Доклади на Българската академия на науките Comptes rendus de l'Académie bulgare des Sciences

Tome 59, No 1, 2006

MATHEMATIQUES

Théorie des graphes

FOLKMAN NUMBER $F_e(3, 4; 8)$ IS EQUAL TO 16

N. Kolev, N. Nenov

(Submitted by Academician B. Boyanov on October 25, 2005)

Abstract

The set of the vertices of a graph G is denoted by V(G). The symbol $G \xrightarrow{e} (3, 4)$ means that in every 2-colouring of the edges of G there is either a 3-clique in the first colour or a 4-clique in the second colour. Folkman number $F_e(3, 4; 8)$ is defined by the equality

 $F_e(3,4;8) = \min\{|V(G)| : G \xrightarrow{e} (3,4) \text{ and } K_8 \nsubseteq G\}.$

In this paper we prove that $F_e(3, 4; 8) = 16$.

Key words: vertex Folkman numbers, edge Folkman numbers 2000 Mathematics Subject Classification: 05C55

1. Notations. We consider only finite, non-oriented graphs without loops and multiple edges. A set of p vertices of the graph G is called a p-clique if each two of them are adjacent. The greatest positive integer p for which G has a p-clique is called clique number of G and is denoted by cl(G). We shall use the following notations in this paper:

- V(G) is the vertex set of graph G;
- E(G) is the edge set of graph G;
- \overline{G} is the complementary graph of G;
- $G V, V \subseteq V(G)$ is the subgraph of G induced by the set $V(G) \setminus V$;
- K_n is the complete graph on n vertices;
- C_n is the simple cycle on n vertices;
- $\alpha(G)$ is the independence number of G, i.e. $\alpha(G) = \operatorname{cl}(\overline{G})$;
- $N(v), v \in V(G)$ is the set of all vertices of G adjacent to v.

Let G_1 and G_2 be two graphs without common vertices. We denote by $G_1 + G_2$ the graph G defined as follows: $V(G) = V(G_1) \cup V(G_2)$ and $E(G) = E(G_1) \cup E(G_2) \cup E'$, where $E' = \{[x, y] \mid x \in V(G_1), y \in V(G_2)\}$. **2. Main result.** Each partition

(2.1)
$$E(G) = E_1 \cup \dots \cup E_r \qquad E_i \cap E_j = \emptyset, \quad i \neq j$$

is called an r-colouring of the edges of G. We say that H is a monochromatic subgraph from the *i*-th colour in the *r*-colouring (2.1) if $E(H) \subseteq E_i$.

Definition 2.1. Let a_1, \ldots, a_r be positive integers, $a_i \ge 2$, $i = 1, \ldots, r$. We say that the *r*-colouring is (a_1, \ldots, a_r) -free if for each $i \in \{1, \ldots, r\}$ there is no a_i -clique in the *i*-th colour. The symbol $G \xrightarrow{e} (a_1, \ldots, a_r)$ means that any *r*-colouring of E(G) is not (a_1,\ldots,a_r) -free.

Definition 2.2. Let a_1, \ldots, a_r be positive integers, $a_i \ge 2, i = 1, \ldots, r$. The smallest positive integer n for which $K_n \xrightarrow{e} (a_1, \ldots, a_r)$ is denoted by $R(a_1, \ldots, a_r)$ and is called Ramsey number.

Note that the number $R(a_1, a_2)$ can also be defined as the smallest positive integer n, such that for every n-vertex graph G either $cl(G) \ge a_1$ or $\alpha(G) \ge a_2$. The existence of the numbers $R(a_1, \ldots, a_r)$ was proved by RAMSEY in [19].

An exposition of the results on the numbers $R(a_1, \ldots, a_r)$ is given in [18]. In this paper we shall need the following values only:

(2.2)
$$R(3,4) = R(4,3) = 9.$$

The edge Folkman number $F_e(a_1, \ldots, a_r; q)$ is denoted by the equality

$$F_e(a_1, \ldots, a_r; q) = \min\{|V(G) : G \xrightarrow{e} (a_1, \ldots, a_r) \text{ and } \operatorname{cl}(G) < q\}.$$

It is clear that from $G \xrightarrow{e} (a_1, \ldots, a_r)$ it follows $cl(G) \ge \max\{a_1, \ldots, a_r\}$. There exists a graph $G \xrightarrow{e} (a_1, \ldots, a_r)$ and $cl(G) = \max\{a_1, \ldots, a_r\}$. In the case r = 2 this was proved in [2] and in the general case in [16]. That is why

 $F_e(a_1,\ldots,a_r;q)$ exists $\iff q > \max\{a_1,\ldots,a_r\}.$

From Definition 2.2 it follows that

$$F_e(a_1, \ldots, a_r; q) = R(a_1, \ldots, a_r)$$
 if $q > R(a_1, \ldots, a_r)$.

