*

Nedyalko Nenov

Communicated by L. Storme

Abstract. For a graph G the symbol G
v
→ (a1, . . . , ar) means that in

every r-coloring of the vertices of G for some i ∈ {1, . . . , r} there exists a
monochromatic ai-clique of color i. The vertex Folkman numbers

Fv(a1, . . . , ar; q) = min{|V (G)| : G
v
→ (a1, . . . , ar) and Kq " G}

are considered. In this paper we shall compute the Folkman numbers
Fv(2, . . . , 2

︸ ︷︷ ︸

r

; r − k + 1) when k ≤ 12 and r is sufficiently large. We prove

also new bounds for some vertex and edge Folkman numbers.

1. Introduction. We consider only finite, non-oriented graphs without
loops and multiple edges. The vertex set and the edge set of a graph G will be
denoted by V (G) and E(G), respectively. A graph G is said to be an empty graph
if V (G) = ∅. We call a p-clique of a graph G a set of p pairwise adjacent vertices.
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The largest integer p such that the graph G contains a p-clique is denoted by
cl(G). A set of vertices of a graph is said to be independent if every two of them
are not adjacent. We shall also use the following notations:

G is the complement of G;

α(G) is the vertex independence number of G, i.e., α(G) = cl(G);

χ(G) is the chromatic number of G;

f(G) = χ(G) − cl(G);

Kn is the complete graph on n vertices;

Cn is the simple cycle on n vertices;

M(x, y) = {G : |V (G)| < χ(G) + 2f(G) − x and f(G) ≤ y}.

The graph G is a (p, q)-graph if cl(G) < p and α(G) < q. The Ramsey
number R(p, q) is the smallest natural n such that every graph G with |V (G)| ≥ n
is not a (p, q)-graph. An exposition of the results on the Ramsey numbers is given
in [26]. We shall need Table 1.1 of the known Ramsey numbers R(p, 3) (see [26]).

Table 1.1. Ramsey numbers R(p, 3)

p 3 4 5 6 7 8 9 10 11
R(p, 3) 6 9 14 18 23 28 36 40–43 46–51

Let G1 and G2 be two graphs without common vertices. We denote by
G1 + G2 the graph G for which V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪
E(G2)∪E′ where E′ = {[x, y], x ∈ V (G1), y ∈ V (G2)}. A graph G is separable if
G = G1 + G2, where V (Gi) = ∅, i = 1, 2.

Definition 1.1. Let M 6= ∅ be a set of graphs. We say that G0 ∈ M is
a minimal graph in M if |V (G0)| = min{|V (G)| : G ∈ M}.

Definition 1.2. Let a1, . . . , ar be positive integers. The symbol G
v
→

(a1, . . . , ar) means that in every r-coloring

V (G) = V1 ∪ · · · ∪ Vr, Vi ∩ Vj = ∅, i 6= j

of the vertices of G for some i ∈ {1, . . . , r} there exists a monochromatic ai-clique
Q of color i, that is Q ⊆ Vi.

Define

Hv(a1, . . . , ar; q) = {G
v
→ (a1, . . . , ar) and cl(G) < q},

Fv(a1, . . . , ar; q) = min{|V (G)| : G ∈ Hv(a1, . . . , ar; q)}.
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It is clear that G
v
→ (a1, . . . , ar) implies cl(G) ≥ max{a1, . . . , ar}. Folk-

man proved in [6] that there exists a graph G such that G
v
→ (a1, . . . , ar) and

cl(G) = max{a1, . . . , ar}. Therefore,

(1.1) Fv(a1, . . . , ar; q) exists ⇐⇒ q > max{a1, . . . , ar}.

The numbers Fv(a1, . . . , ar; q) are called vertex Folkman numbers. If
a1, . . . , ar are positive integers, r ≥ 2 and ai = 1 then it is easy to see that

G
v
→ (a1, . . . , ai−1, ai, ai+1, . . . , ar) ⇒ G

v
→ (a1, . . . , ai−1, ai+1, . . . , ar).

Hence, for ai = 1

Fv(a1, . . . , ar; q) = Fv(a1, . . . , ai−1, ai+1, . . . , ar; q).

Thus, it is enough to consider just such numbers Fv(a1, . . . , ar; q) for which ai ≥ 2.
In this paper we consider the Folkman numbers Fv(2, . . . , 2; q). Set

(2, . . . , 2
︸ ︷︷ ︸

r

) = (2r) and Fv(2, . . . , 2
︸ ︷︷ ︸

r

; q) = Fv(2r; q).

By (1.1)

(1.2) Fv(2r; q) exists ⇐⇒ q ≥ 3.

It is clear that

(1.3) G
v
→ (2r) ⇐⇒ χ(G) ≥ r + 1.

Since Kr+1
v
→ (2r) and Kr

v

6→ (2r) we have

(1.4) Fv(2r; q) = r + 1 if q ≥ r + 2.

According to (1.4) it is enough to consider just such numbers Fv(2r; r − k + 1)
for which k ≥ −1. In this paper we shall prove the following results.

