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Abstract

The set of the vertices of a graph G is denoted by V (G). The symbol G
e

→ (3, 4)
means that in every 2-colouring of the edges of G there is either a 3-clique in the first
colour or a 4-clique in the second colour. Folkman number Fe(3, 4; 8) is defined by
the equality

Fe(3, 4; 8) = min{|V (G)| : G
e

→ (3, 4) and K8 " G}.

In this paper we prove that Fe(3, 4; 8) = 16.
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1. Notations. We consider only finite, non-oriented graphs without loops and
multiple edges. A set of p vertices of the graph G is called a p-clique if each two of
them are adjacent. The greatest positive integer p for which G has a p-clique is called
clique number of G and is denoted by cl(G). We shall use the following notations in
this paper:

• V (G) is the vertex set of graph G;

• E(G) is the edge set of graph G;

• G is the complementary graph of G;

• G − V , V ⊆ V (G) is the subgraph of G induced by the set V (G) \ V ;

• Kn is the complete graph on n vertices;

• Cn is the simple cycle on n vertices;

• α(G) is the independence number of G, i.e. α(G) = cl(G);

• N(v), v ∈ V (G) is the set of all vertices of G adjacent to v.
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Let G1 and G2 be two graphs without common vertices. We denote by G1 +G2 the
graph G defined as follows: V (G) = V (G1)∪ V (G2) and E(G) = E(G1)∪E(G2)∪E′,
where E′ = {[x, y] | x ∈ V (G1), y ∈ V (G2)}.

2. Main result. Each partition

(2.1) E(G) = E1 ∪ · · · ∪ Er Ei ∩ Ej = Ø, i 6= j

is called an r-colouring of the edges of G. We say that H is a monochromatic subgraph
from the i-th colour in the r-colouring (2.1) if E(H) ⊆ Ei.

Definition 2.1. Let a1, . . . , ar be positive integers, ai ≥ 2, i = 1, . . . , r. We say
that the r-colouring is (a1, . . . , ar)-free if for each i ∈ {1, . . . , r} there is no ai-clique in

the i-th colour. The symbol G
e
→ (a1, . . . , ar) means that any r-colouring of E(G) is

not (a1, . . . , ar)-free.
Definition 2.2. Let a1, . . . , ar be positive integers, ai ≥ 2, i = 1, . . . , r. The

smallest positive integer n for which Kn
e
→ (a1, . . . , ar) is denoted by R(a1, . . . , ar) and

is called Ramsey number.
Note that the number R(a1, a2) can also be defined as the smallest positive integer

n, such that for every n-vertex graph G either cl(G) ≥ a1 or α(G) ≥ a2. The existence
of the numbers R(a1, . . . , ar) was proved by Ramsey in [19].

An exposition of the results on the numbers R(a1, . . . , ar) is given in [18]. In this
paper we shall need the following values only:

(2.2) R(3, 4) = R(4, 3) = 9.

The edge Folkman number Fe(a1, . . . , ar; q) is denoted by the equality

Fe(a1, . . . , ar; q) = min{|V (G) : G
e
→ (a1, . . . , ar) and cl(G) < q}.

It is clear that from G
e
→ (a1, . . . , ar) it follows cl(G) ≥ max{a1, . . . , ar}. There exists

a graph G
e
→ (a1, . . . , ar) and cl(G) = max{a1, . . . , ar}. In the case r = 2 this was

proved in [2] and in the general case in [16]. That is why

Fe(a1, . . . , ar; q) exists ⇐⇒ q > max{a1, . . . , ar}.

From Definition 2.2 it follows that

Fe(a1, . . . , ar; q) = R(a1, . . . , ar) if q > R(a1, . . . , ar).

In this paper we shall use the equality

(2.3) Fe(3, 4; 9) = 14, [11] (see also [15]).

