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Testing tensor product Bézier surfaces for coincidence: A comprehensive solution
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Abstract

It is known that Bézier curves and surfaces may have multiple representations by different control polygons. The
polygons may have different number of control points and may even be disjoint. Up to our knowledge, Pekerman et
al. (2005) were the first to address the problem of testing two parametric polynomial curves for coincidence. Their
approach is based on reduction of the input curves into canonical irreducible form. They claimed that their approach
can be extended for testing tensor product surfaces but gave no further detail.

In this paper we develop a new technique and provide a comprehensive solution to the problem of testing tensor
product Bézier surfaces for coincidence. In (Vlachkova, 2017) an algorithm for testing Bézier curves was proposed
based on subdivision. There a partial solution to the problem of testing tensor product Bézier surfaces was presented.
Namely, the case where the irreducible surfaces are of same degree (n,m), n,m € N, was resolved under certain
additional condition. The other cases where one of the surfaces is of degree (n, m) and the other is of degree either
(n,n +m), or (n + m,m), or (n + m,n + m) remained open.

We have implemented our algorithm for testing tensor product Bézier surfaces for coincidence using Mathematica

package. Experimental results and their analysis are presented.
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1. Introduction

Assume we are given the control polygons of two tensor product Bézier (TPB) surfaces that are generated by
different sources, e. g. different algorithms or software packages. The two polygons may have different number of
control points and may even be disjoint but nevertheless it is possible that they represent surfaces with coincidence.
Here we consider the problem of finding whether two control polygons represent different surfaces or partially/entirely
coincident surfaces. In the latter case we need to determine their coincident part. By coincident surfaces we mean
that they occupy same locus of points in R* but they may be parameterized differently, i.e. they are geometrically
equivalent as defined in (Denker and Herron, 1997).

This problem arises in various applications where the two surfaces need to be stitched together so that the obtained
new surface is continuous. The problem is important also for the intersection algorithms based on subdivision which do
not work well if the surfaces have coincident part.

The problem of testing polynomial curves for coincidence received a considerable attention by many authors. Up

to our knowledge, Pekerman et al. (2005) were the first to address the problem of testing two parametric polynomial
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curves for coincidence. They represented the curves into irreducible form', tested them for coincidence and determined
their shared domain in the case where coincidence occurs. In (Berry and Patterson, 1997) a general approach and result
for comparing rational Bézier curves based on their control polygons was proposed. Then, in a series of papers this
approach for testing Bézier curves for coincidence has been developed and discussed, see (W.-K. Wang et al., 2011;
Sanchez-Reyes, 2011; Chen et al., 2013; Sanchez-Reyes, 2014; Chen et al., 2016; Sanchez-Reyes, 2015a; Chen and
Ma, 2015).

The use of control polygons when comparing Bézier curves is preferable over their reparametrization as proposed in
(Pekerman et al., 2005) due to stability and numerical issues, see (Sanchez-Reyes, 2015b; Farouki, 2012). In addition,
the transformations involved become ill-conditioned for high degrees. In (Vlachkova, 2017) an algorithm for testing
Bézier curves for coincidence based on control polygons and subdivision was presented, analysed and experimentally
tested.

Pekerman et al. (2005) suggested in the concluding remarks that their approach for testing polynomial curves for
coincidence can be extended to TPB surfaces. No further detail was given. Vlachkova (2017) proposed an algorithm
for testing TPB surfaces as a generalization of the algorithm for curves presented in the same paper. The algorithm is
based on comparing the control polygons of the two surfaces. TPB surface S (u,v), 0 <u < 1,0 <v < 1, is irreducible
if all comprising Bézier curves in u and v directions are irreducible. Two irreducible TPB surfaces can have coincident
part either (i) if they are of same degree (n,m), n,m € N; or (ii) if one is of degree (n, m) and the other is of degree
either (n,n + m), or (n + m, m), or (n + m,n + m). The algorithm in (Vlachkova, 2017) works only for TPB surfaces of
same degree (n, m) with overlapping boundary curves, see Fig. 2a. All other cases remained open.

Here we apply a different approach and present a complete solution to the problem of comparing TPB surfaces for
coincidence. First, we show that all cases where two irreducible TPB surfaces have coincidence can be reduced to two
main cases: (i) the surfaces are of same degree; (ii) the surfaces are of degree (n, m) and (n + m, n + m), respectively.
Then, we reduce the problem to solving a nonlinear system of equations of degree n + m. The number of the unknowns
is four and eight in cases (i) and (ii), respectively. Finally, we propose a method for solving these systems. Based on
their solutions, we decide whether the input surfaces are different or partially/entirely coincident. In the latter case we
determine the control points of the coincident part using the blossoming principle. We also derive sufficient geometric
criteria for checking whether the surfaces are different.

‘We have implemented our approach using Mathematica package. We reformulate the arising nonlinear systems of
high degree so that Mathematica finds correctly their solutions. The experimental results are presented, analysed and
visualized.

