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We consider only finite, non-oriented graphs, without loops and multiple edges.
V(G) and E(G) denote the set of the vertices and the set of the edges of graph G,
respectively. We say that G is an n-vertex graph when |[V(G)| = n. For v € V(G)
we denote by Ad(v) the set of all vertices, adjacent to v. We call a p-clique of G a
set of p vertices, each two of which are adjacent. The biggest natural number p, such
that graph G contains a p-clique is denoted by cl(G). A set of vertices in a graph G is
said to be independent if no two of them are adjacent. The cardinality of any largest
independent set of vertices in G is written as a(G).

If W C V(G), then G[W] denotes the subgraph of graph G, induced by W and
by G — W denote the subgraph of G, that is obtained from G by the removal of the
vertices belonging to W. The simple cycle of length n is denoted by Ci,.

The Ramsey number R(p, q) is the minimum of all natural numbers n, such that

for arbitrary n-vertex graph G, either cl(G) > p or a(G) > q. We need the identities
R(3,3) =6 and R(3,4) = R(4,3) =9, [1].

By G we denote the complementary graph of G. The complementary graph P of
P is given in Fig. 2 and the complementary graph Q of Q is given in Fig. 3.

Proposition 1 ([7]). There hold cl(P) = 4, a(P) = 2 and any 12-vertex graph G
with cl(G) = 4, a(G) = 2 is a subgraph of graph P. ,

Proposition 2 ([!]). There hold cl(Q) = 4 and a(Q) = 2.

Definition. Let G be a graph and p, g be integers. By G — (p, ¢) we denote that
in any 2-colouring Vi U V of set V(G), either V7 contains a p-clique or V, contains
g-clique of graph G.

We put
H(p,q) ={G: G = (p,q) and cl(G) = max(p,q)}
F(p,q) = min{|V(G)| : G € H(p,q)}.

In [?] Folkman proved that H(p,q) # @. Since F(p,q) = F(q,p) we may assume
that p < g. The above F(p,q) are called Folkman numbers. For these numbers the
following facts are known:

Theorem A ([3]). For any p > 2 one has F(2,p) =2p+ 1.

Theorem B ([4]). Let G € H(2,p) and |V(G)| = 2p + 1. Then G = Cap41.
Theorem C ([8]). Whenever p > 3 the Folkman numbers F(p,p) < |ple] — 1.
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. N. NENOV constructs in [6] a 14-vertex graph G € H(3,3), showing that F'(3,3) <
14. In a joint paper with E. NEDIALKOV [9], we proved that F(3,3) > 12. The work
[5] provides a computer proof of the inequality F(3,3) > 14 and thus F(3,3) = 14.
F(3,4) is the smallest unknown Folkman number. T. LUCZAK, A. RUCINSKI and S.
URBANSKI ([4], Corollary 6) proved that F'(3,4) < 33.

In the present article, we consider the family H(3,4). As a consequence from the
proved results, it follows that F'(3,4) = 13.

Theorem 1. Let G be an n-vertex graph and G € H(3,4). Then

(a') a(G) S n— 91

(b) if a(G) =n —9, then n > 18.

Theorem 2. There holds F(3,4) = 13.

For the proof of Theorem 2 we will need the following

Lemma. Graph P ¢ H(3,4).

Proof. Let V(P) = V,UVa, where Vi = {vs, v6,v9, V10, v12}, Vo = {v1,v2,v3,v4,v7,
vg,v11}. Then P[V;] = Cs and P[Vp] = C7. Since cl(Cs) = 2 and cl(C7) = 3, we have
P ¢ H(3,4).

Proof of Theorem 1. Let A be an independent set of graph G, |A] = a(G) and
G1 = G — A. From G € H(3,4) it follows that G4 € H(2,4). According to Theorem A,
we have |V(G1)| > 9. Since [V(G1)| = n — a(G), this inequality implies a(G) < n —9.

o V12

Fig. 1. Graph Cy Fig. 2. Graph P

Suppose that a(G) = n — 9. Than |V(G1)| = 9. Since G1 € H(2,4), according to
Theorem B, we have G; = Cy. We consider the set M; = {v1,v3,v4,v7,vs} Of vertices
of the graph G; = Cg (Fig. 1). The map o defined by o(v;) = viy1,i=1,...,8 and
o(vg) = v; is obviously an automorphism of the graph G; = Cy. Set M; = o1 (M),
i=1,...,9. We will prove that for each M;, i = 1,...,9 there is a vertex u; € A
such that Ad(u;) 2 M;. Since o*~}(M;) = M;, i = 1,...,9, it suffices to show that
for some of the vertices u € A we have that Ad(u) D M;. Assume the opposite. Set
V! = {v4,vs,v6,v7} and Vj = {v1,v2,v3,vs,v9}. We denote by W, the set of those of
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vertices u € A for which v1,v3,vs € Ad(u) and Wy = A\ Wy. We put V; = V] U W7,
Vo = V4 U Ws. It is clear that Vi U V5 is a 2-colouring of V(G). It is clear also that V5
contains no 4-cliques. Let v € W;. Then v1,vs3,vs € Ad(u). From cl(G) = 4 it follows
that u is not adjacent to the vertices vs and vg. Since we assume that u is not adjacent
to some of the vertices of M, it follows that u is not adjacent to one of the vertices
v4, v7. Consequently V; contains no 3-cliques, which is a contradiction.

