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MODIFIED VERTEX FOLKMAN NUMBERS

ALEKSANDAR BIKOV AND NEDYALKO NENOV

ABSTRACT. Let aq,...,as be positive integers. For a graph G the expression
G5 (a1,...,as)
means that for every coloring of the vertices of G in s colors (s-coloring) there
exists ¢ € {1, ..., s}, such that there is a monochromatic a;-clique of color 7. If
m and p are positive integers, then
e m|
P

means that for arbitrary positive integers ai, ..., as (s is not fixed), such that
S

Z(ai —1)41=m an max{ai,...,as} < p we have G > (ay, ..., as). Let
i=1
7—~L(m|p;q) ={G:G> m|p and w(G) < g}.
The modified vertex Folkman numbers are defined by the equality
F(m|,;q) = min {|V(G)|: G € H(m| ;q)}.

If ¢ > m these numbers are known and they are easy to compute. In the case
q = m — 1 we know all of the numbers when p < 5. In this work we consider
the next unknown case p = 6 and we prove with the help of a computer that

ﬁ(m|6;m—1) =m + 10.

1. INTRODUCTION

In this paper only finite, non-oriented graphs without loops and multiple edges
are considered. The following notations are used:

V(G) - the vertex set of G;

E(G) - the edge set of G;

G - the complement of G;

w(@G) - the clique number of G;
(@) - the independence number of G;
X(G) - the chromatic number of G;

N(v),Ng(v),v € V(G) - the set of all vertices of G adjacent to v;

d(v),v € V(G) - the degree of the vertex v, i.e. d(v) =|N(v)|;

G —v,v € V(G) - subgraph of G obtained from G by deleting the vertex v and
all edges incident to v;

G — e,e € E(G) - subgraph of G obtained from G by deleting the edge e;

G + e, e € E(G) - supergraph of G obtained by adding the edge e to E(G).

K, - complete graph on n vertices;

C,, - simple cycle on n vertices;

mo = mo(p) - see Theorem [2.1

G1 + G2 - a graph G for which: V(G) = V(G1) UV(G2) and E(G) = E(Gy) U
E(G2) U E', where E' = {[z,y] : x € V(G1),y € V(G2)}, i.e. G is obtained by
connecting every vertex of G; to every vertex of Gs.
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All undefined terms can be found in [I§].

Let ai,...,as be positive integers. The expression G = (a1, ..., as) means that
for any coloring of V(G) in s colors (s-coloring) there exists i € {1, ..., s} such that
there is a monochromatic a;-clique of color i. In particular, G % (a;) means that
w(G) > ay.

Define:

H(as,...,as;q) = {G 1G5 (ay,...,as) and w(G) < q} .

H(ai,...,as;q;n) ={G : G € H(ay, ...,as;q) and | V(G)| =n}.

The vertex Folkman number F, (a1, ...,as; q) is defined by the equality:

F,(ay,...,as;q9) =min{|V(G)| : G € H(a1,...,as;q)} .
Folkman proves in [5] that:
(1.1) Fy(a,...,as;q) exists < ¢ > max{ay,...,as}.
Other proofs of (1.1)) are given in [4] and [9].
In [1I0] for arbitrary positive integers as, ..., as the following are defined

(1.2) m(ay,...,as) =m = Z(ai —1)+1 and p=max{ay,...,as}.
i=1

Obviously, K, — (a1, ...,as) and K,,_1 + (ay,...,as). Therefore,
Fv(ala"'aa/s;q):m7 qzm—l—l
The following theorem for the numbers F,(aq, ..., as;m) is true:

Theorem 1.1. Let aq,...,as be positive integers and m and p are defined by .
If m>p+1, then:

(a) Fy(ay,...,as;m) =m+p, [10],[9].
(b) Kintp — C2p+1 = Kpp-1+ 62er1
is the only extremal graph in H(ay, ...,as;m), [9].
The condition m > p+1 is necessary according to (1.1]). Other proofs of Theorem
are given in [12] and [13].

