New upper bound for a class of vertex Folkman numbers

N. Kolev

Department of Algebra
Faculty of Mathematics and Informatics
"St. Kl. Ohridski" University of Sofia
5 J. Bourchier blvd, 1164 Sofia
BULGARIA

N. Nenov

Department of Algebra
Faculty of Mathematics and Informatics
"St. Kl. Ohridski" University of Sofia
5 J. Bourchier blvd, 1164 Sofia
BULGARIA

nenov@fmi.uni-sofia.bg

Submitted: Jun 9, 2005; Accepted: Feb 7, 2006; Published: Feb 15, 2006

Mathematics Subject Classification: 05C55

Abstract

Let a_1,\ldots,a_r be positive integers, $m=\sum_{i=1}^r(a_i-1)+1$ and $p=\max\{a_1,\ldots,a_r\}$. For a graph G the symbol $G\to\{a_1,\ldots,a_r\}$ denotes that in every r-coloring of the vertices of G there exists a monochromatic a_i -clique of color i for some $i=1,\ldots,r$. The vertex Folkman numbers $F(a_1,\ldots,a_r;m-1)=\min\{|V(G)|:G\to(a_1\ldots a_r)\text{ and }K_{m-1}\not\subseteq G\}$ are considered. We prove that $F(a_1,\ldots,a_r;m-1)\leq m+3p,$ $p\geq 3$. This inequality improves the bound for these numbers obtained by Łuczak, Ruciński and Urbański (2001).

1 Introduction

We consider only finite, non-oriented graphs without loops and multiple edges. We call a p-clique of the graph G a set of p vertices, each two of which are adjacent. The largest positive integer p, such that the graph G contains a p-clique is denoted by cl(G). In this paper we shall also use the following notations:

V(G) - vertex set of the graph G;

E(G) - edge set of the graph G;

 \bar{G} - the complement of G;

 $G[V], V \subseteq V(G)$ - the subgraph of G induced by V;

G - V - the subgraph induced by the set $V(G) \setminus V$;

 $N_G(v), v \in V(G)$ - the set of all vertices of G adjacent to v;

 K_n - the complete graph on n vertices;

 C_n - simple cycle on n vertices;

 P_n - path on n vertices;

 $\chi(G)$ - the chromatic number of G;

[x] - the least positive integer greater or equal to x.

Let G_1 and G_2 be two graphs without common vertices. We denote by $G_1 + G_2$ the graph G for which $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2) \cup E'$, where $E' = \{[x,y] \mid x \in V(G_1), y \in V(G_2)\}.$

Definition Let a_1, \ldots, a_r be positive integers. We say that the r-coloring

$$V(G) = V_1 \cup \ldots \cup V_r, \ V_i \cap V_j = \emptyset, \ i \neq j,$$

of the vertices of the graph G is (a_1, \ldots, a_r) -free, if V_i does not contain an a_i -clique for each $i \in \{1, \ldots, r\}$. The symbol $G \to (a_1, \ldots, a_r)$ means that there is no (a_1, \ldots, a_r) -free coloring of the vertices of G.

We consider for arbitrary natural numbers a_1, \ldots, a_r and q

$$H(a_1, \dots a_r; q) = \{G : G \to (a_1, \dots, a_r) \text{ and } cl(G) < q\}.$$

The vertex Folkman numbers are defined by the equalities

$$F(a_1, \ldots, a_r; q) = \min\{|V(G)| : G \in H(a_1, \ldots, a_r; q)\}.$$

It is clear that $G \to (a_1, \ldots, a_r)$ implies $cl(G) \ge \max\{a_1, \ldots, a_r\}$. Folkman [3] proved that there exists a graph G such that $G \to (a_1, \ldots, a_r)$ and $cl(G) = \max\{a_1, \ldots, a_r\}$. Therefore

$$F(a_1, \dots, a_r; q)$$
 exists if and only if $q > \max\{a_1, \dots, a_r\}$. (1)

These numbers are called vertex Folkman numbers. In [5] Łuczak and Urbański defined for arbitrary positive integers a_1, \ldots, a_r the numbers

$$m = m(a_1, \dots, a_r) = \sum_{i=1}^r (a_i - 1) + 1 \text{ and } p = p(a_1, \dots, a_r) = \max\{a_1, \dots, a_r\}.$$
 (2)

Obviously $K_m \to (a_1, \ldots, a_r)$ and $K_{m-1} \nrightarrow (a_1, \ldots, a_r)$. Therefore if $q \ge m+1$ then $F(a_1, \ldots, a_r; q) = m$.