Besides this value we know only the following edge Folkman numbers of the kind
Fe(a1, . . . , ar;R(a1, . . . , ar))

Fe(3, 3; 6) = 8 ([3] and [5]);

Fe(3, 5; 14) = 16 ([5]);

Fe(4, 4; 18) = 20 ([5]);

Fe(3, 3, 3; 17) = 19 ([5]).
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We know only two edge Folkman numbers of the kind Fe(a1, . . . , ar;R(a1, . . . , ar)−
1), namely Fe(3, 3; 5) = 15 and Fe(3, 3, 3; 16) = 21. The inequality Fe(3, 3; 5) ≤ 15 was
proved in [7] and the inequality Fe(3, 3; 5) ≥ 15 was obtained in [17] by the means
of a computer. The inequality Fe(3, 3, 3; 16) ≥ 21 was proved in [5] and the opposite
inequality Fe(3, 3, 3; 16) ≤ 21 in [8].

In this paper we shall compute one more Folkman number of the kind Fe(a1, . . . , ar;
R(a1, . . . , ar) − 1) by proving the following

Main theorem. Fe(3, 4; 8) = 16.
The best previously known upper bound on this number was Fe(3, 4; 8) ≤ 314 (see

[6]). We also know that Fe(3, 4; 8) ≥ 15 which easily follows from (2.3). At the end of
this exposition we shall note that Fe(3, 3, 3; 15) = 23 ([9]) is the only known number
of the kind Fe(a1, . . . , ar;R(a1, . . . , ar) − 2) and Fe(3, 3, 3; 14) = 25 ([10]) is the only
known number of the kind Fe(a1, . . . , ar;R(a1, . . . , ar) − 3).

In order to prove the Main Theorem we shall use

Theorem 2.1. K1 + C5 + C5 + C5
e
→ (3, 4).

The proof of Theorem 2.1 is very voluminous and we shall prove it additionally
in [4].

Let A ⊆ V (G) be an independent set of vertices of the graph G. We denote by
G/A the graph K1 + (G − A). It is easy to see that

cl(G/A) ≤ cl(G) + 1;(2.4)

G
e
→ (a1, . . . , ar) ⇒ G/A

e
→ (a1, . . . , ar).(2.5)

In order to prove the Main Theorem we shall use the following
Proposition 2.1. Let a1, . . . , ar be positive integers, ai ≥ 2, i = 1, . . . , r. Let G

be a graph such that G
e
→ (a1, . . . , ar) and cl(G) ≤ q − 2. Then

(2.6) |V (G)| ≥ Fe(a1, . . . , ar; q) + α(G) − 1.

Proof. Let A be an independent set of vertices of G and |A| = α(G). According

to (2.4) and (2.5) G
e
→ (a1, . . . , ar) and cl(G/A) ≤ q − 1. Therefore

|V (G/A)| ≥ Fe(a1, . . . , ar; q).

Inequality (2.6) follows from the last inequality as |V (G/A)| = |V (G)| − α(G) + 1.
3. Vertex Folkman numbers.
Definition 3.1. Let a1, . . . , ar be positive integers. We say that the r-colouring

V (G) = V1 ∪ · · · ∪ Vr, Vi ∩ Vj = Ø, i 6= j

of the vertices of G is (a1, . . . , ar)-free if for every i ∈ {1, . . . , r} the set Vi does not con-

tain an ai-clique. The symbol G
v
→ (a1, . . . , ar) means that graph G has no (a1, . . . , ar)-

free colouring.
The vertex Folkman number Fv(a1, . . . , ar; q) is defined by the equality

Fv(a1, . . . , ar; q) = min{|V (G) : G
v
→ (a1, . . . , ar) and cl(G) < q}.