Theorem 1.1. Let r and k be integers such that −1 ≤ k ≤ 5 and
r ≥ k + 2. Then

(a) Fv(2r; r − k + 1) ≥ r + 2k + 3;

(b) Fv(2r; r − k + 1) = r + 2k + 3 if k ∈ {0, 2, 3, 4, 5} and r ≥ 2k + 2 or
k ∈ {−1, 1} and r ≥ 2k + 3.
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Theorem 1.2. Let r ≥ 8 be a natural number. Then

(a) Fv(2r; r− 5) ≥ r +14 and Fv(2r; r− 5) = r +14 if and only if r ≥ 13;

(b) Fv(2r; r − 6) ≥ r + 16 if r ≥ 9 and Fv(2r; r − 6) = r + 16 if r ≥ 15;

(c) Fv(2r; r − 7) ≥ r + 17, r ≥ 10 and Fv(2r; r − 7) = r + 17 if and only
if r ≥ 16;

(d) Fv(2r; r − 8) ≥ r + 18, r ≥ 11 and Fv(2r; r − 8) = r + 18 if and only
if r ≥ 17;

(e) Fv(2r; r − 9) ≥ r + 20, r ≥ 12 and Fv(2r; r − 9) = r + 20 if r ≥ 19.

Theorem 1.3. Let r ≥ 13 be a natural number. Then

(a) Fv(2r; r − 10) ≥ r + 21 and Fv(2r; r − 10) = r + 21 if R(10, 3) > 41
and r ≥ 20;

(b) If R(10, 3) ≤ 41 we have Fv(2r; r − 10) ≥ r + 22 and Fv(2r; r − 10) =
r + 22 if r ≥ 21.

Theorem 1.4. Let r and k be natural numbers such that r ≥ k + 2 and
k ≥ 12. Then

(a) Fv(2r; r − k + 1) ≥ r + k + 11;

(b) If k = 12 and r ≥ 22 then Fv(2r; r − 11) = r + 23.

Remark 1.1. By (1.2) the number Fv(2r; r − k + 1) exists if and only
if r ≥ k + 2. Thus, the inequality r ≥ k + 2 in the statements of these Theorems
is necessary.

Remark 1.2. The case k = 0 of Theorem 1.1 was proved by Dirac in
[3]. It was also proved in [3] that the graph Kr−2 +C5, r ≥ 2 is the only minimal
graph in Hv(2r; r + 1). The cases k = 1 and k = 2 of Theorem 1.1 were proved
in [18]. It was also proved in [18] that Kr−5 +C5 + C5, r ≥ 5 is the only minimal
graph in Hv(2r; r) (see also [23]). The case k = 3 was proved in [17]. We gave
new proofs of the cases k = 2 and k = 3 of Theorem 1.1 in [24].
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The method we use here does not allow us to compute the numbers
Fr(2r; r − k + 1) when r < 2k + 2 and 1 ≤ k ≤ 5. We know only the following
numbers of this kind:

Fv(23; 3) = 11, [1] and [14];

Fv(24; 3) = 22, [9];

Fv(2r; 4) = 11, [19] (see also [20]).

We know about number F4(25; 4) only that 12 ≤ Fv(25; 4) ≤ 16 (see [24]).

Remark 1.3. If k ≥ 2 then there is more than one minimal graph in
Hv(2r; r−1). For example, if r ≥ 8 the graph Kr−8+C5+C5+C5 is also minimal
in Hv(2r; r − 1) besides the minimal graph from the proof of Theorem 1.1.

Remark 1.4. Luczak et al. [13] proved the inequality

(1.5) Fv(2r; r − k + 1) ≤ r + 2k + 3 if r ≥ 3k + 2.

They also proved that (1.5) is strict when k is very large (see [13]). It can be
easily seen from Theorem 1.1 and Theorem 1.2 (a) that k = 6 is the smallest
value of k for which the inequality (1.5) is strict.

2. Auxiliary results. The following lemmas are used to prove the
main results.

Lemma 2.1. Let q ≥ 4 be an integer and G be a minimal graph (see
Definition 1.1) in Hv(2r; q − 1). Then

Fv(2r; q − 1) ≥ Fv(2r; q) + α(G) − 1.

P r o o f. Let A ⊆ V (G) be an independent set of vertices of G such that
|A| = α(G). Consider the graph G′ = K1+(G−A). By (1.3), χ(G) ≥ r+1. Since
A is an independent vertex set it follows that χ(G − A) ≥ r and χ(G′) ≥ r + 1.
By (1.3), G′

v
→ (2r). Since cl(G) ≤ q − 2 we have cl(G′) ≤ q − 1. Hence,

G′ ∈ Hv(2r; q) and

Fv(2r; q) ≤ |V (G′)| = |V (G)| − α(G) + 1.

Lemma 2.1 follows from this inequality because |V (G)| = Fv(2r; q − 1). �
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Corollary 2.1. Let q and r be integers such that 4 ≤ q < r + 3. Then

(a) Fv(2r; q − 1) ≥ Fv(2r, q) + 1;

(b) If Fv(2r; q) + 1 ≥ R(q − 1, 3) then the inequality (a) is strict.

P r o o f. Let G be a minimal graph in Hv(2r; q−1). By (1.3), χ(G) ≥ r+1.
Since cl(G) ≤ q − 2 and q < r + 3 we have

cl(G) < r + 1 ≤ χ(G).

Thus, α(G) ≥ 2 and inequality (a) follows from Lemma 2.1.

Let Fv(2r; q) + 1 ≥ R(q − 1, 3). Then we see from (a) that

|V (G)| = Fv(2r; q − 1) ≥ R(q − 1, 3).