In this paper we shall use the equality

(2.3)
$$F_e(3,4;9) = 14, [11] \text{ (see also } [15]).$$

Besides this value we know only the following edge Folkman numbers of the kind $F_e(a_1,\ldots,a_r;R(a_1,\ldots,a_r))$

$$\begin{split} F_e(3,3;6) &= 8 \; ([^3] \; \text{and} \; [^5]); \\ F_e(3,5;14) &= 16 \; ([^5]); \\ F_e(4,4;18) &= 20 \; ([^5]); \\ F_e(3,3,3;17) &= 19 \; ([^5]). \end{split}$$

N. Kolev, N. Nenov

We know only two edge Folkman numbers of the kind $F_e(a_1, \ldots, a_r; R(a_1, \ldots, a_r))$ 1), namely $F_e(3,3;5) = 15$ and $F_e(3,3,3;16) = 21$. The inequality $F_e(3,3;5) \le 15$ was proved in [7] and the inequality $F_e(3,3;5) \ge 15$ was obtained in [17] by the means of a computer. The inequality $F_e(3,3,3;16) \ge 21$ was proved in [5] and the opposite inequality $F_e(3, 3, 3; 16) \leq 21$ in [8].

In this paper we shall compute one more Folkman number of the kind $F_e(a_1,\ldots,a_r;$ $R(a_1,\ldots,a_r)-1$) by proving the following

Main theorem. $F_e(3, 4; 8) = 16$.

The best previously known upper bound on this number was $F_e(3,4;8) \leq 314$ (see [6]). We also know that $F_e(3,4;8) \ge 15$ which easily follows from (2.3). At the end of this exposition we shall note that $F_e(3, 3, 3; 15) = 23$ ([9]) is the only known number of the kind $F_e(a_1, \ldots, a_r; R(a_1, \ldots, a_r) - 2)$ and $F_e(3, 3, 3; 14) = 25$ ([10]) is the only known number of the kind $F_e(a_1, \ldots, a_r; R(a_1, \ldots, a_r) - 3)$. In order to prove the Main Theorem we shall use

Theorem 2.1. $K_1 + C_5 + C_5 + C_5 \xrightarrow{e} (3, 4)$. The proof of Theorem 2.1 is very voluminous and we shall prove it additionally in [4].

Let $A \subseteq V(G)$ be an independent set of vertices of the graph G. We denote by G/A the graph $K_1 + (G - A)$. It is easy to see that

(2.4)
$$\operatorname{cl}(G/A) \le \operatorname{cl}(G) + 1;$$

(2.5)
$$G \xrightarrow{e} (a_1, \dots, a_r) \Rightarrow G/A \xrightarrow{e} (a_1, \dots, a_r).$$

In order to prove the Main Theorem we shall use the following

Proposition 2.1. Let a_1, \ldots, a_r be positive integers, $a_i \ge 2, i = 1, \ldots, r$. Let G be a graph such that $G \xrightarrow{e} (a_1, \ldots, a_r)$ and $cl(G) \leq q-2$. Then

(2.6)
$$|V(G)| \ge F_e(a_1, \dots, a_r; q) + \alpha(G) - 1.$$

Proof. Let A be an independent set of vertices of G and $|A| = \alpha(G)$. According to (2.4) and (2.5) $G \xrightarrow{e} (a_1, \ldots, a_r)$ and $cl(G/A) \leq q - 1$. Therefore

$$|V(G/A)| \ge F_e(a_1, \dots, a_r; q)$$

Inequality (2.6) follows from the last inequality as $|V(G/A)| = |V(G)| - \alpha(G) + 1$.

