Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Serdica

Mathematical Journal

Сердика

Математическо списание

The attached copy is furnished for non-commercial research and education use only.
Authors are permitted to post this version of the article to their personal websites or institutional repositories and to share with other researchers in the form of electronic reprints.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to third party websites are prohibited.
For further information on
Serdica Mathematical Journal
which is the new series of
Serdica Bulgaricae Mathematicae Publicationes
visit the website of the journal http://www.math.bas.bg/~serdica
or contact: Editorial Office
Serdica Mathematical Journal
Institute of Mathematics and Informatics
Bulgarian Academy of Sciences
Telephone: (+359-2)9792818, FAX:(+359-2)971-36-49
e-mail: serdica@math.bas.bg

ON THE 3-COLOURING VERTEX FOLKMAN NUMBER $F(2,2,4)$

Nedyalko Dimov Nenov
Communicated by R. Hill

Abstract. In this note we prove that $F(2,2,4)=13$.
We consider only finite, non-oriented graphs, without loops and multiple edges. $V(G)$ and $E(G)$ denote the set of the vertices and the set of the edges of the graph G, respectively. We say that G is an n-vertex graph when $|V(G)|=n$. For $v \in V(G)$ we denote by $\operatorname{Ad}(v)$ the set of all vertices, adjacent to v. We call a p-clique of G a set of p vertices, each two of which are adjacent. The biggest natural number p, such that the graph G contains a p-clique is denoted by $\operatorname{cl}(G)$. A set of vertices in a graph G is said to be independent if no two of them are adjacent. The cardinality of any largest independent set of vertices in G is denoted by $\alpha(G)$.

If $W \subseteq V(G)$, then $G-W$ denotes the subgraph of the graph G, which is obtained from G by the removal of the vertices belonging to W. The simple cycle of length n is denoted by C_{n}. By \bar{G} we denote the complementary graph of G.

[^0]The Ramsey number $R(p, q)$ is the smallest natural number n, such that for arbitrary n-vertex graph G, either $\operatorname{cl}(G) \geq p$ or $\alpha(G) \geq q$. We need the identities $R(3,4)=R(4,3)=9$, [3].

Definition. Let G be a graph and $a_{1}, \ldots, a_{r}, r \geq 2$, be positive integers. The symbol $G \rightarrow\left(a_{1}, \ldots, a_{r}\right)$ means that for every r-colouring of the vertices of G

$$
V(G)=V_{1} \cup \cdots \cup V_{r}, \quad V_{i} \cap V_{j}=\emptyset, \quad i \neq j
$$

there exists $i \in\{1,2, \ldots, r\}$, such that the graph G contains a monochromatic a_{i}-clique K of colour i, i.e. $K \subseteq V_{i}$.

We put

$$
\begin{gathered}
H\left(a_{1}, \ldots, a_{r}\right)=\left\{G: G \rightarrow\left(a_{1}, \ldots, a_{r}\right) \text { and } \operatorname{cl}(G)=\max \left(a_{1}, \ldots, a_{r}\right)\right\} \\
F\left(a_{1}, \ldots, a_{r}\right)=\min \left\{|V(G)|: G \in H\left(a_{1}, \ldots, a_{r}\right)\right\}
\end{gathered}
$$

Folkman proved in [2] that $H\left(a_{1}, \ldots, a_{r}\right) \neq \emptyset . \quad F\left(a_{1}, \ldots, a_{r}\right)$ are called r-colouring vertex Folkman numbers. It is clear that

$$
G \rightarrow\left(a_{1}, \ldots, a_{r}\right) \Longleftrightarrow G \rightarrow\left(a_{\varphi(1)}, \ldots, a_{\varphi(r)}\right)
$$

for any permutation φ of the symmetric group S_{r}. Hence $F\left(a_{1}, \ldots, a_{r}\right)$ is a symmetric function and thus we may assume that $a_{1} \leq a_{2} \leq \cdots \leq a_{r}$. Note that if $a_{1}=1$, then $F\left(a_{1}, \ldots, a_{r}\right)=F\left(a_{2}, \ldots, a_{r}\right)$. Hence we may assume also that $a_{i} \geq 2, i=1, \ldots, r$.

For the 2-colouring vertex Folkman numbers $F(p, q)$ the following facts are known:

Theorem A ([5]). For any $p \geq 2$, we have $F(2, p)=2 p+1$.

Theorem B ([6]). Let $G \in H(2, p), p \geq 2$, and $|V(G)|=2 p+1$. Then $G=\bar{C}_{2 p+1}$.

Theorem C ([10]). For any $p \geq 3$, the Folkman numbers $F(p, p)$ satisfy inequality $F(p, p)<\lfloor p!e\rfloor-1$.