The paper is organized as follows. In Section 2 we formulate the problem and consecutively resolve cases (i) and
(ii) in Subsection 2.1 and Subsection 2.2, respectively. In Section 3 we discuss the implementation and present our

experimental results. Summary and conclusions are presented in Section 4.

I Different representations of a polynomial curve may occur if it has been degree elevated and/or reparameterized by a composition with a
polynomial. A curve is irreducible if it is not a result of a polynomial composition and has not been degree elevated. Checking curves for irreducibility
is well understood, see e. g. (Barton and Zippel, 1985; Kozen and Landau, 1989; von zur Gathen, 1990). In our experiments we use the built-in

functions in Mathematica package.



2. Coincidence of TPB surfaces

Tensor product Bézier surface S (u,v) of degree (n,m) for n,m € N, and control points p;; € R3,i=0,...,n,
j=0,...,mis defined by
Sy =" > pyBlwB; ), (1)
i=0 j=0

where 0 <u<1,0<v<1,and B/(u) := (’Z)ui(l — u)"" are the Bernstein polynomials. Hereafter we assume that the
binomial coeflicients (7) =0ifi<Oori>n.
We denote by L(S) the locus of points (u,v, S (u,v))inR3 for0 <u<1,0<v < 1.

Definition 1. TPB surfaces S| and S, have coincidence if there exists TPB surface S such that L(S;) C L(S), k =1, 2.

We distinguish the following three cases.

(1) if L(S1) = L(S,) then S and S, are coincident,
(i1) if L(S1) N L(S,) # 0 then S| and S, have coincident part,
@iii) if L(S1) N L(S,) = O then S| and S, are disjoint.

S| and S, are different if they do not have coincidence.

Recall that a Bézier curve is irreducible if it is not a result of a polynomial composition and has not been degree

elevated.
Definition 2. TPB surface S (i, v) is irreducible if the Bézier curves C;f(u), J =0,...,m with control points {p;;}!,
and C/(v),i= , n with control points {p; J}’” are irreducible.

For TPB surface S with control points p;; we denote by p, p'%, and p*! the finite differences at point pg of order
(n,m), (n — 1,m), and (n,m — 1) respectively, defined by (see (Farin, 2002, pp. 66, 256))

p = A""poy = ZZ( 1)"”"”( )( )p,,,

i=0 j=0

‘ZZ< By ’( )( )< npij, )

i=0 j=0

—ZZ( D ,( )( )(J mpi;.

i=0 j=0

1,0 . An—-1m
p=A"""py

pO,l = An,m—lp00

Remark 1. If S is irreducible then p is non-collinear to both p'¥ and p®!

It is known that two irreducible TPB surfaces S| and S, of degrees (n,m) and (n;, m;), respectively, may have
coincidence only if (n;,m) equals to one of the following: (n,m), (n,n + m), (n + m,m), (n + m,n + m), see (Farin,
2002, pp. 253). We consider first the cases (i) (ny,m;) = (n,m), n,m € N and (ii) (n;,m;) = (n + m,n + m). Then we
show that the other two cases reduce to (ii).

The next proposition is shown in (Berry and Patterson, 1997) and (Sanchez-Reyes, 2011) for curves. It can be

easily extended to case (i) and to case (ii) (see Theorem 1 in (Yang and Zeng, 2008)) as follows.



Proposition 1. (i) The irreducible TPB surfaces S («, v) and S, (s, f) of same degree (n, m) have coincidence if and

only if there exists affine transformation

=(1- b,
: { us) =1 -sa+s 3)

v(t) = (1 —t)c +td,

such that S»(s,7) = S1(u(s),v(#) for0 < s < 1,0 <t < 1, see Fig. 1(i).
(ii) The irreducible TPB surfaces S (u,v) and S,(s,?) of degrees (n,m) and (n + m,n + m), respectively, have

coincidence if and only if there exists bilinear transformation

_ { u(s,t) = (1 = )1 —a; + (1 — s)td; + sty + s(1 — )by, @

v(s,t) = (1 = 5)(1 = Hay + (1 — s)tdy + stcy + s(1 — )by

such that S»(s, 1) = S 1(u(s, 1), v(s, 1)) for0 < s < 1,0 <z < 1, see Fig. 1(ii).

2.1. Irreducible TPB surfaces of same degree (n, m)

Let S (u,v) and S,(s, 7) be irreducible TPB surfaces of same degree (n, m) defined as in (1) with control points p}j
and pizj, respectively. Let the corresponding vectors py, p,'(’o, and pg‘l, k = 1,2, be defined by (2). We assume that S
and S, have different control polygons. In the next lemma we derive necessary geometric conditions for S and S, to
have coincidence.

Lemma 1. [f the irreducible TPB surfaces S| and S, of degree (n, m) have coincidence then the following statements
hold.

(1) p1 and p, are collinear;
@) p1, P2, p}’o, and p;’o are coplanar;
>iii) p1, p2, p(l)’l, and pg’l are coplanar.

Proof. Assume that S; and S, have coincidence. According to statement (i) of Proposition 1 there are four numbers
a,b,c,d € Rsuch that the domain {(u,v) : @ < u < b, ¢ < v < d}is animage of the domain {(s,7) : 0<s<1,0<r< 1}

under the affine transformation (3) (see Fig. 1(i)) and S»(s, ) = S (u(s), v(t)).

