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ON THE 3-COLOURING VERTEX FOLKMAN NUMBER
F (2, 2, 4)

Nedyalko Dimov Nenov

Communicated by R. Hill

Abstract. In this note we prove that F (2, 2, 4) = 13.

We consider only finite, non-oriented graphs, without loops and multiple
edges. V (G) and E(G) denote the set of the vertices and the set of the edges of
the graph G, respectively. We say that G is an n-vertex graph when |V (G)| = n.
For v ∈ V (G) we denote by Ad(v) the set of all vertices, adjacent to v. We
call a p-clique of G a set of p vertices, each two of which are adjacent. The
biggest natural number p, such that the graph G contains a p-clique is denoted
by cl(G). A set of vertices in a graph G is said to be independent if no two of
them are adjacent. The cardinality of any largest independent set of vertices in
G is denoted by α(G).

If W ⊆ V (G), then G − W denotes the subgraph of the graph G, which
is obtained from G by the removal of the vertices belonging to W . The simple
cycle of length n is denoted by Cn. By G we denote the complementary graph of
G.
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The Ramsey number R(p, q) is the smallest natural number n, such that
for arbitrary n-vertex graph G, either cl(G) ≥ p or α(G) ≥ q. We need the
identities R(3, 4) = R(4, 3) = 9, [3].

Definition. Let G be a graph and a1, . . . , ar, r ≥ 2, be positive integers.

The symbol G → (a1, . . . , ar) means that for every r-colouring of the vertices of

G

V (G) = V1 ∪ · · · ∪ Vr, Vi ∩ Vj = ∅, i 6= j,

there exists i ∈ {1, 2, . . . , r}, such that the graph G contains a monochromatic

ai-clique K of colour i, i.e. K ⊆ Vi.

We put

H(a1, . . . , ar) = {G : G → (a1, . . . , ar) and cl(G) = max(a1, . . . , ar)}

F (a1, . . . , ar) = min{|V (G)| : G ∈ H(a1, . . . , ar)}.

Folkman proved in [2] that H(a1, . . . , ar) 6= ∅. F (a1, . . . , ar) are called
r-colouring vertex Folkman numbers. It is clear that

G → (a1, . . . , ar) ⇐⇒ G → (aϕ(1), . . . , aϕ(r))

for any permutation ϕ of the symmetric group Sr. Hence F (a1, . . . , ar) is a
symmetric function and thus we may assume that a1 ≤ a2 ≤ · · · ≤ ar. Note that
if a1 = 1, then F (a1, . . . , ar) = F (a2, . . . , ar). Hence we may assume also that
ai ≥ 2, i = 1, . . . , r.

For the 2-colouring vertex Folkman numbers F (p, q) the following facts
are known:

Theorem A ([5]). For any p ≥ 2, we have F (2, p) = 2p + 1.

Theorem B ([6]). Let G ∈ H(2, p), p ≥ 2, and |V (G)| = 2p + 1. Then

G = C2p+1.

Theorem C ([10]). For any p ≥ 3, the Folkman numbers F (p, p) satisfy

inequality F (p, p) < ⌊p!e⌋ − 1.
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Theorem D ([6]). Let p, q be any integers such that 2 ≤ p ≤ q. Then

F (p, q) ≤ 2

p−1∑

i=0

q!

(q − i)!
− 1.

We constructed in [9] a 14-vertex graph G ∈ H(3, 3), showing that F (3, 3) ≤
14. In a joint paper with E. Nedialkov [8], we proved that F (3, 3) ≥ 12. The
work [13] provides a computer proof of the inequality F (3, 3) ≥ 14 and thus
F (3, 3) = 14. According to Theorem D, we have F (3, 4) ≤ 33. In [11], it is
proved that F (3, 4) = 13.

The numbers F (2, 2, 2) = 11 and F (2, 2, 2, 2) = 22 are the only known
vertex Folkman numbers for more that two colours. Mycielski [7], presented an
11-vertex graph G ∈ H(2, 2, 2), proving that F (2, 2, 2) ≤ 11. Chvatal [1], showed
that the Mycielski graph is the smallest possible graph in the class H(2, 2, 2) and
hence F (2, 2, 2) = 11. The equality F (2, 2, 2, 2) = 22 is proved by Jensen and
Royle in [4]. The inequality F (3, 3) ≤ 14 obviously implies F (2, 2, 3) ≤ 14, but
the exact value of F (2, 2, 3) is unknown.

In this note we prove the following:

Theorem. F (2, 2, 4) = 13.

In the proof of this theorem, we shall use the following:

Lemma. Let G be a 12-vertex graph with cl(G) = 4 and α(G) = 2.
Then G 6∈ H(2, 2, 4).