Since cl(G) < q−1, this inequality implies α(G) ≥ 3. From Lemma 2.1 we obtain

Fv(2r; q − 1) ≥ Fv(2r; q) + 2.

The Corollary 2.1 is proved. �

A graph G is said to be k-chromatic if χ(G) = k. A graph G is defined
to be vertex-critical chromatic if χ(G − v) < χ(G) for all v ∈ V (G).

Lemma 2.2. Let q ≥ 3 be an integer and let G be a minimal graph in
Hv(2r; q). Then

(a) G is a vertex-critical (r + 1)-chromatic graph;

(b) If q < r + 3 then cl(G) = q − 1.

P r o o f. Proof of (a). By (1.3), χ(G) ≥ r + 1. Assume that (a) is wrong.
Then there exists v ∈ V (G) such that χ(G−v) ≥ r+1. Thus, according to (1.3),
G − v ∈ Hv(2r; q). This contradicts the minimality of G in Hv(2r; q).

Proof of (b). Assume that (b) is wrong. Then, since cl(G) ≤ q − 1 we
have cl(G) ≤ q − 2. Thus, G ∈ Hv(2r; q − 1). Hence Hv(2r; q − 1) 6= ∅ and,
by (1.2), q ≥ 4. So,

|V (G)| = Fv(2r; q) ≥ Fv(2r; q − 1).

Since q < r + 3 this contradicts Corollary 2.1 (a). �
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The following obvious equalities

χ(G1 + G2) = χ(G1) + χ(G2);(2.1)

cl(G1 + G2) = cl(G1) + cl(G2)(2.2)

are used to prove the following Lemma 2.3.

Let f(G) = χ(G)− cl(G). Then it easily follows from (2.1) and (2.2) that

(2.3) f(G1 + G2) = f(G1) + f(G2).

Lemma 2.3. Let m and k be positive integers such that m ≥ k + 3 and
2m − 1 < R(m − k, 3). Let

Fv(2r; r − k + 1) ≥ r + m for any r ≥ m − 1.

Then

Fv(2r; r − k + 1) = r + m if r ≥ m − 1.

Remark 2.1. It follows from r ≥ m−1 and m ≥ k+3 that r−k+1 ≥ 3.
Thus, by (1.2), the number Fv(2r; r − k + 1) exists.

P r o o f. We need to prove that

Fv(2r; r − k + 1) ≤ r + m if r ≥ m − 1.

It follows from 0 < 2m−1 < R(m−k, 3) that there exists a graph P such
that |V (P )| = 2m − 1, cl(P ) ≤ m − k − 1 and α(G) < 3. Define

P (r) = Kr−m+1 + P, r ≥ m − 1.

Since |V (P )| = 2m− 1 and α(P ) < 3 we have χ(P ) ≥ m. From (2.1) we see that
χ(P (r)) ≥ r + 1. The inequality cl(G) ≤ m − k − 1 together with (2.2) implies
that cl(P (r)) ≤ r − k. Hence, by (1.3), P (r) ∈ Hv(2r; r − k + 1) and

Fv(2r; r − k + 1) ≤ |V (P (r))| = r + m if r ≥ m − 1.

Lemma 2.3 is proved. �
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Remark 2.2. It is clear from the proof of Lemma 2.3 that the following
theorem is true:

Theorem 2.1. Let m and k be positive integers such that

2m − 1 < R(m − k, 3) and m ≥ k + 3.

Then Fv(2r; r − k + 1) ≤ r + m if r ≥ m − 1.

3. Some properties of the minimal graphs in M(x, y). Let x
and y be integers. Define

M(x, y) = {G : |V (G)| < χ(G) + 2f(G) − x and f(G) ≤ y}.

In this section we shall prove some properties of the minimal graphs in
M(x, y) (see Definition 1.1). These properties will be required for the proofs of
Theorem 4.1 and Theorem 4.2 in the Section 4. If x < 0 then the empty graph
belongs to M(x, y) and hence it is the only minimal graph in M(x, y). That is
why we shall assume x ≥ 0.

The aim of this section is to prove the following result:

Theorem 3.1. Let M(x, y) 6= ∅, x ≥ 0 and let G0 be a minimal graph in
M(x, y). If G0 is a nonseparable graph then:

(a) |V (G0)| = 4f(G0) − 2x − 1;

(b) 4f(G0) − 2x − 1 < R(f(G0) − x + 1, 3) where R(p, 3) is the Ramsey
number.

An important result of Gallai that we shall need later is:

Theorem 3.2 [7] (see also [8]). Let G be a vertex-critical chromatic graph
and χ(G) ≥ 2. Then, if |V (G)| < 2χ(G)−1, the graph G is separable in the sense
that G = G1 + G2, where V (Gi) 6= ∅, i = 1, 2.

Remark 3.1. In the original statement of Theorem 3.2 the graph
G is edge-critical (and not vertex-critical) chromatic. Since each vertex-critical
chromatic graph G contains an edge-critical chromatic subgraph H such that
χ(H) = χ(G) and V (H) = V (G) the above statement of Theorem 3.2 is equiva-
lent to the original one.