3. Vertex Folkman numbers.

Definition 3.1. Let a_1, \ldots, a_r be positive integers. We say that the *r*-colouring

$$V(G) = V_1 \cup \dots \cup V_r, \qquad V_i \cap V_j = \emptyset, \quad i \neq j$$

of the vertices of G is (a_1, \ldots, a_r) -free if for every $i \in \{1, \ldots, r\}$ the set V_i does not contain an a_i -clique. The symbol $G \xrightarrow{v} (a_1, \ldots, a_r)$ means that graph G has no (a_1, \ldots, a_r) free colouring.

The vertex Folkman number $F_v(a_1,\ldots,a_r;q)$ is defined by the equality

$$F_v(a_1, \dots, a_r; q) = \min\{|V(G) : G \xrightarrow{v} (a_1, \dots, a_r) \text{ and } \operatorname{cl}(G) < q\}.$$

In [2] Folkman proved that

$$F_v(a_1,\ldots,a_r;q)$$
 exists $\iff q > \max\{a_1,\ldots,a_r\}.$

Compt. rend. Acad. bulg. Sci., 59, No 1, 2006

We shall need the following results about the vertex Folkman numbers:

(3.1)
$$F_v(2,2,4;5) = 13 \text{ (see } [12]),$$

(3.2)
$$F_v(2,2,p;p+1) \ge 2p+4 \text{ (see } [13]).$$

There is an exposition of the results on Folkman numbers in [1]. We shall also add the papers $[^{8-10,14}]$ to this exposition. For the proof of the inequality $F_e(3,4;8) \ge 16$ we shall need the following **Theorem 3.1.** Let G be a graph, $cl(G) \le p$ and $|V(G)| \ge p+2$, $p \ge 2$. Let G

also have the following two properties:

- (i) $G \xrightarrow{v} (2,2,p);$
- (ii) If $V(G) = V_1 \cup V_2 \cup V_3$ is a (2, 2, p)-free 3-colouring then $|V_1| + |V_2| \le 3$.

Then $G = K_1 + G_1$. **Proof.** Let $V(G) = V_1 \cup V_2 \cup V_3$ be a (2, 2, p)-free 3-colouring. According to (ii) we have

$$(3.3) |V_1| + |V_2| \le 3.$$

Since $|V(G)| \ge p+2 \ge 4$, it follows from (3.3) that

$$(3.4) V_3 \neq \emptyset$$

It is enough to consider only the situation when $V_1 \neq \emptyset$ and $V_2 \neq \emptyset$. Indeed, let $V_1 = \emptyset$. It follows from (3.4) that there is $w \in V_3$. It is clear that

$$\{w\} \cup V_2 \cup (V_3 - \{w\})$$

is a (2, 2, p)-free 3-colouring. So, we can assume without loss of generality that

$$(3.5) 1 \le |V_1| \le |V_2|.$$

It is clear from (3.4) and (3.5) that only the following two cases are possible:

Case 1. $|V_1| = |V_2| = 1$. Let $V_1 = \{a\}$ and $V_2 = \{b\}$. In this case we have $[a,b] \in E(G)$. Assume the opposite. It follows from $|V(G)| \ge p + 2$ that $|V_3| \ge p$. As V_3 does not contain a *p*-clique there exist two non-adjacent vertices $c, d \in V_3$. Then $\{a,b\} \cup \{c,d\} \cup (V_3 - \{c,d\})$ is a (2,2,p)-free 3-colouring which contradicts (ii). So, we have

$$(3.6) [a,b] \in E(G)$$

Assume that the statement of Theorem 2.1 is wrong. Then there are $a', b' \in V_3$ such that $[a, a'] \notin E(G)$ and $[b, b'] \notin E(G)$. If $a' \neq b'$ then

$$\{a, a'\} \cup \{b, b'\} \cup (V_3 - \{a', b'\})$$

is a (2,2,p)-free 3-colouring which contradicts (ii). It remains to consider only the situation when a' = b' = c and

(3.7)
$$N(a) \supset V_3 - \{c\}, \qquad N(b) \supset V_3 - \{c\}.$$

N. Kolev, N. Nenov

It follows from $cl(G) \ge p$ and (3.7) that

(3.8)
$$V' = V_3 - \{c\} \text{ does not contain a } (p-1)\text{-clique.}$$

As $|V(G)| \ge p + 2$ we have $|V'| \ge p + 1$. That is why, it follows from (3.8) that V' contains two non-adjacent vertices m and n. Let $V'' = V' - \{m, n\}$. According to (3.8), $V'' \cup \{b\}$ does not contain a p-clique. Therefore,

$$\{a, c\} \cup \{m, n\} \cup (V'' \cup \{b\})$$

is a (2, 2, p)-free 3-colouring of V(G) which contradicts (ii).