1 1 1 1 c
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Figure 1: (i) The domain {(u,v) : a < u < b, ¢ < v < d} is an image of the domain {(s,7) : 0 < s < 1, 0 < ¢ < 1} under the affine
transformation u = u(s) = (1 — s)a + sb, v = v(t) = (1 — t)c + td. (ii) The convex quadrilateral ABCD is an image of the domain

{(s,1) : 0 < s <1, 0<t< 1}under a bilinear transformation.

‘We have

n m n m

PBIBI(®) = > > BN~ s)a+sHBN(1 - +td), 0<s<1,0<r< 1. (5)
i=0 j=0 i=0 j=0
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We take -5 5 derivative in (5) and obtain

nopm

n!mlp, = n'm!(b — a)"(d — ¢)"'p;.
Hence, vectors p; and p, are collinear with p, = kp; where we denoted
k=b-a)"d-o)". (6)

This proves statement (i).

Since p; and p; are the coefficients of ¥"v" and s"t" in S(u,v) and S,(s, t), respectively, and S| and S, are
irreducible then p; # 0 and p, # 0. So the number « is determined as the ratio of any two corresponding nonzero
coordinates of p, and p1

Next, we take derivative in (5) and obtain

a n— latm
ml(n —1)! Z Z( 1yr+m=i= '( )( )(ns —n+ip} =
i=0 j=0
m!(n — Db — a)""'(d - o)™ Z Z( 1yrtm=i- /( )( )(n(s(b ~@)+a)-n+ipl,
i=0 j=0
0<s<l,
which for s = 0 implies
= (b-a)""'(d-)"(api +py°). (7)
Hence, vectors py, p}’o, and pl’(J are coplanar and (ii) follows from (i).
Similarly, we take W derivative in (5) and for s = 0 obtain
=(b-a)"d-c)" ' (cpr +pi). ®)
Therefore vectors p1, p?’l, and pg’l are coplanar and (iii) follows from (i). U

Remark 2. Surface S, can be considered as obtained from surface S ; by subdivision with respect to u at a and b, and

with respect to v at ¢ and d.

Next we obtain necessary and sufficient conditions for surfaces S| and S, to have coincidence. In the proof
of Lemma 1 we have shown that if §; and S, have coincidence then there exist numbers a, b, ¢, d defining affine

transformation (3) and satisfying the system

= (b—a)"'(d - c)"(aps + p°),
= (b —a)"d - )" '(cpr +p)). ©)
k=bB-a)"(d-o)",
where « is determined from p, = «p;.

Lemma 2. If system (9) is consistent then it has a unique solution.



Proof. We multiply the first vector equation in (9) by b — a and the second one by d — ¢, use p, = «p;, and obtain

bp,” — alp2 + p,") = kpy (10)

dpy' —cp2 +py") = kpy. (1)
Hence, (9) is equivalent to the following system

bpy” — alpy + py) = kp, ",

dpd' = c(p2 + P31 = kp", (12)

k=(0b-a)"d-o",
Each of the two vector equations in (12) is equivalent to a linear system of three equations of the unknowns a, b, and
¢, d, respectively, for each of the three vector coordinates. By Remark 1 the ranks of the matrices of these systems are
greater than one. Hence the systems have either unique, or no solution. Therefore, if system (12) is consistent then it
has a unique solution. O

The following theorem holds.

Theorem 1. The irreducible TPB surfaces S| and S, of degree (n, m) have coincidence if and only if system (12) is
consistent and the control polygon of the surface corresponding to the unique solution to (12) coincide with the control
polygon of S, (up to eight different enumerations of the control polygons).

Proof. = Let S| and S, have coincidence. Then according to statement (i) of Proposition 1 there exist four numbers
a,b,c,d € R defining transformation ¢ which are a solution to system (9) and S,(s, #) = S (¢). According to Lemma 2,
the equivalent to (9) system (12) has a unique solution (a, b, ¢, d). The control polygon of the surface corresponding to
this solution coincides with the control polygon of §,.

& Let system (12) be consistent. Then, according to Lemma 2, it has a unique solution. Since the control polygon of
the surface S corresponding to this solution coincide with the control polygon of S, (up to eight different enumerations

of the control polygons) then S and S, coincide according to Theorem 1 in (Vlachkova, 2017). g

We continue by providing an efficient approach for testing S| and S, for coincidence. First, we consider the two
linear systems (10) and (11) which have either unique or no solution. Clearly if any of them has no solution then by
Proposition 1 no transformation ¢ exists and S| and S, are different. If both systems have unique solutions, say (a*, b*),
(c*,d"), then we need to check if they satisfy (b* — a*)"(d* — ¢*)" = k. If they do not, then system (12) is inconsistent
and S| and S, are different. Otherwise, following Theorem 1, we need to compute the control polygon of surface S*
corresponding to (a*, b*, ¢*,d”) and to check if it coincides with the control polygon of S,. If these polygons coincide
(up to eight different enumerations of the control points) then S| and S, have coincidence, otherwise they are different.
We compute the control points of S* using the blossoming principle, see (Goldman, 2003). In (Goldman, 2003, p. 339)
and (Yang and Zeng, 2008) it is pointed out that for any polynomial surface patch S (u, v) = )7, ;.”:0 c;ju'v/ of degree

