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Abstract

The set of the vertices of a graph G is denoted by V(G). The symbol G - (3, 4)
means that in every 2-colouring of the edges of GG there is either a 3-clique in the first
colour or a 4-clique in the second colour. Folkman number F,(3,4;8) is defined by
the equality

F.(3,4;8) = min{|V(GQ)| : G 5 (3,4) and Kg ¢ G}.
In this paper we prove that F,(3,4;8) = 16.
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1. Notations. We consider only finite, non-oriented graphs without loops and
multiple edges. A set of p vertices of the graph G is called a p-clique if each two of
them are adjacent. The greatest positive integer p for which G has a p-clique is called
clique number of G and is denoted by cl(G). We shall use the following notations in
this paper:

e V(@) is the vertex set of graph G;
e F(G) is the edge set of graph G;

e G is the complementary graph of G;

G —V,V CV(G) is the subgraph of G induced by the set V(G) \ V;

K, is the complete graph on n vertices;

C,, is the simple cycle on n vertices;
e a(G) is the independence number of G, i.e. a(G) = cl(G);

o N(v), v e V(G) is the set of all vertices of G adjacent to v.
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Let G1 and G5 be two graphs without common vertices. We denote by G1+Gs the
graph G defined as follows: V(G) = V(G1) UV (G2) and E(G) = E(G1) U E(G2) U E,
where E' = {[z,y] | x € V(G1),y € V(G2)}.

2. Main result. Each partition

(21) E(G):Elu---UEr EZ'QE]':@, Z?éj

is called an r-colouring of the edges of G. We say that H is a monochromatic subgraph
from the i-th colour in the r-colouring (2.1) if E(H) C E;.

Definition 2.1. Let aq,...,a, be positive integers, a; > 2,7 =1,...,r. We say
that the r-colouring is (a1, ..., a,)-free if for each i € {1,...,r} there is no a;-clique in
the i-th colour. The symbol G % (ay,...,a,) means that any r-colouring of E(G) is
not (ai,...,a,)-free.

Definition 2.2. Let ay,...,a, be positive integers, a; > 2, ¢ = 1,...,r. The
smallest positive integer n for which K,, % (ay,...,a,) is denoted by R(ay,...,a,) and

is called Ramsey number.

Note that the number R(a,a2) can also be defined as the smallest positive integer
n, such that for every n-vertex graph G either cl(G) > a; or a(G) > az. The existence
of the numbers R(ay,...,a,) was proved by RAMSEY in [19].

An exposition of the results on the numbers R(ay,...,a,) is given in [!8]. In this
paper we shall need the following values only:

(2.2) R(3,4) = R(4,3) = 0.
The edge Folkman number Fi(aq,...,a,;q) is denoted by the equality

F.(ay,...,ar;q) = min{|V(G) : G 5 (a1,...,a,) and cl(G) < ¢}.

It is clear that from G 5 (ay,...,a,) it follows cl(G) > max{ay,...,a,}. There exists

a graph G 5 (a1,...,a,) and cI(G) = max{ay,...,a,}. In the case r = 2 this was
proved in [2] and in the general case in [16]. That is why

Fe(ay,...,ar;q) exists <= ¢ > max{ay,...,a,}.
From Definition 2.2 it follows that
F.(ai,...,ar;q) = R(ay,...,a,) if ¢ > R(ay,...,a,).
In this paper we shall use the equality
(2.3) F.(3,4;9) = 14, [11] (see also [19]).

Besides this value we know only the following edge Folkman numbers of the kind
F.(ai,...,a; R(ay,...,a;.))
F.(3,3:6) = 8 ([3] and [7);
Fe(3,5;14) = 16 ([°));
Fe(4,4;18) =20 (°));
Fe(3,3,3;17) =19 (7).
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We know only two edge Folkman numbers of the kind Fe(ay,...,a,; R(a1,...,a,)—
1), namely Fe(3,3;5) = 15 and Fi(3,3,3;16) = 21. The inequality F.(3,3;5) < 15 was
proved in [7] and the inequality F.(3,3;5) > 15 was obtained in [17] by the means
of a computer. The inequality F.(3,3,3;16) > 21 was proved in [°] and the opposite
inequality F¢(3,3,3;16) <21 in [8].

In this paper we shall compute one more Folkman number of the kind F,(ay, ..., a,;
R(aq,...,a,) — 1) by proving the following

Main theorem. F,(3,4;8) = 16.

