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Abstract. Let Γ(M) where M ⊂ V (G) be the set of all vertices of the
graph G adjacent to any vertex of M . If v1, . . . , vr is a vertex sequence
in G such that Γ(v1, . . . , vr) = ∅ and vi is a maximal degree vertex in
Γ(v1, . . . , vi−1), we prove that e(G) ≤ e(K(p1, . . . , pr)) where K(p1, . . . , pr)
is the complete r-partite graph with pi = |Γ(v1, . . . , vi−1) \ Γ(vi)|.

We consider only finite non-oriented graphs without loops and multiple
edges. The vertex set and the edge set of a graph G will be denoted by V (G) and
E(G), respectively. We call p-clique of a graph G a set of p pairwise adjacent
vertices. A set of vertices of a graph G is said to be independent, if every two of
them are not adjacent. We shall use also the following notations:

e(G) = |E(G)| – the number of the edges of G;
G[M ] – the subgraph of G induced by M , where M ⊂ V (G);
ΓG(M) – the set of all vertices of G adjacent to any vertex of M ;
dG(v) = |ΓG(v)| – the degree of a vertex v in G;
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Kn and Kn – the complete and discrete n-vertex graphs, respectively.
Let Gi = (Vi, Ei) be graphs such that Vi ∩Vj = ∅ for i 6= j. We denote by

G1+· · ·+Gs the graph G = (V,E) with V = V1∪· · ·∪Vs and E = E1∪· · ·∪Es∪E′,
where E′ consists of all couples {u, v}, u ∈ Vi, v ∈ Vj ; 1 ≤ i < j ≤ s. The graph
Kp1

+ · · · + Kps
will be denoted by K(p1, . . . , ps) and will be called a complete

s-partite graph with partition classes V (Kp1
), . . . ,V (Kps

). If p1 + · · · + ps = n

and p1, . . . , ps are as equal as possible (in the sense that |pi − pj | ≤ 1 for all pairs
{i, j}, then K(p1, . . . , ps) is denoted by Ts(n) and is called the s-partite n-vertex
Turan’s graph.

Clearly, e(K(p1, . . . , pr)) =
∑

{pipj| 1 ≤ i < j ≤ r}. If p1 − p2 ≥ 2, then
K(p1−1, p2 +1, p3, . . . , pr)−K(p1, p2, . . . , pr) = p1−p2−1 > 0. This observation
implies the following elementary proposition, we shall make use of later:

Lemma. Let n and r be positive integers and r ≤ n. Then the inequality

∑
{pipj | 1 ≤ i < j ≤ r} ≤ e(Tr(n))

holds for each r-tuple (p1, . . . , pr) of nonnegative integers pi such that p1 + · · · +
pr = n. The equality occurs only when K(p1, . . . , pr) = Tr(n).

In our articles [6, 7] we introduced the following concept:

Definition 1. Let G be a graph, v1, . . . , vr ∈ V (G) and Γi = ΓG(v1, . . . , vi),
i = 1, 2, . . . , r − 1. The sequence v1, . . . , vr is called α-sequence, if the follow-

ing conditions are satisfied: v1 is a maximal degree vertex in G and for i ≥ 2,
vi ∈ Γi−1 and vi has a maximal degree in the graph Gi−1 = G[Γi−1].

In [6, 7] we proved the following

Theorem 1. Let v1, . . . , vr be an α-sequence in the n-vertex graph G and

there is no (r + 1)-clique containing all members of the sequence. Then

e(G) ≤ e(K(n − d1, d1 − d2, . . . , dr−2 − dr−1, dr−1))

where d1 = dG(v1) and di = dGi−1
(vi), i = 2, . . . , r. The equality holds if and

only if G = K(n − d1, d1 − d2, . . . , dr−2 − dr−1, dr−1).

Later α-sequences appear in [1, 2, 3, 4] under the name “degree-greedy
algorithm”. In [6] we obtained the following corollary of Theorem 1: If G is an
n-vertex graph and e(G) ≥ e(Tr(n)), then either G = Tr(n) or each maximal
(in the sense of inclusion) α-sequence in G has length ≥ r + 1. Later this corol-
lary is published in [1] and [2]. Some other results about α-sequences and its
generalizations are given in our papers [8, 9].

