ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ „СВ. КЛИМЕНТ ОХРИДСКИ*

> ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА
> Том 97

ANNUAIRE DE L'UNIVERSITE DE SOFIA „ST. KLIMENT OHRIDSKI"
 FACULTE DE MATHEMATIQUES ET INFORMATIQUE
 Tome 97

BALANCED VERTEX SETS IN GRAPHS

NIKOLAY KHADZHIIVANOV, NEDYALKO NENOV

Let v_{1}, \ldots, v_{r} be a β-sequence (Definition 1.2) in an n-vertex graph G and v_{r+1}, \ldots, v_{n} be the other vertices of G. In this paper we prove that if v_{1}, \ldots, v_{r} is balansed, that is

$$
\frac{1}{r}\left(d\left(v_{1}\right)+\ldots+d\left(v_{r}\right)=\frac{1}{n}\left(d\left(v_{1}\right)+\ldots+d\left(v_{n}\right)\right.\right.
$$

and if the number of edges of G is big enough, then G is regular.
Keywords: saturated sequence, balanced sequence, generalized r-partite graph, generalized Turan's graph
2000 MSC: 05C35

1. INTRODUCTION

$e(G)=|E(G)|$ - the number of edges of G;
$G[M]$ - the subgraph of G, induced by M, where $M \subset V(G)$;
$\Gamma_{G}(M)$-the set of all vertices of G adjacent to any vertex of M;
$d_{G}(v)=\left|\Gamma_{G}(v)\right|-$ the degree of a vertex v in G;
K_{n} and \bar{K}_{n} - the complete and discrete n-vertex graphs, respectively.
Let r be an integer. A graph G is called r-partite with partition classes $V_{i}, i=$ $1, \ldots, r$ if $V(G)=V_{1} \cup \ldots \cup V_{r}, V_{i} \cap V_{j}=\varnothing$ for $i \neq j$ and the sets V_{i} are independent sets in G. If every two vertices from different partition classes are adjacent, then G is called complete r-partite graph. Let G be an n-vertex r-partite graph with partition classes V_{i} and $p_{i}=\left|V_{i}\right|, i=1, \ldots, r$. Obviously, $d_{G}(v) \leq n-p_{i}$, for any $v \in V_{i}, i=1, \ldots, r$ and $d_{G}(v)=n-p_{i}$ if and only if G is a complete r partite graph. The symbol $K\left(p_{1}, \ldots, p_{r}\right)$ denotes the complete r-partite graph
with partition classes V_{1}, \ldots, V_{r} such that $\left|V_{i}\right|=p_{i}, i=1, \ldots, r$. If p_{1}, \ldots, p_{r} are as equal as possible (in the sense that $\left|p_{i}-p_{j}\right| \leq 1$ for all pairs $\{i, j\}$), then if $p_{1}+\ldots+p_{r}=n, K\left(p_{1}, \ldots, p_{r}\right)$ is denoted by $T_{r}(n)$ and is called r-partite n-vertex Turan's graph. Clearly

$$
e\left(K\left(p_{1}, \ldots, p_{r}\right)\right)=\sum\left\{p_{i} p_{j} \mid 1 \leq i<j \leq r\right\} .
$$

Thus, if $p_{i}-p_{j} \geq 2$, then

$$
e\left(K\left(p_{1}-1, p_{2}+1, p_{3}, \ldots, p_{r}\right)\right)-e\left(K\left(p_{1}, p_{2}, \ldots, p_{r}\right)\right)=p_{1}-p_{2}-1>0
$$

This observation implies the following elementary proposition, we make shall use of later:

Lemma 1.1. Let n and r be positive integers. Then the inequality

$$
e\left(K\left(p_{1}, \ldots, p_{r}\right)\right) \leq e\left(T_{r}(n)\right)
$$

holds for each r-tuple (p_{1}, \ldots, p_{r}) of nonnegative integers p_{i} such that $p_{1}+\ldots+p_{n}=$ n. The equality occurs only when $K\left(p_{1}, \ldots, p_{r}\right)=T_{r}(n)$.

Let V_{1}, \ldots, V_{r-1} be partition classes of $T_{r-1}(n), 2 \leq r \leq n$. Then $T_{r-1}(n)$ is $r-$ partite graph with partition classes $V_{1}, \ldots, V_{r-1},\{\varnothing\}$. Since $2 \leq r \leq n, T_{r-1}(n) \neq$ $T_{r}(n)$. Thus, from Lemma 1.1 it follows that

$$
\begin{equation*}
e\left(T_{r-1}(n)\right)<e\left(T_{r}(n)\right) \tag{1.1}
\end{equation*}
$$

Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. We call the graph G regular, if

$$
d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=\ldots=d_{G}\left(v_{n}\right)
$$

A simple calculation shows that

$$
\begin{equation*}
e\left(T_{r}(n)\right)=\frac{\left(n^{2}-\nu^{2}\right)(r-1)}{2 r}+\binom{\nu}{2}, \tag{1.2}
\end{equation*}
$$

where $n=k r+\nu, 0 \leq \nu \leq r-1$. \square
Definition 1.1 Let G be a graph and $v_{1}, \ldots, v_{r} \in V(G)$ be a vertex sequence such that

$$
v_{i} \in \Gamma_{G}\left(v_{1}, \ldots, v_{i-1}\right), 2 \leq i \leq r
$$

Define $V_{1}=V(G) \backslash \Gamma_{G}\left(v_{1}\right), V_{2}=\Gamma_{G}\left(v_{1}\right) \backslash \Gamma_{G}\left(v_{2}\right), V_{3}=\Gamma_{G}\left(v_{1}, v_{2}\right) \backslash \Gamma_{G}\left(v_{3}\right), \ldots$, $V_{r-1}=\Gamma_{G}\left(v_{1}, \ldots, v_{r-2}\right) \backslash \Gamma_{G}\left(v_{r-1}\right), V_{r}=\Gamma_{G}\left(v_{1}, \ldots, v_{r-1}\right)$.