(n,m) defined for a < u < b and ¢ < v < d, the Bézier control points p,,, v =0,...,n, u = 0,...,m, of this surface
patch are
Py =b"a,...,ab,... bc,... cd,...d), (13)
—— — e e e
v n-v u m-—pu
where B2y, ..., Vi, ooty V) = I 27:0 c,-jbi?(ul, oy Uy V1, ..., V) is the blossom of S (i, v), and
Ug, - - Ug; V[g...\}ﬂ.
bg(ulv"-’urhvl""’vm) = Z % Z + (14)
{ay,...a;}C(1,....n} (,) {Bio.BiICE L. m} (j)



is the blossom of the monomial /. In the case where either i = 0, or j = 0, the corresponding sum in (14) equals
l,e.g. b(% = 1. In the next corollary we present (13) and (14) in an equivalent closed form that is more suitable for

computations.

Corollary 1. Bézier control points py,, v =0,...,n,u =0,...,m, defined by (13) are

m CU min(i,v) min(j,u) \(m = Y\ = B\ kit s s
o ot R 11 vt LoV

i=0 j=l O k=max(0,i+v—n) r=max(0, j+u—m)

We outline our procedure for testing S| and S, for coincidence in algorithmic form below.

Algorithm 1 Testing two irreducible TPB surfaces of degree (n, m) for coincidence

Input:  Irreducible TPB surfaces S| and S, of degree (n, m) given by their control polygons
Output: (i) S and S, are different;
(i) S and S, are disjoint;
(iii) §'; and S, have coincident part. Report its control points.
Step 1.  Compute vectors p;, p}’o, and p?’l, i=1,2.
Step 2. Check the conditions of Lemma 1.
2.1. If py, p, are non-collinear
then return (i);
else compute « such that p, = «p;.
2.2. If either py, p2, p{’o, pé’o, or pi, P2, p?’l, pg’l are non-coplanar
then return (i);
else system (12) has either unique, or no solution.
Step 3.  Solve linear systems (10) and (11).
If any of them is inconsistent
then return (i);
else denote their unique solutions by (a*, b*) and (c*, d*).
Step4. I —a*)y'(d* —c)" #«
then return (i);
else system (9) is consistent with unique solution (a*, b*, c*, d*).
Step 5.  Compute the control polygon of the transformed TPB surface
S*(s, 1) = S1(u(p(s, 1), v(e(s, 1)) using (15) and compare it to the control polygon of S .
If they coincide (up to eight different enumerations)
then S| and S, have coincidence;
else return (i).
Step 6.  Compute the shared domain G of S* and S.
D=0
then return (ii);

else compute the control points of the coincident part using (15) and return (iii).

2.2. Irreducible Bézier surfaces of degrees (n,m) and (n + m,n + m)
LetS (u,v) =YL, Z pl]B:’(u)Bm(v) definedfor0 <u < 1,0 <v < I,and So(s,2) = X" Z”*"’ p”B:”’"(s)B“m(t)

defined for 0 < s < 1, 0 < ¢ < 1, be irreducible TPB surfaces. For the four boundary curves of S, we denote by d; and

7



6,'(, k =1,...,4 the following finite differences

n+m
(n+m
S5 = An+m,0 2 _ —1)yrtm=i n .2,
1 Poo E (=D ; Pio

i=0
n+m n+m
e AOn+m 2 n+m—i 2
6, :=A Poo = Z(_l)l l( ; )pol'»
i=0
n+m n+m
. An+m,0..2 _ n+m—i 2
63 =A pO,n+m - Z(_l) ( i )p[,n+m’
i=0
n+m n+m
. AOn+m_2 _ n+m—i 2
64 =A pn+m,0 - Z(_l) ( i )pn+m,i’
i=0

n+m

_ ntm—i n+my\ .

81 = (n+ m)A™ " OpE = N (—1)" ( l. )(z - n—mpj,
i=0

n+m

— ntm—i[ +my .
= (n+m)Aipl = Z(—l) i ( ; )(l - n—m)pg;
i=0

61

)

n+m

n+m— n+m—i n+m) .
8 i= (n+ A" Op] = Y =1 ( ,- )(, == P
i=0

n+m

— n+m—i n+m .
6411 = (” + m)AO’ner lpi+n1,0 = Z(_l) " ( i )(l —n- m)pi+m,i'
i=0

The finite differences p, p'?, and p®' for §| are defined by (2).

In the next lemma we derive necessary geometric conditions for S; and S, to have coincidence.

Lemma 3. [fthe irreducible TPB surfaces S 1 and S, of degrees (n, m) and (n+m, n+m), respectively, have coincidence
then the five vectors p, and 6;, i = 1,...,4, are collinear.

