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For a graph G the symbol G
v
−→ (a1, . . . , ar) means that in every r-coloring of the

vertices of G, for some i ∈ {1, 2, . . . , r} there exists a monochromatic ai-clique of color
i. The vertex Folkman numbers

Fv(a1, . . . , ar ; q) = min{∣V (G)∣ : G
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1. INTRODUCTION

We consider only finite, non-oriented graphs without loops and multiple edges.
We call a p-clique of the graph G a set of p vertices, each two of which are adjacent.
The largest positive integer p such that the graph G contains a p-clique is denoted
by cl(G). In this paper we shall also use the following notation:

∙ V (G) is the vertex set of the graph G;

∙ E(G) is the edge set of the graph G;

Ann. Sofia Univ., Fac. Math and Inf., 101, 2013, 5–17. 5



∙ G is the complement of G;

∙ G[V ], V ⊆ V (G) is the subgraph of G induced by V ;

∙ G− V , V ⊆ V (G) is the subgraph of G induced by V (G) ∖ V ;

∙ �(G) is the vertex independence number of G;

∙ �(G) is the chromatic number of G;

∙ f(G) = �(G) − cl(G);

∙ Kn is the complete graph on n vertices;

∙ Cn is the simple cycle on n vertices.

Let G1 and G2 be two graphs without common vertices. We denote by G1+G2

the graph G for which V (G) = V (G1) ∪ V (G2) and E(G) = E(G1) ∪ E(G2) ∪ E′,
where E′ = {[x, y] : x ∈ V (G1), y ∈ V (G2)}.

The Ramsey number R(p, q) is the smallest natural n such that for every n-
vertex graph G either cl(G) ≥ p or �(G) ≥ q. An exposition of the results on the
Ramsey numbers is given in [25]. In Table 1.1 we list the known Ramsey numbers
R(p, 3) (see [25]).

p 3 4 5 6 7 8 9 10
R(p, 3) 6 9 14 18 23 28 36 40–43

Table 1.1: The known Ramsey numbers

Definition. Let a1, . . . , ar be positive integers. We say that the r-coloring

V (G) = V1 ∪ ⋅ ⋅ ⋅ ∪ Vr , Vi ∩ Vj = ∅, i ∕= j

of the vertices of the graph G is (a1, . . . , ar)-free, if Vi does not contain an ai-
clique for each i ∈ {1, . . . , r}. The symbol G

v
−→ (a1, . . . , ar) means that there is no

(a1, . . . , ar)-free coloring of the vertices of G.

Let a1, . . . , ar and q be natural numbers. Define

Hv(a1, . . . , ar; q) = {G : G
v
−→ (a1, . . . , ar) and cl(G) < q},

Fv(a1, . . . , ar; q) = min{∣V (G)∣ : G ∈ Hv(a1, . . . , ar; q)}.

The graph G ∈ Hv(a1, . . . , ar; q) is said to be an extremal graph in Hv(a1, . . . , ar; q),
if ∣V (G)∣ = Fv(a1, . . . , ar; q).

It is clear that G
v
−→ (a1, . . . , ar) implies cl(G) ≥ max{a1, . . . , ar}. Folk-

man [3] proved that there exists a graph G such that G
v
−→ (a1, . . . , ar) and

cl(G) = max{a1, . . . , ar}. Therefore

Fv(a1, . . . , ar; q) exists ⇐⇒ q > max{a1, . . . , ar}. (1.1)
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The numbers Fv(a1, . . . , ar; q) are called vertex Folkman numbers.

If a1, . . . , ar are positive integers, r ≥ 2 and ai = 1 then it is easily seen that

G
v
−→ (a1, . . . , ai, . . . , ar) ⇐⇒ G

v
−→ (a1, . . . , ai−1, ai+1, ar).

Thus it suffices to consider only such numbers Fv(a1, . . . , ar; q) for which ai ≥ 2,
i = 1, . . . , r. In this paper we consider the vertex Folkman numbers Fv(2, . . . , 2; q).
Set

(2, . . . , 2
︸ ︷︷ ︸

r

) = (2r) and Fv(2, . . . , 2
︸ ︷︷ ︸

r

; q) = Fv(2r; q).