From (1) it follows that the number $F(a_1, \ldots, a_r; q)$ exists if and only if $q \geq p+1$. Luczak and Urbański [5] proved that $F(a_1, \ldots, a_r; m) = m+p$. Later, in [6], Luczak, Ruciński and Urbański proved that $K_{m-p-1} + \bar{C}_{2p+1}$ is the only graph in $H(a_1, \ldots, a_r; m)$ with m+p vertices.

From (1) it follows that the number $F(a_1, \ldots, a_r; m-1)$ exists if and only if $m \ge p+2$. An overview of the results about the numbers $F(a_1, \ldots, a_r; m-1)$ was given in [1]. Here we shall note only the general bounds for the numbers $F(a_1, \ldots, a_r; m-1)$. In [8] the following lower bound was proved

$$F(a_1, \ldots, a_r; m-1) \ge m+p+2, \ p \ge 2.$$

In the above inequality an equality occurs in the case when $\max\{a_1,\ldots,a_r\}=2$ and $m\geq 5$ (see [4],[6],[7]). For these reasons we shall further consider only the numbers $F(a_1,\ldots,a_r;m-1)$ when $\max\{a_1,\ldots,a_r\}\geq 3$.

In [6] Łuczak, Ruciński and Urbański proved the following upper bound for the numbers $F(a_1, \ldots, a_r; m-1)$:

$$F(a_1, \ldots, a_r; m-1) \le m + p^2$$
, for $m \ge 2p + 2$.

In [6] they also announced without proof the following inequality:

$$F(a_1, \ldots, a_r; m-1) \le 3p^2 + p - mp + 2m - 3$$
, for $p+3 \le m \le 2p+1$.

In this paper we shall improve these bounds proving the following

Main theorem Let a_1, \ldots, a_r be positive integers and m and p be defined by (2). Let $m \ge p + 2$ and $p \ge 3$. Then

$$F(a_1,\ldots,a_r;m-1) \le m+3p.$$

Remark This bound is exact for the numbers F(2,2,3;4) and F(3,3;4) because

$$F(2,2,3;4) = 14$$
 (see [2]) and $F(3,3;4) = 14$ (see [9]).

2 Main construction

We consider the cycle C_{2p+1} . We assume that

$$V(C_{2p+1}) = \{v_1, \dots, v_{2p+1}\}\$$

and

$$E(C_{2p+1}) = \{[v_i, v_{i+1}], i = 1, \dots, 2p\} \cup \{v_1, v_{2p+1}\}.$$

Let σ denote the cyclic automorphism of C_{2p+1} , i.e. $\sigma(v_i) = v_{i+1}$ for $i = 1, \ldots, 2p$, $\sigma(v_{2p+1}) = v_1$. Using this automorphism and the set $M_1 = V(C_{2p+1}) \setminus \{v_1, v_{2p-1}, v_{2p-2}\}$ we define $M_i = \sigma^{i-1}(M_1)$ for $i = 1, \ldots, 2p+1$. Let Γ_p denote the extension of the graph \bar{C}_{2p+1} obtained by adding the new pairwise independent vertices u_1, \ldots, u_{2p+1} such that

$$N_{\Gamma_p}(u_i) = M_i \text{ for } i = 1, \dots, 2p + 1.$$
 (3)

We easily see that $cl(\bar{C}_{2p+1}) = p$.