In the proof of Theorem 3.1 we shall use the following two Lemmas.
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Lemma 3.1. Let M(x, y) 6= ∅, x ≥ 0 and G0 be a minimal graph in
M(x, y). Let A 6= ∅ be an independent vertex set of G0 and G′

0 = G0 − A. Then

(a) χ(G′

0) = χ(G0) − 1;

(b) cl(G′

0) = cl(G0);

(c) |V (G0)| = χ(G0) + 2f(G0) − x − 1.

P r o o f. Proof of (a). Since A is an independent vertex set we have
χ(G′

0) = χ(G0)− 1 or χ(G′

0) = χ(G0). Assume that (a) is wrong. Then χ(G′

0) =
χ(G0). Let χ(G′

0) = χ(G0) = m and

V (G′

0) = V1 ∪ · · · ∪ Vm, Vi ∩ Vj = ∅, i 6= j,

where Vi are independent sets of G0. Note that cl(G′

0) ≤ cl(G) ≤ m. Thus,
after adding new edges [u, v], where u and v belong to different sets Vi and Vj to
E(G′

0) we shall obtain the graph G′′

0 such that cl(G′′

0) = cl(G0), χ(G′′

0) = χ(G0)
and f(G′′

0) = f(G0). Since A 6= ∅ we have

|V (G′′

0)| < |V (G0)| < χ(G0) + 2f(G0) − x = χ(G′′

0) + 2f(G′′

0) − x.

So, we obtain that G′′

0 ∈ M(x, y). This contradicts the minimality of G0 in
M(x, y).

Proof of (b). It is clear that cl(G′

0) = cl(G) or cl(G′

0) = cl(G0)−1. Assume
that (b) is wrong. Then cl(G′

0) = cl(G0)− 1. By (a) we have χ(G′

0) = χ(G0)− 1.
Thus, f(G′

0) = f(G0) ≤ y. Since |V (G′

0)| < |V (G0)|, from the minimality of G0

it follows that

|V (G′

0)| ≥ χ(G′

0) + 2f(G′

0) − x = χ(G0) − 1 + 2f(G0) − x.

From this inequality it follows that |V (G0)| ≥ χ(G0) + 2f(G0) − x. This is a
contradiction because G0 ∈ M(x, y).

Proof of (c). Assume the opposite, i.e.,

(3.1) |V (G0)| ≤ χ(G0) + 2f(G0) − x − 2.

Since |V (G0)| ≥ χ(G0) and x ≥ 0 it follows from (3.1) that f(G0) 6= 0. Thus,
there are two non-adjacent vertices u, v ∈ V (G0). Consider the subgraph G′

0 =
G0 − {u, v}. By (a) and (b) we have χ(G′

0) = χ(G0)− 1 and f(G′

0) = f(G0)− 1.
Since |V (G′

0)| = |V (G0)| − 2, it is easy to see from (3.1) that

|V (G′

0)| ≤ χ(G0) − 1 + 2f(G0) − 2 − x − 1 < χ(G′

0) + 2f(G′

0) − x.
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This is a contradiction since |V (G′

0)| < |V (G0)|. �

Lemma 3.2. Let M(x, y) 6= ∅, x ≥ 0 and let G0 be a minimal graph in
M(x, y). Then

(a) G0 is a (cl(G0) + 1, 3)-graph;

(b) |V (G0)| ≤ 2χ(G0) − 1;

(c) |V (G0)| ≥ 4f(G0) − 2x − 1.

P r o o f. Proof of (a). We need to prove that α(G0) < 3. Assume the
opposite and let {u, v,w} be an independent vertex set of G0. Consider the
subgraph G′

0 = G0 − {u, v,w}. By Lemma 3.1, we have χ(G′

0) = χ(G0) − 1 and
f(G′

0) = f(G0) − 1. Since f(G′

0) < y and |V (G′

0)| < |V (G0)|, it follows from the
minimality of G0 that

|V (G′

0)| ≥ χ(G′

0) + 2f(G′

0) − x.

As |V (G0)| = |V (G′

0)| + 3 it follows that |V (G0)| ≥ χ(G0) + 2f(G0) − x. This
contradicts G0 ∈ M(x, y).

Proof of (b). By (a), α(G0) < 3. Thus, we have |V (G0)| ≤ 2χ(G0) and
we need to prove that |V (G0)| 6= 2χ(G0). Assume the opposite, i.e., |V (G0)| =
2χ(G0) and let v ∈ V (G0). Consider the subgraph G′

0 = G0−v. By Lemma 3.1 (a),
χ(G′

0) = χ(G0)− 1. Since α(G′

0) < 3 it follows that |V (G′

0)| ≤ 2χ(G′

0)− 2 which
is a contradiction.

Proof of (c). From (b) and Lemma 3.1 (c) we obtain

χ(G0) ≥ 2f(G0) − x.

By this inequality and Lemma 3.1 (c) we see that

|V (G0)| ≥ 4f(G0) − 2x − 1. �

P r o o f o f T h e o r e m 3.1. Proof of (a). According to Lemma 3.1 (a)
G0 is a vertex-critical chromatic graph. Since G0 is nonseparable, it follows from
Lemma 3.2 (b) and Theorem 3.2 that

(3.2) |V (G0)| = 2χ(G0) − 1.
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By (3.2) and Lemma 3.1 (c) we obtain

(3.3) χ(G0) = 2f(G0) − x, cl(G0) = f(G0) − x and

|V (G0)| = 4f(G0) − 2x − 1.