In [2] Folkman proved that

Fv(a1, . . . , ar; q) exists ⇐⇒ q > max{a1, . . . , ar}.
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We shall need the following results about the vertex Folkman numbers:

Fv(2, 2, 4; 5) = 13 (see [12]),(3.1)

Fv(2, 2, p; p + 1) ≥ 2p + 4 (see [13]).(3.2)

There is an exposition of the results on Folkman numbers in [1]. We shall also add
the papers [8–10,14] to this exposition. For the proof of the inequality Fe(3, 4; 8) ≥ 16
we shall need the following

Theorem 3.1. Let G be a graph, cl(G) ≤ p and |V (G)| ≥ p + 2, p ≥ 2. Let G
also have the following two properties:

(i) G
v

6→ (2, 2, p);

(ii) If V (G) = V1 ∪ V2 ∪ V3 is a (2, 2, p)-free 3-colouring then |V1| + |V2| ≤ 3.

Then G = K1 + G1.
Proof. Let V (G) = V1 ∪ V2 ∪ V3 be a (2, 2, p)-free 3-colouring. According to (ii)

we have

(3.3) |V1| + |V2| ≤ 3.

Since |V (G)| ≥ p + 2 ≥ 4, it follows from (3.3) that

(3.4) V3 6= Ø.

It is enough to consider only the situation when V1 6= Ø and V2 6= Ø. Indeed, let
V1 = Ø. It follows from (3.4) that there is w ∈ V3. It is clear that

{w} ∪ V2 ∪ (V3 − {w})

is a (2, 2, p)-free 3-colouring. So, we can assume without loss of generality that

(3.5) 1 ≤ |V1| ≤ |V2|.

It is clear from (3.4) and (3.5) that only the following two cases are possible:
Case 1. |V1| = |V2| = 1. Let V1 = {a} and V2 = {b}. In this case we have

[a, b] ∈ E(G). Assume the opposite. It follows from |V (G)| ≥ p + 2 that |V3| ≥ p. As
V3 does not contain a p-clique there exist two non-adjacent vertices c, d ∈ V3. Then
{a, b} ∪ {c, d} ∪ (V3 −{c, d}) is a (2, 2, p)-free 3-colouring which contradicts (ii). So, we
have

(3.6) [a, b] ∈ E(G).

Assume that the statement of Theorem 2.1 is wrong. Then there are a′, b′ ∈ V3

such that [a, a′] /∈ E(G) and [b, b′] /∈ E(G). If a′ 6= b′ then

{a, a′} ∪ {b, b′} ∪ (V3 − {a′, b′})

is a (2, 2, p)-free 3-colouring which contradicts (ii). It remains to consider only the
situation when a′ = b′ = c and

(3.7) N(a) ⊃ V3 − {c}, N(b) ⊃ V3 − {c}.
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It follows from cl(G) ≥ p and (3.7) that

(3.8) V ′ = V3 − {c} does not contain a (p − 1)-clique.

As |V (G)| ≥ p + 2 we have |V ′| ≥ p + 1. That is why, it follows from (3.8) that V ′

contains two non-adjacent vertices m and n. Let V ′′ = V ′−{m,n}. According to (3.8),
V ′′ ∪ {b} does not contain a p-clique. Therefore,

{a, c} ∪ {m,n} ∪ (V ′′ ∪ {b})

is a (2, 2, p)-free 3-colouring of V (G) which contradicts (ii).
Case 2. |V1| = 1, |V2| = 2. Let |V1| = {a} and V2 = {b, c}. We shall first prove

that

(3.9) N(a) ⊃ V3.

Assume that (3.9) is wrong and let [a, d] /∈ E(G), d ∈ V3. Then

{a, d} ∪ {b, c} ∪ (V3 − {d})

is a (2, 2, p)-free 3-colouring of V (G) which is a contradiction.
If {a, b, c} is an independent set and d ∈ V3 then

{a, b, c} ∪ {d} ∪ (V3 − {d})

is a (2, 2, p)-free 3-colouring of V (G) which is a contradiction. Therefore, we can assume
that [a, b] ∈ E(G). We have from (3.9) that N(a) ⊃ V3 ∪ {b}. Since cl(G) ≤ p, V3 ∪ {b}
does not contain a p-clique. Thus {a} ∪ {c} ∪ (V3 ∪ {b}) is a (2, 2, p)-free 3-colouring of
V (G) and we are in the situation of case 1. Theorem 3.1 is proved.