Now we extend σ to an automorphism of Γ_p via the equalities $\sigma(u_i) = u_{i+1}$, for $i = 1, \ldots, 2p$, and $\sigma(u_{2p+1}) = u_1$. Now it is clear that

$$\sigma$$
 is an automorphism of Γ_p . (4)

The graph Γ_p was defined for the first time in [8]. In [8] it is also proved that $\Gamma_p \to (3, p)$ for $p \geq 3$. For the proof of the main theorem we shall also use the following generalisation of this fact.

Theorem 1 Let $p \geq 3$ be a positive integer and m = p + 2. Then for arbitrary positive integers a_1, \ldots, a_r (r is not fixed) such that

$$m = 1 + \sum_{i=1}^{r} (a_i - 1)$$

and $\max\{a_1,\ldots,a_r\} \leq p$ we have

$$\Gamma_p \to (a_1, \dots a_r).$$

3 Auxiliary results

The next proposition is well known and easy to prove.

Proposition 1 Let a_1, \ldots, a_r be positive integers and $n = a_1 + \ldots + a_r$. Then

$$\left\lceil \frac{a_1}{2} \right\rceil + \ldots + \left\lceil \frac{a_r}{2} \right\rceil \ge \left\lceil \frac{n}{2} \right\rceil.$$

If n is even than this inequality is strict unless all the numbers a_1, \ldots, a_r are even. If n is odd then this inequality is strict unless exactly one of the numbers a_1, \ldots, a_r is odd.

Let P_k be the simple path on k vertices. Let us assume that

$$V(P_k) = \{v_1, \dots, v_k\}$$

and

$$E(P_k) = \{ [v_i, v_{i+1}], i = 1, \dots, k-1 \}.$$

We shall need the following obvious facts for the complementary graph \bar{P}_k of the graph P_k :

$$cl(\bar{P}_k) = \left\lceil \frac{k}{2} \right\rceil \tag{5}$$

$$cl(\bar{P}_{2k} - v) = cl(\bar{P}_{2k}), \text{ for each } v \in V(\bar{P}_{2k})$$

$$\tag{6}$$

$$cl(\bar{P}_{2k} - \{v_{2k-2}, v_{2k-1}\}) = cl(\bar{P}_{2k}) \text{ for } k \ge 2$$
 (7)

$$cl(\bar{P}_{2k+1} - v_{2i}) = cl(\bar{P}_{2k+1}), \ i = 1, \dots, k, \ k \ge 1.$$
 (8)

The proof of Theorem 1 is based upon three lemmas.

Lemma 1 Let $V \subset V(C_{2p+1})$ and |V| = n < 2p+1. Let $G = \bar{C}_{2p+1}[V]$ and let G_1, \ldots, G_s be the connected components of the graph $\bar{G} = C_{2p+1}[V]$. Then

$$cl(G) \ge \left\lceil \frac{n}{2} \right\rceil.$$
 (9)

If n is even, then (9) is strict unless all $|V(G_i)|$ for i = 1, ..., s are even. If n is odd, then (9) is strict unless exactly one of the numbers $|V(G_i)|$ is odd.

Proof Let us observe that

$$G = \bar{G}_1 + \ldots + \bar{G}_s. \tag{10}$$

Since $V \neq V(C_{2p+1})$ each of the graphs G_i is a path. From (10) and (5) it follows that

$$cl(G) = \sum_{i=1}^{s} \left\lceil \frac{n_i}{2} \right\rceil,$$

where $n_i = |V(G_i)|$, i = 1, ..., s. From this inequality and Proposition 1 we obtain the inequality (9). From Proposition 1 it also follows that if n is even then there is equality in (9) if and only if the numbers $n_1, ..., n_s$ are even, and if n is odd then we have equality in (9) if and only if exactly one of the numbers $n_1, ..., n_s$ is odd.

Corollary 1 It is true that $cl(\Gamma_p) = p$.