Proof of (b). According to Lemma 3.2 (a) we have

|V (G0)| < R(cl(G0) + 1, 3).

From this inequality and (3.3) it follows (b).
Theorem 3.1 is proved. �

4. A lower bound for |V (G)| when f(G) ≤ 13. In this section
our goal is to prove the following two theorems.

Theorem 4.1. Let G be a graph such that f(G) ≤ 11. Then

(a) |V (G)| ≥ χ(G) + 2f(G) if f(G) ≤ 6;

(b) |V (G)| ≥ χ(G) + 2f(G) − 1 if f(G) = 7 or f(G) = 8;

(c) |V (G)| ≥ χ(G) + 16 if f(G) = 9;

(d) |V (G)| ≥ χ(G) + 2f(G) − 3 if f(G) = 10 or f(G) = 11.

Theorem 4.2. Let G be a graph such that f(G) ≤ 13. Then

(a) |V (G)| ≥ χ(G) + 2f(G) − 4;

(b) If f(G) = 12 and R(10, 3) ≤ 41 then the inequality (a) is strict.

Remark 4.1. If f(G) ≥ 7 then the inequality (a) of Theorem 4.1 is
not true. For example if G is a minimal graph in Hv(2r; r − 5) we have from
Lemma 2.2 that χ(G) = r + 1, cl(G) = r − 6 and f(G) = 7. By Theorem 1.2 we
see that

|V (G)| = r + 14 < χ(G) + 2f(G) if r ≥ 13.

In the same way we also see that the conditions for f(G) in the statements (b),
(c) and (d) of Theorem 4.1 are necessary.

Remark 4.2. If f(G) ≤ 6 the inequality (a) of Theorem 4.1 is exact.
Indeed, if G is a minimal graph in Hv(2r; r − k + 1) where −1 ≤ k ≤ 5, by
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Lemma 2.2 we have χ(G) = r + 1, cl(G) = r − k and f(G) = k + 1 ≤ 6. When r
is large enough we have according to Theorem 1.1

|V (G)| = r + 2k + 3 = χ(G) + 2f(G).

In the same way (using Theorem 1.2) we see that the inequalities (b), (c) and (d)
are exact.

Remark 4.3. If f(G) = 13 the inequality (a) of Theorem 4.2 is exact
by Theorem 1.4 (b). If f(G) = 12 and R(10, 3) ≥ 42 this inequality is exact
according to Theorem 1.3 (a).

We shall use the following two lemmas in the proof of Theorem 4.1 and
Theorem 4.2.

Lemma 4.1. Let M(0, y) 6= ∅. Then every minimal graph in M(0, y) is
nonseparable.

P r o o f. Assume the opposite and let G0 be a minimal graph in M(0, y)
such that G0 = G1 + G2, where V (Gi) 6= ∅, i = 1, 2. Since |V (Gi)| < |V (G0)| we
have Gi /∈ M(0, y). Since f(Gi) ≤ f(G) ≤ y it follows that

|V (Gi)| ≥ χ(Gi) + 2f(Gi), i = 1, 2.

Summing these two inequalities we obtain, by (2.1) and (2.3), that

|V (G0)| ≥ χ(G0) + 2f(G0)

a contradiction.

Corollary 4.1. M(0, y) = ∅ if y ≤ 6.

P r o o f. Assume the opposite, i.e., M(0, y) 6= ∅ for some y ≤ 6. Let
G0 be minimal in M(0, y). Then f(G0) ≤ 6. According to Lemma 4.1 G0 is
nonseparable. Thus, by Theorem 3.1 (b) (x = 0) we have

4f(G0) − 1 < R(f(G0) + 1, 3)

for f(G0) ≤ 6 which is a contradiction (see Table 1.1). �

Corollary 4.2. Let G be a graph such that

|V (G)| < χ(G) + 2f(G).

Then |V (G)| ≥ 27.
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P r o o f. Since G ∈ M(0, f(G)) we have M(0, f(G)) 6= ∅. Let G0 be a
minimal graph in M(0, f(G)). By Corollary 4.1, f(G0) ≥ 7. Thus, it follows
from Lemma 3.2 (c) that |V (G)| ≥ |V (G0)| ≥ 27. �

Lemma 4.2. Let M(x, y) 6= ∅ where x ≥ 0 and y ≤ 13. Then every
minimal graph in M(x, y) is nonseparable.

P r o o f. Assume the opposite and let G0 be a minimal graph in M(x, y)
such that G0 = G1 + G2, V (Gi) 6= ∅, i = 1, 2. Let f(G1) ≤ f(G2). Then
f(G1) ≤ 6 because f(G1) + f(G2) = f(G0) ≤ 13. By Corollary 4.1 we obtain
that

(4.1) |V (G1)| ≥ χ(G1) + 2f(G1).

Since G2 /∈ M(x, y) and f(G2) ≤ y we have that

(4.2) |V (G2)| ≥ χ(G2) + 2f(G2) − x.

Summing the inequalities (4.1) and (4.2) we obtain by (2.1) and (2.3) that

|V (G0)| ≥ χ(G0) + 2f(G0) − x,

which is a contradiction. �

P r o o f o f Th e o r e m 4.1. Statement (a) follows immediately from
Corollary 4.1.

