Доклади на Българската академия на науките Comptes rendus de l'Académie bulgare des Sciences

Tome 59, No 1, 2006

MATHEMATIQUES
Théorie des graphes

FOLKMAN NUMBER $F_{e}(3,4 ; 8)$ IS EQUAL TO 16

N. Kolev, N. Nenov

(Submitted by Academician B. Boyanov on October 25, 2005)

Abstract

The set of the vertices of a graph G is denoted by $V(G)$. The symbol $G \xrightarrow{e}(3,4)$ means that in every 2 -colouring of the edges of G there is either a 3 -clique in the first colour or a 4 -clique in the second colour. Folkman number $F_{e}(3,4 ; 8)$ is defined by the equality $$
F_{e}(3,4 ; 8)=\min \left\{|V(G)|: G \xrightarrow{e}(3,4) \text { and } K_{8} \nsubseteq G\right\} .
$$

In this paper we prove that $F_{e}(3,4 ; 8)=16$.
Key words: vertex Folkman numbers, edge Folkman numbers
2000 Mathematics Subject Classification: 05C55

1. Notations. We consider only finite, non-oriented graphs without loops and multiple edges. A set of p vertices of the graph G is called a p-clique if each two of them are adjacent. The greatest positive integer p for which G has a p-clique is called clique number of G and is denoted by $\operatorname{cl}(G)$. We shall use the following notations in this paper:

- $V(G)$ is the vertex set of graph G;
- $E(G)$ is the edge set of graph G;
- \bar{G} is the complementary graph of G;
- $G-V, V \subseteq V(G)$ is the subgraph of G induced by the set $V(G) \backslash V$;
- K_{n} is the complete graph on n vertices;
- C_{n} is the simple cycle on n vertices;
- $\alpha(G)$ is the independence number of G, i.e. $\alpha(G)=\operatorname{cl}(\bar{G})$;
- $N(v), v \in V(G)$ is the set of all vertices of G adjacent to v.

Let G_{1} and G_{2} be two graphs without common vertices. We denote by $G_{1}+G_{2}$ the graph G defined as follows: $V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup E^{\prime}$, where $E^{\prime}=\left\{[x, y] \mid x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\}$.
2. Main result. Each partition

$$
\begin{equation*}
E(G)=E_{1} \cup \cdots \cup E_{r} \quad E_{i} \cap E_{j}=\emptyset, \quad i \neq j \tag{2.1}
\end{equation*}
$$

is called an r-colouring of the edges of G. We say that H is a monochromatic subgraph from the i-th colour in the r-colouring (2.1) if $E(H) \subseteq E_{i}$.

Definition 2.1. Let a_{1}, \ldots, a_{r} be positive integers, $a_{i} \geq 2, i=1, \ldots, r$. We say that the r-colouring is $\left(a_{1}, \ldots, a_{r}\right)$-free if for each $i \in\{1, \ldots, \bar{r}\}$ there is no a_{i}-clique in the i-th colour. The symbol $G \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right)$ means that any r-colouring of $E(G)$ is not $\left(a_{1}, \ldots, a_{r}\right)$-free.

Definition 2.2. Let a_{1}, \ldots, a_{r} be positive integers, $a_{i} \geq 2, i=1, \ldots, r$. The smallest positive integer n for which $K_{n} \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right)$ is denoted by $R\left(a_{1}, \ldots, a_{r}\right)$ and is called Ramsey number.

Note that the number $R\left(a_{1}, a_{2}\right)$ can also be defined as the smallest positive integer n, such that for every n-vertex graph G either $\operatorname{cl}(G) \geq a_{1}$ or $\alpha(G) \geq a_{2}$. The existence of the numbers $R\left(a_{1}, \ldots, a_{r}\right)$ was proved by RAMSEY in [19].