Theorem D ([6]). Let p, q be any integers such that $2 \leq p \leq q$. Then

$$
F(p, q) \leq 2 \sum_{i=0}^{p-1} \frac{q!}{(q-i)!}-1
$$

We constructed in [9] a 14-vertex graph $G \in H(3,3)$, showing that $F(3,3) \leq$ 14. In a joint paper with E. Nedialkov [8], we proved that $F(3,3) \geq 12$. The work [13] provides a computer proof of the inequality $F(3,3) \geq 14$ and thus $F(3,3)=14$. According to Theorem D , we have $F(3,4) \leq 33$. In [11], it is proved that $F(3,4)=13$.

The numbers $F(2,2,2)=11$ and $F(2,2,2,2)=22$ are the only known vertex Folkman numbers for more that two colours. Mycielski [7], presented an 11-vertex graph $G \in H(2,2,2)$, proving that $F(2,2,2) \leq 11$. Chvatal [1], showed that the Mycielski graph is the smallest possible graph in the class $H(2,2,2)$ and hence $F(2,2,2)=11$. The equality $F(2,2,2,2)=22$ is proved by Jensen and Royle in [4]. The inequality $F(3,3) \leq 14$ obviously implies $F(2,2,3) \leq 14$, but the exact value of $F(2,2,3)$ is unknown.

In this note we prove the following:

Theorem. $F(2,2,4)=13$.

In the proof of this theorem, we shall use the following:

Lemma. Let G be a 12-vertex graph with $\operatorname{cl}(G)=4$ and $\alpha(G)=2$. Then $G \notin H(2,2,4)$.

Proof. Assume the opposite, i.e. $G \rightarrow(2,2,4)$. It is proved in [12] that the graph G is a subgraph of the graph P (the complementary graph \bar{P} is given in Fig. 1). Hence $P \rightarrow(2,2,4)$. Since in 3-colouring $V(P)=V_{1} \cup V_{2} \cup V_{3}$, where $V_{1}=\left\{v_{1}, v_{2}\right\}, V_{2}=\left\{v_{5}, v_{6}\right\}$, the sets V_{1} and V_{2} are independent and V_{3} contains no 4-cliques, this is a contradiction.

Proof of the Theorem.

1. Proof of the inequality $F(2,2,4) \leq 13$. We consider the graph Q, which complementary graph \bar{Q} is given in Fig. 2. This graph is a well-known construction of Greenwood and Gleason [3], which shows that $R(3,5) \geq 14$. We prove the inequality $F(2,2,4) \leq 13$ by showing that $Q \in H(2,2,4)$. Obviously

Fig. 1. Graph \bar{P}

Fig. 2. Graph \bar{Q}

Fig. 3. Graph \bar{C}_{9}
$\alpha(Q)=2$ and it is true that $\operatorname{cl}(Q)=4,[3]$. Let $V_{1} \cup V_{2} \cup V_{3}$ be a 3-colouring of the vertices of the graph Q and suppose that V_{1} and V_{2} are independent sets of vertices in Q. From $\alpha(Q)=2$ it follows that $\left|V_{i}\right| \leq 2, i=1,2$. Hence $\left|V_{3}\right| \geq 9$. From $\alpha(Q)=2$ and $R(4,3)=9$ it follows that V_{3} contains a 4 -clique. So, $Q \in H(2,2,4)$. Since $|V(Q)|=13$ it follows that $F(2,2,4) \leq 13$.
2. Proof of the inequality $F(2,2,4) \geq 13$. Assume the opposite. Let $G \in H(2,2,4)$ and $|V(G)| \leq 12$. By adding some isolated vertices, we may assume that $|V(G)|=12$. Let A by an independent set of vertices of the graph $G,|A|=\alpha(G)$ and $G_{1}=G-A$. From $G \in H(2,2,4)$ it follows that $G_{1} \in H(2,4)$. According to Theorem A, $\left|V\left(G_{1}\right)\right| \geq 9$. Hence $\alpha(G)=|A| \leq 3$. Since $\operatorname{cl}(G)=4$, we have $\alpha(G) \geq 2$. The Lemma yields $|A|=3$ and $\left|V\left(G_{1}\right)\right|=9$. According to Theorem B, $G_{1}=\bar{C}_{9}$ (see Fig. 3). We consider the set $M_{1}=\left\{v_{1}, v_{3}, v_{4}, v_{7}, v_{8}\right\}$ of vertices of the graph $G_{1}=\bar{C}_{9}$. We will prove that there is a vertex $u \in A$ such that $M_{1} \subseteq \operatorname{Ad}(u)$. Assume the opposite. Then if $u \in A$ and $v_{1}, v_{3}, v_{8} \in \operatorname{Ad}(u)$ it follows that $v_{4} \notin \operatorname{Ad}(u)$ or $v_{7} \notin \operatorname{Ad}(u)$. From $\operatorname{cl}(G)=4$ it follows also that if $u \in A$ and $v_{1}, v_{3}, v_{8} \in \operatorname{Ad}(u)$, then $v_{5}, v_{6} \notin \operatorname{Ad}(u)$. We denote by W_{1} the set of those of the vertices $u \in A$ for which $v_{1}, v_{3}, v_{8} \in \operatorname{Ad}(u)$ and $v_{4} \notin \operatorname{Ad}(u)$. By W_{2} we denote the set of those $u \in A$ for which $v_{1}, v_{3}, v_{4}, v_{8} \in \operatorname{Ad}(u)$ (and hence $\left.v_{7} \notin \operatorname{Ad}(u)\right)$. Let $W_{3}=A \backslash\left(W_{1} \cup W_{2}\right)$. We consider the 3-colouring $V_{1}^{\prime} \cup V_{2}^{\prime} \cup V_{3}^{\prime}$ of the $V\left(\bar{C}_{9}\right)$, where $V_{1}^{\prime}=\left\{v_{4}, v_{5}\right\}, V_{2}^{\prime}=\left\{v_{6}, v_{7}\right\}$. Let $V_{i}=V_{i}^{\prime} \cup W_{i}, i=1,2,3$. It is clear that $V_{1} \cup V_{2} \cup V_{3}$ is a 3-colouring of $V(G)$. Obviously, V_{1} and V_{2} are independent sets in G. Since V_{3}^{\prime} have the unique 3 -clique $\left\{v_{1}, v_{3}, v_{8}\right\}$, the set V_{3} contains no 4 -cliques, which is a contradiction.