P r o o f. Assume the opposite, i.e. G → (2, 2, 4). It is proved in [12] that
the graph G is a subgraph of the graph P (the complementary graph P is given
in Fig. 1). Hence P → (2, 2, 4). Since in 3-colouring V (P ) = V1 ∪ V2 ∪ V3, where
V1 = {v1, v2}, V2 = {v5, v6}, the sets V1 and V2 are independent and V3 contains
no 4-cliques, this is a contradiction. �

P r o o f o f t h e T h e o r e m.

1. Proof of the inequality F (2, 2, 4) ≤ 13. We consider the graph Q,
which complementary graph Q is given in Fig. 2. This graph is a well-known
construction of Greenwood and Gleason [3], which shows that R(3, 5) ≥ 14. We
prove the inequality F (2, 2, 4) ≤ 13 by showing that Q ∈ H(2, 2, 4). Obviously
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Fig. 1. Graph P Fig. 2. Graph Q Fig. 3. Graph C9

α(Q) = 2 and it is true that cl(Q) = 4, [3]. Let V1 ∪ V2 ∪ V3 be a 3-colouring
of the vertices of the graph Q and suppose that V1 and V2 are independent sets
of vertices in Q. From α(Q) = 2 it follows that |Vi| ≤ 2, i = 1, 2. Hence
|V3| ≥ 9. From α(Q) = 2 and R(4, 3) = 9 it follows that V3 contains a 4-clique.
So, Q ∈ H(2, 2, 4). Since |V (Q)| = 13 it follows that F (2, 2, 4) ≤ 13.

2. Proof of the inequality F (2, 2, 4) ≥ 13. Assume the opposite. Let
G ∈ H(2, 2, 4) and |V (G)| ≤ 12. By adding some isolated vertices, we may
assume that |V (G)| = 12. Let A by an independent set of vertices of the graph
G, |A| = α(G) and G1 = G−A. From G ∈ H(2, 2, 4) it follows that G1 ∈ H(2, 4).
According to Theorem A, |V (G1)| ≥ 9. Hence α(G) = |A| ≤ 3. Since cl(G) = 4,
we have α(G) ≥ 2. The Lemma yields |A| = 3 and |V (G1)| = 9. According to
Theorem B, G1 = C9 (see Fig. 3). We consider the set M1 = {v1, v3, v4, v7, v8} of
vertices of the graph G1 = C9. We will prove that there is a vertex u ∈ A such
that M1 ⊆ Ad(u). Assume the opposite. Then if u ∈ A and v1, v3, v8 ∈ Ad(u)
it follows that v4 6∈ Ad(u) or v7 6∈ Ad(u). From cl(G) = 4 it follows also that
if u ∈ A and v1, v3, v8 ∈ Ad(u), then v5, v6 6∈ Ad(u). We denote by W1 the set
of those of the vertices u ∈ A for which v1, v3, v8 ∈ Ad(u) and v4 6∈ Ad(u). By
W2 we denote the set of those u ∈ A for which v1, v3, v4, v8 ∈ Ad(u) (and hence
v7 6∈ Ad(u)). Let W3 = A \ (W1 ∪W2). We consider the 3-colouring V ′

1 ∪ V ′

2 ∪ V ′

3

of the V (C9), where V ′

1 = {v4, v5}, V ′

2 = {v6, v7}. Let Vi = V ′

i ∪ Wi, i = 1, 2, 3.
It is clear that V1 ∪ V2 ∪ V3 is a 3-colouring of V (G). Obviously, V1 and V2 are
independent sets in G. Since V ′

3 have the unique 3-clique {v1, v3, v8}, the set V3

contains no 4-cliques, which is a contradiction.

So, there is a vertex u ∈ A such that M1 ⊆ Ad(u). The map σ defined by
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σ(vi) = vi+1, i = 1, . . . , 8, and σ(v9) = v1 is obviously an automorphism of the
graph G1 = C9. Hence for each Mi = σi−1(M1), i = 1, . . . , 9, there is a vertex
u ∈ A such that Mi ⊆ Ad(u). From |A| = 3 it follows that for some of the vertices
u ∈ A, there exist i 6= j, such that Mi ∪ Mj ⊆ Ad(u). The set Mi ∪ Mj , i 6= j,
contains a 4-clique of the graph C9 (for example M1 ∪ Mk, k 6= 1 contains the
4-clique {v1, v3, v5, v8} or the 4-clique {v1, v3, v6, v8}). Hence cl(G) ≥ 5, which is
a contradiction. This ends the proof of the Theorem. �
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