
MODIFIED VERTEX FOLKMAN NUMBERS

ALEKSANDAR BIKOV AND NEDYALKO NENOV

Abstract. Let a1, ..., as be positive integers. For a graph G the expression

G
v→ (a1, ..., as)

means that for every coloring of the vertices of G in s colors (s-coloring) there

exists i ∈ {1, ..., s}, such that there is a monochromatic ai-clique of color i. If
m and p are positive integers, then

G
v→ m

∣∣
p

means that for arbitrary positive integers a1, ..., as (s is not fixed), such that
s∑

i=1

(ai − 1) + 1 = m an max {a1, ..., as} ≤ p we have G
v→ (a1, ..., as). Let

H̃(m
∣∣
p
; q) = {G : G

v→ m
∣∣
p

and ω(G) < q}.

The modified vertex Folkman numbers are defined by the equality

F̃ (m
∣∣
p
; q) = min {|V (G)| : G ∈ H̃(m

∣∣
p
; q)}.

If q ≥ m these numbers are known and they are easy to compute. In the case

q = m − 1 we know all of the numbers when p ≤ 5. In this work we consider
the next unknown case p = 6 and we prove with the help of a computer that

F̃ (m
∣∣
6
;m− 1) = m + 10.

1. Introduction

In this paper only finite, non-oriented graphs without loops and multiple edges
are considered. The following notations are used:

V(G) - the vertex set of G;
E(G) - the edge set of G;
G - the complement of G;
ω(G) - the clique number of G;
α(G) - the independence number of G;
χ(G) - the chromatic number of G;
N(v),NG(v), v ∈ V(G) - the set of all vertices of G adjacent to v;
d(v), v ∈ V(G) - the degree of the vertex v, i.e. d(v) = |N(v)|;
G− v, v ∈ V(G) - subgraph of G obtained from G by deleting the vertex v and

all edges incident to v;
G− e, e ∈ E(G) - subgraph of G obtained from G by deleting the edge e;
G+ e, e ∈ E(G) - supergraph of G obtained by adding the edge e to E(G).
Kn - complete graph on n vertices;
Cn - simple cycle on n vertices;
m0 = m0(p) - see Theorem 2.1;
G1 + G2 - a graph G for which: V(G) = V(G1) ∪ V(G2) and E(G) = E(G1) ∪

E(G2) ∪ E′, where E′ = {[x, y] : x ∈ V(G1), y ∈ V(G2)}, i.e. G is obtained by
connecting every vertex of G1 to every vertex of G2.
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All undefined terms can be found in [18].

Let a1, ..., as be positive integers. The expression G
v→ (a1, ..., as) means that

for any coloring of V(G) in s colors (s-coloring) there exists i ∈ {1, ..., s} such that

there is a monochromatic ai-clique of color i. In particular, G
v→ (a1) means that

ω(G) ≥ a1.
Define:

H(a1, ..., as; q) =
{
G : G

v→ (a1, ..., as) and ω(G) < q
}
.

H(a1, ..., as; q;n) = {G : G ∈ H(a1, ..., as; q) and |V(G)| = n} .

The vertex Folkman number Fv(a1, ..., as; q) is defined by the equality:

Fv(a1, ..., as; q) = min {|V(G)| : G ∈ H(a1, ..., as; q)} .
Folkman proves in [5] that:

(1.1) Fv(a1, ..., as; q) exists ⇔ q > max {a1, ..., as} .
Other proofs of (1.1) are given in [4] and [9].
In [10] for arbitrary positive integers a1, ..., as the following are defined

(1.2) m(a1, ..., as) = m =

s∑
i=1

(ai − 1) + 1 and p = max {a1, ..., as} .

Obviously, Km
v→ (a1, ..., as) and Km−1

v9 (a1, ..., as). Therefore,

Fv(a1, ..., as; q) = m, q ≥ m+ 1.

The following theorem for the numbers Fv(a1, ..., as;m) is true:

Theorem 1.1. Let a1, ..., as be positive integers and m and p are defined by (1.2).
If m ≥ p+ 1, then:

Fv(a1, ..., as;m) = m+ p, [10],[9].(a)

Km+p − C2p+1 = Km−p−1 + C2p+1(b)

is the only extremal graph in H(a1, ..., as;m), [9].