By (1.1),
Fv(2r; q) exists ⇐⇒ q ≥ 3. (1.2)

It is clear that
G

v
−→ (2r) ⇐⇒ �(G) ≥ r + 1. (1.3)

Since Kr+1

v
−→ (2r) and Kr ∕

v
−→ (2r), we have

Fv(2r; q) = r + 1 if q ≥ r + 2.

In [2] Dirac proved the following result.

Theorem 1.1. ([2]) Let G be a graph such that �(G) ≥ r + 1 and cl(G) ≤ r.
Then

(a) ∣V (G)∣ ≥ r + 3;

(b) If ∣V (G)∣ = r + 3, then G = Kr−3 + C5.

According to (1.3), Theorem 1.1 admits the following equivalent form:

Theorem 1.2. Let r ≥ 2 be a positive integer. Then

(a) Fv(2r; r + 1) = r + 3;

(b) Kr−2 + C5 is the only extremal graph in Hv(2r; r + 1).

In [14] L̷uczak, Ruciński and Urbański defined for arbitrary positive integers
a1, . . . , ar the numbers

m =

r∑

i=1

(ai − 1) + 1 and p = max{a1, . . . , ar}. (1.4)

They proved the following extension of Theorem 1.2.

Theorem 1.3. ([14]) Let a1, . . . , ar be positive integers and m and p be defined
by (1.4). Let m ≥ p + 1. Then
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(a) Fv(a1, . . . , ar;m) = m + p;

(b) Km−p−1 + C2p+1 is the only extremal graph in Hv(a1, . . . , ar;m).

For another extension of Theorem 1.1 see [21].

From (1.1) it follows that the numbers Fv(a1, . . . , ar;m− 1) exist if and only
if m ≥ p + 2. The exact values of all numbers Fv(a1, . . . , ar;m − 1) for which
p = max{a1, . . . , ar} ≤ 4 are known. A detailed exposition of these results was given
in [13] and [23]. We do not know any exact values of Fv(a1, . . . , ar;m−1) in the case
when max{a1, . . . , ar} ≥ 5. Here we shall note only the values Fv(a1, . . . , ar;m−1)
when a1 = a2 = ⋅ ⋅ ⋅ = ar = 2, i.e. of the numbers Fv(2r; r). From (1.2) these
numbers exist if and only if r ≥ 3. If r = 3 and r = 4 we have that

Fv(23; 3) = 11; (1.5)

Fv(24; 4) = 11. (1.6)

The inequality Fv(23; 3) ≤ 11 was proved in [15] and the opposite inequality
Fv(23; 3) ≥ 11 was proved in [1]. The equality (1.6) was proved in [18] (see also
[19]). If r ≥ 5 we have the following result.

Theorem 1.4. ([17], see also 24]) Let r ≥ 5. Then:

(a) Fv(2r; r) = r + 5;

(b) Kr−5 + C5 + C5 is the only extremal graph in Hv(2r; r).

Theorem 1.4(a) was proved also in [8] and [14].

According to (1.2), the number Fv(2r; r− 1) exists if and only if r ≥ 4. In [17]
we proved that

Fv(2r; r − 1) = r + 7 if r ≥ 8. (1.7)

In this paper we improve (1.7) by proving the following result:

Theorem 1.5. Let r ≥ 4 be an integer. Then:

(a) Fv(2r; r − 1) ≥ r + 7;

(b) Fv(2r; r − 1) = r + 7 , if r ≥ 6;

(c) Fv(25; 4) ≤ 16.

In [9] Jensen and Royle showed that

Fv(24; 3) = 22. (1.8)
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We see from Theorem 1.5 and (1.8) that Fv(25; 4) is the only unknown number
of the kind F (2r; r − 1)1.

From (1.2) it follows that the Folkman number F (2r; r − 2) exists if and only
if r ≥ 5. In [16] we proved that Fv(2r; r − 2) = r + 9 if r ≥ 11. In this paper we
improve this result as follows:

Theorem 1.6. Let r ≥ 5 be an integer. Then:

(a) Fv(2r; r − 2) ≥ r + 9;

(b) Fv(2r; r − 2) = r + 9 , if r ≥ 8.

The numbers Fv(2r; r − 2), 5 ≤ r ≤ 7, are unknown.