Definition 1.2 The sequence of vertices v_{1}, \ldots, v_{r} in a graph G is called β sequence, if the following conditions are satisfied: v_{1} is a vertex of maximal degree in G, and for $i \geq 2, v_{i} \in \Gamma_{G}\left(v_{1}, \ldots, v_{i-1}\right)$ and

$$
d_{G}\left(v_{i}\right)=\max \left\{d_{G}(v) \mid v \in \Gamma_{G}\left(v_{1}, \ldots, v_{i-1}\right)\right\} .
$$

Definition 1.3 Let G be an n-vertex graph and $v_{1}, \ldots, v_{r} \in V(G)$. Then the sequence v_{1}, \ldots, v_{r} is called saturated, if

$$
\frac{1}{r}\left(d_{G}\left(v_{1}\right)+\ldots+d_{G}\left(v_{r}\right)\right)>\frac{2 e(G)}{n}
$$

This sequence is called balanced, if

$$
\frac{1}{r}\left(d_{G}\left(v_{1}\right)+\ldots+d_{G}\left(v_{r}\right)\right)=\frac{2 e(G)}{n} .
$$

Obviously, if G is regular, then any vertex sequence in G is balanced. Let $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. Then

$$
d(v) \geq \frac{2 e(G)}{n}=\frac{1}{n}\left(d_{G}\left(v_{1}\right)+\ldots+d_{G}\left(v_{n}\right)\right)
$$

for any vertex of maximal degree in G. Thus, if $d(v)=\frac{2 e(G)}{n}$ for some vertex of maximal degree in G, then G is regular.

Let r and n be positive integers, $2 \leq r \leq n$. Define

$$
f(n, r)= \begin{cases}\frac{n^{2}(r-1)}{2 r}-\frac{n}{2 r} & \text { if } n \equiv 0(\bmod r) \\ \frac{n^{2}(r-1)}{2 r}-\frac{\nu n}{2 r(r-1)} & \text { if } n \equiv \nu(\bmod r), 1 \leq \nu \leq r-1\end{cases}
$$

It straightforward to show that

$$
f(n, r)>\frac{(r-2) n^{2}}{2(r-1)}, r \geq 2
$$

Since $\frac{(r-2) n^{2}}{2(r-1)}>f(n, r-1)$, we have

$$
\begin{equation*}
f(n, r-1)<f(n, r), 2 \leq r \leq n \tag{1.3}
\end{equation*}
$$

Our main result is the following theorem:
Theorem 1.1 (The Main Theorem). Let G be an n-vertex graph and r be a positive integer, $2 \leq r \leq n$, such that $e(G)>f(n, r)$. Let for some $s, 1 \leq s \leq r$, there exists a balanced β-sequence $v_{1}, \ldots, v_{s} \in V(G)$. Then G is regular.

Example 1.1. Consider the graph G shown in Fig.1. The β-sequence $\left\{v_{1}, v_{3}\right\}$ is balanced, because

$$
\frac{1}{2}\left(d_{G}\left(v_{1}\right)+d_{G}\left(v_{2}\right)\right)=\frac{2 e(G)}{8}=\frac{5}{2} .
$$

Obviously, G is not regular.

Fig. 1.

2. GENERALIZED r-PARTITE GRAPHS

Definition 2.1. ([2]) An n-vertex graph G is called generalized r-partite with partition classes $V_{i}, i=1, \ldots, r$, if $V(G)=V_{1} \cup \ldots \cup V_{r}, V_{i} \cap V_{j}=\varnothing, i \neq j$ and $d_{G}(v) \leq n-p_{i}$ for any $v \in V_{i}, i=1, \ldots, r$, where $p_{i}=\left|V_{i}\right|$. If $d_{G}(v)=n-p_{i}$ for any $v \in V_{i}, i=1, \ldots, r$, then G is called generalized complete r-partite graph with partition classes V_{1}, \ldots, V_{r}. We call G generalized Turan's r-partite graph if G is a generalized complete r-partite graph with partition classes V_{1}, \ldots, V_{r} and $\left|p_{i}-p_{j}\right| \leq 1$ for all pairs $\{i, j\}$.

Proposition 2.1. Let r and n be natural numbers, $1 \leq r \leq n$. Let G be an n-vertex graph, such that

$$
d(v) \leq \frac{(r-1) n}{r}, \forall v \in V(G)
$$

Then G is generalized r-partite graph.
Proof. Let

$$
V(G)=V_{1} \cup \ldots \cup V_{r}, V_{i} \cap V_{j}=\varnothing, i \neq j
$$

and $\left\lfloor\frac{n}{2}\right\rfloor \leq\left|V_{i}\right| \leq\left\lceil\frac{n}{2}\right\rceil, i=1, \ldots, r$.
From $d(v) \leq \frac{(r-1) n}{r}=n-\frac{n}{r}$ it follows that $d(v) \leq n-\left\lceil\frac{n}{r}\right\rceil, \forall v \in V(G)$. Thus $d(v) \leq n-\left|V_{i}\right|, \forall v \in V_{i}, i=1, \ldots, r$, and G is generalized r-partite graph with partition classes V_{1}, \ldots, V_{r}.

Observe that, if $n \equiv 0(\bmod r)$ and $d(v)=\frac{(r-1) n}{r}, \forall v \in V(G)$, then G is generalized r-partite Turan's graph.