The condition m ≥ p+1 is necessary according to (1.1). Other proofs of Theorem
1.1 are given in [12] and [13].

Very little is known about the numbers Fv(a1, ..., as; q), q ≤ m− 1. In this work
we suggest a method to bound these numbers with the help of the modified vertex

Folkman numbers F̃v(m
∣∣
p
; q), which are defined below.

Definition 1.2. Let G be a graph and m and p be positive integers. The expression

G
v→ m

∣∣
p

means that for any choice of positive integers a1, ..., as (s is not fixed), such that

m =

s∑
i=1

(ai − 1) + 1 and max {a1, ..., as} ≤ p, we have

G
v→ (a1, ..., as).

Define:

H̃(m
∣∣
p
; q) =

{
G : G

v→ m
∣∣
p

and ω(G) < q
}

.

H̃(m
∣∣
p
; q;n) =

{
G : G ∈ H̃(m

∣∣
p
; q) and |V(G)| = n

}
.
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The modified vertex Folkman numbers are defined by the equality:

F̃v(m
∣∣
p
; q) = min

{
|V(G)| : G ∈ H̃(m

∣∣
p
; q)
}
.

The graph G is called a maximal graph in H̃(m
∣∣
p
; q) if G ∈ H̃(m

∣∣
p
; q), but

G+ e 6∈ H̃(m
∣∣
p
; q),∀e ∈ E(G), i.e. ω(G+ e) ≥ q,∀e ∈ E(G).

For convenience we will also define the following term:

Definition 1.3. The graph G is called a (+Kt)-graph if G + e contains a new
t-clique for all e ∈ E(G).

Obviously, G ∈ H̃(m
∣∣
p
; q) is a maximal graph in H̃(m

∣∣
p
; q) if and only if G is a

(+Kq)-graph.

From the definition of the modified Folkman numbers it becomes clear that if
a1, ..., as are positive integers and m and p are defined by (1.2), then

(1.3) Fv(a1, ..., as; q) ≤ F̃v(m
∣∣
p
; q).

Defining and computing the modified Folkman numbers is appropriate because of
the following reasons:

1) On the left side of (1.3) there is actually a whole class of numbers, which are

bound by only one number F̃v(m
∣∣
p
; q).

2) The upper bound for F̃v(m
∣∣
p
; q) is easier to compute than the numbers

Fv(a1, ..., as) because of the following

Theorem 1.4. ([1], Theorem 7.2) Let m, m0, p and q be positive integers, m ≥ m0

and q > min {m0, p}. Then

F̃v(m
∣∣
p
;m−m0 + q) ≤ F̃v(m0

∣∣
p
; q) +m−m0.

Therefore, if we know the value of one number F̃v(m′
∣∣
p
; q) we can obtain an

upper bound for F̃v(m
∣∣
p
; q) where m ≥ m′.

3) As we will see below (Theorem 2.1), the computation of the numbers F̃v(m
∣∣
p
;m− 1)

is reduced to finding the exact values of the first several of these numbers (bounds
for the number of exact values needed are given in 2.1 (c)).

Let A be an independent set of vertices in G. If V1 ∪ ... ∪ Vs is (a1, ..., as)-free
s-coloring of V(G − A) (i.e. Vi does not contain an ai-clique, i = 1, ..., s), then
A ∪ V1 ∪ ... ∪ Vs is (2, a1, ..., as)-free (s+ 1)-coloring of V(G). Therefore

(1.4) G
v→ (2, a1, ..., as)⇒ G−A v→ (a1, ..., as).

Further we will need the following

Proposition 1.5. Let G
v→ m

∣∣
p

and A is an independent set of vertices in G.

Then G−A v→ (m− 1)
∣∣
p
.

Proof. Let a1, .., as be positive integers, such that

m− 1 =

s∑
i=1

(ai − 1) + 1 and 2 ≤ ai ≤ p.

Then

m = (2− 1) +
s∑

i=1

(ai − 1) + 1.

It follows that G
v→ (2, a1, ..., as) and from (1.4) we obtain G−A v→ (a1, ..., as). �
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It is easy to see that if q > m, then Fv(a1, ..., as; q) = F̃v(m
∣∣
p
; q) = m. From

Theorem 1.1 it follows that Fv(a1, ..., as;m) = F̃v(m
∣∣
p
;m) = m + p. In the case

q = m− 1 the following general bounds are known:

(1.5) m+ p+ 2 ≤ F̃v(m
∣∣
p
;m− 1) ≤ m+ 3p, m ≥ p+ 2.

