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Abstract. In this paper a family of constacyclic ternary quasi-perfect
linear block codes is presented. This family extends the result presented
in a previous work by the first two authors, where the existence of codes
with the presented parameters was stated as an open question. The codes
have a minimum distance 5 and covering radius 3.

1 Introduction

In the beginning we give a brief reminder of some definitions from the field
of coding theory. The Galois field of q elements, where q is a prime power, is
denoted by GF (q). The linear space of all n-tuples of elements from GF (q) is
denoted by H(n, q) and is known as the Hamming space. The elements of this
space will be referred to as words or vectors. The Hamming space becomes a
metric space if define the metric function dH(x,y), which equals the number of
positions where x and y differ. This is known as Hamming distance. To keep the
notations concise we omit the subscript of the distance function. A sphere and
ball of radius r around a vector x is defined as the set of all vectors at Hamming
distance exactly and at most r from x, respectively. A q-ary error-correcting
code, or just a code, is an arbitrary subset C of H(n, q). The parameter n is
called the length of the code. The addition and multiplication by scalar, which
define H(n, q) as a vector space over the field GF (q), are performed component-
wise as in GF (q). A linear subspace of H(n, q) is referred to as a linear code.
The minimum distance for a code C is defined by

d(C)
△
= min{d(x,y) | x,y ∈ C, x 6= y}.

The notation (n,M, d)q for a general code of length n, cardinality M and
minimum distance d(C) = d is commonly used. In the case when the code is
linear subspace of dimension k it is denoted by [n, k, d]q.

⋆ This work has been partially supported by the CENIIT foundation and the Bulgarian
NSF under contract MM 1405.



For the remainder of this section we present the notions of perfect and quasi-
perfect codes and account for some known facts about them. The minimum
distance of a code is closely connected to the error-correcting properties when
the code is used for communication over additive-white-Gaussian-noise (AWGN)
communication channels. It is known that up to

t(C) =

⌊

d(C) − 1

2

⌋

errors, caused by the transmission over the channel, can be successfully corrected
by the aid of decoding. This quantity is known as the packing radius of the code
C. Apparently this coincides with the largest integer such that the spheres of this
radius around the codewords are disjoint. On the other hand the least possible
integer number such that the balls of this radius around the codewords cover the
whole space H(n, q) is called the covering radius of the code. It can be expressed
as

ρ(C)
△
= max

x∈H(n,q)
min
c∈C

d(x, c).

It is clear that for each code the packing radius should be at most the covering
radius. Codes that achieve this equality, i.e. t(C) = ρ(C), are called perfect. A
complete classification of the parameters for which perfect codes over Galois
fields exist have been completed in the early 1970’s [13–15]. This classification
shows that the possible sets of parameters (n,M, d)q for a perfect code are

• (n, qn, 1)q - the whole space H(n, q), where n is a positive integer and q is a
prime power;

• (2l− 1, 2, 2l− 1)2 - the binary repetition codes, where l is a positive integer;
• ((qs − 1)/(q − 1), q(q

s−1)/(q−1)−s−1, 3)q - the Hamming codes, where s is a
positive integer and q is a prime power;

• (23, 2048, 7)2 - the binary Golay code;
• (11, 729, 5)3 - the ternary Golay code.

In the case when the covering radius exceeds the packing radius by one,
i.e. ρ(C) = t(C) + 1, the code C is called quasi-perfect. The corresponding
classification task for the sets of possible parameters for quasi-perfect codes
is much more complicated. Efforts towards solution have been done by many
researchers in the past decades. Among those a survey of the known results for
the binary case by Etzion and Mounits [8] is worth mentioning. Similarly to
the case of perfect codes, it appears that the existence of quasi-perfect codes is
limited to the ones with small covering radii. There is a great variety of such
codes of covering radius up to 3. For greater covering radii only few non-trivial
examples of binary quasi-perfect codes exist (see e.g. [2, Table 1]).

Non-binary quasi-perfect codes are known in rare cases. The known infi-
nite families are due to Gashkov and Sidel’nikov [9] for the parameters [(3s +
1)/2, (3s + 1)/2− 2s, 5]3, Danev and Dodunekov [4] for [(3s − 1)/2, (3s − 1)/2−
2s, 5]3, where s is odd, Gevorkjan et. al. [10] for [(4s − 1)/3, (4s − 1)/3 − 2s, 5]4
and Dumer and Zinov’ev [7] for [(22s+1 + 1)/3, (22s+1 + 1)/3 − 2s− 1, 5]4. The



quasi-perfectness, i.e. the fact that the covering radius is 3, of the latter two
families has been shown by one of the authors in [5, 6].