An exposition of the results on the numbers $R\left(a_{1}, \ldots, a_{r}\right)$ is given in [18]. In this paper we shall need the following values only:

$$
\begin{equation*}
R(3,4)=R(4,3)=9 \tag{2.2}
\end{equation*}
$$

The edge Folkman number $F_{e}\left(a_{1}, \ldots, a_{r} ; q\right)$ is denoted by the equality

$$
F_{e}\left(a_{1}, \ldots, a_{r} ; q\right)=\min \left\{\mid V(G): G \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right) \text { and } \operatorname{cl}(G)<q\right\} .
$$

It is clear that from $G \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right)$ it follows $\operatorname{cl}(G) \geq \max \left\{a_{1}, \ldots, a_{r}\right\}$. There exists a graph $G \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right)$ and $\operatorname{cl}(G)=\max \left\{a_{1}, \ldots, a_{r}\right\}$. In the case $r=2$ this was proved in [2] and in the general case in [16]. That is why

$$
F_{e}\left(a_{1}, \ldots, a_{r} ; q\right) \text { exists } \Longleftrightarrow q>\max \left\{a_{1}, \ldots, a_{r}\right\} .
$$

From Definition 2.2 it follows that

$$
F_{e}\left(a_{1}, \ldots, a_{r} ; q\right)=R\left(a_{1}, \ldots, a_{r}\right) \text { if } q>R\left(a_{1}, \ldots, a_{r}\right)
$$

In this paper we shall use the equality

$$
\begin{equation*}
F_{e}(3,4 ; 9)=14,\left[{ }^{11}\right](\text { see also }[15]) \tag{2.3}
\end{equation*}
$$

Besides this value we know only the following edge Folkman numbers of the kind $F_{e}\left(a_{1}, \ldots, a_{r} ; R\left(a_{1}, \ldots, a_{r}\right)\right)$

$$
\begin{aligned}
& F_{e}(3,3 ; 6)=8\left(\left[{ }^{3}\right] \text { and }[5]\right) \\
& F_{e}(3,5 ; 14)=16([5]) \\
& F_{e}(4,4 ; 18)=20\left(\left[{ }^{5}\right]\right) ; \\
& F_{e}(3,3,3 ; 17)=19\left(\left[{ }^{5}\right]\right)
\end{aligned}
$$

We know only two edge Folkman numbers of the kind $F_{e}\left(a_{1}, \ldots, a_{r} ; R\left(a_{1}, \ldots, a_{r}\right)-\right.$ 1), namely $F_{e}(3,3 ; 5)=15$ and $F_{e}(3,3,3 ; 16)=21$. The inequality $F_{e}(3,3 ; 5) \leq 15$ was proved in [7] and the inequality $F_{e}(3,3 ; 5) \geq 15$ was obtained in [17] by the means of a computer. The inequality $F_{e}(3,3,3 ; 16) \geq 21$ was proved in [5] and the opposite inequality $F_{e}(3,3,3 ; 16) \leq 21$ in $[8]$.

In this paper we shall compute one more Folkman number of the kind $F_{e}\left(a_{1}, \ldots, a_{r}\right.$; $\left.R\left(a_{1}, \ldots, a_{r}\right)-1\right)$ by proving the following

Main theorem. $F_{e}(3,4 ; 8)=16$.
The best previously known upper bound on this number was $F_{e}(3,4 ; 8) \leq 314$ (see ${ }^{[6])}$. We also know that $F_{e}(3,4 ; 8) \geq 15$ which easily follows from (2.3). At the end of this exposition we shall note that $F_{e}(3,3,3 ; 15)=23$ ($[9]$) is the only known number of the kind $F_{e}\left(a_{1}, \ldots, a_{r} ; R\left(a_{1}, \ldots, a_{r}\right)-2\right)$ and $F_{e}(3,3,3 ; 14)=25([10])$ is the only known number of the kind $F_{e}\left(a_{1}, \ldots, a_{r} ; R\left(a_{1}, \ldots, a_{r}\right)-3\right)$.

In order to prove the Main Theorem we shall use
Theorem 2.1. $K_{1}+C_{5}+C_{5}+C_{5} \xrightarrow{e}(3,4)$.
The proof of Theorem 2.1 is very voluminous and we shall prove it additionally in $\left.{ }^{4}\right]$.