The upper bound follows from the proof of the Main Theorem from [7] and the
lower bound follows from (1.3) and Fv(a1, ..., as; q) ≥ m+ p+ 2, [12].

We know all the numbers F̃v(m
∣∣
p
;m− 1) where p ≤ 5 (in the cases p ≤ 4 see the

Remark after Theorem 4.5 and (1.5) from [1], and in the case p = 5 see Theorem
7.4 also from [1]). It is also known that

m+ 9 ≤ F̃v(m
∣∣
6
;m− 1) ≤ m+ 10, [1]

In this work we complete the computation of the numbers F̃v(m
∣∣
6
;m− 1) by

proving

Main Theorem 1. F̃v(m
∣∣
6
;m− 1) = m+ 10, m ≥ 8.

2. A theorem for the numbers F̃v(m
∣∣
p
;m− 1)

We will need the following fact:

(2.1) G
v→ (a1, ..., as)⇒ χ(G) ≥ m, [13] (see also [1]).

It is easy to prove (see Proposition 4.4 from [1]) that

(2.2) F̃v(m
∣∣
p
;m− 1) exists ⇔ m ≥ p+ 2.

In [1](version 1) we formulate without proof the following

Theorem 2.1. Let m0(p) = m0 be the smallest positive integer for which

min
m≥p+2

{
F̃v(m

∣∣
p
;m− 1)−m

}
= F̃v(m0

∣∣
p
;m0 − 1)−m0.

Then:

F̃v(m
∣∣
p
;m− 1) = F̃v(m0

∣∣
p
;m0 − 1) +m−m0, m ≥ m0.(a)

if m0 > p+ 2 and G is an extremal graph in H̃(m0

∣∣
p
;m0 − 1), then(b)

G
v→ (2,m0 − 2).

m0 < F̃v((p+ 2)
∣∣
p
; p+ 1)− p.(c)

In this section we present a proof of Theorem 2.1.
The condition m ≥ p+ 2 is necessary according to (2.2).

Proof. (a) According to the definition of m0(p) = m0 we have

F̃v(m
∣∣
p
;m− 1) ≥ F̃v(m0

∣∣
p
;m0 − 1) +m−m0, m ≥ p+ 2.

According to Theorem 1.4 if m ≥ m0 the opposite inequality is also true.
(b) Assume the opposite is true and let
V(G) = V1 ∪ V2, V1 ∩ V2 = ∅,

where V1 is an independent set and V2 does not contain an (m0 − 2)-clique. Let

G1 = G[V2] = G − V1. According to Proposition 1.5, from G
v→ m0

∣∣
p

it follows

G1
v→ (m0 − 1)

∣∣
p
. Since ω(G1) < m0 − 2, G1 ∈ H̃((m0 − 1)

∣∣
p
;m0 − 2). Therefore

|V(G)| − 1 ≥ |V(G1)| ≥ F̃v((m0 − 1)
∣∣
p
;m0 − 2).

Since |V(G)| = F̃v(m0

∣∣
p
;m0 − 1), from these inequalities it follows that
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F̃v(m0

∣∣
p
;m0 − 1)−m0 ≥ F̃v((m0 − 1)

∣∣
p
;m0 − 2)− (m0 − 1),

which contradicts the definition of m0.
(c) Ifm0 = p+2, then from (1.5) we have F̃v((p+ 2)

∣∣
p
; p+ 1) ≥ 2p+4 = p+2+m0

and therefore in this case the inequality (c) is true.

Let m0 > p + 2 and G be an extremal graph in H̃(m0

∣∣
p
;m0 − 1). If a1, ..., as

are positive integers, such that m =

s∑
i=1

(ai − 1) + 1 and max {a1, ..., as} ≤ p, then

G
v→ (a1, ..., as) and according to (2.1), χ(G) ≥ m0. From (b) and Theorem 1.1 we

see that |V(G)| ≥ 2m0 − 3 and |V(G)| = 2m0 − 3 only if G = C2m0−3. However,
the last equality is not possible because χ(G) ≥ m0 and χ(C2m0−3) = m0 − 1.
Therefore
|V(G)| = F̃v(m0

∣∣
p
;m0 − 1) ≥ 2m0 − 2

Since m0 > p+ 2 from the definition of m0 we have

F̃v(m0

∣∣
p
;m0 − 1)−m0 < F̃v((p+ 2)

∣∣
p
; p+ 1)− p− 2.