R. Faudree in [5] introduces the following modification of α-sequences:
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Definition 2. The sequence of vertices v1, . . . , vr in a graph G is called β-

sequence, if the following conditions are satisfied: v1 is a maximal degree vertex

in G, and, for i ≥ 2, vi ∈ Γi−1 = ΓG(v1, . . . , vi−1) and dG(vi) = max{dG(v)| v ∈
Γi−1}.

Obviously, the set of vertices of each β-sequence is a clique. In the discrete
graph Kn each β-sequence consists of one vertex only. If G is not a discrete
graph, then there are β-sequences of length 2. Let for K(p1, p2, . . . , pr) we have
p1 ≤ p2 ≤ · · · ≤ pr and vi ∈ V (Ki), i = 1, . . . , r. Then v1, . . . , vr is a β-sequence.
If v1, . . . , vs is a β-sequence in a graph G, then it may be extended to a maximal in
the sense of inclusion β-sequence v1, . . . , vs, . . . , vr. It is clear that this extension
is not contained in an (r + 1)-clique and in this case Γ(v1, . . . , vr) = ∅.

Definition 3. Let v1, . . . , vr be a β-sequence in a graph G and

V1 = V (G)\Γ(v1), V2 = Γ(v1)\Γ(v2),

V3 = Γ(v1, v2)\Γ(v3), . . . , Vr = Γ(v1, . . . , vr−1)\Γ(vr).

We shall call the sequence V1, . . . , Vr a stratification of G induced by the β-

sequence v1, . . . , vr and Vi will be called the i-th stratum. The number of vertices

in the i-th stratum will be denoted by pi.

Let us note that Vi = Γi−1\Γi, where by Γ0 we understand V (G), and
Γi = ΓG(v1, . . . , vi), i = 1, . . . , r. Hence Vi ⊂ Γi−1 and Vi∩Γi = ∅, thus Vi∩Vj = ∅
for i 6= j. In addition vi ∈ Γi−1\Γ(vi) implies vi ∈ Vi. From Vi ∩ Γ(vi) = ∅ it
follows that the vertex vi is not adjacent to any vertex of Vi. Therefore d(vi) ≤
n − pi. But d(v) ≤ d(vi) for every vertex v ∈ Vi. Consequently,

d(v) ≤ n − pi, for each v ∈ Vi.(1)

It is clear that

V =

r⋃

i=1

Vi ∪ Γr,

so that
r∑

i=1

pi + |Γr| = n.(2)

Analogically to Theorem 1 we obtain the following

Theorem 2. Let v1, . . . , vr be a β-sequence in an n-vertex graph G, which

is not contained in an (r + 1)-clique. If Vi is the i-th stratum of the stratification

induced by this sequence and pi = |Vi|, then

e(G) ≤ e(K(p1, . . . , pr))(3)
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and the equality occurs if and only if

d(v) = n − pi for each v ∈ Vi, i = 1, . . . , r.(4)

P r o o f. The assumption that {v1, . . . , vr} is not contained in an (r + 1)-
clique implies that Γr = Γ(v1, . . . , vr) = ∅ and by (2) we have

∑r
i=1 pi = n. On

the other hand,

2e(G) =
∑

v∈V (G)

d(v) =

r∑

i=1

∑

v∈Vi

d(v)

and by (1) it follows that

2e(G) ≤
r∑

i=1

pi(n − pi) = 2e(K(p1, . . . , pr)).(5)

So, (3) is proved. We have an equality in (3) if and only if there is an
equality in (5), i.e. when (4) is available.

Theorem 2 is proved. �

By (1) it follows immediately

Proposition. If v1, . . . , vr is a β-sequence in an n-vertex graph G, which

is not contained in an (r + 1)-clique, then

r∑

i=1

dG(vi) ≤ (r − 1)n.

Note that the equality in (3) is possible also when G 6= K(p1, . . . , pr).