Proof It is obvious that $cl(\bar{C}_{2p+1}) = p$ and hence $cl(\Gamma_p) \geq p$. Let us denote an arbitrary maximal clique of Γ_p by Q. Let us assume that |Q| > p. Then Q must contain a vertex u_i for some $i = 1, \ldots, 2p+1$. As the vertices u_i are pairwise independent Q must contain at most one of them. Since σ is an automorphism of Γ_p (see (4)) and $u_i = \sigma^{i-1}(u_1)$, we may assume that Q contains u_1 . Let us assign the subgraph of Γ_p induced by $N_{\Gamma_p(u_1)} = M_1$ by H. The connected components of H are $\{v_2, v_3, \ldots, v_{2p-3}\}$ and $\{v_{2p}, v_{2p+1}\}$ and both of them contain an even number of vertices. Using Lemma 1 we have cl(H) = p-1. Hence |Q| = p and this contradicts the assumption.

The next two lemmas follow directly from (10), (6), (7), and (8) and need no proof.

Lemma 2 Let $V \subseteq V(C_{2p+1})$ and $G = \bar{C}_{2p+1}[V]$. Let $P_k = \{v_1, v_2, \dots, v_k\}$ be a connected component of the graph $\bar{G} = C_{2p+1}[V]$. Then

(a) if
$$k = 2s$$
 then

$$cl(G - v_i) = cl(G), \ i = 1, \dots, 2s,$$

and

$$cl(G - \{v_{2s-2}, v_{2s-1}\}) = cl(G).$$

(b) if
$$k = 2s + 1$$
 then

$$cl(G - v_{2i}) = cl(G), i = 1, ..., s.$$

Lemma 3 Let $V \subseteq V(C_{2p+1})$ and $\bar{C}_{2p+1} = G$. Let

$$P_{2k} = \{v_1, \dots, v_{2k}\}$$
 and $P_s = \{w_1, \dots, w_s\}$

be two connected components of the graph $\bar{G} = C_{2p+1}[V]$. Then

(a) if s = 2t then

$$cl(G - \{v_i, w_j\}) = cl(G),$$

for i = 1, ..., 2k, j = 1, ..., s, and

$$cl(G - \{v_{2k-2}, v_{2k-1}, w_i\}) = cl(G),$$

for j = 1, ..., s.

(b) If s = 2t + 1 then

$$cl(G - \{v_{2k-2}, v_{2k-1}, w_{2i}\}) = cl(G), \text{ for } i = 1, \dots, t.$$

4 Proof of Theorem 1

We shall prove Theorem 1 by induction on r. As $m = \sum_{i=1}^{r} (a_i - 1) + 1 = p + 2$ and $\max\{a_1, \ldots, a_r\} \leq p$ we have $r \geq 2$. Therefore the base of the induction is r = 2. We warn the reader that the proof of the inductive base is much more involved then the proof of the inductive step. Let r = 2 and $(a_1 - 1) + (a_2 - 1) + 1 = p + 2$ and $\max\{a_1, a_2\} \leq p$. Then we have

$$a_1 + a_2 = p + 3. (11)$$

Since $p \geq 3$ and $\max\{a_1, a_2\} \leq p$ we have that

$$a_i \ge 3, \ i = 1, 2.$$
 (12)

We must prove that $\Gamma_p \to (a_1, a_2)$. Assume the opposite and let $V(\Gamma_p) = V_1 \cup V_2$ be a (a_1, a_2) -free coloring of $V(\Gamma_p)$. Define the sets

$$V_i' = V_i \cap V(\bar{C}_{2p+1}), i = 1, 2,$$

and the graphs

$$G_i = \bar{C}_{2p+1}[V_i'], i = 1, 2.$$

By assumption $\Gamma_p[V_i]$ does not contain an a_i -clique and hence $\Gamma_p[V_i']$ does not contain an a_i -clique, too. Therefore from Lemma 1 we have $|V_i'| \leq 2a_i - 2$, i = 1, 2. From these inequalities and the equality

$$|V_1'| + |V_2'| = 2p + 1 = 2a_1 + 2a_2 - 5$$

(as $p = a_1 + a_2 - 3$, see (11)) we have two possibilities:

$$|V_1'| = 2a_1 - 2, \ |V_2'| = 2a_2 - 3,$$

$$|V_1'| = 2a_1 - 3, |V_2'| = 2a_2 - 2.$$

Without loss of generality we assume that

$$|V_1'| = 2a_1 - 2, \ |V_2'| = 2a_2 - 3.$$
 (13)