Very little is known about the numbers F, (a1, ..., as;q), ¢ < m — 1. In this work
we suggest a method to bound these numbers with the help of the modified vertex
Folkman numbers F, (m’p; q), which are defined below.

Definition 1.2. Let G be a graph and m and p be positive integers. The expression
G5 m‘
P
means that for any choice of positive integers ai,...,as (s is not fixed), such that

m= Z(ai — 1)+ 1 and max{ay,...,as} < p, we have
i=1

G5 (ay,...,as).

Define:
H(m|p;q) = {G (G5 m|p and w(G) < q}.

H(m p;q;n) = {G G e H(m| ;q) and | V(GQ)| = n}

P’
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The modified vertex Folkman numbers are defined by the equality:
ﬁv(m|p;q) = min {|V(G)| :G € ﬁ(m‘p;q)} .
The graph G is called a maximal graph in ﬁ(m’p;q) it G € 7-l(m|p;q), but
G+egHm| ;q),Ye € E(G), Le. w(G+e) > g,Ye € B(@G).
For convenience we will also define the following term:

Definition 1.3. The graph G is called a (+K¢)-graph if G + e contains a new

t-clique for all e € E(G).

Obviously, G € ﬁ(m|p; q) is a maximal graph in ﬁ(m|p; q) if and only if G is a
(+K,)-graph.

From the definition of the modified Folkman numbers it becomes clear that if
ai, ..., as are positive integers and m and p are defined by (|1.2), then

(1.3) Fy(ar, . a5:q) < Fy(m| 5q).
Defining and computing the modified Folkman numbers is appropriate because of
the following reasons:

1) On the left side of (|1.3]) there is actually a whole class of numbers, which are
bound by only one number F, (m|p; q).

2) The upper bound for ﬁ,(m}p;q) is easier to compute than the numbers
F,(ay,...,as) because of the following

Theorem 1.4. ([1], Theorem 7.2) Let m, mq, p and q be positive integers, m > mgq
and g > min {mg,p}. Then

F,(m

p;m—m0+Q) < E,(mo p;q)-l—m—mo.

Therefore, if we know the value of one number ﬁv(m'|p;q) we can obtain an

upper bound for ﬁv(m v q) where m > m’.
3) As we will see below (Theorem, the computation of the numbers F, (m|p; m—1)

is reduced to finding the exact values of the first several of these numbers (bounds
for the number of exact values needed are given in (c)).

Let A be an independent set of vertices in G. If V4 U ... U V; is (ay, ..., as)-free
s-coloring of V(G — A) (i.e. V; does not contain an a;-clique, ¢ = 1,..., ), then
AUV U ..UV s (2,aq,...,as)-free (s + 1)-coloring of V(G). Therefore

(1.4) G5 (2,a1,...,a5) = G — A (a1, ...,a,).

Further we will need the following

Proposition 1.5. Let G = m|p and A is an independent set of vertices in G.
Then G — A% (m — 1)‘p.

Proof. Let aq,..,as be positive integers, such that

m71:2(ai71)+1 and 2 < a; < p.
i=1
Then

m:(2—1)—|—zs:(ai—1)+1.

It follows that G % (2,ay, ..., as) and from 1' we obtain G — A > (a1, ...,as). O
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It is easy to see that if ¢ > m, then F,(aq,...,as;q) = ﬁv(m‘p;q) = m. From

Theorem it follows that Fy (a1, ...,as;m) = ﬁv(m
q = m — 1 the following general bounds are known:

p;m) = m + p. In the case

(1.5) m+p+2§Fv(m|p;m—1)§m+3p,m2p+2.

The upper bound follows from the proof of the Main Theorem from [7] and the
lower bound follows from (1.3) and F,(as,...,as;q) > m +p+ 2, [12].
We know all the numbers F,, (m|p; m — 1) where p < 5 (in the cases p < 4 see the

Remark after Theorem 4.5 and (1.5) from [I], and in the case p = 5 see Theorem
7.4 also from [1]). It is also known that

m+9 < F,(m|g;m—1) <m+ 10, [I]

In this work we complete the computation of the numbers ﬁv(m| 6 M= 1) by
proving

Main Theorem 1. ﬁv(m|6;m —1)=m+10, m > 8.