2. AUXILIARY RESULTS

Let G be an arbitrary graph. Define

f(G) = �(G) − cl(G).

Lemma 2.1. Let G be a graph such that f(G) ≤ 2. Then

∣V (G)∣ ≥ �(G) + 2f(G).

Proof. Since �(G) ≥ cl(G), we have f(G) ≥ 0. For f(G) = 0 the inequality is
trivial. Let f(G) = 1 and �(G) = r + 1. Then cl(G) = r. Note that r ≥ 2 because
of �(G) ∕= cl(G). By (1.3) we have G ∈ Hv(2r; r + 1). Thus, from Theorem 1.2(a)
it follows that ∣V (G)∣ ≥ r + 3 = 2f(G) + �(G). Let f(G) = 2 and �(G) = r + 1.
Then cl(G) = r − 1. Since �(G) ∕= cl(G), cl(G) = r − 1 ≥ 2, i.e. r ≥ 3. From
Theorem 1.4(a), (1.5) and (1.6) we obtain that ∣V (G)∣ ≥ r + 5 = �(G) + 2f(G).
This completes the proof of Lemma 2.1.

Let G = G1 + G2. Obviously,

�(G) = �(G1) + �(G2); (2.1)

cl(G) = cl(G1) + cl(G2). (2.2)

Hence,
f(G) = f(G1) + f(G2). (2.3)

1Meanwhile, it has been proved that Fv(25; 4) = 16, see J. Lathrop, S. Radziszowski, Com-
puting the Folkman Number Fv(2, 2, 2, 2, 2; 4), Journal of Combinatorial Mathematics and Com-
binatorial Computing, 78 (2011), 213–222.
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A graph G is said to be vertex-critical chromatic if �(G − v) < �(G) for all
v ∈ V (G). We shall use the following result in the proof of Theorem 1.6.

Theorem 2.1. ([4], see also [5]) Let G be a vertex-critical chromatic graph
and �(G) ≥ 2. If ∣V (G)∣ < 2�(G) − 1, then G = G1 + G2, where V (Gi) ∕= ∅,
i = 1, 2.

Remark. In the original statement of Theorem 2.1 the graph G is supposed to
be edge-critical chromatic (and not vertex-critical chromatic). Since each vertex-
critical chromatic graph G contains an edge-critical chromatic subgraph H such
that �(G) = �(H) and V (G) = V (H), the above statement is equivalent to the
original one. It is also more convenient for the proof of Theorem 1.6.

Let G be a graph and A ⊆ V (G) be an independent set of vertices of the graph
G. It is easy to see that

G
v
−→ (2r), r ≥ 2 ⇒ G−A

v
−→ (2r−1). (2.4)

Lemma 2.2. Let G ∈ Hv(2r; q), q ≥ 3 and ∣V (G)∣ = Fv(2r; q). Then

(a) G is a vertex-critical (r + 1)-chromatic graph;

(b) If q < r + 3, then cl(G) = q − 1.

Proof. By (1.3), �(G) ≥ r + 1. Assume that (a) is false. Then there would
exist v ∈ V (G) such that �(G− v) ≥ r + 1. According to (1.3), G− v ∈ Hv(2r; q).
This contradicts the equality ∣V (G)∣ = Fv(2r; q).

Assume that (b) is false, i.e. cl(G) ≤ q− 2. Then from q < r+ 3 it follows that
cl(G) < r + 1. Since �(G) ≥ r + 1 there are a, b ∈ V (G) such that [a, b] /∈ E(G).
Consider the subgraph G1 = G − {a, b}. We have r ≥ 2, because �(G) ∕= cl(G).
Thus, from (2.4) and cl(G) ≤ q− 2 it follows that G1 ∈ Hv(2r−1; q− 1). Obviously,
G1 ∈ Hv(2r−1; q − 1) leads to K1 + G1 ∈ Hv(2r; q). This contradicts the equality
∣V (G)∣ = Fv(2r; q), because ∣V (K1 + G1)∣ = ∣V (G)∣ − 1. Lemma 2.2 is proved.

Lemma 2.3. Let G ∈ Hv(2r; q), r ≥ 2. Then

∣V (G)∣ ≥ Fv(2r−1; q) + �(G).