In this paper we show that there exist ternary quasi-perfect codes with the
parameters [(3s−1)/2, (3s−1)/2−2s, 5]3 for an arbitrary integer number s ≥ 3.
This extends the result in [4].

In Section 2 we present some basic facts about constacylic codes and define
the codes in the family. The minimum distance is determined as well. Section 3
is devoted to the proof of the fact that the covering radius is equal to 3. The
paper is concluded in Section 4.

2 Presentation of the codes

Recall that a code over GF (q) is called constacyclic with respect to non-zero
element 0 6= a ∈ GF (q) if every a−constacyclic shift of a codeword is also a
codeword. Linear constacyclic codes can be regarded as invariant subspaces of
H(n, q) with respect to a suitable linear operator. For an arbitrary non-zero
element a of GF (q) let

ψa :

{

H(n, q) → H(n, q)
(x1, x2, . . . , xn) 7→ (axn, x1, . . . , xn−1)

be the constacylic linear mapping with respect to a. Then
ψa ∈ Hom(H(n, q), H(n, q)) and it has the following matrix

Bn(a) = Bn =











0 0 0 . . . a
1 0 0 . . . 0
0 1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0











with respect to the standard basis of H(n, q). The characteristic polynomial
of Bn is fBn

(x) = (−1)n(xn − a). We assume that n and q are relatively
prime, i.e. (n, q) = 1. The polynomial fBn

(x) has no multiple roots and splits
into distinct irreducible monic factors fBn

(x) = (−1)nf1(x) . . . ft(x). Let Ui =
Ker fi(ψa), i = 1, . . . , n. For the proof of the following theorem we refer to [12].

Theorem 1. Let C be a linear constacyclic code of length n over GF (q). Then
the following facts hold:

1) C is a constacyclic code with respect to a iff C is a ψa−invariant subspace
of H(n, q).

2) C = Ui1 ⊕ . . .⊕Uis for some minimal ψa−invariant subspaces Uir of H(n, q)
and k = dimGF (q) C = ki1 + . . .+ kis , where kir is the dimension of Uir .

3) fψa|C (x) = (−1)kfi1(x) . . . fis(x) = h(x).
4) c ∈ C iff h(Bn)c = 0.
5) The polynomial h(x) has the smallest degree with respect to property 4).



6) The matrix H, the rows of which constitute an arbitrary set of n−k linearly
independent rows of h(Bn), is a parity check matrix of C.

Let us define µ as a primitive 2n−th root of unity in an extension field of
GF (3), where n = 3s−1

2 . Then µ is a primitive element of the field GF (3s) and
µ is a zero of the polynomial xn + 1. In order to classify the zeros of xn + 1
with respect to the various irreducible polynomial divisors of xn + 1, we first
determine the cyclotomic cosets Mi = {i, 3i, 32i, ...} of 3 modulo 2n, consisting
of odd integers only. The irreducible polynomials connected to the cyclotomic
cosets M1 and M−1 are

g1(x) =
∏

i∈M1

(x− µi) and g−1(x) =
∏

i∈M
−1

(x− µi),

respectively. Note that deg g1(x) = deg g−1(x) = s. For every positive integer
s let us define the code Cs to be the (−1)-constacyclic ternary code of length

n = (3s − 1)/2 determined by the polynomial g(x) =
fBn

(x)

fψ
−1|C(x)

= g1(x)g−1(x).

Obviously the dimension of Cs is

k = n− deg g(x) =
3s − 1

2
− 2s.

To determine the minimum distance of the codes Cs we use the BCH bound
for the minimum distance of a constacyclic code [12].

Proposition 1. The constacyclic codes Cs defined above have minimum dis-
tance d(Cs) ≥ 5.

Proof. Indeed, we have that µ−3, µ−1, µ, µ3 are zeros of g(x). Since µ is a primi-
tive 2n−th root of unity, it follows that α = µ2 is a primitive n−th root of unity.
In terms of αj = µαj , 1 ≤ j ≤ n, these zeros can be written as αn−2, αn−1, αn, α1.
Hence, g(x) has a string of 4 consecutive zeros which means that the minimum
distance of Cs is at least 5.