From (13) and Lemma 1 we obtain $cl(G_i) \ge a_i - 1$ and by the assumption that the coloring $V_1 \cup V_2$ is (a_1, a_2) -free we have

$$cl(G_i) = a_i - 1 \text{ for } i = 1, 2.$$
 (14)

From (13), (14) and Lemma 1 we conclude that

The number of the vertices of each connected component of
$$\bar{G}_1$$
 is an even number; (15)

and

the number of the vertices of exactly one of the connected components of
$$\bar{G}_2$$
 is an odd number. (16)

According to (15) there are two possible cases.

Case 1. Some connected component of \bar{G}_1 has more then two vertices. Now from (15) it follows that this component has at least four vertices. Taking into consideration (15) and (4) we may assume that $\{v_1, \ldots, v_{2s}\}, s \geq 2$, is a connected component of \bar{G}_1 . Since V'_1 does not contain an a_1 -clique we have by Lemma 1 that $s < a_1$. Therefore $2s + 2 \leq 2p$ and we can consider the vertex u_{2s+2} .

Subcase 1.a. Assume that $u_{2s+2} \in V_1$. Let $v_{2s+2} \in V_2'$. We have from (3) that

$$N_{\Gamma_p}(u_{2s+2}) \supseteq V_1' - \{v_{2s-2}, v_{2s-1}\}. \tag{17}$$

From (14) and Lemma 2(a) we have that the subgraph induced by $V'_1 - \{v_{2s-2}, v_{2s-1}\}$ contains an $(a_1 - 1)$ -clique Q. From (17) it follows that $Q \cup \{u_{2s+2}\}$ is an a_1 -clique in V_1 which is a contradiction.

Now let $v_{2s+2} \in V_1'$. From (3) we have

$$N_{\Gamma_P}(u_{2s+2}) \supseteq V_1' - \{v_{2s-2}, v_{2s-1}, v_{2s+2}\}. \tag{18}$$

According to (15) we can apply Lemma 3(a) for the connected component $\{v_1, \ldots, v_{2s}\}$ of \bar{G}_1 and the connected component of \bar{G}_1 that contains v_{2s+2} . We see from (14) and Lemma 3(a) that $V_1' - \{v_{2s-2}, v_{2s-1}, v_{2s+2}\}$ contains an $(a_1 - 1)$ -clique Q of the graph G_1 . Now from (18) it follows that $Q \cup \{u_{2s+2}\}$ is an a_1 -clique in V_1 , which is a contradiction.

Subcase 1.b. Assume that $u_{2s+2} \in V_2$. If $v_{2s+2} \notin V_2'$ then from (3) it follows

$$N_{\Gamma_p}(u_{2s+2}) \supseteq V_2'. \tag{19}$$

As V_2' contains an $(a_2 - 1)$ -clique Q (see (14)). From (19) it follows that $Q \cup \{u_{2s+2}\}$ is an a_2 -clique in V_2 , which is a contradiction.

Now let $v_{2s+2} \in V_2'$. In this situation we have from (3)

$$N_{\Gamma_p}(u_{2s+2}) \supseteq V_2' - \{v_{2s+2}\}. \tag{20}$$

We shall prove that

$$V_2 - \{v_{2s+2}\}$$
 contains an $(a_2 - 1)$ -clique of Γ_p . (21)

As v_{2s} is the last vertex in the connected component of G_1 , we have $v_{2s+1} \in V'_2$. Let L be the connected component of \bar{G}_2 containing v_{2s+2} . Now we have $L = \{v_{2s+1}, v_{2s+2}, \ldots\}$. Now (21) follows from Lemma 2 applied to the component L. From (20) and (21) it follows that V_2 contains an a_2 -clique, which is a contradiction.