Proof. Let A ⊆ V (G) be an independent set such that ∣A∣ = �(G). Consider
the subgraph G1 = G−A. According to (2.4), G1 ∈ Hv(2r−1; q). Hence ∣V (G1)∣ ≥
Fv(2r−1; q). Since ∣V (G)∣ = ∣V (G1)∣ + �(G), Lemma 2.3 is proved.

We shall use also the following three results:

Fv(2, 2, p; p + 1) ≥ 2p + 4, see [20] ; (2.5)

Fv(2, 2, 4; 5) = 13, see [22]. (2.6)
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Theorem 2.2. ([12]) Let G be a graph, cl(G) ≤ p and ∣V (G)∣ ≥ p + 2, p ≥ 2.
Let G also possess the following two properties:

(i) G ∕
v
−→ (2, 2, p);

(ii) If V (G) = V1 ∪ V2 ∪ V3 is a (2, 2, p)-free 3-coloring, then ∣V1∣ + ∣V2∣ ≤ 3.

Then G = K1 + G1.

3. AN UPPER BOUND FOR THE NUMBERS Fv(2r; q)

Consider the graph P whose complementary graph P is depicted in Figure
1. This graph is a well-known construction of Greenwood and Gleason [6], which

Figure 1: Graph P

shows that R(5, 3) ≥ 14, since ∣V (P )∣ = 13 and

�(P ) = 2; (3.1)

cl(P ) = 4 (see [6]). (3.2)

From ∣V (P )∣ = 13 and (3.1) it follows that �(P ) ≥ 7. Since {v1} ∪ {v2, v3} ∪ ⋅ ⋅ ⋅ ∪
{v12, v13} is a 7-chromatic partition of V (P ), we have

�(P ) = 7. (3.3)

Let r and s be non-negative integers and r ≥ 3s + 6. Define

P̃ = Kr−3s−6 + P + C5 + ⋅ ⋅ ⋅ + C5
︸ ︷︷ ︸

s

.
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From (2.1), (2.2), (3.2) and (3.3) we obtain that �(P̃ ) = r+1 and cl(P̃ ) = r−s−2.
By (1.3), it follows that P̃ ∈ Hv(2r; r − s− 1) and thus

Fv(2r; r − s− 1) ≤ ∣V (P̃ )∣.

Since ∣V (P̃ )∣ = r + 2s + 7, we proved the following

Theorem 3.1. Let r and s be non-negative integers and r ≥ 3s + 6. Then

Fv(2r; r − s− 1) ≤ r + 2s + 7.

Remark. Since r ≥ 3s + 6 we have r − s − 1 > 2. Thus, according to (1.2),
the numbers Fv(2r; r − s− 1) exist.

4. PROOF OF THEOREM 1.5

Proof of Theorem 1.5(a) Let G ∈ Hv(2r; r − 1). We need to show that
∣V (G)∣ ≥ r + 7. From Lemma 2.3 we have

∣V (G)∣ ≥ Fv(2r−1; r − 1) + �(G).

By (1.5), (1.6) and Theorem 1.4(a) we deduce Fv(2r−1; r − 1) ≥ r + 4. Hence

∣V (G)∣ ≥ r + 4 + �(G). (4.1)

We prove the inequality ∣V (G)∣ ≥ r + 7 by induction with respect to r. From
Table 1.1 we see that

R(r − 1, 3) < r + 6 if r = 4 or r = 5. (4.2)

Obviously, from G ∈ Hv(2r; r − 1) it follows that �(G) ∕= cl(G). Thus, �(G) ≥ 2.
From (4.1) we obtain ∣V (G)∣ ≥ r + 6. From this inequality and (4.2) we see that
∣V (G)∣ > R(r−1, 3) if r = 4 or r = 5. Since cl(G) < r−1, it follows that �(G) ≥ 3.
Now from (4.1) we obtain that ∣V (G)∣ ≥ r + 7 if r = 4 or r = 5.

Let r ≥ 6. We shall consider separately two cases:

Case 1. G ∕
v
−→ (2, 2, r − 2). From Theorem 2.2 we see that only following two

subcases are possible:

Subcase 1a. G = K1 + G1. From G ∈ Hv(2r, r − 1) it follows that G1 ∈
Hv(2r−1; r−2). By the induction hypothesis, ∣V (G1)∣ ≥ r+6. Therefore, ∣V (G)∣ ≥
r + 7.