Example. Let Π be the graph which is the 1-skeleton of a triangular

prism. Let [a1, a2, a3] be the lower base, [b1, b2, b3] – the upper base and [ai, bi]
– the sideedges. Then a1, b1 is a β-sequence in the graph Π. There is no 3-

clique containing both a1 and b1. The stratification induced by this sequence is

V1 = {a1, b2, b3}, V2 = {b1, a2, a3}. Therefore p1 = p2 = 3. So we have e(Π) = 9
and e(K(3, 3)) = 9, but Π 6= K(3, 3).

Now we shall prove that in case of equality in (3), we may state something
stronger than (4), but under an additional assumption about the β-sequence from
Theorem 2.
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Definition 4. Let v1 be a vertex of maximal degree in a graph G. The

symbol lG(v1) denotes the maximal length of β-sequences with first member v1.

Theorem 3. Let v1, . . . , vr be a β-sequence such that r = lG(v1). Then,

in the notation of Theorem 2, if e(G) = e(K(p1, . . . , pr)), then we have G =
K(p1, . . . , pr).

P r o o f. It is clear that the assumption r = lG(v1) guarantees that in G

there is no (r + 1)-clique containing the members of the sequence v1, . . . , vr, so
that Γr = ∅ and (3) is valid (c.f. Theorem 2). Then the equality in (3) implies
(4), we shall make use of below.

In order to prove Theorem 3, we shall proceed by induction on r. For
r = 1 we have one stratum V1 with |V1| = p1 = n and by assumption e(G) =
e(K(p1)) = 0. Consequently G is a discrete graph, i.e. G = K(p1).

Let r ≥ 2 and suppose the statement to be valid for r − 1.

We shall prove first that Vr = Γr−1\ Γr = Γr−1 is an independent vertex
set. Suppose the contrary and let u1 and u2 be two adjacent vertices of Vr. We
shall prove that v1, . . . , vr−1, u1, u2 is a β-sequence in G.

It is clear that v1, . . . , vr−1 is a β-sequence in G. By u1 ∈ Vr = Γr−1 and
the fact that all vertices of Vr have the same degree (= n − pr) it follows that
u1 has a maximal degree among the vertices of Γr−1. Clearly, [u1, u2] ∈ E(G)
and u2 ∈ Vr = Γr−1 imply that u2 ∈ Γ(v1, . . . , vr−1, u1), besides that, u2 has a
maximal degree in Γ(v1, . . . , vr−1, u1). Hence, v1, . . . , vr−1, u1, u2 is a β-sequence
in G. This contradicts the equality lG(v1) = r.

So, Vr is an independent vertex set.

Let G′ = G[V1∪· · ·∪Vr−1]. Since Vr is an independent set and d(v) = n−pr

for each v ∈ Vr, then G = G′ + Kpr
and e(G) = e(G′) + pr(n − pr). It follows

from this equality and e(K(p1, . . . , pr)) = e(K(p1, . . . , pr−1)) + pr(n − pr) that

e(G′) = e(K(p1, . . . , pr−1)).(6)

Obviously, if M ⊂ V (G′), then ΓG(M) = ΓG′(M)∪Vr. Thus, if v ∈ V (G′),
then dG(v) = dG′(v) + pr.

It is clear then, that v1, . . . , vr−1 is a β-sequence in G′. Hence, s =
lG′(v1) ≥ r − 1. We shall prove that s = r − 1. Suppose the contrary and let
v1, u2, . . . , us be a β-sequence in G′ with s ≥ r. We shall show that v1, u2, . . . , us, vr

is a β-sequence in G.

First of all, v1, u2, . . . , us is obviously a β-sequence in G as well. From s =
lG′(v1) it follows that ΓG′(v1, u2, . . . , us) = ∅ and therefore ΓG(v1, u2, . . . , us) =
Vr. This implies that vr ∈ Γ(v1, u2, . . . , us) and has a maximal degree in G among
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the vertices of Γ(v1, u2, . . . , us). Consequently v1, u2, . . . , us, vr is a β-sequence in
G. This contradicts the equality lG(v1) = r, since the length of the last sequence
is greater than r.