Proof of (b). Assume the opposite. Then M(1, 8) 6= ∅. Let G0 be a
minimal graph in M(1, 8). It is easy to see that

G0 ∈ M(1, 8) ⇒ G0 ∈ M(0, 8).

Thus, by Corollary 4.1, we have f(G0) ≥ 7, i.e., f(G0) = 7 or f(G0) = 8.
According to Lemma 4.2 G0 is nonseparable. Thus, from Theorem 3.1 (x = 1),
it follows that

4f(G0) − 3 < R(f(G0), 3),

where f(G0) = 7 or f(G0) = 8, which is a contradiction.
The proofs of statements (c) and (d) are completely similar to that of

statement (b).
Theorem 4.1 is proved. �

P r o o f o f T h e o r e m 4.2. Proof of (a). Assume the opposite. Then
M(4, 13) 6= ∅. Let G0 be a minimal graph in M(4, 13). It is clear that

G0 ∈ M(4, 13) ⇒ G0 ∈ M(3, 13).
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Thus, it follows from Theorem 4.1 that f(G0) ≥ 12. Hence f(G0) = 12 or
f(G0) = 13. By Lemma 4.2, G0 is nonseparable. Thus, Theorem 3.1 (b) (x = 4)
implies

4f(G0) − 9 < R(f(G0) − 3, 3),

where f(G0) = 12 or f(G0) = 13 which is a contradiction.

Proof of (b). Assume the opposite. Then M(3, 12) 6= ∅. Let G0 be a
minimal graph in M(3, 12). From Theorem 4.1 it follows that f(G0) = 12. Since
G0, by Lemma 4.2, is nonseparable it follows from Theorem 3.1 (b) that

4f(G0) − 7 < R(f(G0) − 2, 3),

where f(G0) = 12 which is a contradiction, by our assumption R(10, 3) ≤ 41. �

5. Proof of Theorem 1.1 and Theorem 1.2.
P r o o f o f T h e o r e m 1.1. Proof of (a). Let G be a minimal graph in

Hv(2r; r − k + 1). By Lemma 2.2 χ(G) = r + 1, cl(G) = r − k and f(G) = k + 1.
Since k ≤ 5 we have f(G) ≤ 6. Thus, from Theorem 4.1 (a) it follows that

Fv(2r; r − k + 1) = |V (G)| ≥ r + 2k + 3.

Proof of (b). We shall consider the following three cases.
Case 1. k = −1. In this case (b) follows from (1.4).
Case 2. k ∈ {0, 2, 3, 4, 5}. By Table 1.1 in this case the following in-

equality
2(2k + 3) − 1 < R(k + 3, 3).

holds. Thus, by Lemma 2.3 we obtain Fv(2r; r− k +1) = r +2k +3 if r ≥ 2k +2.
Case 3. k = 1. We need to prove that Fv(2r; r) ≤ r + 5 if r ≥ 5. Define

P (r) = Kr−5 + C5 + C5, r ≥ 5.

By (2.1) and (2.2) we have χ(P (r)) = r+1 and cl(P (r)) = r−1. Thus, from (1.3)
it follows that P (r) ∈ Hv(2r; r). Hence

Fv(2r; r) ≤ |V (P (r))| = r + 5, r ≥ 5

and Theorem 1.1 is proved. �

P r o o f o f T h e o r e m 1.2. Proof of (a). Let G be a minimal graph in
Hv(2r; r − 5). Then, by Lemma 2.2, χ(G) = r + 1, cl(G) = r − 6 and f(G) = 7.
Thus, from Theorem 4.1 (b) it follows

Fv(2r; r − 5) = |V (G)| ≥ r + 14.
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Applying Lemma 2.3 (k = 6, m = 14) we obtain

Fv(2r; r − 5) = r + 14 if r ≥ 13.

Let 8 ≤ r ≤ 12. From Table 1.1 we see that R(r − 5, 3) ≤ r + 14. By
Theorem 1.1 (k = 5) we have Fv(2r; r − 4) ≥ r + 13 and thus Fv(2r; r − 4) + 1 ≥
R(r − 5, 3). According to Corollary 2.1 (b) (q = r − 4), Fv(2r; r − 5) ≥ r + 15.

Proof of (b). Let G be a minimal graph in Hv(2r; r − 6). By Lemma 2.2,
χ(G) = r + 1 and f(G) = 8. From Theorem 4.1 (b) it follows that

Fv(2r; r − 6) = |V (G)| ≥ r + 16.

Thus, Lemma 2.3 (k = 7, m = 16) implies Fv(2r; r − 6) = r + 16 if r ≥ 15.

Proof of (c). Let G be a minimal graph in Hv(2r; r − 7). By Lemma 2.2,
χ(G) = r+1 and f(G) = 9. Thus, from Theorem 4.1 (c) it follows that Fv(2r; r−
7) ≥ r + 17, r ≥ 10. From this inequality and Lemma 2.3 (k = 8, m = 17) we see
that Fv(2r; r − 7) = r + 17 if r ≥ 16.

Let 10 ≤ r ≤ 15. By Table 1.1 we have that R(r − 7, 3) < r + 17. Since,
by (b), Fv(2r; r − 6) + 1 ≥ r + 17 we have Fv(2r; r − 6) + 1 > R(r − 7, 3). From
Corollary 2.1 (b), the inequality Fv(2r; r − 7) ≥ r + 18 holds.