We shall make use of the following result:
Theorem 2.1. ([2]) Let G be a generalized r-partite graph with partition classes V_{1}, \ldots, V_{r}, where $\left|V_{i}\right|=p_{i}, i=1, \ldots, r$. Then

$$
e(G) \leq e\left(K\left(p_{1}, \ldots, p_{r}\right)\right)
$$

The equality holds if and only if G is generalized complete r-partite graph with partition classes V_{1}, \ldots, V_{r}.

Theorem 2.2. ([2]) Let G be a generalized r-partite graph and $|V(G)|=n$. Then

$$
e(G) \leq e\left(T_{r}(n)\right)
$$

and equality occurs if and only if G is generalized r-partite Turan's graph.
Example 2.1. Consider the graph $K_{3}+C_{5}=K_{8}-C_{5}$. Obviously, $e\left(K_{3}+\right.$ $\left.C_{5}\right)=23<e\left(T_{4}(8)\right)=24$. This graph is not generalized 4-partite graph. Assume the opposite, i.e. that $K_{3}+C_{5}$ is generalized 4 -partite graph with partition classes $V_{1}, V_{2}, V_{3}, V_{4}$. Let $\left.V\left(K_{3}\right)\right)=\left\{v_{1}, v_{2}, v_{3}\right\}$. If $v_{i} \in V_{j}$, then from $d\left(v_{i}\right)=7 \leq 8-\left|V_{j}\right|$ it follows that $\left|V_{j}\right|=1$, i.e. $V_{j}=\left\{v_{i}\right\}$. Thus, we may assume that $V_{i}=\left\{v_{i}\right\}, i=$ $1,2,3$. Hence, $V_{4}=V\left(C_{5}\right)$. Let $v \in V\left(C_{5}\right)$. Then $d(v)=5>8-\left|V_{4}\right|=3$, which is a contradiction.

3. β-SEQUENCES AND GENERALIZED r-PARTITE GRAPHS

We shall use the following:
Theorem 3.1. ([2]) Let v_{1}, \ldots, v_{r} be a β-sequence in an n-vertex graph G, which is not contained in an $(r+1)$-clique. If V_{i} is the i-th stratum of the stratification induced by this sequence and $p_{i}=\left|V_{i}\right|$ (see Definition 1.1), then
(a) G is generalized r-partite graph with partition classes V_{1}, \ldots, V_{r};
(b) $e(G) \leq e\left(K\left(p_{1}, \ldots, p_{r}\right)\right)$, and the equality occurs if and only if G is a generalized complete r-partite graph with partition classes V_{1}, \ldots, V_{r};
(c) $e(G) \leq e\left(T_{r}(n)\right)$ and we have $e(G)=e\left(T_{r}(n)\right)$ only when G is a generalized r-partite Turan's graph.

The proof of the theorem 3.1, given in [2], actually establishes the following stronger statement:

Theorem 3.2. ([2]) Let $v_{1, \ldots}, v_{r}$ be a β-sequence in an n-vertex graph G such that

$$
d_{G}\left(v_{r}\right) \leq n-\left|\Gamma_{G}\left(v_{1}, \ldots, v_{r-1}\right)\right|
$$

Then the statements (a), (b) and (c) of the Theorem 3.1 hold.
Denote by $\psi(G)$ the smallest integer r for which there exist a β-sequence $v_{1}, \ldots, v_{r}, r \geq 2$, in n-vertex graph G, such that

$$
d_{G}\left(v_{r}\right) \leq n-\left|\Gamma_{G}\left(v_{1}, \ldots, v_{r-1}\right)\right| .
$$

Theorem 3.3. Let G be an n-vertex graph and $e(G) \geq e\left(T_{r}(n)\right)$. Then $\psi(G) \geq$ r and $\psi(G)=r$ only when G is a generalized r-partite Turan's graph.

Proof. Let $\psi(G)=s$. By Theorem 3.2, $e(G) \leq e\left(T_{s}(n)\right)$. Thus $e\left(T_{r}(n)\right) \leq$ $e\left(T_{s}(n)\right)$. From (1.1) it follows that $s \geq r$. If $s=r$, then $e(G)=e\left(T_{r}(n)\right)$. According Theorem 3.2, G is a generalized r-partite Turan's graph.

The following lemma generalizes the Proposition 2.1.

Lemma 3.1. ([3]) Let G be a graph and v_{1}, \ldots, v_{r} be a β-sequence in G such that

$$
\begin{equation*}
d\left(v_{1}\right)+\ldots+d\left(v_{k}\right) \leq \frac{k(r-1) n}{r}, \text { for some } 1 \leq k \leq r \tag{3.1}
\end{equation*}
$$

Then G is a generalized r-partite graph. If inequality (3.1) is strict, then G is not generalized r-partite Turan's graph.

Denote the smallest integer r for which there exists a a β-sequence v_{1}, \ldots, v_{r} in n-vertex graph G, such that

$$
\begin{equation*}
d_{G}\left(v_{1}\right)+\ldots+d_{G}\left(v_{r}\right) \leq(r-1) n \tag{3.2}
\end{equation*}
$$

by $\xi(G)$.
Theorem 3.4. Let G be an n-vertex graph and $e(G) \geq e\left(T_{r}(n)\right)$. Then $\xi(G) \geq$ r and $\xi(G)=r$ only when G is generalized r-partite Turan's graph.

Proof. Let $\xi(G)=s$ and let v_{1}, \ldots, v_{s} be a β-sequence in G, such that

$$
d_{G}\left(v_{1}\right)+\ldots+d_{G}\left(v_{s}\right) \leq(s-1) n
$$

By Lemma $3.1(r=k=s)$, the graph G is generalized r-partite. According to Theorem $2.2 e(G) \leq e\left(T_{s}(n)\right)$. Thus, the inequality $e(G) \geq e\left(T_{r}(n)\right)$ implies $e\left(T_{s}(n)\right) \geq e\left(T_{r}(n)\right)$. By (1.1) we have $s \geq r$.