We shall see at the end of the next section that the minimum distance d(Cs)
is actually exactly 5.

3 The Covering Radius

In order to show that the covering radius of the codes defined above is always
3 we use the idea from the proof of [4, Theorem 1]. For an arbitrary vector
r = (r0, r1, . . . , rn−1) in H(n, 3) we identify r with the polynomial

r(x) =

n−1
∑

i=0

rix
i ∈ GF (3)[x].



We have that c = (c0, c1, . . . , cn−1) is a codeword in Cs if and only if its as-
sociated polynomial c(x) is divisible by the generator polynomial g(x), i.e. all
roots of g(x) are also roots of c(x). In our specific case we have that c ∈ Cs iff
c(µ) = c(µ−1) = 0.

The covering radius of the code Cs is three if and only if for an arbitrary
polynomial r(x) of degree at most n− 1, there exist polynomials c(x) and e(x),
corresponding to vectors c and e from H(n, 3), such that r(x) = c(x) + e(x),
c(x) ∈ Cs and e(x) has at most 3 non-zero coefficients. We define the syndromes

Si(r) = r(µi) ∈ GF (3s),

for i ∈ {±1}. Since c(x) is a codeword and µ±1 are roots of the generator
polynomial g(x), we define

Si = Si(r) = r(µi) = e(µi) = Si(e) ∈ GF (3s),

for i ∈ {±1}. Since every vector r ∈ H((3s− 1)/2, 3) is associated with a pair of
syndromes (S1, S−1) ∈ (GF (3s))2, it is sufficient to show that for an arbitrary
pair of elements (a, b) ∈ (GF (3s))2 there exists a polynomial e(x) with at most
3 non-zero coefficients from GF (3s), such that

(S1, S−1) = (S1(e), S−1(e)) = (a, b). (1)

The main result of the current section is stated below.

Theorem 2. The ternary (−1)-constatcyclic codes Cs defined in Section 2 have
covering radius ρ(Cs) = 3 and minimum distance d(Cs) = 5 for every integer
s ≥ 3.

Proof. We start the proof with the observation that for every non-zero element
µi ofGF (3s) there exists an unique monomialm(x) ∈ GF (3)[x] of degree at most
(3s − 3)/2, such that m(µ) = µi. This is due to the fact that µ(3s−1)/2 = −1.

Every polynomial e(x) ∈ GF (3)[x] with l non-zero coefficients can be written
as a sum of monomials in the following way

e(x) =

l
∑

i=1

eix
pi =

l
∑

i=1

ei(x).

Since the statement m(x−1) = (m(x))−1 is valid for any monomial in e(x) ∈
GF (3)[x] we have that

e(x−1) =
l
∑

i=1

(ei(x))
−1.

The existence of a polynomial e(x) that satisfies equation (1) is equivalent
to the existence of a solution to the system of equations

z1 + z2 + · · · + zl = a
z−1
1 + z−1

2 + · · · + z−1
l = b

(2)



over the field GF (3s). In the light of Proposition 1 the system (2) has no more
than one solution (up to permutation) for l = 1 and l = 2. Obviously when l = 1
we have a solution if and only if ab = 1.

For an arbitrarily fixed pair (a, b) ∈ (GF (3s))2, such that (a, b) 6= (0, 0) and
ab 6= 1 we provide a solution to the system (2) in the case l = 3. We define the
functions

θ(x) = a2b2x2 − ax4 − b and ν(x) = a2b2x2 − aµx4 − bµ−1

on the field GF (3s). If for some x ∈ GF (3s) the element θ(x) is a perfect square
in this field then the triple

(z1, z2, z3) =

(

1 + ax2

b+ x2
,
x(1 − ab) +

√

θ(x)

x(b+ x2)
,
x(1 − ab) −

√

θ(x)

x(b + x2)

)

,

constitutes a solution to (2) with l = 3 if x2 6∈ {0,−a−1,−b}. On the other hand
if ν(x) is a perfect square in this field then the triple

(z1, z2, z3) =

(

1 + µax2

b+ µx2
,
x(1 − ab) +

√

ν(x)

x(b + µx2)
,
x(1 − ab) −

√

ν(x)

x(b + µx2)

)

,

is a solution to (2) with l = 3 if x2 6∈ {0,−(µa)−1,−bµ−1}.
We observe that if either a = 0 or b = 0 then the values of one of the functions