From these inequalities the inequality (c) follows easily. �

3. Algorithms

In this section we present algorithms for finding all maximal graphs in H̃(m
∣∣
p
; q;n)

with the help of a computer. The remaining graphs in this set can be obtained by
removing edges from the maximal graphs. The idea for these algorithms comes
from [14] (see Algorithm 1). Similar algorithms are used in [1], [2], [19], [8], [15].
Also with the help of the computer, results for Folkman numbers are obtained in
[6], [17], [16] and [3].

The following proposition for maximal graphs in H̃(m
∣∣
p
; q;n) will be useful

Proposition 3.1. Let G be a maximal graph in H̃(m
∣∣
p
; q;n). Let v1, v2, ..., vk be

independent vertices of G and H = G− {v1, v2, ..., vk}. Then:

H ∈ H̃((m− 1)
∣∣
p
; q;n− k)(a)

H is a (+Kq−1)-graph(b)

NG(vi) is a maximal Kq−1-free subset of V(H), i = 1, ..., k(c)

Proof. The proposition (a) follows from Proposition 1.5, (b) and (c) follow from
the maximality of G. �

We will define an algorithm, which is based on Proposition 3.1, and generates

all maximal graphs in H̃(m
∣∣
p
; q;n) with independence number at least k.

Algorithm 3.2. Finding all maximal graphs in H̃(m
∣∣
p
; q;n) with independence

number at least k by adding k independent vertices to the (+Kq−1)-graphs in H̃((m− 1)
∣∣
p
; q;n− k).

1. Denote by A the set of all (+Kq−1)-graphs in H̃((m− 1)
∣∣
p
; q;n− k). The

obtained maximal graphs in H̃(m
∣∣
p
; q;n) will be output in B, let B = ∅.

2. For each graph H ∈ A:
2.1. Find the family M(H) = {M1, ...,Mt} of all maximal Kq−1-free subsets of

V(H).
2.2. Consider all the k-tuples (Mi1 ,Mi2 , ...,Mik) of elements of M(H), for

which 1 ≤ i1 ≤ ... ≤ ik ≤ t (in these k-tuples some subsets Mi can coincide).
For every such k-tuple construct the graph G = G(Mi1 ,Mi2 , ...,Mik) by adding to
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V(H) new independent vertices v1, v2, ..., vk, so that NG(vj) = Mij , j = 1, ..., k (see

Proposition 3.1 (c)). If ω(G+ e) = q,∀e ∈ E(G), then add G to B.
3. Exclude the isomorph copies of graphs from B.

4. Exclude from B all graphs which are not in H̃(m
∣∣
p
; q;n).

Theorem 3.3. Upon completion of Algorithm 3.2 the obtained set B is equal to

the set of all maximal graphs in H̃(m
∣∣
p
; q;n) with independence number at least k.

Proof. From step 4 we see that B ⊆ H̃(m
∣∣
p
; q;n) and from step 2.2 it becomes clear,

that B contains only maximal graphs in H̃(m
∣∣
p
; q;n) with independence number at

least k. Let G be an arbitrary maximal graph in H̃(m
∣∣
p
; q;n) with independence

number in k. We will prove that G ∈ B. Let v1, ..., vk be independent vertices
of G and H = G − {v1, ..., vk}. According to Proposition 3.1(a) and (b), H ∈
H̃((m− 1)

∣∣
p
; q;n− k) and H is a (+Kq−1)-graph. Therefore in step 1 we have

H ∈ A. According to Proposition 3.1(c), NG(vi) ∈ M(H) for all i ∈ {1, ..., k},
hence in step 2 G is added to B. �

Let us note that if G ∈ H̃(m
∣∣
p
; q;n) and n ≥ q, then G 6= Kn and therefore

α(G) ≥ 2. In this case, with the help of Algorithm 3.2 we can obtain all maximal

graphs in H̃(m
∣∣
p
; q;n) by adding to independent vertices to the (+Kq−1)-graphs in

H̃((m− 1)
∣∣
p
; q;n− 2).