Let $A \subseteq V(G)$ be an independent set of vertices of the graph G. We denote by G / A the graph $K_{1}+(G-A)$. It is easy to see that

$$
\begin{gather*}
\operatorname{cl}(G / A) \leq \operatorname{cl}(G)+1 ; \tag{2.4}\\
G \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right) \Rightarrow G / A \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right) . \tag{2.5}
\end{gather*}
$$

In order to prove the Main Theorem we shall use the following
Proposition 2.1. Let a_{1}, \ldots, a_{r} be positive integers, $a_{i} \geq 2, i=1, \ldots, r$. Let G be a graph such that $G \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right)$ and $\operatorname{cl}(G) \leq q-2$. Then

$$
\begin{equation*}
|V(G)| \geq F_{e}\left(a_{1}, \ldots, a_{r} ; q\right)+\alpha(G)-1 \tag{2.6}
\end{equation*}
$$

Proof. Let A be an independent set of vertices of G and $|A|=\alpha(G)$. According to (2.4) and $(2.5) G \xrightarrow{e}\left(a_{1}, \ldots, a_{r}\right)$ and $\operatorname{cl}(G / A) \leq q-1$. Therefore

$$
|V(G / A)| \geq F_{e}\left(a_{1}, \ldots, a_{r} ; q\right)
$$

Inequality (2.6) follows from the last inequality as $|V(G / A)|=|V(G)|-\alpha(G)+1$.

3. Vertex Folkman numbers.

Definition 3.1. Let a_{1}, \ldots, a_{r} be positive integers. We say that the r-colouring

$$
V(G)=V_{1} \cup \cdots \cup V_{r}, \quad V_{i} \cap V_{j}=\emptyset, \quad i \neq j
$$

of the vertices of G is $\left(a_{1}, \ldots, a_{r}\right)$-free if for every $i \in\{1, \ldots, r\}$ the set V_{i} does not contain an a_{i}-clique. The symbol $G \xrightarrow{v}\left(a_{1}, \ldots, a_{r}\right)$ means that graph G has no $\left(a_{1}, \ldots, a_{r}\right)$ free colouring.

The vertex Folkman number $F_{v}\left(a_{1}, \ldots, a_{r} ; q\right)$ is defined by the equality

$$
F_{v}\left(a_{1}, \ldots, a_{r} ; q\right)=\min \left\{\mid V(G): G \xrightarrow{v}\left(a_{1}, \ldots, a_{r}\right) \text { and } \operatorname{cl}(G)<q\right\} .
$$

In [2] Folkman proved that

$$
F_{v}\left(a_{1}, \ldots, a_{r} ; q\right) \text { exists } \Longleftrightarrow q>\max \left\{a_{1}, \ldots, a_{r}\right\} .
$$

We shall need the following results about the vertex Folkman numbers:

$$
\begin{align*}
& F_{v}(2,2,4 ; 5)=13\left(\text { see }\left[{ }^{12}\right]\right) \tag{3.1}\\
& F_{v}(2,2, p ; p+1) \geq 2 p+4\left(\text { see }\left[{ }^{13}\right]\right) \tag{3.2}
\end{align*}
$$

There is an exposition of the results on Folkman numbers in [1]. We shall also add the papers $\left[{ }^{8-10,14]}\right.$ to this exposition. For the proof of the inequality $F_{e}(3,4 ; 8) \geq 16$ we shall need the following

Theorem 3.1. Let G be a graph, $\operatorname{cl}(G) \leq p$ and $|V(G)| \geq p+2, p \geq 2$. Let G also have the following two properties:
(i) $G \stackrel{v}{\nrightarrow}(2,2, p)$;
(ii) If $V(G)=V_{1} \cup V_{2} \cup V_{3}$ is a (2, 2, p)-free 3-colouring then $\left|V_{1}\right|+\left|V_{2}\right| \leq 3$.