2. A THEOREM FOR THE NUMBERS Fv(m|p;m -1

We will need the following fact:

(2.1) G 5 (a1,...,as) = x(G) >m, [L3] (see also [T]).
It is easy to prove (see Proposition 4.4 from [I]) that
(2.2) F,(m oM 1) exists < m >p+ 2.

In [I](version 1) we formulate without proof the following

Theorem 2.1. Let mo(p) = mo be the smallest positive integer for which

mrg}ijriz {Fv(m|p;m -1) - m} = Fv(m0|p; mo — 1) — mg.

Then:

(a) ﬁv(m’p;m —-1)= ﬁv(m0|p;m0 —1)+m—mg, m>mg.

(b) if mo >p+2 and G is an extremal graph in ﬁ(mo|p; mo — 1), then

Gl> (2,m0 —2)

(c) mo < ﬁv((p—f- 2)|p;p+ 1) —p.

In this section we present a proof of Theorem
The condition m > p + 2 is necessary according to (2.2]).
Proof. (a) According to the definition of mg(p) = mo we have
Fy(m’p;m -1 > Fv(m0|p;m0 —1)+m—mgy, m>p+2.
According to Theorem [T.4]if m > my the opposite inequality is also true.
(b) Assume the opposite is true and let
V(G) =ViuVe, VinVy =0,
where V; is an independent set and V2 does not contain an (mg — 2)-clique. Let
G1 = G[Va] = G — V4. According to Proposition from G 5 m0|p it follows
G1 5 (mo — 1)|p. Since w(G1) < mg — 2, Gy € H((mo — 1)|p;m0 — 2). Therefore
V(G| =12 V(G1)| = Fu((mo —1)| ;mo — 2).

Since | V(G)| = ﬁv(mo|p; mo — 1), from these inequalities it follows that
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F,(mo 1Mo — 1) = mg > F,((mo — 1)|p;m0 —2) = (mg—1),
which contradicts the definition of my.

(c) If mg = p+2, then from we have ﬁv((p + 2)|p;p +1) > 2p+4 = p+2+myg
and therefore in this case the inequality (c) is true.

Let mg > p+ 2 and G be an extremal graph in ﬁ(molp;mo —1). If ay,...,as

are positive integers, such that m = Z(ai — 1)+ 1 and max {ay, ...,as} < p, then
i=1

G % (ay,...,as) and according to , X(G) > mg. From (b) and Theoremwe
see that | V(G)| > 2mg — 3 and | V(G)| = 2mg — 3 only if G = Cap,—3. However,
the last equality is not possible because x(G) > mg and x(Came—3) = mo — 1.
Therefore

‘V(G)l = Fv(mo p;mo — 1) Z 2m0 -2
Singe mg > p + 2 from the deﬁnition of mg we have

F,(mo im0 — 1) —mo < Fy((p+ 2)’p;p—|— 1)—p—2.
From these inequalities the inequality (c) follows easily. O

3. ALGORITHMS

In this section we present algorithms for finding all maximal graphs in 7—~l(m ’p; q;n)
with the help of a computer. The remaining graphs in this set can be obtained by
removing edges from the maximal graphs. The idea for these algorithms comes
from [14] (see Algorithm 1). Similar algorithms are used in [I], [2], [19], []], [I5].
Also with the help of the computer, results for Folkman numbers are obtained in
[6], [I7], [16] and [3].

The following proposition for maximal graphs in ﬁ(m

s n) will be useful

Proposition 3.1. Let G be a maximal graph in ﬁ(m|p;q;n). Let vy, v, ...,v; be
independent vertices of G and H = G — {v1, v, ..., v }. Then:

(a) HeH(m—1)] g0~k
(b) H is a (+K4—1)-graph

(¢) Ng(v;) is a mazimal Kq_1-free subset of V(H), i =1,...,k

Proof. The proposition (a) follows from Proposition (b) and (c) follow from
the maximality of G. ]

We will define an algorithm, which is based on Proposition 3.1} and generates
all maximal graphs in H(m s n) with independence number at least k.