It is clear that if G is a graph for which α(G) = 2 and H is a subgraph
of G obtained by removing independent vertices, then α(H) ≤ 2. We modify

Algorithm 3.2 in the following way to obtain the maximal graphs in H̃(m
∣∣
p
; q;n)

with independence number 2:

Algorithm 3.4. A modification of Algorithm 3.2 for finding all maximal graphs in

H̃(m
∣∣
p
; q;n) with independence number 2 by adding 2 independent vertices to the

(+Kq−1)-graphs in H̃((m− 1)
∣∣
p
; q;n− 2) with independence number not greater

than 2.

In step 1 of Algorithm 3.2 we add the condition that the set A contains only the

(+Kq−1)-graphs H̃((m− 1)
∣∣
p
; q;n− k) with independence number not greater than

2, and at the end of step 2.2 after the condition ω(G + e) = q,∀e ∈ E(G) we also
add the condition α(G) = 2.

Thus, finding all maximal graphs in H̃(m
∣∣
p
; q;n) with independence number 2 is

reduced to finding all (+Kq−1)-graphs with independence number not greater than

2 in H̃(m− 1
∣∣
p
; q;n− 2) and finding the remaining maximal graphs in H̃(m

∣∣
p
; q;n)

with independence number greater than or equal to 3 is reduced to finding all

(+Kq−1)-graphs in H̃(m− 1
∣∣
p
; q;n− 3). In this way we can obtain all maximal

graphs in H̃(m
∣∣
p
; q;n) in steps, starting from graphs with a small number of vertices.

The nauty programs [11] have an important role in this work. We use them for
fast generation of non-isomorphic graphs and for graph isomorph rejection.

4. Computation of the number F̃v(8
∣∣
6
; 7)

From Theorem 2.1 it becomes clear that in order to compute the numbers

F̃v(m
∣∣
6
;m− 1) we need the exact value of the numberm0(6). According to Theorem

2.1 (c), to obtain an upper bound for this number we need to know F̃v(8
∣∣
6
; 7). In

this section we compute this number by proving the following
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Γ1

Figure 1. Graph Γ1 ∈ H̃(8
∣∣
6
; 7; 18)

Theorem 4.1. F̃v(8
∣∣
6
; 7) = 18.

Proof. The inequality F̃v(8
∣∣
6
; 7) ≤ 18 is proved in [1] with the help of the graph Γ1

which is given on Figure 1(see the proof of Theorem 1.10 in version 1 or the proof
of Theorem 1.9 in version 2). To obtain the lower bound we will prove with the

help of a computer that H̃(8
∣∣
6
; 7; 17) = ∅.

First, we search for maximal graphs in H̃(8
∣∣
6
; 7; 17) with independence number

greater than 2. It is clear that K6 and K6 − e are the only (+K6)-graphs in

H̃(3
∣∣
6
; 7; 6). With the help of Algorithm 3.2 we add 2 independent vertices to these

graphs to find all maximal graphs in H̃(4
∣∣
6
; 7; 8). By removing edges from them we

find all (+K6)-graphs in H̃(4
∣∣
6
; 7; 8). In the same way, we successively obtain all

maximal and all (+K6)-graphs in the sets:

H̃(5
∣∣
6
; 7; 10), H̃(6

∣∣
6
; 7; 12), H̃(7

∣∣
6
; 7; 14).

In the end, with the help of Algorithm 3.2 we add 3 independent vertices to the

obtained (+K6)-graphs in H̃(7
∣∣
6
; 7; 14) to find all maximal graphs in H̃(8

∣∣
6
; 7; 17)

with independence number greater than 2.