Then $G=K_{1}+G_{1}$.
Proof. Let $V(G)=V_{1} \cup V_{2} \cup V_{3}$ be a (2, 2, p)-free 3-colouring. According to (ii) we have

$$
\begin{equation*}
\left|V_{1}\right|+\left|V_{2}\right| \leq 3 \tag{3.3}
\end{equation*}
$$

Since $|V(G)| \geq p+2 \geq 4$, it follows from (3.3) that

$$
\begin{equation*}
V_{3} \neq \varnothing \tag{3.4}
\end{equation*}
$$

It is enough to consider only the situation when $V_{1} \neq \varnothing$ and $V_{2} \neq \varnothing$. Indeed, let $V_{1}=\emptyset$. It follows from (3.4) that there is $w \in V_{3}$. It is clear that

$$
\{w\} \cup V_{2} \cup\left(V_{3}-\{w\}\right)
$$

is a $(2,2, p)$-free 3 -colouring. So, we can assume without loss of generality that

$$
\begin{equation*}
1 \leq\left|V_{1}\right| \leq\left|V_{2}\right| \tag{3.5}
\end{equation*}
$$

It is clear from (3.4) and (3.5) that only the following two cases are possible:
Case 1. $\left|V_{1}\right|=\left|V_{2}\right|=1$. Let $V_{1}=\{a\}$ and $V_{2}=\{b\}$. In this case we have $[a, b] \in E(G)$. Assume the opposite. It follows from $|V(G)| \geq p+2$ that $\left|V_{3}\right| \geq p$. As V_{3} does not contain a p-clique there exist two non-adjacent vertices $c, d \in V_{3}$. Then $\{a, b\} \cup\{c, d\} \cup\left(V_{3}-\{c, d\}\right)$ is a $(2,2, p)$-free 3 -colouring which contradicts (ii). So, we have

$$
\begin{equation*}
[a, b] \in E(G) \tag{3.6}
\end{equation*}
$$

Assume that the statement of Theorem 2.1 is wrong. Then there are $a^{\prime}, b^{\prime} \in V_{3}$ such that $\left[a, a^{\prime}\right] \notin E(G)$ and $\left[b, b^{\prime}\right] \notin E(G)$. If $a^{\prime} \neq b^{\prime}$ then

$$
\left\{a, a^{\prime}\right\} \cup\left\{b, b^{\prime}\right\} \cup\left(V_{3}-\left\{a^{\prime}, b^{\prime}\right\}\right)
$$

is a $(2,2, p)$-free 3 -colouring which contradicts (ii). It remains to consider only the situation when $a^{\prime}=b^{\prime}=c$ and

$$
\begin{equation*}
N(a) \supset V_{3}-\{c\}, \quad N(b) \supset V_{3}-\{c\} . \tag{3.7}
\end{equation*}
$$

It follows from $\operatorname{cl}(G) \geq p$ and (3.7) that

$$
\begin{equation*}
V^{\prime}=V_{3}-\{c\} \text { does not contain a }(p-1) \text {-clique. } \tag{3.8}
\end{equation*}
$$

As $|V(G)| \geq p+2$ we have $\left|V^{\prime}\right| \geq p+1$. That is why, it follows from (3.8) that V^{\prime} contains two non-adjacent vertices m and n. Let $V^{\prime \prime}=V^{\prime}-\{m, n\}$. According to (3.8), $V^{\prime \prime} \cup\{b\}$ does not contain a p-clique. Therefore,

$$
\{a, c\} \cup\{m, n\} \cup\left(V^{\prime \prime} \cup\{b\}\right)
$$

is a ($2,2, p$)-free 3 -colouring of $V(G)$ which contradicts (ii).
Case 2. $\left|V_{1}\right|=1,\left|V_{2}\right|=2$. Let $\left|V_{1}\right|=\{a\}$ and $V_{2}=\{b, c\}$. We shall first prove that

$$
\begin{equation*}
N(a) \supset V_{3} . \tag{3.9}
\end{equation*}
$$

Assume that (3.9) is wrong and let $[a, d] \notin E(G), d \in V_{3}$. Then

$$
\{a, d\} \cup\{b, c\} \cup\left(V_{3}-\{d\}\right)
$$

is a $(2,2, p)$-free 3 -colouring of $V(G)$ which is a contradiction.
If $\{a, b, c\}$ is an independent set and $d \in V_{3}$ then