Case 2. $|V_1| = 1$, $|V_2| = 2$. Let $|V_1| = \{a\}$ and $V_2 = \{b, c\}$. We shall first prove that

$$(3.9) N(a) \supset V_3$$

Assume that (3.9) is wrong and let $[a, d] \notin E(G), d \in V_3$. Then

$$\{a,d\} \cup \{b,c\} \cup (V_3 - \{d\})$$

is a (2, 2, p)-free 3-colouring of V(G) which is a contradiction.

If $\{a, b, c\}$ is an independent set and $d \in V_3$ then

$$\{a, b, c\} \cup \{d\} \cup (V_3 - \{d\})$$

is a (2, 2, p)-free 3-colouring of V(G) which is a contradiction. Therefore, we can assume that $[a, b] \in E(G)$. We have from (3.9) that $N(a) \supset V_3 \cup \{b\}$. Since $cl(G) \leq p, V_3 \cup \{b\}$ does not contain a *p*-clique. Thus $\{a\} \cup \{c\} \cup (V_3 \cup \{b\})$ is a (2, 2, p)-free 3-colouring of V(G) and we are in the situation of case 1. Theorem 3.1 is proved.

4. Proof of the Main Theorem.

I. PROOF OF THE INEQUALITY $F_e(3,4;8) \leq 16$. We consider the graph $H = K_1 + C_5 + C_5 + C_5$. By Theorem 2.1, $H \xrightarrow{e} (3,4)$. Since cl(H) = 7 we have that $F_e(3,4;8) \leq |V(H)| = 16$.

II. PROOF OF THE INEQUALITY $F_e(3,4;8) \ge 16$. Assume that this inequality is wrong. Then there is a graph G such that $G \xrightarrow{e} (3,4)$, $cl(G) \le 7$ and $|V(G)| \le 15$. It follows from $|V(G)| \le 15$, Proposition 2.1 (q = 9) and (2.3) that

(4.1)
$$|V(G)| = 15$$

(4.2)
$$\alpha(G) = 2.$$

We shall prove that G suffices the conditions of Theorem 3.1 for p = 7. We have from (3.2) that $F_e(2,2,7;8) \ge 18$. Since $\operatorname{cl}(G) \le 7$, from this inequality and (4.1) it follows $G \not\xrightarrow{v} (2,2,7)$. Let $V_1 \cup V_2 \cup V_3$ be (2,2,7)-free 3-colouring of V(G). We define the graphs $G_1 = G/V_1$ and $G_2 = G_1/V_2$. We see from (2.5) that $G_2 \xrightarrow{e} (3,4)$. As V_3 does not contain a 7-clique, $\operatorname{cl}(G_2) \le 8$. Thus, it follows from (2.3) that

$$(4.3) |V(G_2)| \ge 14$$

We see from (4.2) that $|V_1| \leq 2$ and $|V_2| \leq 2$. Therefore, if $|V_1| \leq 1$ or $|V_2| \leq 1$ we have that $|V_1| + |V_2| \leq 3$. It remains just to consider the situation when $|V_1| = |V_2| = 2$. Since