Case 2. Let all connected components of \bar{G}_1 have exactly two vertices.

From (12) and (13) it follows that \bar{G}_1 has at least two connected components. It is clear that \bar{G}_2 also has at least two components. From (16) we have that the number of the vertices of at least one of the components of G_2 is even. From these considerations and (4) it follows that it is enough to consider the situation when $\{v_1, v_2\}$ is a connected component of \bar{G}_1 and $\{v_3, \ldots, v_{2s}\}$ is a component of \bar{G}_2 , and $\{v_{2s+1}, v_{2s+2}\}$ is a component of \bar{G}_1 . We shall consider two subcases.

Subcase 2.a. If $u_{2s+2} \in V_1$.

Let s=2. We apply Lemma 3(a) to the components $\{v_1,v_2\}$ and $\{v_5,v_6\}$. From (14) we conclude that

$$V_1' - \{v_2, v_6\}$$
 contains an $(a_1 - 1)$ -clique. (22)

From (3) we have

$$N_{\Gamma_p}(u_6) \supseteq V_1' - \{v_2, v_6\}.$$
 (23)

Now (22) and (23) give that V_1 contains an a_1 -clique.

Let $s \geq 3$. From (3) we have

$$N_{\Gamma_p}(u_{2s+2}) \supseteq V_1' - \{v_{2s+2}\}. \tag{24}$$

According to Lemma 2(a) $V'_1 - \{v_{2s+2}\}$ contains an $(a_1 - 1)$ -clique. Now using (24) we have that this $(a_1 - 1)$ -clique together with the vertex u_{2s+2} gives an a_1 -clique in V_1 . Subcase 2.a. is proved.

Subcase 2.b. Let $u_{2s+2} \in V_2$.

Let s=2. From (3) we have $N_{\Gamma_p}(u_6) \supseteq V_2' - \{v_3\}$. According to Lemma 2(a) and (14) $V_2' - \{v_3\}$ contains an (a_2-1) -clique. This clique together with $u_{2s+2} \in V_2$ gives an a_2 -clique in V_2 , which is a contradiction.

Let $s \geq 3$. Here from (3) we have $N_{\Gamma_p}(u_{2s+2}) \supseteq V_2' - \{v_{2s-2}, v_{2s-1}\}$. According to Lemma 2(a) and (14) we have that $V_2' - \{v_{2s-2}, v_{2s-1}\}$ contains an $(a_2 - 1)$ -clique. This

clique together with $u_{2s+2} \in V_2$ gives an a_2 -clique in V_2 , which is a contradiction. This completes the proof of case 2 and of the inductive base r = 2.

Now we more easily handle the case $r \geq 3$. It is clear that

$$G \to (a_1, \ldots, a_r) \Leftrightarrow G \to (a_{\varphi(1)}, \ldots, a_{\varphi(r)})$$

for any permutation $\varphi \in S_r$. That is why we may assume that

$$a_1 \le \ldots \le a_r \le p. \tag{25}$$

We shall prove that $a_1 + a_2 - 1 \le p$. If $a_2 \le 2$ this is trivial: $a_1 + a_2 - 1 \le 3 \le p$. Let $a_2 \ge 3$. From (25) we have $a_i \ge 3$, i = 2, ..., r. From these inequalities and the statement of the theorem

$$\sum_{i=1}^{r} (a_i - 1) + 1 = p + 2$$

we have

$$p+2 \ge 1 + (a_2 - 1) + (a_1 - 1) + 2(r-2).$$

From this inequality and $r \geq 3$ it follows that $a_1 + a_2 - 1 \leq p$. Thus we can now use the inductive assumption and obtain

$$\Gamma_p \to (a_1 + a_2 - 1, a_3, \dots, a_r).$$
 (26)

Consider an arbitrary r-coloring $V_1 \cup \ldots \cup V_r$ of $V(\Gamma_p)$. Let us assume that V_i does not contain an a_i -clique for each $i=3,\ldots,r$. Then from (26) we have $V_1 \cup V_2$ contains (a_1+a_2-1) -clique. Now from the pigeonhole principle it follows that either V_1 contains an a_1 -clique or V_2 contains an a_2 -clique. This completes the proof of Theorem 1.