$$
\{a, b, c\} \cup\{d\} \cup\left(V_{3}-\{d\}\right)
$$

is a $(2,2, p)$-free 3 -colouring of $V(G)$ which is a contradiction. Therefore, we can assume that $[a, b] \in E(G)$. We have from (3.9) that $N(a) \supset V_{3} \cup\{b\}$. Since $\operatorname{cl}(G) \leq p, V_{3} \cup\{b\}$ does not contain a p-clique. Thus $\{a\} \cup\{c\} \cup\left(V_{3} \cup\{b\}\right)$ is a (2,2,p)-free 3-colouring of $V(G)$ and we are in the situation of case 1 . Theorem 3.1 is proved.

4. Proof of the Main Theorem.

I. Proof of the inequality $F_{e}(3,4 ; 8) \leq 16$. We consider the graph $H=$ $K_{1}+C_{5}+C_{5}+C_{5}$. By Theorem 2.1, $H \xrightarrow{e}(3,4)$. Since $\operatorname{cl}(H)=7$ we have that $F_{e}(3,4 ; 8) \leq|V(H)|=16$.
II. Proof of the inequality $F_{e}(3,4 ; 8) \geq 16$. Assume that this inequality is wrong. Then there is a graph G such that $G \xrightarrow{e}(3,4), \operatorname{cl}(G) \leq 7$ and $|V(G)| \leq 15$. It follows from $|V(G)| \leq 15$, Proposition $2.1(q=9)$ and (2.3) that

$$
\begin{align*}
|V(G)| & =15, \tag{4.1}\\
\alpha(G) & =2 . \tag{4.2}
\end{align*}
$$

We shall prove that G suffices the conditions of Theorem 3.1 for $p=7$. We have from (3.2) that $F_{e}(2,2,7 ; 8) \geq 18$. Since $\operatorname{cl}(G) \leq 7$, from this inequality and (4.1) it follows $G \stackrel{v}{\nrightarrow}(2,2,7)$. Let $V_{1} \cup V_{2} \cup V_{3}$ be (2,2,7)-free 3-colouring of $V(G)$. We define the graphs $G_{1}=G / V_{1}$ and $G_{2}=G_{1} / V_{2}$. We see from (2.5) that $G_{2} \xrightarrow{e}(3,4)$. As V_{3} does not contain a 7 -clique, $\operatorname{cl}\left(G_{2}\right) \leq 8$. Thus, it follows from (2.3) that

$$
\begin{equation*}
\left|V\left(G_{2}\right)\right| \geq 14 \tag{4.3}
\end{equation*}
$$