So, lG′(v1) = r−1. Note that the i-th stratum of the stratification induced
by this sequence in G′ is identical with the i-th stratum of the stratification of G

induced by the β-sequence v1, . . . , vr, i = 1, 2, . . . , r− 1. Taking into account (6),
from the induction hypothesis we deduce that G′ = K(p1, . . . , pr−1) and since
G = G′ + Kpr

, then G = K(p1, . . . , pr).
Theorem 3 is proved. �

Corollary 1. Let G be an n-vertex graph, v1 be a maximal degree vertex

and lG(v1) = r. Then e(G) ≤ e(Tr(n)) and the equality appears if and only if

G = Tr(n).

P r o o f. Let v1, . . . , vr be a β-sequence and pi denote the number of ver-
tices in the i-th stratum of the stratification generated by this sequence. Accord-
ing to Theorem 2, e(G) ≤ e(K(p1, . . . , pr)). Lemma 1 implies that e(K(p1, . . . , pr))
≤ e(Tr(n)). From the above two inequalities we get e(G) ≤ e(Tr(n)).
Let now e(G) = e(Tr(n)). Then e(G) = e(K(p1, . . . , pr)) and e(K(p1, . . . , pr)) =
e(Tr(n)). From the first equality, according to Theorem 3, it follows that G =
K(p1, . . . , pr). The second equality, according to Lemma 1, implies K(p1, . . . , pr) =
Tr(n). In this way we conclude that G = Tr(n).

Corollary 1 is proved. �

Corollary 2 ([6]). Let G be a graph with n vertices and v1 be a maximal

degree vertex, which is not contained in an (r + 1)-clique, r ≤ n. Then e(G) ≤
e(Tr(n)) and the equality occurs only for the Turan’s graph Tr(n).

P r o o f. Let lG(v1) = s. Then in G there is a s-clique containing v1, so
s ≤ r and therefore e(Ts(n)) ≤ e(Tr(n)), where the equality is available only when
s = r (see Lemma 1). Corollary 1 implies e(G) ≤ e(Ts(n)) and we have equality
only for G = Ts(n). The above two inequalities imply the desired inequality
e(G) ≤ e(Tr(n)). It is clear that we have equality in the last inequality if and
only if s = r and G = Ts(n).

Corollary 2 is proved. �

Evidently, Corollary 2 is a generalization of

Turan’s Theorem ([10]). Let G be an n-vertex graph without (r + 1)-
cliques. Then e(G) ≤ e(Tr(n)) and equality occurs only for G = Tr(n).

Corollary 3. Let G be an n-vertex graph and v1, . . . , vm be a β-sequence,

which is not contained in an (r + 1)-clique, r ≤ n. Then e(G) ≤ e(Tr(n))
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and in case m = r, we have e(G) = e(Tr(n)) only when all the strata of the

stratification induced by the sequence have almost equal number of vertices and

the vertex degrees of any stratum are equal to the number of vertices out of the

stratum.

P r o o f. We shall extend the β-sequence v1, . . . , vm to a β-sequence v1, . . .,
vm, . . ., vq not contained in a (q+1)-clique. Obviously, m ≤ q ≤ r. Let V1, . . . , Vq

be the strata of the β-sequence v1, . . . , vq and pi = |Vi|. It follows from Theorem
2 that

e(G) ≤ e(K(p1, . . . , pq))(7)

and we have equality in (7) if and only if d(v) = n−pi for each v ∈ Vi, i = 1, . . . , q.
On the other hand, according to Lemma 1 we have

e(K(p1, . . . , pq)) ≤ e(Tq(n)) ≤ e(Tr(n))(8)

where equality occurs only when q = r and pi are almost equal.
Thus e(G) ≤ e(Tr(n)). Equality appears here only when there is an

equality in (7) and (8). The equality in (7) implies that d(v) = n − pi for any
v ∈ Vi and the equality in (8) occurs if and only if q = r and |pi − pj| ≤ 1 for
each i, j.

The extremal case in the proposition follows immediately from the above
reasoning.

Corollary 3 is proved. �
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