Subcase 1b. There is a (2, 2, r − 2)-free 3-coloring V (G) = V1 ∪ V2 ∪ V3 such
that ∣V1∣ + ∣V2∣ ≥ 4. Let us consider the subgraph G̃ = G[V3]. By assumption
G̃ does not contain an (r − 2)-clique, i.e. cl(G̃) < r − 2. Since V1 and V2 are
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independent sets and G
v
−→ (2r), it follows from (2.4) that G̃

v
−→ (2r−2). Thus,

G̃ ∈ Hv(2r−2; r−2). By (1.6) and Theorem 1.4(a), ∣V (G̃)∣ ≥ r+3. As ∣V1∣+∣V2∣ ≥ 4,
we have ∣V (G)∣ ≥ r + 7.

Case 2. G
v
−→ (2, 2, r − 2). Since cl(G) < r − 1, G ∈ Hv(2, 2, r − 2; r − 1).

From (2.5) it follows that ∣V (G)∣ ≥ 2(r − 2) + 4 = 2r. Hence, if 2r ≥ r + 7, i.e.
r ≥ 7, then ∣V (G)∣ ≥ r + 7. Let r = 6. Then G ∈ Hv(2, 2, 4; 5). By (2.6) we
conclude that ∣V (G)∣ ≥ 13.

Proof of Theorem 1.5(b) Let r ≥ 6. According to Theorem 1.5(a) we have
Fv(2r; r− 1) ≥ r + 7. From Theorem 3.1 (s = 0) we obtain the opposite inequality
Fv(2r; r − 1) ≤ r + 7.

Proof of Theorem 1.5(c) There is a 16-vertex graph G such that �(G) = 3
and cl(G) = 3, because R(4, 4) = 18 (see [6]). From ∣V (G)∣ = 16 and �(G) = 3
obviously it follows that �(G) ≥ 6. By (1.3), G

v
−→ (25). So, G ∈ Hv(25; 4). Hence

Fv(25; 4) ≤ ∣V (G)∣ = 16.

Theorem 1.5 is proved.

Corollary 4.1 Let G be a graph such that f(G) ≤ 3. Then

∣V (G)∣ ≥ �(G) + 2f(G).

Proof. If f(G) ≤ 2, then Corollary 4.1 follows from Lemma 2.1. Let f(G) = 3
and �(G) = r+1, then cl(G) = r−2. Since �(G) ∕= cl(G), it follows that cl(G) ≥ 2.
Thus, r ≥ 4. By (1.3) we get G ∈ Hv(2r; r − 1). From Theorem 1.5(a) we obtain
∣V (G)∣ ≥ r + 7 = �(G) + 2f(G).

Remark. In Hv(2r; r−1), r ≥ 8, there are more than one extremal graph. For
instance, in Hv(28; 7) besides K2 + P (see Theorem 3.1), the graph C5 + C5 + C5

is extremal, too.

5. PROOF OF THEOREM 1.6

Proof of Theorem 1.6(a) Let G ∈ Hv(2r; r − 2). We need to show that
∣V (G)∣ ≥ r + 9. From Lemma 2.3 we have

∣V (G)∣ ≥ Fv(2r−1; r − 2) + �(G).

By Theorem 1.5(a), Fv(2r−1; r − 2) ≥ r + 6. Thus,

∣V (G)∣ ≥ r + 6 + �(G). (5.1)
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We prove the inequality ∣V (G)∣ ≥ r + 9 by induction with respect to r. From
Table 1.1 we see that

R(r − 2, 3) < r + 8, 5 ≤ r ≤ 7. (5.2)

Obviously, from G ∈ Hv(2r; r − 2) it follows that �(G) ∕= cl(G). Thus, �(G) ≥ 2.
From (5.1) we obtain ∣V (G)∣ ≥ r + 8. This, together with (5.2), implies ∣V (G)∣ >
R(r − 2, 3) if 5 ≤ r ≤ 7. Since cl(G) < r − 2, �(G) ≥ 3. By the inequality (5.1),
∣V (G)∣ ≥ r + 9, 5 ≤ r ≤ 7.