The best previously known upper bound on this number was F,(3,4;8) < 314 (see
[6]). We also know that Fi(3,4;8) > 15 which easily follows from (2.3). At the end of
this exposition we shall note that F,(3,3,3;15) = 23 ([?]) is the only known number
of the kind F.(ay,...,ar; R(a1,...,a,) —2) and F.(3,3,3;14) = 25 ([10]) is the only
known number of the kind Fe(aq,...,a;; R(a1,...,a;) — 3).

In order to prove the Main Theorem we shall use

Theorem 2.1. K + C5 + C5 + C5 = (3,4).
. [4]The proof of Theorem 2.1 is very voluminous and we shall prove it additionally
in [4].
Let A C V(G) be an independent set of vertices of the graph G. We denote by
G/A the graph K; + (G — A). It is easy to see that

(2.4) cl(G/A) < cl(G) + 1;
(2.5) G5 (ay,...,a,) = G/AS (a1,...,a,).

In order to prove the Main Theorem we shall use the following
Proposition 2.1. Let aq,...,a, be positive integers, a; > 2,i=1,...,r. Let G

be a graph such that G 5 (ay,...,a,) and cl(G) < g — 2. Then
(2.6) [V(G)| > Fe(ay,...,ar;q) + a(G) — 1.

Proof. Let A be an independent set of vertices of G and |A| = a(G). According
to (2.4) and (2.5) G % (ay,...,a,) and cl(G/A) < g — 1. Therefore

|V(G/A)| Z Fe(a’la vy Qg Q)
Inequality (2.6) follows from the last inequality as |[V(G/A)| = |[V(G)| — «(G) + 1.

3. Vertex Folkman numbers.
Definition 3.1. Let ay,...,a, be positive integers. We say that the r-colouring

V@) =ViU---UV,, VinV;=0, i#j

of the vertices of G is (a1, ..., a,)-free if for every i € {1,...,r} the set V; does not con-

tain an a;-clique. The symbol G - (ay, ..., a,) means that graph G has no (ag, ..., a,)-
free colouring.
The vertex Folkman number F,(aq,...,a,;q) is defined by the equality

Fy(ay,...,a;;q) = min{|V(G) : G % (a1,...,a,) and cl(G) < q}.
In [2] Folkman proved that

Fy(ay,...,a;;q) exists <= ¢ > max{ay,...,a,}.
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We shall need the following results about the vertex Folkman numbers:

(3.1) Fy(2,2,4;5) = 13 (see [12]),
(3.2 Fo(22,pip+1) > 2p + 4 (see [19]).

There is an exposition of the results on Folkman numbers in [1]. We shall also add
the papers [810.14] to this exposition. For the proof of the inequality F,(3,4;8) > 16
we shall need the following
Theorem 3.1. Let G be a graph, cl(G) < p and |[V(G)| > p+2,p > 2. Let G
also have the following two properties:
v
(i) G # (2,2,p);
(ii) HV(G) =V1UVaU Vs is a (2,2, p)-free 3-colouring then V1| + |Va| < 3.

Then G = Kl + Gl.
Proof. Let V(G) = V4, U Vo U V3 be a (2,2, p)-free 3-colouring. According to (ii)
we have

(3.3) Vi] + Vel < 3.
Since |V(G)| > p+ 2 > 4, it follows from (3.3) that
(3.4) V3 # 0.

It is enough to consider only the situation when V7 # @ and V5 # . Indeed, let
Vi = 0. It follows from (3.4) that there is w € V3. It is clear that

{wpuVau (Vs —{w})
is a (2,2, p)-free 3-colouring. So, we can assume without loss of generality that
(3.5) 1< Vi < V2.

It is clear from (3.4) and (3.5) that only the following two cases are possible:
Case 1. |Vi| = |Vo| = 1. Let Vi = {a} and Vo = {b}. In this case we have
[a,b] € E(G). Assume the opposite. It follows from |V (G)| > p + 2 that |V3| > p. As
V3 does not contain a p-clique there exist two non-adjacent vertices ¢,d € V3. Then
Ea, b} U{c,d}U (Vs —{c,d}) is a (2,2, p)-free 3-colouring which contradicts (ii). So, we
ave

(3.6) la,0] € B(G).

Assume that the statement of Theorem 2.1 is wrong. Then there are a’,b’ € V3
such that [a,d'] ¢ E(GQ) and [b,V0'] ¢ E(G). If o’ # ' then

{a’v a/} U {b7 b/} U (‘/3 - {a/’ b/})

is a (2,2,p)-free 3-colouring which contradicts (ii). It remains to consider only the
situation when a’ = b’ = ¢ and

(3.7) N(a) > Vs —{c},  N(b) > Vz—{c}.
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It follows from cl(G) > p and (3.7) that
(3.8) V' = V3 — {c} does not contain a (p — 1)-clique.