Algorithm 3.2. Finding all mazximal graphs in ’}-Nt(m p;q;n) with independence

number at least k by adding k independent vertices to the (+K,—1)-graphs in H((m —1)
1. Denote by A the set of all (+K4_1)-graphs in H((m —1) LGN~ k). The

obtained maximal graphs in ﬁ(m|p; q;n) will be output in B, let B = 0.

2. For each graph H € A:

2.1. Find the family M(H) = {M;, ..., M;} of all mazimal K,_1-free subsets of
V(H).

2.2. Consider all the k-tuples (M;,, M,,,...,M;, ) of elements of M(H), for
which 1 < iy < ... < 4 < t (in these k-tuples some subsets M; can coincide).
For every such k-tuple construct the graph G = G(M;,, M, ..., M;,) by adding to

P Gin—k).
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V(H) new independent vertices v1,va, ..., v, s0 that Ng(v;) = M;,,j = 1,....k (see
Proposition (c)). If (G +e) = q,Ve € E(G), then add G to B.

3. FExclude the isomorph copies of graphs from B.

4. Ezclude from B all graphs which are not in ﬁ(mh}; q;n).

Theorem 3.3. Upon completion of Algorithm the obtained set B is equal to
the set of all maximal graphs in ’H(m|p; q;n) with independence number at least k.

Proof. From step 4 we see that B C 7-L(m

s n) and from step 2.2 it becomes clear,
that B contains only maximal graphs in ﬁ(m|p; ¢;n) with independence number at

least k. Let G be an arbitrary maximal graph in 7—~L(m|p; ¢;n) with independence
number in k. We will prove that G € B. Let vq,...,vx be independent vertices
of G and H = G — {v1,...,vx}. According to Proposition [3.1(a) and (b), H €
H((m — 1)|p;q;n —k) and H is a (+K,_1)-graph. Therefore in step 1 we have
H € A. According to Proposition c), Ng(v;) € M(H) for all i € {1,...,k},
hence in step 2 G is added to B. O

Let us note that if G € 7—~L(m|p;q;n) and n > q, then G # K,, and therefore
a(G) > 2. In this case, with the help of Algorithm we can obtain all maximal
graphs in ’H(m|p; ¢;n) by adding to independent vertices to the (+K,_1)-graphs in
H((m —1)| sq5m - 2).

It is clear that if G is a graph for which «(G) = 2 and H is a subgraph

of G obtained by removing independent vertices, then «(H) < 2. We modify
Algorithm in the following way to obtain the maximal graphs in H(m|p;q;n)

with independence number 2:

Algorithm 3.4. A modification of Algorithm[3.9 for finding all mazimal graphs in
H(m|p;q;n) with independence number 2 by adding 2 independent vertices to the
(+Kq_1)-graphs in H((m — 1)|p;q;n — 2) with independence number not greater
than 2.

In step 1 of Algorithm[3.4 we add the condition that the set A contains only the
(+K4—1)-graphs H((m — 1)|p; g;n — k) with independence number not greater than

2, and at the end of step 2.2 after the condition w(G + e) = q,Ve € E(G) we also
add the condition o(G) = 2.

Thus, finding all maximal graphs in ﬁ(m’p; ¢; n) with independence number 2 is
reduced to finding all (+K,_1)-graphs with independence number not greater than
2 in H(m — 1‘p; ¢;n — 2) and finding the remaining maximal graphs in ﬁ(m|p; q;n)
with independence number greater than or equal to 3 is reduced to finding all
(+K4—1)-graphs in H(m — 1|p;q;n —3). In this way we can obtain all maximal

graphs in 7—~l(m ’p; ¢; n) in steps, starting from graphs with a small number of vertices.

The nauty programs [I1] have an important role in this work. We use them for
fast generation of non-isomorphic graphs and for graph isomorph rejection.