So, there are uy,...,ug € Asuchthat Ad(u;) D M;,i =1,...,9. We will prove that
u; # uj, ¢ # j and, hence, n > 18. Assume the opposite and let, for example u; = u;,
i # 1. Then Ad(u;) D M; UM;, i # 1. The set M; contains the 3-clique {v;,v3,vs}.
Since for i # 1 either v5 € M; or vg € M;, it follows that either Ad(u;) contains the 4-
clique {v1,v3,vs,vg} or Ad(u;) contains the 4-clique {vi,vs, vs,vs}. Hence, cl(G) > 5,
which is a contradiction. . ‘

Remark. Let Ny = {ve,vs,vs,v5,08,v9} C V(Cq) and N; = 0" 1(Ny), i =
1,...,9. Denote by I' the extension of graph Cy (Fig. 1), obtained by adding nine
new vertices to V(Cy), namely uy, ..., ug, each pair of which is not adjacent and such
that Ad(u;) = N, i =1,...,9. It is true that 18-vertex graph ' € H(3,4) and obviously
a(T) = 9.

The proof of Theorem 2. Let G € H(3,4). From cl(G) = 4 it follows that
a(G) > 2. According to Theorem 1, |[V(G)| > 12. We will prove that |V (G)| # 12.
Assume the opposite, i.e., |V(G)| = 12." According to Theorem 1, a(G) < n — 9 and,
hence, a(G) = 2. It follows from Proposition 1 that G is a subgraph of graph P (Fig. 2).
This contradicts the Lemma and proves the inequality F(3,4) > 13.

We prove the inequality F'(3,4) < 13 by showing that Q € H(3,4) (Fig. 3). Let
V1 U V2 be the 2-colouring of the vertices of graph Q. Put G1 = Q[V1], G2 = Q[V2].
From a(Q) = 2 it follows that a(G;) < 2 and o(G3) < 2.

Fig. 3. Graph Q

Case 1. |V1] < 4, ie., |V2| > 9. From R(4,3) = 9 and a(G3) < 2, it follows that
cl(Gz) > 4, i.e., V5 contains a 4-clique.

Case 2. |[V1| > 6. From R(3,3) = 6 and a(G;) < 2, it follows that cl(Gy) > 3, i.e.,
V1 contains a 3-clique of Q.

Case 3. |V1| = 5. Assume that V; contains no 3-clique, ie., cl(G;) = 2. From
cl(G1) = 2 and a(G;) < 2 it follows that G; = Gy = Cs. Let E; denote the set of
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edges of the 13-cycle vy, vy, ..., v13 of graph Q (Fig. 3) and Ep = E(Q) \ E;. From
|E(G1)| = 5, there follows either |E(G1) N E1| > 3 or |E(G1) N E3| > 3. The map

¢=(v1 Vg VU3 Vg4 Vs Vs U7 Vg Vg Vip Vi1 V12 '013)
V1 Vs Vi1 V3 VUg Uiz Vs Vi V2 U7 V12 U4 Vg

is obviously an automorphism of graph Q. Since ¢(E;) = Ej it is enough to consider
the case |E(G1) N E;| > 3. Suppose that e, ez, e3 € E(G1) N E1. From |Vi| = 5 it
follows that two of the edges e;, e, es are incident. Let e; and ey be incident edges
of the 13-cycle v, va, ..., v13, v1 of the graph Q. We may assume without a loss of
%enerality that e; = [v1,vs), e2 = [v2,v3]. From G; = Cj it follows that there are the
ollowing possibilities:
Subcase 3.a. e3 = [v3,v4]. From G; = Cj it follows that V; = {v1,v2,vs,v4,v9}.
Hence, the set V5 contains the 4-clique {vg, vs, v10, v12}-
\ Subcase 3.b. e3 = [vs, vg]. In this subcase the set V5 contains the 4-clique {vy4, v7,v10,
V13¢-
So, graph Q € H(3,4). From |V (Q)| = 13 it follows that F'(3,4) < 13 and hence,
F(3,4) =13.
( Se)zt F(4,4;6) = min{|V(G)| : G — (4,4) and cl(6) < 6}. In [4], it is proved
that F'(4,4;6) < 35. It is clear that Q@ — (3,4) implies K; + Q@ — (4,4). Hence,
F(4,4;6) < 14.
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