Proof of (d). If G be a minimal graph in Hv(2r; r−8) then, by Lemma 2.2,
χ(G) = r + 1 and f(G) = 10. From Theorem 4.1 (d) it follows that

|V (G)| = Fv(2r; r − 8) ≥ r + 18, r ≥ 11.

Applying Lemma 2.3 (k = 9, m = 18) we obtain Fv(2r; r − 8) = r + 18 if r ≥ 17.

Let 11 ≤ r ≤ 16. In this case we have R(r − 8, 3) ≤ r + 18. By (c),
Fv(2r; r−7) ≥ r+17. Thus, Fv(2r; r−7)+1 ≥ R(r−8, 3) and, by Corollary 2.1 (b),
Fv(2r; r − 8) ≥ r + 19.

Proof of (e). Let G be a minimal graph in Hv(2r; r − 9). According to
Lemma 2.2 we have χ(G) = r + 1 and f(G) = 11. By Theorem 4.1 (d) we obtain

|V (G)| = Fv(2r; r − 9) ≥ r + 20.

This inequality and Lemma 2.3 (k = 10, m = 20) imply that Fv(2r; r−9) = r+20
if r ≥ 19.

Theorem 1.2 is proved. �
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6. Proof of Theorem 1.3 and Theorem 1.4.
P r o o f o f T h e o r e m 1.3. Let G be a minimal graph in Hv(2r; r− 10).

According to Lemma 2.2 we have χ(G) = r + 1 and f(G) = 12. Thus, by
Theorem 4.2 (a) it follows that

|V (G)| = Fv(2r; r − 10) ≥ r + 21, r ≥ 13.

Let R(10, 3) > 41. Then, by Lemma 2.3 (k = 11, m = 21) it follows that

Fv(2r; r − 10) = r + 21 if r ≥ 20.

Let R(10, 3) ≤ 41. From Theorem 4.2 (b) we obtain |V (G)| = Fv(2r; r −
10) ≥ r + 22. Applying Lemma 2.3 (k = 11, m = 22) we deduce that Fv(2r; r −
10) = r + 22 if r ≥ 21 because 43 < R(11, 3) (see [26]). �

P r o o f o f T h e o r em 1.4. Proof of (a). The proof is by induction on
k with induction base k = 12. Let G be a minimal graph in Hv(2r; r−11). Then,
by Theorem 4.2 (a) we obtain

(6.1) |V (G)| = Fv(2r; r − 11) ≥ r + 23.

We are done with the base k = 12. Let k ≥ 13 and

Fv(2r; r − k + 2) ≥ r + k + 10.

Then, by Corollary 2.1 (a) it follows that

Fv(2r; r − k + 1) ≥ r + k + 11.

Proof of (b). From (6.1) and Lemma 2.3 (k = 12, m = 23) we deduce
that Fv(2r; r − 11) = r + 23 if r ≥ 22 because R(11, 3) > 45 (see [26]).

Theorem 1.4 is proved. �

7. Lower bounds for arbitrary vertex Folkman numbers. Let
a1, . . . , ar be positive integers. Define

(7.1) m(a1, . . . , ar) = m =

r∑

i=1

(ai − 1) + 1.

It is easy to see that Km
v
→ (a1, . . . , ar) and Km−1

v9 (a1, . . . , ar). Therefore

Fv(a1, . . . , ar; q) = m if q > m.
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By (1.1). the Folkman number Fv(a1, . . . , ar;m) exists only when
m ≥ max{a1, . . . , ar} + 1. It was proved in [13] that

Fv(a1, . . . , ar;m) = m + max{a1, . . . , ar}.

The exact values of all numbers Fv(a1, . . . , ar;m−1) for which max{a1, . . . , ar} ≤
4 are known. A detailed exposition of these results was given in [22]. We must
add the equality Fv(2, 2, 3; 4) = 14 obtained in [2]. We do not know any exact
values of Fv(a1, . . . , ar;m − 1) in the case when max{a1, . . . , ar} ≥ 5.

In this section we shall use the following result [21]

(7.2) G
v
→ (a1, . . . , ar) ⇒ χ(G) ≥ m.

Let G be a minimal graph in Hv(a1, . . . , ar; q). Then, by (7.2) and (1.3)
it follows that G ∈ Hv(2m−1; q). Thus we have |V (G)| ≥ Fv(2m−1; q). So, we
obtain

(7.3) Fv(a1, . . . , ar; q) ≥ Fv(2m−1; q),

where m is defined by the equality (7.1). From (7.3), Theorem 1.1, Theorem 1.2,
Theorem 1.3 and Theorem 1.4 we easily get the following theorem:

Theorem 7.1. Let a1, . . . , ar be integers, ai ≥ 2, i = 1, . . . , r and m =
∑r

i=1(ai − 1) + 1. Let k be an integer such that

(7.4) m − k > max{a1, . . . , ar}.

