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ABSTRACT. In this note we prove that F'(2,2,4) = 13.

We consider only finite, non-oriented graphs, without loops and multiple
edges. V(G) and E(G) denote the set of the vertices and the set of the edges of
the graph G, respectively. We say that G is an n-vertex graph when |V (G)| = n.
For v € V(G) we denote by Ad(v) the set of all vertices, adjacent to v. We
call a p-clique of G a set of p vertices, each two of which are adjacent. The
biggest natural number p, such that the graph G contains a p-clique is denoted
by cl(G). A set of vertices in a graph G is said to be independent if no two of
them are adjacent. The cardinality of any largest independent set of vertices in
G is denoted by a(G).

If W C V(G), then G — W denotes the subgraph of the graph G, which
is obtained from G by the removal of the vertices belonging to W. The simple

cycle of length n is denoted by C,. By G we denote the complementary graph of
G.
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The Ramsey number R(p, q) is the smallest natural number n, such that
for arbitrary n-vertex graph G, either cl(G) > p or a(G) > q. We need the
identities R(3,4) = R(4,3) =9, [3].

Definition. Let G be a graph and ay,...,a,, r > 2, be positive integers.
The symbol G — (a1, ...,a,) means that for every r-colouring of the vertices of

G
V(@) =AU UV VinYy=0, i)

there exists i € {1,2,...,r}, such that the graph G contains a monochromatic
a;-clique K of colour i, i.e. K C V.

We put
H(ay,...,a;) ={G:G — (a1,...,a,) and cl(G) = max(ai,...,a,)}

F(ay,...,a;) =min{|V(G)| : G € H(ay,...,a,)}.

Folkman proved in [2] that H(aq,...,a,) # 0. F(ai,...,a,) are called
r-colouring vertex Folkman numbers. It is clear that

G — (al,... ,ar) — G — (ag,(l),... ,aw(,ﬂ))
for any permutation ¢ of the symmetric group S,. Hence F(ai,...,a,) is a
symmetric function and thus we may assume that a; < as < --- < a,. Note that
if ay = 1, then F(ay,...,a,) = F(ag,...,a,). Hence we may assume also that

a;>2,i=1,...,r
For the 2-colouring vertex Folkman numbers F'(p,q) the following facts
are known:

Theorem A ([5]). For any p > 2, we have F(2,p) = 2p + 1.

_ Theorem B ([6]). Let G € H(2,p), p > 2, and |[V(G)| =2p+ 1. Then
G - 0217-1-1‘

Theorem C ([10]). For any p > 3, the Folkman numbers F(p,p) satisfy
inequality F'(p,p) < |ple] — 1.
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Theorem D ([6]). Let p, q be any integers such that 2 < p < q. Then

p—1

Flpa) <23 1

We constructed in [9] a 14-vertex graph G € H (3, 3), showing that F'(3,3) <
14. In a joint paper with E. Nedialkov [8], we proved that F(3,3) > 12. The
work [13] provides a computer proof of the inequality F'(3,3) > 14 and thus
F(3,3) = 14. According to Theorem D, we have F(3,4) < 33. In [11], it is
proved that F'(3,4) = 13.

The numbers F'(2,2,2) = 11 and F(2,2,2,2) = 22 are the only known
vertex Folkman numbers for more that two colours. Mycielski [7], presented an
11-vertex graph G € H(2,2,2), proving that F'(2,2,2) < 11. Chvatal [1], showed
that the Mycielski graph is the smallest possible graph in the class H(2,2,2) and
hence F'(2,2,2) = 11. The equality F'(2,2,2,2) = 22 is proved by Jensen and
Royle in [4]. The inequality F'(3,3) < 14 obviously implies F'(2,2,3) < 14, but
the exact value of F'(2,2,3) is unknown.

In this note we prove the following:

Theorem. F(2,2,4) =13.

In the proof of this theorem, we shall use the following:

Lemma. Let G be a 12-vertex graph with cl(G) = 4 and o(G) = 2.
Then G ¢ H(2,2,4).