Proof. Assume that S| and S, have coincidence. Since §; is of degree (n, m) and S, is of degree (n + m, n + m) then,
according to statement (ii) of Proposition 1, there exist convex quadrilateral ABCD with vertices A(ay, az), B(by, b,),
C(cy,¢2), D(dy, dy) which is an image of the domain {(s,#) : 0 < s < 1, 0 < ¢ < 1} under the bilinear transformation
(4) (see Fig. 1(ii)) and S (s, 1) = S (u(s, 1), v(s, 1)). Hence, for 0 < s < 1,0 < < 1 we have

n m n+m n+m
PN TACEACED IO AL OL: AL O} (16)
=0 j=0 =0 j=0

where u and v are defined by (4).
The image of the boundary segment {(s, ) : 0 < s < 1, ¢ = 0} under the bilinear transformation (4) is the segment

AB and we have u = (1 — s)a; + sby, v = (1 — s)a, + sb,. Hence, from (16) it follows

n+m

DU LB = $)ay + sb)BY((1 = )a + sby) = > pRBI™(s), 0< s < 1. 17

i=0 j=0 i=0

After differentiation of (17) n + m times we obtain

(b1 —a)"(by — a2)"p = 61. (18)



Hence, vectors p and §; are collinear with ;0 = §; where we denoted
ki = (by —a))"(by — az)". (19)

Since p and 4 are the coefficients of #"v™ in S | (i, v) and s"*" in S, (s, 0), respectively, and S and S, are irreducible

then p # 0 and §; # 0. So the number «; is determined as the ratio of any two corresponding nonzero coordinates of §;
and p.

For the remaining three boundary segments we obtain, analogously to (18),

(dy —a)'(dy —ax)"p = 62,
(c1 —d)'(c2 —dp)"p = 63, (20)
(c1 =b1)'(c2 = by)"p = 4.

Hence, vectors p, 6,, d3, and §4 are collinear with k;p = §;, i = 2, 3,4, where we denoted

Ky = (dy = a1)"(dr — an)"",
k3 = (c1 —d)"(c2 —dr)", (21
k4 = (c1 = b1)"(c2 — bo)".

Similarly to «;, the numbers «; for i = 2, 3,4 are determined as the ratio of any two corresponding nonzero coordinates

of §; and p, respectively. (]

Next we obtain a necessary and sufficient conditions for surfaces S| and S, to have coincidence. We differentiate

(17) n + m — 1 times and obtain for s = 0
(b1 = a1)" (b2 = a2)"" (np" (b2 — ax) + mp™! (b1 — ar) + npay (b2 — @) + mpar(by — a)) = 6.
Similarly, for the remaining three boundary segments we obtain

(di —a))"" ' (dr — a)" ' (np"*(d> — a2) + mp®!(dy — ay) + npay(dz — az) + mpay(dy — ay)) = 6),
(c1 = d)""(cr = )" (np" 0 (c2 = da) + mp®' (c1 — dy) + npdy(cz — dy) + mpdy(c) - d)) = 63,
(c1 = b)) ez = ba)"  (np" ey = by) + mp®! (¢ — by) + npb(cy — by) + mpby(ci — by)) = 6).
Therefore, if S| and S, have coincidence then the eight numbers a;, b;, ¢;, d;, i = 1,2, defining bilinear transformation

(4) satisfy the system

(b1 — )" (br — ax)" ' (np"0(by — ap) + mp®! (by — ay) + npay(by — az) + mpaz(by — ay)) = 6;,
(di — a))" N (dr — ax)" ' (np"0(dy — ap) + mp®!(dy — ay) + npay(dy — az) + mpay(dy — ay)) = 6),
(c1 = )" M2 = o)™ (np"0(ca — dy) + mp™' (c1 — dy) + npdy(c; — do) + mpdy(cy — dy)) = 6,
(c1 = b)) Hea = ba)" ' (np" (2 = by) + mp™'(c1 — by) + npby(c2 — by) + mpby(cy — by)) = by,
ki = (b —a1)" (b2 — az)",
k2 = (dy —a1)"(dr — a2)",
k3 = (c1 —di)"(c2 — dp)",

K4 = (c1 = b1)'(c2 — b)™,

(22)




where «; is determined from x;p = 6;,i = 1,...,4.
Straightforward application of Mathematica packages and build-in functions doesn’t yield solutions to system (22)
efficiently. Hence, it is important to develop a method to simplify and solve it.

Lemma 4. If system (22) is consistent and rank(p, p'°, p®')=3 then it has a unique solution. If rank(p, p'*, p*!)=2
then it has at most two solutions.