Let $s=r$. Then $e(G)=e\left(T_{r}(n)\right)$ and from the Theorem 2.2 it follows that G is a generalized r-partite Turan's graph.

4. SATURATED AND BALANCED β-SEQUENCES

The following results were proved by us:
Theorem 4.1. ([3]) Let G be an n-vertex graph and v_{1}, \ldots, v_{r} be a β-sequence in G, which is not balanced and not saturated. Then G is generalized r-partite graph, which is not a generalized r-partite Turan's graph. Thus e $(G)<e\left(T_{r}(n)\right)$.

Theorem 4.2. ([3]) Let G be an n-vertex graph and let v_{1}, \ldots, v_{r} be a β sequence in $G, r \geq 2$, which is not balanced and not saturated. Then

$$
d\left(v_{1}\right)+\ldots+d\left(v_{r-1}\right)<\frac{(r-1)^{2}}{r} n
$$

In this section we improve Theorem 4.2.
Theorem 4.3. Let G be an n-vertex graph and $v_{1}, \ldots, v_{r} r \geq 2$ be a β-sequence in G, which is not saturated but v_{1}, \ldots, v_{r-1} is saturated. Then

$$
\begin{equation*}
d\left(v_{1}\right)+\ldots+d\left(v_{r-1}\right) \leq \frac{(r-1)^{2}}{r} n . \tag{4.1}
\end{equation*}
$$

If there is equality in (4.1), then:
(a) v_{1}, \ldots, v_{r} is balanced;
(b) $n \equiv 0(\bmod r)$ and G is a generalized (noncomplete) r-partite graph with partition classes $V_{1}^{\prime}, \ldots, V_{r}^{\prime}$, such that $\left|V_{i}^{\prime}\right|=\frac{n}{r}, i=1, \ldots, r$ and

$$
\begin{gathered}
d(v)=\frac{r-1}{r} n, \forall v \in \bigcup_{i=1}^{r-1} V_{i}^{\prime} \\
d(v)=\frac{2 e(G) r}{n}-\frac{(r-1)^{2} n}{r}, \forall v \in V_{r}^{\prime} ; \\
\text { (c) } \frac{(r-1)^{2} n^{2}}{r^{2}}+\frac{r-1}{2 r} n \leq e(G) \leq \frac{(r-1) n^{2}}{2 r}-\frac{n}{2 r} .
\end{gathered}
$$

Proof. Since $(r-2) n<\frac{(r-1)^{2} n}{r}$, in case $d\left(v_{1}\right)+\ldots+d\left(v_{r-1}\right) \leq(r-2) n$ the inequality (4.1) holds. Therefore, we shall assume that

$$
\begin{equation*}
d\left(v_{1}\right)+\ldots+d\left(v_{r-1}\right)>(r-2) n . \tag{4.2}
\end{equation*}
$$

Let V_{i} be the i-stratum of the stratification, induced by sequence v_{1}, \ldots, v_{r}. Obviously, $v_{i} \in V_{i}, i=1, \ldots, r$ and

$$
\begin{equation*}
V(G)=V_{1} \cup \ldots \cup V_{r}, V_{i} \cap V_{j}=\varnothing, i \neq j . \tag{4.3}
\end{equation*}
$$

Since $V_{i} \subset V(G) \backslash \Gamma\left(v_{i}\right), i=1, \ldots, r-1$, we have

$$
\begin{equation*}
\left|V_{i}\right| \leq n-d\left(v_{i}\right), i=1, \ldots, r-1 \tag{4.4}
\end{equation*}
$$

It follows from (4.3), (4.4) and (4.2) that

$$
\left|V_{r}\right|=n-\sum_{i=1}^{r-1}\left|V_{i}\right| \geq \sum_{i=1}^{r-1} d\left(v_{i}\right)-(r-2) n>0 .
$$

Thus $V_{r} \neq \varnothing$. Let V_{r}^{\prime} be a subset of V_{r} such that

$$
\begin{equation*}
\left|V_{r}^{\prime}\right|=\sum_{i=1}^{r-1} d\left(v_{i}\right)-(r-2) n \tag{4.5}
\end{equation*}
$$

Define $W=V(G) \backslash V_{r}^{\prime}$. By (4.5) we have

$$
\begin{equation*}
|W|=\sum_{i=1}^{r-1}\left(n-d\left(v_{i}\right)\right) \tag{4.6}
\end{equation*}
$$

Since $V_{i} \subset W, i=1, \ldots, r-1$, from (4.3), (4.4) and (4.6) it follows that there exist disjoint sets $V_{i}^{\prime}, i=1, \ldots, r-1$, such that $V_{i} \subseteq V_{i}^{\prime} \subset W$ and $\left|V_{i}^{\prime}\right|=n-d\left(v_{i}\right)$.

Since $V_{i} \subseteq V_{i}^{\prime}$, we have $v_{i} \in V_{i}^{\prime}, i=1, \ldots, r-1$. From (4.6) it follows that $W=\bigcup_{i=1}^{r-1} V_{i}^{\prime}$. Hence,

$$
\begin{equation*}
V(G)=V_{1}^{\prime} \cup \ldots \cup V_{r}^{\prime}, V_{i}^{\prime} \cap V_{j}^{\prime}=\varnothing, i \neq j \tag{4.7}
\end{equation*}
$$