4. COMPUTATION OF THE NUMBER F,(8];7)

From Theorem it becomes clear that in order to compute the numbers
F,(m|z;m — 1) we need the exact value of the number mg(6). According to Theorem

(¢), to obtain an upper bound for this number we need to know F,(8 &7 In
this section we compute this number by proving the following
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FIGURE 1. Graph T'; € H(8|;7;18)

Theorem 4.1. ﬁv(8|6;7) =18.

Proof. The inequality F, (8|6; 7) < 18 is proved in [I] with the help of the graph T'y
which is given on Figure see the proof of Theorem 1.10 in version 1 or the proof
of Theorem 1.9 in version 2). To obtain the lower bound we will prove with the
help of a computer that ﬁ(S’G; 7,17) = 0.

First, we search for maximal graphs in 7—~[(8| 6 05 17) with independence number
greater than 2. It is clear that K and K¢ — e are the only (+Kj)-graphs in
ﬁ(3 RYE 6). With the help of Algorithm We add 2 independent vertices to these

graphs to find all maximal graphs in ﬁ(4‘ o 0 8). By removing edges from them we

find all (+Kjs)-graphs in ﬁ(4|6; 7;8). In the same way, we successively obtain all
maximal and all (+Kjg)-graphs in the sets:

H(5] ;375 10), H(6| 5 7512), H(7| 575 14).

In the end, with the help of Algorithm we add 3 independent vertices to the
obtained (4 Kg)-graphs in ﬁ(? ¢ 7:14) to find all maximal graphs in ﬁ(8|6; 7,17)
with independence number greater than 2.

After that, we search for maximal graphs in 7—~L(8|6;7; 17) with independence
number 2. It is clear that K3 is the only (4Kg)-graph in ﬁ(2|6;7; 5). With the
help of Algorithm [3:4] we add 2 independent vertices this graph to find all maximal
graphs in ﬁ(3|6; 7,7) with independence number 2. By removing edges from them

we find all (+Kg)-graphs in ’;Q(3|6; 7,7) with independence number 2. In the same
way, we successively obtain all maximal and all (4+Kjg)-graphs with independence
number 2 in the sets:

H(4] ;3 7:9), H(5|; 7:11), H (6| 7:13), H(T

o S 15) and 7—[(8’6;7;17).
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The number of graphs found in each step is described in Table 1 in [|. In both

cases we do not obtain any maximal graphs in ﬁ(8|6; 7,17), therefore ﬁ(S’G; 7,17) =
0.

Corollary 4.2. 8 <mp(6) <11

Proof. The inequality mg(6) > 8 follows from the definition of mg and the upper
bound follows from Theorem (¢), p=06. O

5. PROOF OF THE MAIN THEOREM

Since ﬁU(SIG; 7) = 18, according to Theorem (a) it is enough to prove mg(6) =
8. According to Corollarythis equality will be proved if we prove F, (9|6; 8) > 18,
ﬁv(10|6; 9) > 19 and fv(11|6; 10) > 20. The proof of these inequalities is similar to
the proof of F, (8|6; 7) > 17 from Theorem It is clear that it is enough to prove
ﬁ(m|6;m —1;m+9) =0 for m=9,10,11.

First, we search for maximal graphs in H(m/| ;m — 1;m 4+ 9) with independence
number greater than 2. It is clear that K,,,_o and K,,,_a—e are the only (+K,,_2)-graphs
in H((m —5) gim —1;m —2). With the help of Algorithm we successively
obtain all maximal and all (+K,,_2)-graphs in the sets:

H((m —4)|;;m — 1;m)

H((m — 3)’6;m—1;m—|—2)
Allm — D)~ tim +8
7—[(( |6, —1;m+6)

In the end, with the help of Algorlthm 2] we add 3 independent vertices to the
obtained (+K,,_2)-graphs in 7 ((m ’6, — 1;m + 6) to find all maximal graphs
in ﬂ(m‘ﬁ; m — 1;m 4+ 9) with independence number greater than 2.