Proof. We consider the first equation of system (22), denote x := b; — a;, y := by — a,, and obtain
XY np' 0y + mp® x + npary + mpasx) = 6{. (23)
Vector equation (23) is equivalent to the following system

k1(np)y + mpY' x + nprary + mpyazx) = 5 xy,
K1 (npé’oy + mpg’lx + nppay + mprax) = 6,xy, 24)

k1 (npy°y + mpY' x + np3ary + mpyazx) = 53xy,

where p0 = (0., 0,°, p3%). p*! = (00", 03". P51, p = (p1.p2.03). and 8] = (61,6, 53).
To solve (24) we consider two cases according to the rank of the matrix M, where

1,0 0,1
np, mp, npy  mpy

M = npé’o mpg‘1 no, mpy |- (25)
npy® mpY' nps mps

By Remark 1 the rank of M is greater that 1. Further on, «, 8, C, @;, B;, C;, i = 1,2 denote real constants that
depend on the input data only, more precisely on p'?, p*!, p, and 6].

Case 1. rank(M)=3

Since p is nonzero vector then some of its coordinates, say pj, is nonzero. We eliminate a;y and a,x from the last
two equations of (24) by multiplying the first equation by —p,/p; and —p3/p; consecutively and adding it to the second
and third equations, respectively. We obtain a system of the following type

ax + By = Cyxy, 26)
arx + Bry = Coxy,
which has a unique solution (x, y).

We solve in an analogous way the remaining three vector equations of (22) with respect to the unknowns d; — a;
and d, —ay; ¢y —d; and ¢y — d»; ¢ — by and ¢, — by, respectively. Note that the corresponding three equivalent systems
have same matrix M as system (24) and differ by their right sides only. Hence, each of them has also a unique solution
which can be found straightforwardly. Therefore, if system (22) is consistent then it has a unique solution.

Case 2. rank(M)=2

In this case, (24) has two linearly independent equations. Similar to Case 1, since the coefficients of a;y and a,x
are in ratio n : m, then by multiplying one of these equations by a suitable constant and adding it to the other equation

we exclude a;y and a,x and obtain one equation of the following type

ax + By = Cxy. 27)
10



So we have to solve the following system
XYY" =k,
ax + By = Cxy.

(28)

Claim 1. System (28) has at most two solutions in real numbers.

Proof. Omitted.

In the general case where @ # 0 and 8 # 0 from (27) we have y = ax/(Cx — ). Hence, system (28) reduces to the

following polynomial equation of degree n + m
X(ax)™ =k (Cx - B)". 29)

We solve (29) using Mathematica and find all its real solutions. We note that if n + m is odd then the solution is unique,
otherwise (29) may have two solutions.

So far we have found all admissible values for the unknown x = b; — a; and y = b, — a,. We solve in an analogous
way the remaining three vector equations of (22) with respect to the unknowns d; — a; and d — ay; ¢; — d and ¢; — dy;
c1 — by and ¢; — b,, respectively. Recall that the four systems have same matrix M and differ by their right sides only.

Further, we select all combinations of quadruplets (x;, x», x3, x4) and (y1, ¥, ¥3, y4) such that (x;,y;),i =1,...,4

are solutions to the first four equations of (22), respectively, and in addition satisfy the following conditions
X1 —Xxp—x3+x3 =0, yl_yZ_y3+y4:0- 30)

Next we show how to obtain the eight unknowns a;, b;, ¢;,d;, i = 1,2, from the selected quadruplets (xy, x2, x3, x4)
and (y1,¥2,3,y4), if any. Let (x1, x2, x3, x4) and (1, y2,y3, y4) be a couple of the selected quadruplets. Since b;, ¢;, d;,

i = 1,2, can be represented through ay, a; as
bi=ai+x,by=a+y;; cir=ar+x2+x3,c0=ay+y, +y3;dy = a1 + x1,dy = az + 2, (3D

then we have to find a;, a, only. We replace (x;,y;), i = 1,...,4, and the relations (31) in the four vector equations
of (22) and for each of them we obtain a linear equation of a; and a,. If the system of these four linear equations is
consistent, i. e. its rank is 2, and in addition the corresponding a;, b;, ¢;, d;, i = 1,2, satisty the last four equations of (22)
then (a;,az, by, by, 1, c2,d}, d>) is a solution to (22). Otherwise, the selected couple of quadruplets does not produce a
solution to (22). In this case, if system (22) is consistent it may have at most two solutions and we have shown how to
find both of them. O
The following theorem holds.
Theorem 2. The irreducible TPB surfaces S| and S » of degrees (n, m) and (n+m, n+m), respectively, have coincidence

if and only if system (22) is consistent and the control polygon of the surface corresponding to any solution to (22)
coincide with the control polygon of S, (up to eight different enumeration of the control points).

Proof. = Let S| and S, have coincidence. Then according to statement (ii) of Proposition 1 there exist eight numbers
a;,bi,ci,d; € R, i = 1,2, defining transformation ¢ which are a solution to system (22) and S,(s,7) = S1(¥). The
control polygon of the surface corresponding to the solution (ay, as, b1, by, c1, ¢2,d1, d») coincides with the control

polygon of §,.
11



& Let system (22) be consistent. Then, according to Lemma 4, it may have at most two solutions. Since there is a
solution such that the control polygon of the surface S corresponding to this solution coincides with the control polygon
of S, (up to eight different enumerations of the control polygons) then S and S, coincide according to Theorem 1 in
(Vlachkova, 2017). O

We continue by providing an efficient approach for testing S| and S, for coincidence. First, we find all real
solutions to system (22) using the proposed technique in Lemma 4. Clearly, if system (22) has no real solution then by
Proposition 1 no transformation ¢ exists and S; and S, are different. Otherwise, let (a;, as, b1, b>,c1,¢2,d1,d>) be a
solution to system (22). Following Theorem 2, we need to compute the control polygon of surface S corresponding
to this solution and to check if it coincides with the control polygon of S,. If these polygons coincide (up to eight
different enumerations of the control points) then S and S, have coincidence, otherwise they are different and we
continue by checking the second solution to system (22), if any.