θ(x) or ν(x) in all non-zero x ∈ GF (3s) are all perfect squares. Thus we can
assume that ab 6= 0. Let x1 and x2 be two non-zero elements of GF (3s) for which
x2

1 + µx2
2 = ab2 holds. It is straightforward to check that in this case we have

θ(x1) − µν(x2) = 0. (3)

Since µ is not a square in GF (3s) we have that either θ(x1) or ν(x2) is a square.
To complete the proof we need to show that there are sufficiently many pairs
(x1, x2) that satisfy the condition

x2
1 + µx2

2 = ab2 (4)

for an arbitrary choice of non-zero a and b. In fact, for any integer 1 ≤ k ≤ 3s/4
and any non-zero element y ∈ GF (3s), there exist non-zero x1 and x2 in GF (3s)
such that x2

1 +µx2
2 = y and x1/x2 ∈ {µk, µ1−k}. This is easily seen if we observe

that
0 6= (µ1)2 + µ(µk)2 = µ((µk)2 + µ(µ0)2)

and
(µk+1)2 + µ(µ0+1)2 = µ2((µk)2 + µ(µ0)2).

We can now find at least ⌊3s/4⌋ pairs (x1, x2) satisfying the desired condition
(4) each with a different value of x1/x2. Two pairs (x1, x2) and (y1, y2) satisfying
(4) for which x2

1 = y2
1 must also fulfil x2

2 = y2
2 and thus (x1/x2)

2 = (y1/y2)
2.

Since −1 = µ(3s−1)/2 we can not have repeating values of x2
1 as well as x2

2 among



the constructed ⌊3s/4⌋ pairs. The number of pairs that have “unsuitable” value
of x2

1 or x2
2, i.e. can not be used for a construction of a solution to (2), is at most

4. Since ⌊3s/4⌋ > 4 whenever s ≥ 3 we can always find a pair (x1, x2) satisfying
(4) and thus a solution to (2). This completes the proof of the statement for the
covering radius of the codes Cs.

It is well known that vectors with the same syndrome belong to the same
coset defined by a code. Due to the fact that d(Cs) ≥ 5, for fixed a and b such
that ab 6= 1, it is not possible to have two different solutions of the system (2)
with l = 2. We have shown that in the coset corresponding to the syndrome
(a, b) for which ab 6= 1, there are at least ⌊3s/4⌋− 4 vectors of Hamming weight
at most 3. Since 3(⌊3s/4⌋ − 4) − 1 > n = (3s − 1)/2 for all s ≥ 4, we have two
vectors of weight at most 3 in the coset which have a non-zero element in the
same position. This means that we have a codeword in Cs of weight at most
5. The existence of a codeword of Hamming weight 5 in the case s = 3 can be
checked directly.

Theorem 2 establishes the fact that for odd s the codes Cs are quasi-perfect
for any integer s ≥ 3.

It can be mentioned that the codes Cs are reversible, i.e. a mirrored version
of any codeword is also a codeword. Decoding procedure can be designed based
on general decoding algorithms for reversible constacyclic codes. However, an
algebraic decoding of the codes Cs similar to the one presented in [4, Section 4]
can be defined based on the proof of Theorem 2. Here we omit the details.

4 Conclusions

We have presented a family of constacyclic ternary [(3s−1)/2, (3s−1)/2−2s, 5]3
codes previously unknown to be quasi-perfect. This family extends the set of
parameters for which quasi-perfect codes exist and improves upon a previously
published result in [4] by giving a positive answer to the open question stated
there.

The results obtained in this paper raise some questions concerning the ex-
istence of quasi-perfect codes of certain types and parameters. Some of these
questions are summarised below.

Open questions

1) Are there any quasi-perfect codes over the finite field GF (q) for a prime
power q ≥ 5?

2) Are there any quasi-perfect codes of minimum distance 5 over the finite field
GF (q) for a prime power q ≥ 5?

3) Are there any quasi-perfect codes BCH codes over the finite field GF (q) for
a prime power q ≥ 5?

4) Are there any quasi-perfect BCH codes of minimum distance at least 7?
5) Are there any quasi-perfect codes of minimum distance at least 9?
6) Is there an upper bound on the minimum distance of quasi-perfect codes?



We are aware that the stated questions are difficult to answer. However, we
feel that answering them would be a good step towards better knowledge on the
existence of quasi-perfect codes.
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