Observe that

$$
V_{i}^{\prime} \backslash V_{i} \subset V_{r}=\Gamma\left(v_{1}, \ldots, v_{r-1}\right) \subset \Gamma\left(v_{1}, \ldots, v_{i-1}\right)
$$

and $V_{i} \subset \Gamma\left(v_{1}, \ldots, v_{i-1}\right)$. Thus $V_{i}^{\prime} \subset \Gamma\left(v_{1}, \ldots, v_{i-1}\right), i=1, \ldots, r-1$ and $d(v) \leq$ $d\left(v_{i}\right), \forall v \in V_{i}^{\prime}, i=1, \ldots, r-1$. From the inclusion $V_{r}^{\prime} \subset V_{r}$ it follows that $d(v) \leq d\left(v_{r}\right), \forall v \in V_{r}^{\prime}$. So, we have

$$
\begin{equation*}
d(v) \leq d\left(v_{i}\right), \forall v \in V_{i}^{\prime}, i=1, \ldots, r . \tag{4.8}
\end{equation*}
$$

By (4.7), we have

$$
2 e(G)=\sum_{v \in V(G)} d(v)=\sum_{v \in V_{1}^{\prime}} d(v)+\ldots+\sum_{v \in V_{r}^{\prime}} d(v) .
$$

Let $d\left(v_{i}\right)=d_{i}, i=1, \ldots, r$. From $\left|V_{i}^{\prime}\right|=n-d_{i}, i=1, \ldots, r-1,(4.8)$ and (4.5) it follows that

$$
\begin{equation*}
2 e(G) \leq \sum_{i=1}^{r-1} d_{i}\left(n-d_{i}\right)+\left(\sum_{i=1}^{r-1} d_{i}-(r-2) n\right) d_{r} . \tag{4.9}
\end{equation*}
$$

The equality in (4.9) occurs if and only if

$$
d(v)=d_{i}, \forall v \in V_{i}^{\prime}, i=1, \ldots, r
$$

Let $\sigma=d_{1}+\ldots+d_{r-1}$. We have $\frac{\sigma+d_{r}}{r} \leq \frac{2 e(G)}{n}$ because the sequence v_{1}, \ldots, v_{r} is not saturated. Thus,

$$
\begin{equation*}
d_{r} \leq \frac{2 r e(G)}{n}-\sigma \tag{4.10}
\end{equation*}
$$

By the Caushy-Schwarz inequality $\left(\sum x_{i} y_{i}\right)^{2} \leq \sum x_{i}^{2} \sum y_{i}^{2}$, applied to $x_{i}=$ $d_{i}, y_{i}=1$, we have

$$
\begin{equation*}
\sum_{i=1}^{r-1} d_{i}^{2} \geq \frac{\sigma^{2}}{r-1} \tag{4.11}
\end{equation*}
$$

and the equality holds if and only if $d_{1}=\ldots=d_{r-1}$. We obtain by (4.10) and (4.11)

$$
2 e(G) \leq n \sigma-\frac{\sigma^{2}}{r-1}+(\sigma-(r-2) n)\left(\frac{2 r e(G)}{n}-\sigma\right) .
$$

This inequality is equivalent to

$$
\begin{equation*}
\frac{2 e(G)}{n}\left((r-1)^{2} n-r \sigma\right) \leq \frac{\sigma}{r-1}\left((r-1)^{2} n-r \sigma\right) . \tag{4.12}
\end{equation*}
$$

The equality in (4.12) occurs simultaneously with the equalities in (4.9), (4.10) and (4.11), i.e. when

$$
\begin{gather*}
d(v)=d_{i}=d_{1}, \forall v \in V_{i}^{\prime}, i=1, \ldots, r-1 \text { and } \tag{4.13}\\
d(v)=d_{r}=\frac{2 r e(G)}{n}-\sigma, \forall v \in V_{r}^{\prime} .
\end{gather*}
$$

Since v_{1}, \ldots, v_{r-1} is saturated, we have

$$
\frac{\sigma}{r-1}>\frac{2 e(G)}{n} .
$$

Thus, (4.12) is equivalent to the inequality $\sigma \leq \frac{(r-1)^{2} n}{r}$. The inequality (4.1) is proved.

It remains to examine the case of the equality in (4.1). Assume, that

$$
\begin{equation*}
\sigma=\frac{(r-1)^{2} n}{r} \tag{4.14}
\end{equation*}
$$

Then $n \equiv 0(\bmod r)$ and the equality holds in (4.12), i.e. (4.13) is realized. From (4.14) and (4.13) it follows that

$$
\begin{equation*}
d(v)=d_{1}=\ldots=d_{r-1}=\frac{(r-1) n}{r}, \forall v \in V_{i}^{\prime}, i=1, \ldots, r-1 \tag{4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
d(v)=d_{r}=\frac{2 r e(G)}{n}-\frac{(r-1)^{2}}{r} n, \forall v \in V_{r}^{\prime} \tag{4.16}
\end{equation*}
$$

By (4.15) and (4.16) it follows that

$$
\frac{d_{1}+\ldots+d_{r}}{r}=\frac{2 e(G)}{n},
$$

i.e. v_{1}, \ldots, v_{r} is balansed. Since v_{1}, \ldots, v_{r-1} is saturated, we have

$$
\frac{d_{1}+\ldots+d_{r-1}}{r-1}>\frac{2 e(G)}{n}=\frac{d_{1}+\ldots+d_{r}}{r}
$$

Hence $d_{r}<d_{1}=\frac{r-1}{r} n$.Thus

$$
\begin{equation*}
d(v)=d_{r}<\frac{r-1}{r} n, v \in V_{r}^{\prime} . \tag{4.17}
\end{equation*}
$$

Since $\left|V_{i}^{\prime}\right|=n-d_{i}, i=1, \ldots, r-1$ and $\left|V_{r}^{\prime}\right|=\sum_{i=1}^{r-1} d_{i}-(r-2) n$, we obtain by (4.15)

$$
\left|V_{i}^{\prime}\right|=\frac{n}{r}, i=1, \ldots, r
$$

Thus, from (4.15) and (4.17) it follows that G generalized (noncomplete) r partite graph with equal partite classes $V_{1}^{\prime}, \ldots, V_{r}^{\prime}$.