Next we describe how we compute the control points of the corresponding surface S defined in quadrangle JABCD
with vertices A(ay, by), B(bi1, by), C(cy, ¢2), and D(dy, d>) by (13). First, we compute the shared domain G of § and §,.
If G is the empty set then S| and S, are disjoint. Otherwise S and S, have coincident part and we find it by using
the blossoming principle. In this case, unlike the case where §; and S, are of same degree, the shared domain can
be a polygon with at most eight vertices, see Fig. 6. If the number of the polygon vertices is even we represent the
coincident part as a union of TPB surfaces. For example, the surface in Fig. 6c¢. is represented as a union of two TPB
surfaces. If the number of the polygon vertices is odd we represent the coincident part as a union of TPB surfaces and a
triangular Bézier (TB) surface. Similar to TPB surface, we compute the control points of the TB surface using the

blossoming principle. In (Goldman, 2003, p. 331) and (Yang and Zeng, 2008) it is pointed out that for any polynomial

surface path S (u,v) = XL, X1, ¢ijuV/ of total degree n + m defined in a triangle AMNP, the Bézier control points q,,,
of this surface patch are
qy =b*(M,...,M,N,...,N,P,...P), (32)
e N’ e
v u n+m—v—u
where b*((u1,v1), . . ., (Unams Vaem)) = X T=0 cijbfj((ul sV -« oy (Upsm, Vaem)) 18 the blossom of S (u, v), and
Uy, - Ug; VB, - - - Vﬁj
D1 Vs s s Vo)) = > : —, (33)

(n+m)
ij

K=1{1,....n+m), (”;';") = %, is the blossom of the monomial #'v/. In the case where either i = 0, or j = 0

the corresponding sum in (33) equals 1. In the next corollary we present (32) in an equivalent closed form that is more

suitable for evaluations of the control points.

Corollary 2. Bézier control points qy,, v =0,...,n,u =0,...,m,defined by (32) are

SIS 303141 e oy o LR
Vi ' / (,,'er> ij : N\ Ja jy 171172 %2 %2>

bd L L L ig/\i j
iy ol 15l = B/\by Jp

12



where
A=n+m—v—p, b, =i—iy—ig, j, = j— jo— Jss
i, =max(0,i — p — A), i, = min(i, v),
iy =max(0,i—v - ), ig = min(i — io, y),
J, = max(0, j = (u —ig) = (1= iy)), Jo = min(j, v — i),

Iy = max(0,j = (v —ia) = (A= y)), Jp = min(j = jo, = ip).

We outline our procedure for testing S| and S, for coincidence in algorithmic form in Algorithm 2.

Algorithm 2 Testing two irreducible TPB surfaces of degree (n, m) and (n + m, n + m) for coincidence

Input:  Irreducible TPB surfaces S, and S, of degree (n,m) and (n + m, n + m) given by their control polygons
Output: (i) S| and S, are different;
(i1) S| and S, are disjoint;
(iii) §; and S, have coincident part. Report its control
points.
Step 1. Compute vectors p, p'°, p', 8;, and 6;',i=1,...,4.
Step2. Ifpand¢; foranyi,i=1,...,4, are non-collinear
then return (i);
else compute «; such thatk,p = 6;,i = 1,...,4.
Step 3.  Solve the first four vector equations of (22) according to Case 1 and Case 2 of Lemma 4
and find all admissible couples of quadruplets (x, x2, x3, x4) and (¥, Y2, V3, Y4)-
Step 4.  For any admissible couple of quadruplets
ifeitherx; —x, —x3+ x4 #0,0ry; =y, —y3+y, 20
then return (i);
else if x!y" # k; forany i,i=1,...,4
then return (i);
else substitute (31) in the vector equations of (22) and
obtain a system of four linear equations of a; and a,.
If this system is inconsistent
then return (i);
else (a;,a», by, by, c1,c,dy,dy) is a solution to (22).
Step 5. Compute the control polygon of the transformed TPB surface S (s, ) = S 1(¥(s, ) using (15) and (34)
and compare it to the control polygon of S,.
If they coincide (up to eight different enumerations)
then S| and S, have coincidence;
else return (i).
Step 6.  Compute the shared domain G of S and § .
D=0
then return (ii);
else divide G into quadrangles and a triangle (if necessary), compute the control points of

the corresponding coincident Bézier surfaces using (15) and (34), and return (iii).

13



Remark 3. In the case where the shared domain is not a rectangle, multiple representations of the coincident part as a

union of Bézier surfaces exist.