As |[V(G)| > p+ 2 we have |V’/| > p + 1. That is why, it follows from (3.8) that V'
contains two non-adjacent vertices m and n. Let V" = V' —{m,n}. According to (3.8),
V" U {b} does not contain a p-clique. Therefore,

{a,c} U{m,n} U (V" U{b})

is a (2,2, p)-free 3-colouring of V(G) which contradicts (ii).
Case 2. |Vi| =1, |Va| = 2. Let |V4| = {a} and Vo = {b,c}. We shall first prove
that
(3.9) N(a) D V.
Assume that (3.9) is wrong and let [a,d] ¢ E(G), d € V3. Then

{a,d} U{b,c} U (V3 — {d})

is a (2,2, p)-free 3-colouring of V(G) which is a contradiction.
If {a,b,c} is an independent set and d € V3 then

{a,b,cy U{d} U (Vs — {d})

is a (2, 2, p)-free 3-colouring of V(G) which is a contradiction. Therefore, we can assume
that [a,b] € E(G). We have from (3.9) that N(a) D V3 U {b}. Since cl(G) < p, V3 U {b}
does not contain a p-clique. Thus {a} U{c}U (V3 U{b}) is a (2,2, p)-free 3-colouring of
V(G) and we are in the situation of case 1. Theorem 3.1 is proved.

4. Proof of the Main Theorem.

I. PROOF OF THE INEQUALITY F,(3,4;8) < 16. We consider the graph H =
K, + Cs 4+ C5 + Cs. By Theorem 2.1, H 5% (3,4). Since cl(H) = 7 we have that
F.(3,4;8) < |V(H)| = 16.

II. PROOF OF THE INEQUALITY F¢(3,4;8) > 16. Assume that this inequality is
wrong. Then there is a graph G such that G 5 (3,4), cl(G) < 7 and |V(G)| < 15. Tt
follows from |V(G)| < 15, Proposition 2.1 (¢ =9) and (2.3) that

(4.1) V(G)| = 15,
(4.2) (@) =2.

We shall prove that G suffices the conditions of Theorem 3.1 for p = 7. We have
from (3.2) that F.(2,2,7;8) > 18. Since cl(G) < 7, from this inequality and (4.1) it

follows G 72 (2,2,7). Let V1 U Vo U V3 be (2,2,7)-free 3-colouring of V(G). We define
the graphs G; = G/V; and Gy = G1/Va. We see from (2.5) that G, 5 (3,4). As
does not contain a 7-clique, cl(G2) < 8. Thus, it follows from (2.3) that

(4.3) V(Ga)| > 14.

We see from (4.2) that |V;| < 2 and |V;| < 2. Therefore, if [V1] < 1 or |Vo| <1 we have
that |Vi|+|Va| < 3. It remains just to consider the situation when |V;| = V2| = 2. Since
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[V(G2)| = |[V(Q)|— V1| = |Va| +2 = 17— |V1| — | V2| from (4.3) we obtain |V} |+ V2| < 3.
So, GG suffices the conditions of Theorem 3.1 for p = 7. Thus, G = K7 + H;. It follows
from cl(G) < 7 that cl(H;) < 6. Now we shall prove that H; suffices the conditions of

Theorem 3.1 for p = 6. From (3.2) we have F,(2,2,6;7) > 16. Since |V (H;)| = 14 and
v

cl(Hy) < 6 we have Hy 4 (2,2,6). Let V(K1) = {a} and V; U Vo U V3 be (2,2,6)-free
3-colouring of V(Hy). It is clear that V3 UVo U (V3 U {a}) is (2,2, 7)-free 3-colouring of
V(G). As we proved above |Vi| + |Va| < 3. According to Theorem 3.1 Hy = K; + H»
and G = K9 + Hj. From cl(H;) < 6 it follows cl(H3) < 5. From (3.2) we obtain that

v
Hy 4 (2,2,5). Repeating about Hy the above considerations about H; we see that
H, suffices the condition (ii) of Theorem 3.1 for p = 5, too. Hence, Hy = K; + Hj
and G = K3 + Hs. Now consider the graph Hs. Since |V(H3)| = 12, from (3.1) we

v
have Hs /4 (2,2,4). As above we see that Hj suffices the condition (ii) of Theorem 3.1
for p = 4, too. That is why Hs = K1 + Hy and G = K4 + Hy. As cl(G) < 7 we have
cl(Hy) < 3.1t follows from (4.2) that a(H4) = 2. This contradicts (2.2) as |V (H4)| = 11.
The Main Theorem is proved.
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