So, (a) and (b) are proved. It remains to prove (c). The number $\frac{(r-1) n}{r}$ is integer, because $n \equiv 0(\bmod r)$ and consequently from (4.17) it follows that

$$
d_{r} \leq \frac{(r-1) n}{r}-1
$$

Since v_{1}, \ldots, v_{r} is balanced, by this inequality and (4.15) we have

$$
\frac{2 e(G)}{n}=\frac{d_{1}+\ldots+d_{r}}{r} \leq \frac{\frac{(r-1)^{2} n}{r}+\frac{(r-1) n}{r}-1}{r}=\frac{(r-1) n-1}{r} .
$$

Thus, $e(G) \leq \frac{(r-1)}{2 r} n^{2}-\frac{n}{2 r}$.
Since $v_{r} \in \Gamma_{G}\left(v_{1}, \ldots, v_{r-1}\right), d\left(v_{r}\right) \geq r-1$. From this inequality and (4.16) we conclude that

$$
e(G) \geq \frac{(r-1)^{2}}{2 r^{2}} n^{2}+\frac{r-1}{2 r} n
$$

The proof of (c) is over and Theorem 4.3 is proved.
Corollary 4.1. Let G be an n-vertex graph and r be integer, $1 \leq r \leq n$. Let $e(G) \geq e\left(T_{r}(n)\right)$ and for some $s, 1 \leq s \leq r$ there exists a balanced β-sequence $v_{1}, \ldots, v_{s} \in V(G)$. Then G is regular.

Proof. We prove this corollary by induction on s. The base $s=1$ is clear, since $d\left(v_{1}\right)=\frac{2 e(G)}{n}$ implies that G is regular.

Let $s \geq 2$. Since $\frac{d\left(v_{1}\right)+\ldots+d\left(v_{s}\right)}{s}=\frac{2 e(G)}{n}$, from $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \ldots \geq$ $d\left(v_{s}\right)$ it follows that

$$
\frac{d\left(v_{1}\right)+\ldots+d\left(v_{s-1}\right)}{s-1} \geq \frac{2 e(G)}{n}
$$

i.e. v_{1}, \ldots, v_{s-1} is balanced or saturated. We prove that v_{1}, \ldots, v_{s-1} is balanced. Assume the opposite.

Since v_{1}, \ldots, v_{s} is not saturated, by Theorem 4.3

$$
\begin{equation*}
d\left(v_{1}\right)+\ldots+d\left(v_{s-1}\right) \leq \frac{(s-1)^{2} n}{s} \tag{4.18}
\end{equation*}
$$

By Lemma 3.1, G is a generalized s-partite graph. From Theorem 2.2 it follows $e(G) \leq e\left(T_{s}(n)\right)$.

Thus, we have $e\left(T_{r}(n)\right) \leq e(G) \leq e\left(T_{s}(n)\right)$. Since $s \leq r$, (1.1) implies that $s=r$ and $e(G)=e\left(T_{s}(n)\right)$. According to Lemma 3.1, there is equality in (4.18). Thus, Theorem 4.3 implies that $n \equiv 0(\bmod s)$ and $e(G) \leq \frac{(s-1) n^{2}}{2 s}-\frac{n}{2 s}$. This contradicts the equality $e(G)=e\left(T_{s}(n)\right)=\frac{(s-1) n^{2}}{2 s}$.

So, v_{1}, \ldots, v_{s-1} is balanced. By inductive hypothesis, G is regular and the proof of Corollary 4.1 is over.

5. PROOF OF THE MAIN THEOREM

We prove that G is regular by induction on s. The base $s=1$ is clear, since $d\left(v_{1}\right)=\frac{2 e(G)}{n}$ implies that G is regular.

Let $s \geq 2$. From $d\left(v_{1}\right) \geq \ldots \geq d\left(v_{s}\right)$ it follows that

$$
\frac{d\left(v_{1}\right)+\ldots+d\left(v_{s-1}\right)}{s-1} \geq \frac{2 e(G)}{n}
$$

Hence, v_{1}, \ldots, v_{s-1} is balanced or saturated. We prove that v_{1}, \ldots, v_{s-1} is balanced. Assume the opposite. Then

$$
\begin{equation*}
\frac{d\left(v_{1}\right)+\ldots+d\left(v_{s-1}\right)}{s-1}>\frac{2 e(G)}{n} \tag{5.1}
\end{equation*}
$$

By Theorem 4.3, the inequality (4.18) holds. If there is equality in (4.18), then according to Theorem 4.3, $n \equiv 0(\bmod s)$ and $e(G) \leq \frac{(s-1) n^{2}}{2 s}-\frac{n}{2 s}=f(n, s)$. But $f(n, s) \leq f(n, r)$, because $s \leq r$ (see (1.3)). Therefore, $e(G) \leq f(n, r)$ which is a contradiction. Assume that (4.18) is strict.

Case 1. $n \equiv 0(\bmod s)$. Since (4.18) is strict, it follows that

$$
\begin{equation*}
d\left(v_{1}\right)+\ldots+d\left(v_{s-1}\right) \leq \frac{(s-1)^{2} n}{s}-1 . \tag{5.2}
\end{equation*}
$$

From (5.1) and (5.2) it follows that

$$
e(G)<\frac{(s-1) n^{2}}{2 s}-\frac{n}{2(s-1)}<f(n, s) .
$$

By $s \leq r$ and (1.3), $f(n, s) \leq f(n, r)$. Hence $e(G)<f(n, r)$, which is a contradiction.