Then the following inequalities hold:

Fv(a1, . . . , ar;m − k) ≥ m + 2k + 2 if − 1 ≤ k ≤ 5;

Fv(a1, . . . , ar;m − 6) ≥ m + 13;

Fv(a1, . . . , ar;m − 7) ≥ m + 15;

Fv(a1, . . . , ar;m − 8) ≥ m + 16;

Fv(a1, . . . , ar;m − 9) ≥ m + 17;

Fv(a1, . . . , ar;m − 10) ≥ m + 19;

Fv(a1, . . . , ar;m − 11) ≥ m + 20;

Fv(a1, . . . , ar;m − 11) ≥ m + 21 if R(10, 3) ≤ 41;

Fv(a1, . . . , ar;m − k) ≥ m + k + 10 if k ≥ 12.
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Remark 7.1. According to (1.1) the inequality (7.4) in the statement of
Theorem 7.1 is necessary.

P r o o f. Since all inequalities are proved in the same way, we shall prove
the last one only. By Theorem 1.4 we have

(7.5) Fv(2r; r − k + 1) ≥ r + k + 11, r ≥ k + 2.

As max{a1, . . . , ar} ≥ 2, it follows from (7.4) that m − 1 ≥ k + 2. Thus, the
inequality (7.5) is true for r = m − 1, i.e.,

(7.6) Fv(2m−1;m − k) ≥ m + k + 10.

We obtain from (7.6) and (7.3) that

Fv(a1, . . . , ar;m − k) ≥ m + k + 10. �

Remark 7.2. Dudek and Rödl [4] proved that

Fv(a1, . . . , ar; q) ≤ cp3 log3 p,

where p = max{a1, . . . , ar} and c is a constant depending only on r.

8. Lower bounds for edge Folkman numbers. Let a1 . . . , ar be
integers, ai ≥ 2. The symbol G

e
→ (a1, . . . , ar) denotes that in every r-coloring

of the edge set E(G) there exists a monochromatic ai-clique of color i for some
i ∈ {1, . . . , r}. Define

He(a1, . . . , ar; q) = {G : G
e
→ (a1, . . . , ar) and cl(G) < q},

Fe(a1, . . . , ar; q) = min{|V (G)| : G ∈ He(a1, . . . , ar; q)}.

It is clear that from G
e
→ (a1, . . . , ar) it follows cl(G) ≥ max{a1, . . . , ar}.

There exists a graph G
e
→ (a1, . . . , ar) and cl(G) = max{a1, . . . , ar}. In the case

r = 2 this was proved in [6] and the general case in [25]. Thus, we have

(8.1) Fe(a1, . . . , ar; q) exists ⇐⇒ q > max{a1, . . . , ar}.

The numbers Fe(a1, . . . , ar; q) are called edge Folkman numbers.
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From definition of Ramsey number R(a1, . . . , ar) it follows that

Fe(a1, . . . , ar; q) = R(a1, . . . , ar) if q > R(a1, . . . , ar).

Thus, we consider only numbers Fe(a1, . . . , ar;R(a1, . . . , ar)− k), where k ≥ −1.
An exposition of the known edge Folkman numbers is given in [10]. We must add
the new upper bounds for the number Fe(3, 3; 4) obtained in [5] and [12].

In this section we shall use the following result obtained by S. Lin [11]

(8.2) G
e
→ (a1, . . . , ar) ⇒ χ(G) ≥ R(a1, . . . , ar).

From (8.2) and (1.3) we see that

G ∈ He(a1, . . . , ar; q) ⇒ G ∈ Hv(2R−1; q),

where R = R(a1, . . . , ar). Thus, we have

(8.3) Fe(a1, . . . , ar; q) ≥ Fv(2R−1; q).

From (8.3), Theorem 1.1, Theorem 1.2, Theorem 1.3 and Theorem 1.4 it
easily follows the following statement.

Theorem 8.1. Let a1, . . . , ar be integers, ai ≥ 2, i = 1, . . . , r. Let

R − k > max{a1, . . . , ar},

where k ≥ −1 is integer and R = R(a1, . . . , ar). Then

Fe(a1, . . . , ar;R − k) ≥ R + 2k + 2 if − 1 ≤ k ≤ 5;

Fe(a1, . . . , ar;R − 6) ≥ R + 13;

Fe(a1, . . . , ar;R − 7) ≥ R + 15;

Fe(a1, . . . , ar;R − 8) ≥ R + 16;

Fe(a1, . . . , ar;R − 9) ≥ R + 17;

Fe(a1, . . . , ar;R − 10) ≥ R + 19;

Fe(a1, . . . , ar;R − 11) ≥ R + 20;

Fe(a1, . . . , ar;R − 11) ≥ R + 21 if R(10, 3) ≤ 41;

Fe(a1, . . . , ar;R − k) ≥ R + k + 10 if k ≥ 12.
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Remark 8.1. According to (8.1) the inequality

R − k > max{a1, . . . , ar}

in the statement of Theorem 8.1 is necessary.

Remark 8.2. In the particular cases k = 0 and k = 1 Theorem 8.1
was proved by S. Lin [11]. Lin [11] also proved that when k = 0 the respective
inequality in Theorem 8.1 is exact and the conjecture was raised that if k = 1
the first inequality in Theorem 8.1 is strict. This Lin’s hypothesis was disproved
in [15], where the equality Fe(3, 3, 3; 16) = 21 was established. The particular
cases k = 2 and k = 3 of Theorem 8.1 were proved in [16] and [17], respectively.
In [16] and [17] it was also proved that if k = 2 and k = 3 then respective
inequalities of Theorem 8.1 are exact. The other inequalities are new. We do not
know whether these inequalities are exact.
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