Proof. Assume the opposite, i.e. G — (2,2,4). It is proved in [12] that
the graph G is a subgraph of the graph P (the complementary graph P is given
in Fig. 1). Hence P — (2,2,4). Since in 3-colouring V(P) = V4 U Vo U V3, where
Vi = {v1, v}, Vo = {vs,v6}, the sets V) and V5, are independent and V3 contains
no 4-cliques, this is a contradiction. O

Proof of the Theorem.

1. Proof of the inequality F(2,2,4) < 13. We consider the graph @,
which complementary graph @ is given in Fig. 2. This graph is a well-known
construction of Greenwood and Gleason [3], which shows that R(3,5) > 14. We
prove the inequality F'(2,2,4) < 13 by showing that Q € H(2,2,4). Obviously
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Fig. 1. Graph P Fig. 2. Graph Q Fig. 3. Graph Cy

a(Q) = 2 and it is true that cl(Q) = 4, [3]. Let V3 UV, U V3 be a 3-colouring
of the vertices of the graph @ and suppose that Vi and V5 are independent sets
of vertices in Q. From «a(Q) = 2 it follows that |V;| < 2, i« = 1,2. Hence
[Va| > 9. From a(Q) = 2 and R(4,3) =9 it follows that V3 contains a 4-clique.
So, Q € H(2,2,4). Since |V(Q)| = 13 it follows that F'(2,2,4) < 13.

2. Proof of the inequality F(2,2,4) > 13. Assume the opposite. Let
G € H(2,2,4) and |V(G)| < 12. By adding some isolated vertices, we may
assume that |V (G)| = 12. Let A by an independent set of vertices of the graph
G, |A| = a(G) and G; = G—A. From G € H(2,2,4) it follows that G; € H(2,4).
According to Theorem A, |V(G1)| > 9. Hence a(G) = |A| < 3. Since cl(G) = 4,
we have o(G) > 2. The Lemma yields |A| = 3 and |[V(G1)| = 9. According to
Theorem B, G1 = Cy (see Fig. 3). We consider the set M; = {v1,v3,v4,v7,v8} of
vertices of the graph G = Cy. We will prove that there is a vertex v € A such
that M7 C Ad(u). Assume the opposite. Then if v € A and vy, v3,v8 € Ad(u)
it follows that vs € Ad(u) or v7 ¢ Ad(u). From cl(G) = 4 it follows also that
if u € A and vy,v3,v8 € Ad(u), then vs,v5 € Ad(u). We denote by Wi the set
of those of the vertices u € A for which vy, v3,vs € Ad(u) and vy ¢ Ad(u). By
W5 we denote the set of those u € A for which vy, vs,v4,vs € Ad(u) (and hence
v7 & Ad(u)). Let Wy = A\ (W3 UWs). We consider the 3-colouring Vi UVJ U VY
of the V(Cy), where V| = {v4,v5}, Vg = {vg,v7}. Let V; = V/UW,, i =1,2,3.
It is clear that V; U Vo U V3 is a 3-colouring of V(G). Obviously, Vi and V; are
independent sets in G. Since V4 have the unique 3-clique {v1,vs,vs}, the set V3
contains no 4-cliques, which is a contradiction.

So, there is a vertex u € A such that M; C Ad(u). The map o defined by
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o(v;)) = vip1, i =1,...,8, and o(vg) = vy is obviously an automorphism of the
graph G; = Cy. Hence for each M; = o~ 1(My), i = 1,...,9, there is a vertex
u € A such that M; C Ad(u). From |A| = 3 it follows that for some of the vertices
u € A, there exist ¢ # j, such that M; U M; C Ad(u). The set M; U M;, i # j,
contains a 4-clique of the graph Cy (for example M; U My, k # 1 contains the
4-clique {v1,v3,vs5,v8} or the 4-clique {vy,vs, vg,vs}). Hence cl(G) > 5, which is
a contradiction. This ends the proof of the Theorem. O
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