Case 2. $n \equiv \nu(\bmod s), 1 \leq \nu \leq s-1$. Since (4.18) is strict, we have

$$
\begin{equation*}
d\left(v_{1}\right)+\ldots+d\left(v_{s-1}\right) \leq\left\lfloor\frac{(s-1)^{2} n}{s}\right\rfloor=\frac{(n-\nu)(s-1)^{2}}{s}+\nu(s-2) . \tag{5.3}
\end{equation*}
$$

From (5.1) and (5.3) it follows

$$
e(G) \leq f(n, s) \leq f(n, r)
$$

which is a contradiction.
The Main Theorem is proved.
Remark. If $n \equiv 0(\bmod r)$, then $f(n, r)<e\left(T_{r}(n)\right)=\frac{n^{2}(r-1)}{2 r}$. Therefore, in this case the Corollary 4.1 follows from Main Theorem. Let $n \equiv \nu(\bmod r)$, $1 \leq \nu \leq r-1$. From (1.2) it follows that

$$
\begin{equation*}
e\left(T_{r}(n)\right)=\frac{n^{2}(r-1)}{2 r}-\frac{\nu(r-\nu)}{2 r} . \tag{5.4}
\end{equation*}
$$

The equality (5.4) implies, that if

$$
\frac{\nu(r-\nu)}{2 r}<\frac{\nu n}{2 r(r-1)},
$$

i.e. $n>(n-\nu)(r-1)$, then $f(n, r)<e\left(T_{r}(n)\right)$. Hence, if $n>(r-\nu)(r-1)$, Corollary 4.1 follows from the Main Theorem.

6. α-SEQUENCES IN GRAPHS

Let G be a graph and $v_{1}, \ldots, v_{r} \in V(G)$. Define $\Gamma_{0}=V(G)$ and $\Gamma_{i}=$ $\Gamma_{G}\left(v_{1}, \ldots, v_{i}\right), i=1, \ldots, r-1$. In our articles [4] and [5] we introduced the following concept:

Definition 6.1. The sequence $v_{1}, \ldots, v_{r} \in V(G)$ is called α-sequences if $v_{i} \in$ Γ_{i-1} and v_{i} has maximal degree in the graph $G\left[\Gamma_{i-1}\right], i=1, \ldots, r$.
α-sequences appears later in [7-10] under the name "degree-greedy algorithm" and in [11] under the name " s-stable algorithm".

The following result was proved by us:
Theorem 6.1. ([2]) Let v_{1}, \ldots, v_{r} be a α-sequence in an n-vertex graph G, which is not contained in an $(r+1)$-qlique. If V_{i} is the i-th stratum of the stratification induced by this sequence and $p_{i}=\left|V_{i}\right|, i=1, \ldots, r$ (see Definition 1.1), then
(a) G is generalized r-partite graph with partition classes V_{1}, \ldots, V_{r} and

$$
\begin{equation*}
e(G) \leq e\left(K\left(p_{1}, \ldots, p_{r}\right)\right) \tag{6.1}
\end{equation*}
$$

(b) There is equality in (6.1) only when $G=K\left(p_{1}, \ldots, p_{r}\right)$.

The proof of Theorem 6.1, given in [2], actually establishes the following statement:

Theorem 6.2. Let v_{1}, \ldots, v_{r} be an α-sequence in an n-vertex graph G such that

$$
\begin{equation*}
d(v) \leq n-\left|\Gamma_{r-1}\right|, \forall v \in \Gamma_{r-1} \tag{6.2}
\end{equation*}
$$

If V_{i} is the i-th stratum of the stratification induced by this sequence and $p_{i}=$ $\left|V_{i}\right|, i=1, \ldots, r$, then
(a) G is generalized r-partite graph with partition classes V_{1}, \ldots, V_{r} and inequality (6.1) holds;
(b) There is equality in (6.1) only when G is generalized complete r-partite graph with partition classes V_{1}, \ldots, V_{r}.

Denote by $\varphi(G)$ the smallest integer r for which there exists an α-sequence $v_{1}, \ldots, v_{r} \in V(G)$, such that (6.2) holds.

Theorem 6.3. Let G be an n-vertex graph, such that $e(G) \geq e\left(T_{r}(n)\right), 1 \leq$ $r \leq n$. Then $\varphi(G) \geq r$ and $\varphi(G)=r$ only when G is generalized r-partite Turan's graph.

Proof. Let $\varphi(G)=s$ and v_{1}, \ldots, v_{s} be α-sequence in G, such that $d(v) \leq$ $n-\left|\Gamma_{s-1}\right|, \forall v \in \Gamma_{s-1}$. By Theorem 6.2 and Theorem 2.2, we have $e\left(T_{r}(n)\right) \leq$ $e\left(T_{s}(n)\right)$. From (1.1) it follows $s \geq r$. If $s=r$, then $e(G)=e\left(T_{r}(n)\right)$. According to Theorem 2.2(c), G is generalized r-partite Turan's graph. This completes the proof of Theorem 6.3.

Let v_{1}, \ldots, v_{r} be α-sequence in graph G, and $G_{i-1}=G\left[\Gamma_{i-1}\right], i=1, \ldots, r$, where $\Gamma_{i}, i=1, \ldots, r-1$ are defined above. Define

$$
d_{1}^{\prime}=d_{G}\left(v_{1}\right), d_{2}^{\prime}=d_{G_{1}}\left(v_{2}\right), \ldots, d_{r}^{\prime}=d_{G_{r-1}}\left(v_{r}\right)
$$

Theorem 6.4. Let G be an n-vertex graph and v_{1}, \ldots, v_{r} be α-sequence in G, such that for some $s, 1 \leq s \leq r$,

$$
\begin{equation*}
d_{1}^{\prime}+\ldots+d_{s}^{\prime} \leq \frac{n}{r}\left(\binom{r}{2}-\binom{r-s}{2}\right) . \tag{6.3}
\end{equation*}
$$

Then G is generalized r-partite graph.
Proof. We prove Theorem 6.4 by induction on s. The induction base is $s=1$. From (6.3) it follows that $d_{1}^{\prime} \leq \frac{(r-1) n}{r}$. Since $d_{1}=d_{G}\left(v_{1}\right)$ and v_{1} has maximal degree in G, we have $d(v) \leq \frac{(r-1) n}{r}, \forall v \in V(G)$. By Proposition 1.1, G is generalized r-partite graph.