We see from (4.2) that $\left|V_{1}\right| \leq 2$ and $\left|V_{2}\right| \leq 2$. Therefore, if $\left|V_{1}\right| \leq 1$ or $\left|V_{2}\right| \leq 1$ we have that $\left|V_{1}\right|+\left|V_{2}\right| \leq 3$. It remains just to consider the situation when $\left|V_{1}\right|=\left|V_{2}\right|=2$. Since
$\left|V\left(G_{2}\right)\right|=|V(G)|-\left|V_{1}\right|-\left|V_{2}\right|+2=17-\left|V_{1}\right|-\left|V_{2}\right|$ from (4.3) we obtain $\left|V_{1}\right|+\left|V_{2}\right| \leq 3$. So, G suffices the conditions of Theorem 3.1 for $p=7$. Thus, $G=K_{1}+H_{1}$. It follows from $\operatorname{cl}(G) \leq 7$ that $\operatorname{cl}\left(H_{1}\right) \leq 6$. Now we shall prove that H_{1} suffices the conditions of Theorem 3.1 for $p=6$. From (3.2) we have $F_{v}(2,2,6 ; 7) \geq 16$. Since $\left|V\left(H_{1}\right)\right|=14$ and $\operatorname{cl}\left(H_{1}\right) \leq 6$ we have $H_{1} \stackrel{v}{\rightarrow}(2,2,6)$. Let $V\left(K_{1}\right)=\{a\}$ and $V_{1} \cup V_{2} \cup V_{3}$ be $(2,2,6)$-free 3-colouring of $V\left(H_{1}\right)$. It is clear that $V_{1} \cup V_{2} \cup\left(V_{3} \cup\{a\}\right)$ is (2,2,7)-free 3-colouring of $V(G)$. As we proved above $\left|V_{1}\right|+\left|V_{2}\right| \leq 3$. According to Theorem 3.1 $H_{1}=K_{1}+H_{2}$ and $G=K_{2}+H_{2}$. From $\operatorname{cl}\left(H_{1}\right) \leq 6$ it follows $\operatorname{cl}\left(H_{2}\right) \leq 5$. From (3.2) we obtain that $H_{2} \stackrel{v}{\nrightarrow}(2,2,5)$. Repeating about H_{2} the above considerations about H_{1} we see that H_{2} suffices the condition (ii) of Theorem 3.1 for $p=5$, too. Hence, $H_{2}=K_{1}+H_{3}$ and $G=K_{3}+H_{3}$. Now consider the graph H_{3}. Since $\left|V\left(H_{3}\right)\right|=12$, from (3.1) we have $H_{3} \stackrel{v}{\nrightarrow}(2,2,4)$. As above we see that H_{3} suffices the condition (ii) of Theorem 3.1 for $p=4$, too. That is why $H_{3}=K_{1}+H_{4}$ and $G=K_{4}+H_{4}$. As $\operatorname{cl}(G) \leq 7$ we have $\operatorname{cl}\left(H_{4}\right) \leq 3$. It follows from (4.2) that $\alpha\left(H_{4}\right)=2$. This contradicts (2.2) as $\left|V\left(H_{4}\right)\right|=11$.

The Main Theorem is proved.

REFERENCES

${ }^{[1}$] Coles J. Algorithms for bounding Folkman numbers. Master Thesis (see http://www. jpcoles.com/uni/rit/thesis/jpc-thesis.folkman.pdf). [²] Folkman J. SIAM J. Appl. Math., 18, 1970, 19-24. [${ }^{3}$] Graham R. L. J. Combin. Theory, 4, 1968, 300. ${ }^{[4]}$ Kolev N., N. Nenov. Ann. Univ. Sofia, Fac. Math. Inform. (submitted). [5] Lin S. J. Combin. Theory, B12, 1972, 82-92. [${ }^{6}$] Luczak T., A. Rucinski, S. Urbanski. Discrete Math., 236, 2001, 245-262. [7] Nenov N. Compt. rend. Acad. bulg. Sci., 34, 1981, 1487-1489 (in Russian). [$\left.{ }^{8}\right]$ Id. Ibid., 33, 1980, No 9, 1171-1174. [${ }^{9}$] Id. Ibid., 34, 1981, 1209-1212. [${ }^{10}$] Id. Ann. Univ. Sofia, Fac. Math. Mec., 75, 1981, 27-38 (in Russian). [${ }^{11}$] Id. Ann. Univ. Sofia, Fac. Math. Inform., 85, 1991, No 1-2, 71-81. [12] Id. Serdica Bulgaricae math. publicationes, 27, 2001, 131-136. [13] Id. Ann. Univ. Sofia, Fac. Math. Inform., 94, 2000, 15-25. [${ }^{14}$] Id. Serdica Math. J., 28, 2002, 219-232. [${ }^{15}$] Id. Ann. Univ. Sofia, Fac. Math. Inform., 95, 2001, 59-69. [${ }^{16}$] Nešetřil J., V. Rödl. J. Comb. Th., B20, 1976, 243-249. [${ }^{17}$] Piwakowski K., S. Radziszowski, S. Urbanski. J. Graph Theory, 32, 1999, 41-49. [${ }^{18}$] Radziszowski S. Electronic J. Combinatorics, DS1, 2002 (http://www.combinatorics.org/Surveys/). [19] Ramsey P. Proc. London Math. Soc., 30, 1930, 264-268.

Faculty of Mathematics and Informatics St. Kliment Ohridski University of Sofia 5, James Bourchier Blvd 1164 Sofia, Bulgaria e-mail: nenov@fmi.uni-sofia.bg