So, there is a vertex $u \in A$ such that $M_{1} \subseteq \operatorname{Ad}(u)$. The map σ defined by
$\sigma\left(v_{i}\right)=v_{i+1}, i=1, \ldots, 8$, and $\sigma\left(v_{9}\right)=v_{1}$ is obviously an automorphism of the graph $G_{1}=\bar{C}_{9}$. Hence for each $M_{i}=\sigma^{i-1}\left(M_{1}\right), i=1, \ldots, 9$, there is a vertex $u \in A$ such that $M_{i} \subseteq \operatorname{Ad}(u)$. From $|A|=3$ it follows that for some of the vertices $u \in A$, there exist $i \neq j$, such that $M_{i} \cup M_{j} \subseteq \operatorname{Ad}(u)$. The set $M_{i} \cup M_{j}, i \neq j$, contains a 4 -clique of the graph \bar{C}_{9} (for example $M_{1} \cup M_{k}, k \neq 1$ contains the 4-clique $\left\{v_{1}, v_{3}, v_{5}, v_{8}\right\}$ or the 4 -clique $\left\{v_{1}, v_{3}, v_{6}, v_{8}\right\}$). Hence $\operatorname{cl}(G) \geq 5$, which is a contradiction. This ends the proof of the Theorem.

REFERENCES

[1] V. Chvatal. The minimality of the Mycielski graph. Lecture Notes in Math. 406 (1974), 243-246.
[2] J. Folkman. Graphs with monochromatic complete subgraphs in every edge coloring. SIAM J. Appl. Math. 18 (1970), 19-24.
[3] R. Greenwood, A. Gleason. Combinatorial relation and chromatic graphs. Canad. J. Math. 7 (1955), 1-7.
[4] T. Jensen, G. Royle. Small graphs with chromatic number 5: a computer search. J. Graph Theory 19 (1995), 107-116.
[5] T. Luczak, S. Urbanski. A note on restricted vertex Ramsey numbers. Period. Math. Hungar. 33 (1996), 101-103.
[6] T. Luczak, A. Rucinski, S. Urbanski. On minimal vertex Folkman graph. Discrete Math. 236 (2001), 245-262.
[7] J. Mycielski. Sur le coloriage des graphes. Colloq. Math. 3 (1955), 161162.
[8] E. Nedialkov, N. Nenov. Each 11-vertex graph without 4-cliques has a triangle-free 2-partition of vertices. Annuaire Univ. Sofia Fac. Math. Inform. 91 (1997), 127-147.
[9] N. Nenov. An example of a 15 -vertex (3,3)-Ramsey graph with clique number 4. C. R. Acad. Bulgare Sci. 34 (1981), 1487-1489 (in Russian).
[10] N. Nenov. Application of the corona-product of two graphs in Ramsey theory. Annuaire Univ. Sofia Fac. Math. Inform. 79 (1985), 349-355 (in Russian).
[11] N. Nenov. On the vertex Folkman number $F(3,4)$. C. R. Acad. Bulgare Sci. 54 (2001), 2, 23-26.
[12] N. Nenov, N. Khadjirvanov. Description of the graphs with 13 vertices having a unique triangle and a unique 5 -anticlique. Annuaire Univ. Sofia Fac. Math. Inform. 76 (1982), 91-107 (in Russian).
[13] K. Piwakowski, S. Radziszowski, S. Urbanski. Computation of the Folkman number $F_{e}(3,3 ; 5)$. J. Graph Theory 32 (1999), 41-49.

Section of Algebra
Department of Mathematics and Informatics
"St. Kliment Ohridski" University of Sofia
Bulgaria
e-mail: nenov@fmi.uni-sofia.bg

[^0]: 2000 Mathematics Subject Classification: 05C55.
 Key words: vertex Folkman graph, vertex Folkman number.