After that, we search for maximal graphs in H̃(8
∣∣
6
; 7; 17) with independence

number 2. It is clear that K5 is the only (+K6)-graph in H̃(2
∣∣
6
; 7; 5). With the

help of Algorithm 3.4 we add 2 independent vertices this graph to find all maximal

graphs in H̃(3
∣∣
6
; 7; 7) with independence number 2. By removing edges from them

we find all (+K6)-graphs in H̃(3
∣∣
6
; 7; 7) with independence number 2. In the same

way, we successively obtain all maximal and all (+K6)-graphs with independence
number 2 in the sets:
H̃(4

∣∣
6
; 7; 9), H̃(5

∣∣
6
; 7; 11), H̃(6

∣∣
6
; 7; 13), H̃(7

∣∣
6
; 7; 15) and H̃(8

∣∣
6
; 7; 17).
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The number of graphs found in each step is described in Table 1 in []. In both

cases we do not obtain any maximal graphs in H̃(8
∣∣
6
; 7; 17), therefore H̃(8

∣∣
6
; 7; 17) =

∅. �

Corollary 4.2. 8 ≤ m0(6) ≤ 11

Proof. The inequality m0(6) ≥ 8 follows from the definition of m0 and the upper
bound follows from Theorem 2.1 (c), p = 6. �

5. Proof of the Main Theorem

Since F̃v(8
∣∣
6
; 7) = 18, according to Theorem 2.1 (a) it is enough to prove m0(6) =

8. According to Corollary 4.2 this equality will be proved if we prove F̃v(9
∣∣
6
; 8) > 18,

F̃v(10
∣∣
6
; 9) > 19 and F̃v(11

∣∣
6
; 10) > 20. The proof of these inequalities is similar to

the proof of F̃v(8
∣∣
6
; 7) > 17 from Theorem 4.1. It is clear that it is enough to prove

H̃(m
∣∣
6
;m− 1;m+ 9) = ∅ for m = 9, 10, 11.

First, we search for maximal graphs in H̃(m
∣∣
6
;m− 1;m+ 9) with independence

number greater than 2. It is clear thatKm−2 andKm−2−e are the only (+Km−2)-graphs

in H̃((m− 5)
∣∣
6
;m− 1;m− 2). With the help of Algorithm 3.2 we successively

obtain all maximal and all (+Km−2)-graphs in the sets:

H̃((m− 4)
∣∣
6
;m− 1;m)

H̃((m− 3)
∣∣
6
;m− 1;m+ 2)

H̃((m− 2)
∣∣
6
;m− 1;m+ 4)

H̃((m− 1)
∣∣
6
;m− 1;m+ 6)

In the end, with the help of Algorithm 3.2 we add 3 independent vertices to the

obtained (+Km−2)-graphs in H̃((m− 1)
∣∣
6
;m− 1;m+ 6) to find all maximal graphs

in H̃(m
∣∣
6
;m− 1;m+ 9) with independence number greater than 2.

After that, we search for maximal graphs in H̃(m
∣∣
6
;m− 1;m+ 9) with independence

number 2. It is clear thatKm−3 is the only (+Km−2)-graph in H̃((m− 6)
∣∣
6
;m− 1;m− 3).

With the help of Algorithm 3.4 we successively obtain all maximal and all (+Km−2)-graphs
with independence number 2 in the sets:

H̃((m− 5)
∣∣
6
;m− 1;m− 1)

H̃((m− 4)
∣∣
6
;m− 1;m+ 1)

H̃((m− 3)
∣∣
6
;m− 1;m+ 3)

H̃((m− 2)
∣∣
6
;m− 1;m+ 5)

H̃((m− 1)
∣∣
6
;m− 1;m+ 7)

H̃(m
∣∣
6
;m− 1;m+ 9).

The number of graphs found in each step is given in Table 2, Table 3 and
Table 4 in []. In both cases we do not obtain any maximal graphs in the sets

H̃(m
∣∣
6
;m− 1;m+ 9), m = 9, 10, 11, hence it follows F̃v(9

∣∣
6
; 8) > 18, F̃v(10

∣∣
6
; 9) >

19, F̃v(11
∣∣
6
; 10) > 20 andm0(6) = 8. Thus we finish the proof of the Main Theorem.
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[9] T. Luczak, A. Ruciński, and S. Urbański. On minimal vertex Folkman graphs. Discrete