Let $s \geq 2$ and suppose, that assertion is true for $s-1$.
Case 1. $\quad d_{2}^{\prime}+\ldots+d_{s}^{\prime} \leq \frac{d_{1}^{\prime}}{r-1}\left(\binom{r-1}{2}-\binom{r-s}{2}\right)$.
Obviously v_{2}, \ldots, v_{r} be α-sequence in $G_{1}=G\left[\Gamma_{G}\left(v_{1}\right)\right]$. By inductive hypothesis, we may assume that G_{1} is generalized ($r-1$)-partite graph with partition
classes W_{2}, \ldots, W_{r}. Thus, G is generalized r-partite graph with partition classes $W_{1}=V(G) \backslash \Gamma_{G}\left(v_{1}\right), W_{2}, \ldots, W_{r}$.

Case 2. $\quad d_{2}^{\prime}+\ldots+d_{s}^{\prime}>\frac{d_{1}^{\prime}}{r-1}\left(\binom{r-1}{2}^{\prime}-\binom{r-s}{2}\right)$.
From (6.3) it follows that

$$
d_{1}^{\prime}+\frac{d_{1}^{\prime}}{r-1}\left(\binom{r-1}{2}-\binom{r-s}{2}\right)<\frac{n}{r}\left(\binom{r}{2}-\binom{r-s}{2}\right) .
$$

Hence

$$
\begin{equation*}
d_{1}^{\prime} \leq \frac{n}{r} A, \text { where } A=\frac{\binom{r}{2}-\binom{r-s}{2}}{1+\frac{1}{r-1}\left(\binom{r-1}{2}-\binom{r-s}{2}\right)} \tag{6.4}
\end{equation*}
$$

Note that $A=r-1$. Thus, by (6.4), we have $d_{1}^{\prime} \leq \frac{n}{r}(r-1)$. Hence $d(v) \leq$ $\frac{n(r-1)}{r}, \forall v \in V(G)$. By Proposition 2.1, G is generalized r-partite graph. \square

Theorem 6.5. Let G be an n-vertex graph and v_{1}, \ldots, v_{k} be α-sequence in G, such that

$$
d_{1}^{\prime}+\ldots+d_{k}^{\prime} \leq \frac{k e(G)}{n}
$$

Then G is generalized k-partite graph.
Proof. If $k=1$, then $d_{1}^{\prime} \leq \frac{e(G)}{n}$. Since $e(G) \leq \frac{d_{1}^{\prime} n}{2}$, it follows that $d_{1}^{\prime}=0$. Thus, $E(G)=\varnothing$ and G is 1-partite graph.

Let $k \geq 2$. Then

$$
d_{2}^{\prime}+\ldots+d_{k}^{\prime} \leq \frac{k e(G)}{n}-d_{1}^{\prime} .
$$

From this inequality and $e(G) \leq \frac{n d_{1}^{\prime}}{2}$, it follows that

$$
d_{2}^{\prime}+\ldots+d_{k}^{\prime} \leq \frac{(k-2) d_{1}^{\prime}}{2}=\frac{d_{1}^{\prime}}{k-1}\binom{k-1}{2} .
$$

Since v_{2}, \ldots, v_{k} is an α-sequence in $G_{1}=G\left[\Gamma_{G}\left(v_{1}\right)\right]$, by this inequality and Theorem 6.4 (with $r=s=k-1$), it follows that the graph G_{1} is generalized $(k-1)$-partite graph. Let W_{2}, \ldots, W_{k} be partition classes of G_{1}. Then G is generalized r-partite graph with partition classes $W_{1}=V(G) \backslash \Gamma_{G}\left(v_{1}\right), W_{2}, \ldots, W_{k}$.

REFERENCES

1. Khadzhiivanov, N., N. Nenov. Sequences of maximal degree vertices in graphs. Serdica Math J., 30, 2004, 95-102.
2. Nenov, N., N. Khadzhiivanov. Generalized r-partite graphs and Turan's Theorem. C.R. Acad. Bulgare Sci., 57, 2004, 2, 19-24.
3. Khadzhiivanov, N., N. Nenov. Saturated β-sequences in graphs. C.R. Acad. Bulgare Sci., 57, 2004, 6, 49-54.
4. Khadzhiivanov, N., N. Nenov. Extremal problems for s-graphs and the Theorem of Turan. Serdica, 3, 1977, 117-125 (in Russian).
5. Khadzhiivanov, N., N. Nenov. The maximum of the number of edges of a graph. C.R. Acad. Bulgare Sci., 29, 1976, 1575-1578 (in Russian).
6. Khadzhiivanov, N., N. Nenov. Saturated edges and triangles in graphs. Matematika plus, 2004, No 2.
7. Bollobas, B. Turan's Theorem and maximal gegrees. J. Comb. Theory, Ser. B, 75, 1999, 160-164.
8. Bollobas, B. Modern graph theory, Springer Verlag, New York, 1998.
9. Bollobas, B., A. Thomason. Random graphs of small order. Ann. Discrete Math., 28, 1985, 47-97.
10. Bondy, J. A. Large dense neighborhoods and Turan's theorem. J. Comb. Theory, Ser. B, 34, 1983, 109-111.
11. Zverovich I. Minimal degree algorithms for stability number. Discr. Applied Math., 132, 2004, 211-216.