Compt. rend. Acad. bulg. Sci., 59, No 1, 2006

$$\begin{split} |V(G_2)| &= |V(G)| - |V_1| - |V_2| + 2 = 17 - |V_1| - |V_2| \text{ from (4.3) we obtain } |V_1| + |V_2| \leq 3. \\ \text{So, } G \text{ suffices the conditions of Theorem 3.1 for } p = 7. \\ \text{Thus, } G = K_1 + H_1. \\ \text{It follows from } cl(G) \leq 7 \text{ that } cl(H_1) \leq 6. \\ \text{Now we shall prove that } H_1 \text{ suffices the conditions of Theorem 3.1 for } p = 6. \\ \text{From (3.2) we have } F_v(2,2,6;7) \geq 16. \\ \text{Since } |V(H_1)| = 14 \text{ and } \\ cl(H_1) \leq 6 \text{ we have } H_1 \xrightarrow{\vee} (2,2,6). \\ \text{Let } V(K_1) = \{a\} \text{ and } V_1 \cup V_2 \cup V_3 \text{ be } (2,2,6). \\ \text{free 3-colouring of } V(H_1). \\ \text{It is clear that } V_1 \cup V_2 \cup (V_3 \cup \{a\}) \text{ is } (2,2,7). \\ \text{free 3-colouring of } V(H_1). \\ \text{It is clear that } V_1 \cup V_2 \cup (V_3 \cup \{a\}) \text{ is } (2,2,7). \\ \text{free 3-colouring of } V(G). \\ \text{As we proved above } |V_1| + |V_2| \leq 3. \\ \text{According to Theorem 3.1 } H_1 = K_1 + H_2 \\ \text{and } G = K_2 + H_2. \\ \text{From } cl(H_1) \leq 6 \text{ it follows } cl(H_2) \leq 5. \\ \text{From (3.2) we obtain that } \\ H_2 \xrightarrow{\vee} (2,2,5). \\ \text{Repeating about } H_2 \text{ the above considerations about } H_1 \text{ we see that } \\ H_2 \text{ suffices the condition (ii) of Theorem 3.1 for } p = 5, \\ \text{ too. Hence, } H_2 = K_1 + H_3 \\ \text{ and } G = K_3 + H_3. \\ \text{Now consider the graph } H_3. \\ \text{Since } |V(H_3)| = 12, \\ \text{ from (3.1) we } \\ \\ \text{have } H_3 \xrightarrow{\vee} (2,2,4). \\ \text{As above we see that } H_3 \text{ suffices the condition (ii) of Theorem 3.1 } \\ \text{for } p = 4, \\ \text{ too. That is why } H_3 = K_1 + H_4 \text{ and } G = K_4 + H_4. \\ \text{As } cl(G) \leq 7 \text{ we have } \\ cl(H_4) \leq 3. \\ \text{ It follows from } (4.2) \\ \text{ that } \alpha(H_4) = 2. \\ \text{This contradicts } (2.2) \text{ as } |V(H_4)| = 11. \\ \\ \text{The Main Theorem is proved.} \\ \end{array}$$

REFERENCES

[1] COLES J. Algorithms for bounding Folkman numbers. Master Thesis (see http://www.jpcoles.com/uni/rit/thesis/jpc-thesis.folkman.pdf).
[2] FOLKMAN J. SIAM J. Appl. Math., 18, 1970, 19–24.
[3] GRAHAM R. L. J. Combin. Theory, 4, 1968, 300.
[4] KOLEV N., N. NENOV. Ann. Univ. Sofia, Fac. Math. Inform. (submitted).
[5] LIN S. J. Combin. Theory, B12, 1972, 82–92.
[6] LUCZAK T., A. RUCINSKI, S. URBANSKI. Discrete Math., 236, 2001, 245–262.
[7] NENOV N. Compt. rend. Acad. bulg. Sci., 34, 1981, 1487–1489 (in Russian).
[8] Id. Ibid., 33, 1980, No 9, 1171–1174.
[9] Id. Ibid., 34, 1981, 1209–1212.
[10] Id. Ann. Univ. Sofia, Fac. Math. Mec., 75, 1981, 27–38 (in Russian).
[11] Id. Ann. Univ. Sofia, Fac. Math. Mec., 75, 1981, 27–38 (in Russian).
[12] Id. Ann. Univ. Sofia, Fac. Math. Inform., 94, 2000, 15–25.
[14] Id. Serdica Math. J., 28, 2002, 219–232.
[15] Id. Ann. Univ. Sofia, Fac. Math. Inform., 95, 2001, 59–69.
[16] NEŠETŘIL J., V. RÖDL. J. Comb. Th., B20, 1976, 243–249.
[17] PIWAKOWSKI K., S. RADZISZOWSKI, S. URBANSKI. J. Graph Theory, 32, 1999, 41–49.
[18] RADZISZOWSKI S. Electronic J. Combinatorics, DS1, 2002 (http://www.combinatorics.org/Surveys/).
[19] RAMSEY P. Proc. London Math. Soc., 30, 1930, 264–268.

Faculty of Mathematics and Informatics St. Kliment Ohridski University of Sofia 5, James Bourchier Blvd 1164 Sofia, Bulgaria e-mail: nenov@fmi.uni-sofia.bg

N. Kolev, N. Nenov