Mathematics, 236:245–262, 2001.
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Appendix A. Results of the computations

set independence
number

maximal
graphs

(+K6)-graphs

H̃(3
∣∣
6
; 7; 6) - 2

H̃(4
∣∣
6
; 7; 8) - 2 13

H̃(5
∣∣
6
; 7; 10) - 8 324

H̃(6
∣∣
6
; 7; 12) - 56 104 271

H̃(7
∣∣
6
; 7; 14) - 18 1825

H̃(8
∣∣
6
; 7; 17) ≥ 3 0

H̃(2
∣∣
6
; 7; 5) ≤ 2 1

H̃(3
∣∣
6
; 7; 7) = 2 1 3

H̃(4
∣∣
6
; 7; 9) = 2 2 22

H̃(5
∣∣
6
; 7; 11) = 2 5 468

H̃(6
∣∣
6
; 7; 13) = 2 24 97 028

H̃(7
∣∣
6
; 7; 15) = 2 468 2 395 573

H̃(8
∣∣
6
; 7; 17) = 2 0

H̃(8
∣∣
6
; 7; 17) - 0

Table 1. Steps in the search of all maximal graphs in H̃(8
∣∣
6
; 7; 17)

set independence
number

maximal
graphs

(+K7)-graphs

H̃(4
∣∣
6
; 8; 7) - 2

H̃(5
∣∣
6
; 8; 9) - 2 13

H̃(6
∣∣
6
; 8; 11) - 8 326

H̃(7
∣∣
6
; 8; 13) - 56 105 125

H̃(8
∣∣
6
; 8; 15) - 20 1844

H̃(9
∣∣
6
; 8; 18) ≥ 3 0

H̃(3
∣∣
6
; 8; 6) ≤ 2 1

H̃(4
∣∣
6
; 8; 8) = 2 1 3

H̃(5
∣∣
6
; 8; 10) = 2 2 22

H̃(6
∣∣
6
; 8; 12) = 2 5 489

H̃(7
∣∣
6
; 8; 14) = 2 25 119 124

H̃(8
∣∣
6
; 8; 16) = 2 506 2 747 120

H̃(9
∣∣
6
; 8; 18) = 2 0

H̃(9
∣∣
6
; 8; 18) - 0

Table 2. Steps in the search of all maximal graphs in H̃(9
∣∣
6
; 8; 18)
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set independence
number

maximal
graphs

(+K8)-graphs

H̃(5
∣∣
6
; 9; 8) - 2

H̃(6
∣∣
6
; 9; 10) - 2 13

H̃(7
∣∣
6
; 9; 12) - 8 327

H̃(8
∣∣
6
; 9; 14) - 56 105 281

H̃(9
∣∣
6
; 9; 16) - 20 1845

H̃(10
∣∣
6
; 9; 19) ≥ 3 0

H̃(4
∣∣
6
; 9; 7) ≤ 2 1

H̃(5
∣∣
6
; 9; 9) = 2 1 3

H̃(6
∣∣
6
; 9; 11) = 2 2 22

H̃(7
∣∣
6
; 9; 13) = 2 5 496

H̃(8
∣∣
6
; 9; 15) = 2 25 121 498

H̃(9
∣∣
6
; 9; 17) = 2 509 2 749 155

H̃(10
∣∣
6
; 9; 19) = 2 0

H̃(10
∣∣
6
; 9; 19) - 0

Table 3. Steps in the search of all maximal graphs in H̃(10
∣∣
6
; 9; 19)

set independence
number

maximal
graphs

(+K9)-graphs

H̃(6
∣∣
6
; 10; 9) - 2

H̃(7
∣∣
6
; 10; 11) - 2 13

H̃(8
∣∣
6
; 10; 13) - 8 327

H̃(9
∣∣
6
; 10; 15) - 56 105 314

H̃(10
∣∣
6
; 10; 17) - 20 1845

H̃(11
∣∣
6
; 10; 20) ≥ 3 0

H̃(5
∣∣
6
; 10; 8) ≤ 2 1

H̃(6
∣∣
6
; 10; 10) = 2 1 3

H̃(7
∣∣
6
; 10; 12) = 2 2 22

H̃(8
∣∣
6
; 10; 14) = 2 5 498

H̃(9
∣∣
6
; 10; 16) = 2 25 121 863

H̃(10
∣∣
6
; 10; 18) = 2 509 2 749 171

H̃(11
∣∣
6
; 10; 20) = 2 0

H̃(11
∣∣
6
; 10; 20) - 0

Table 4. Steps in the search of all maximal graphs in H̃(11
∣∣
6
; 10; 20)
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