After that, we search for maximal graphs in ﬁ(m} gm—1lm+ 9) with independence
number 2. It is clear that K,,_s is the only (+K,,_)-graph in H((m — 6)|6; m —1;m — 3).
With the help of Algorithm [3.4]we successively obtain all maximal and all (+K,,_2)-graphs

with independence number 2 in the sets:
H((m —=5)|s;m—1;m—1)

H((m —4)|;m — Lm + 1)
H((m —3)|;;m — Lm +3)
H((m —2)|;m — 1;m +5)
H((m —1)|gm — L;m +7)
'H(m|6, —1;m+9).
The number of graphs found in each step is given in Table 2, Table 3 and
Table 4 in []. In both cases we do not obtain any maximal graphs in the sets
ﬁ( m—1;m+9), m=29,10,11, hence it follows ﬁv(9’6;8) > 18, ﬁv(10’6;9) >

19, ﬁv(ll}(i; 10) > 20 and mq(6) = 8. Thus we finish the proof of the Main Theorem.
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APPENDIX A. RESULTS OF

THE COMPUTATIONS

set independence | maximal (+Kg)-graphs
number graphs

71(3] 5 7:6) - 2

73(4]6; 7:8) - 2 13

H(5|4;7:10) - 8 324

H (645 7:12) - 56 104 271

H(7|5:7:14) 18 1825

H(8|y;7:17) >3 0

g(2]6; 7:5) <2 1

H(3|s:T:7) =2 1 3

H(4]5:7:9) =2 2 22

@(5|6; 7:11) =2 5 468

H(6];7;13) =2 24 97 028

H(7|5: 7 15) =2 468 2 395 573

H(8|;7517) 2 0

H(8|y;7:17) - 0

TABLE 1. Steps in the search of all maximal graphs in 7—~l(8|6; 7;17)

set independence | maximal (+K7)-graphs
number graphs

71(4] 687 - 2

H(5]:8;9) - 2 13

H(6]4:8:11) - 8 326

H(7|:8;13) - 56 105 125

H(8|:8;15) 20 1844

H(9)],;8;18) > 3 0

ﬂ(3]6;8;6) <2 1

g(4y 58:8) =2 1 3

H(5],:8;10) =2 2 22

71(6|6;8; 12) =2 5 489

H(T|s:8:14) =2 25 119 124

tt(8|6;8; 16) =2 506 2 747 120

H(9],;;8;18) 2 0

H(9],;8;18) - 0

TABLE 2. Steps in the search of all maximal graphs in 7—~l(9|6; 8;18)



MODIFIED VERTEX FOLKMAN NUMBERS

set independence | maximal (+K3g)-graphs
number graphs

H(55:9;8) - 2

H(6]:9;10) - 2 13

71(7|6;9; 12) - 8 327

H(8|; 9 14) - 56 105 281

H(9];9:16) 20 1845

H(10|; 9;19) > 3 0

H(4|5:9;7) <2 1

71(5|6;9;9) =2

H(6]4;9:11) =2 2 22

H(7|;9;13) =2 5 496

H(8|;9;15) =2 25 121 498

72(9]6;9; 17) =2 509 2 749 155

H(10];9;19) =2 0

H(10|;9;19) - 0

TABLE 3. Steps in the search of all maximal graphs in ﬁ(lO’G; 9;19)

set independence | maximal (+Ky)-graphs
number graphs

H(6],:10;9) - 2

H(7|:10;11) - 2 13

’}11(8|6; 10;13) - 8 327

tt(9|6; 10;15) - 56 105 314

H(10| ;105 17) - 20 1845

#(11],;10; 20) > 3 0

71(5|6; 10;8) <2 1

71(6|6; 10;10) =2 3

ql‘(?’é 10;12) =2 2 22

H(8|;10;14) =2 5 498

72(9]6; 10; 16) =2 25 121 863

71(10\6; 10;18) =2 509 2749 171

H(11],;; 105 20) =2 0

H(11] ;105 20) - 0

TABLE 4. Steps in the search of all maximal graphs in ﬁ(11|6; 10; 20)
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