5 Proof of the Main Theorem

Let m and p be positive integers $p \geq 3$ and $m \geq p + 2$. We shall first prove that for arbitrary positive integers a_1, \ldots, a_r such that

$$m = 1 + \sum_{i=1}^{r} (a_i - 1)$$

and $\max\{a_1,\ldots,a_r\} \leq p$ we have

$$K_{m-p-2} + \Gamma_p \to (a_1, \dots, a_r). \tag{27}$$

We shall prove (27) by induction on t = m - p - 2. As $m \ge p + 2$ the base is t = 0 and it follows from Theorem 1. Assume now $t \ge 1$. Then obviously

$$K_{m-p-2} + \Gamma_p = K_1 + (K_{m-p-3} + \Gamma_p).$$

Let $V(K_1) = \{w\}$. Consider an arbitrary r-coloring $V_1 \cup \ldots \cup V_r$ of $V(K_{m-p-2} + \Gamma_p)$. Let $w \in V_i$ and V_i , $j \neq i$, does not contain an a_i -clique.

In order to prove (27) we need to prove that V_i contains an a_i -clique. If $a_i = 1$ this is clear as $w \in V_i$. Let $a_i \geq 2$. According to the inductive hypothesis we have

$$K_{m-p-3} + \Gamma_p \to (a_1, \dots, a_{i-1}, a_i - 1, a_{i+1}, \dots, a_r).$$
 (28)

We consider the coloring

$$V_1 \cup \ldots \cup V_{i-1} \cup \{V_i - w\} \cup \ldots \cup V_r$$

of $V(K_{m-p-3} + \Gamma_p)$. As V_j , $j \neq i$, do not contain a_j -cliques, from (28) we have that $V_i - \{w\}$ contains an $(a_i - 1)$ -clique. This $(a_i - 1)$ -clique together with w form an a_i -clique in V_i . Thus (27) is proved.

From Corollary 1 obviously follows that $cl(K_{m-p-2} + \Gamma_p) = m-2$. From this and (27) we have $K_{m-p-2} + \Gamma_p \in H(a_1, \ldots, a_r; m-1)$. The number of the vertices of the graph $K_{m-p-2} + \Gamma_p$ is m+3p therefore $F(a_1, \ldots, a_r; m-1) \leq m+3p$.

The main theorem is proved.

Acknowledgements. We are very grateful to the anonymous referee whose important recommendations improved the presentation a lot.

References

- [1] J. Coles, Algorithms for bounding Folkman numbers. Master thesis, http://www.jpcoles.com/uni/rit/thesis/jpc-thesis-folkman.pdf.
- [2] J. Coles, S. Radziszowski, Computing the Folkman number $F_v(2, 2, 3; 4)$, http://www.cs.rit.edu/~spr/PUBL/paper50.pdf, submitted.
- [3] J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring, SIAM. J. Appl. Math. 18, 1970, 19–24.
- [4] P. Guta. On the structure of k-chromatic critical graphs of order k + p, Stud. Cern. Math., 50, 1988, N 3–4, 169–173.
- [5] T. Łuczak, S. Urbański, A note on restricted vertex Ramsey numbers, Period. Math. Hung., 33, 1996, 101–103.
- [6] T. Łuczak, A. Ruciński, S. Urbański, On minimal vertex Folkman graphs, Discrete Math., 236, 2001, 245–262.
- [7] N. Nenov, On the Zykov numbers and some its applications to Ramsey theory, Serdica Bulgaricae math. publicationes 9, 1983, 161–167 (in Russian).
- [8] N. Nenov, On a class of vertex Folkman graphs, Annuaire Univ. Sofia Fac. Math. Inform. 94, 2000, 15–25.
- [9] K. Piwakowski, S. Radziszowski, S. Urbański, Computation of the Folkman number $F_e(3,3;5)$. J. Graph Theory 32, 1999, 41–49.