4. Proof of the Main Theorem.
I. Proof of the inequality Fe(3, 4; 8) ≤ 16. We consider the graph H =

K1 + C5 + C5 + C5. By Theorem 2.1, H
e
→ (3, 4). Since cl(H) = 7 we have that

Fe(3, 4; 8) ≤ |V (H)| = 16.
II. Proof of the inequality Fe(3, 4; 8) ≥ 16. Assume that this inequality is

wrong. Then there is a graph G such that G
e
→ (3, 4), cl(G) ≤ 7 and |V (G)| ≤ 15. It

follows from |V (G)| ≤ 15, Proposition 2.1 (q = 9) and (2.3) that

|V (G)| = 15,(4.1)

α(G) = 2.(4.2)

We shall prove that G suffices the conditions of Theorem 3.1 for p = 7. We have
from (3.2) that Fe(2, 2, 7; 8) ≥ 18. Since cl(G) ≤ 7, from this inequality and (4.1) it

follows G
v

6→ (2, 2, 7). Let V1 ∪ V2 ∪ V3 be (2, 2, 7)-free 3-colouring of V (G). We define

the graphs G1 = G/V1 and G2 = G1/V2. We see from (2.5) that G2
e
→ (3, 4). As V3

does not contain a 7-clique, cl(G2) ≤ 8. Thus, it follows from (2.3) that

(4.3) |V (G2)| ≥ 14.

We see from (4.2) that |V1| ≤ 2 and |V2| ≤ 2. Therefore, if |V1| ≤ 1 or |V2| ≤ 1 we have
that |V1|+|V2| ≤ 3. It remains just to consider the situation when |V1| = |V2| = 2. Since
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|V (G2)| = |V (G)|− |V1|− |V2|+2 = 17−|V1|− |V2| from (4.3) we obtain |V1|+ |V2| ≤ 3.
So, G suffices the conditions of Theorem 3.1 for p = 7. Thus, G = K1 + H1. It follows
from cl(G) ≤ 7 that cl(H1) ≤ 6. Now we shall prove that H1 suffices the conditions of
Theorem 3.1 for p = 6. From (3.2) we have Fv(2, 2, 6; 7) ≥ 16. Since |V (H1)| = 14 and

cl(H1) ≤ 6 we have H1

v

6→ (2, 2, 6). Let V (K1) = {a} and V1 ∪ V2 ∪ V3 be (2, 2, 6)-free
3-colouring of V (H1). It is clear that V1 ∪ V2 ∪ (V3 ∪ {a}) is (2, 2, 7)-free 3-colouring of
V (G). As we proved above |V1| + |V2| ≤ 3. According to Theorem 3.1 H1 = K1 + H2

and G = K2 + H2. From cl(H1) ≤ 6 it follows cl(H2) ≤ 5. From (3.2) we obtain that

H2

v

6→ (2, 2, 5). Repeating about H2 the above considerations about H1 we see that
H2 suffices the condition (ii) of Theorem 3.1 for p = 5, too. Hence, H2 = K1 + H3

and G = K3 + H3. Now consider the graph H3. Since |V (H3)| = 12, from (3.1) we

have H3

v

6→ (2, 2, 4). As above we see that H3 suffices the condition (ii) of Theorem 3.1
for p = 4, too. That is why H3 = K1 + H4 and G = K4 + H4. As cl(G) ≤ 7 we have
cl(H4) ≤ 3. It follows from (4.2) that α(H4) = 2. This contradicts (2.2) as |V (H4)| = 11.

The Main Theorem is proved.
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