Let r ≥ 8. Obviously, it suffices to consider only the situation when

∣V (G)∣ = Fv(2r; r − 2). (5.3)

By (5.3) and Lemma 2.2 we have that

G is a vertex-critical (r + 1)-chromatic graph; (5.4)

and
cl(G) = r − 3. (5.5)

From (5.4) and (5.5) it follows that

f(G) = 4. (5.6)

We shall consider separately two cases.

Case 1. ∣V (G)∣ < 2r + 1. By (5.4) and Theorem 2.1 we obtain that

G = G1 + G2. (5.7)

From (5.7), (2.1) and (5.4) obviously it follows that

Gi, i = 1, 2 is a vertex-critical chromatic graph. (5.8)

Let f(G1) = 0. Then, according to (5.8) G1 is a complete graph. Thus, it follows
from (5.7) that G = K1 + G′. It is clear that

G ∈ Hv(2r; r − 2) ⇒ G′ ∈ Hv(2r−1; r − 3).

By the induction hypothesis, ∣V (G′)∣ ≥ r+8. Hence, ∣V (G)∣ ≥ r+9. Let f(Gi) ∕= 0,
i = 1, 2. We see from (5.7), (2.3) and (5.6) that f(Gi) ≤ 3, i = 1, 2. By Corollary 4.1
we conclude that

∣V (Gi)∣ ≥ �(Gi) + 2f(Gi), i = 1, 2.

Summing these inequalities and using (2.1) and (2.3) we obtain

∣V (G)∣ ≥ �(G) + 2f(G). (5.9)

According to (5.4), �(G) = r + 1. Finally, from (5.9) and (5.6) it follows that
∣V (G)∣ ≥ r + 9.
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Case 2. ∣V (G)∣ ≥ 2r+1. Since r ≥ 8, then 2r+1 ≥ r+9. Hence ∣V (G)∣ ≥ r+9.

Proof of Theorem 1.6(b) By Theorem 1.6(a), Fv(2r; r−2) ≥ r+9. Therefore,
we need to prove the opposite inequality Fv(2r; r−2) ≤ r+9 if r ≥ 8. If r ≥ 9, this
inequality follows from Theorem 3.1 (s = 1). Let r = 8. By R(6, 3) = 18 [11] (see
also [7]), there is a graph Q such that ∣V (Q)∣ = 17, �(Q) = 2 and cl(Q) = 5. From
∣V (Q)∣ = 17 and �(Q) = 2 obviously it follows that �(Q) ≥ 9. Thus, by (1.3),
Q

v
−→ (28). Hence Q ∈ Hv(28; 6) and Fv(28; 6) ≤ ∣V (Q)∣ = 17. Theorem 1.6 is

proved.

Corollary 5.1. Let G be a graph such that f(G) ≤ 4. Then

∣V (G)∣ ≥ �(G) + 2f(G).

Proof. If f(G) ≤ 3, then Corollary 5.1 follows from Corollary 4.1. Let f(G) = 4
and �(G) = r + 1, then cl(G) = r− 3. Since �(G) ∕= cl(G), we have cl(G) ≥ 2, and
consequently, r ≥ 5. By (1.3), G ∈ Hv(2r; r − 2). Using Theorem 1.6(a), we get
∣V (G)∣ ≥ r + 9 = �(G) + 2f(G).

Let r ≥ 3s + 8. Define

Q̃ = Kr−3s−8 + Q + C5 + ⋅ ⋅ ⋅ + C5
︸ ︷︷ ︸

s

,

where graph Q is given in the proof of Theorem 1.6(b). Since cl(Q) = 5 and
�(Q) ≥ 9, we have by (2.1) and (2.2) that cl(Q̃) = r − s − 3 and �(Q̃) ≥ r + 1.
According to (1.3), Q̃ ∈ Hv(2r; r − s− 2). Thus, Fv(2r; r − s− 2) ≤ ∣V (Q̃)∣. Since
∣V (Q̃)∣ = r + 2s + 9, we obtain the following

Theorem 5.1. Let r and s be non-negative integers and r ≥ 3s + 8. Then

Fv(2r; r − s− 2) ≤ r + 2s + 9.
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