Remark 4. The case where S is of degree (n,m) and S, is of degree either (n, n + m), or (n + m, m) is analogous to

the case where S, is of degree (n + m, n + m). The only difference is that (16) becomes (e. g. for degree (n + m, m))

Zn; Z; p;;B] w)B](v) = i:: Zm(; p;B;*"(s)B] ().
i=0 j= i=0 j=

Further, the arguments are the same as in the case where S| is of degree (n,m) and S ; is of degree (n + m,n + m).

3. Examples and results

We have implemented our method using Mathematica package. In this section we present and analyze the results

from our experimental work. In our examples we consider irreducible TPB surfaces.

Example 1. This example illustrates the only case where the direct generalization of the algorithm for curves works,
see (Vlachkova, 2017). More precisely, this is the case where the two TPB surfaces of same degree have overlapping
boundary curves. Here we apply the new method outlined in Algorithm 1. The irreducible surfaces S| and S, are
of degree (4,2). Their control points are shown in Table 1. The unique solution of system (9) is (a*, b*,c*,d*) =
0,1/2,1/6,3/4). Surfaces S and S, are shown in Fig. 2a. and Fig. 2b., respectively. Their coincident part is surface

S». Both surfaces and their coincident part with its control polygon are shown in Fig. 3a.

a. b. C.

Figure 2: (illustrates examples 1 and 2) Three irreducible TPB surfaces of degree (4,2) with control points shown in Table 1. a.
Surface S; b. Surface §,; ¢. Surface S5;

Example 2. We test for coincidence the irreducible surfaces S; and S ; of degree (4, 2) with control points shown in
Table 1. We apply Algorithm 1. The unique solution of system (9) is (a*, b*, c*,d*) = (-1/5,1/2,1/6,3/4). Surfaces
S and §';3 are shown in Fig. 2b. and Fig. 2c., respectively. Their coincident part is S, and it is shown with its control

polygon in Fig. 2b.
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a. b.

Figure 3: Testing for coincidence the surfaces shown in Fig. 2. a. Example 1: The coincident part of S; and S, is S,; b. Example 2:

The coincident part of §; and S35 is S».

Table 1: The control points of irreducible TPB surfaces S 1, S», S3 of degree (4, 2) from examples 1 and 2

S1 Poo =1(0,0,0) poi = (0. 5. —%) P = (0.2,-32)
pio = (1,0, 1) pu = (1,1,0) p2=(,11)
po =(2,0,3) =219 P2 =223
pso =(3.-1,5) P =313 P =321
pso = (4,0,3) pa=4.2,9) pe =433
S2 = 3.~z T80) Poi = G- 557 si90) Po2 = (3. 1355 T05680)
0=(G 35 5%) P =G 5% ) P = G 7 13s)
pu= (b8 - CLIZIRY - (L3
29 27 1837 29 165 2837 2 203 17401

P30 = (13-~ 51> 3540) P31 = (43> 5125 5130) P32 = (13> 763> 30720

27 849 )

— 2287 4253
P10 = (3, =% 3565 3 )

— 1433 9489
’ 5120 10240 (3 )

P41 = ( P42 = (9, 1350> 20480

R
Pio = (3 %ggg’ iézooo) pu = (3, %’ %) P2 = (zév %’ %)

= (5~ 20- 7ws000) P21 = (g F%5 13s0) P2 = (55 52 aom0)

(12’ %* %) P31 = (%g’ 7665830’ % P32 = (%g* ;23’ égg%)

= (.- %0 twoon) Pa1 = Go 5135 3s00) Pa2 = (3. 1355 70aso)
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Figure 4: The irreducible TPB surfaces S of degree (2,3) and S, of degree (5, 5) from Example 3. The corresponding control points
are shown in Table 2. a. Surface S;; b. Surface S,; c. The coincident part of S; and S, is S 5.

Table 2: The control points of irreducible TPB surfaces of degree (2, 3) and (5, 5) from Example 3

S1 Poo =(0,0,0) poi = (3,0,-3) P2 = (3.0.3) Pz = (3,0,0)
pio = (0.3,-3) P =330 p2=G3.-9 pi3 =G, L1
P20 =(0,2,3) =G0 p2 = (4, 4,0 ps =G,2,1)

S> poo=0.3.-3) po = (. 5.-3) P =G 1o 12) Pos = (13- o5+ 125)
Pos = (%.5.3) pos = (3.2, 7 Pio = (5. 30— %) P = (53555 -5)
po =8 B0 2y p=CGE. 55 pus = (o, W2 pis=G5L 8.5
Po=(3.3.-5) P =G 392, -8 pn=(g% i) Ps = (. B —55)
Pu = (155 50 —300) P = (5o 5o 10) P = (G550~ 160) P31 = (igg 3300~ 200)
P = (5> 30 ~1e0) P33 = G foooe —23) P34 = (5355 30 —500) P35 = (g 6~ 30)
Po=(z.5-9  Pa=Coe gm0 Pe =G a0 P = Gaoe 1530~
=0 8. -1%)  Pas = 2% pso = (3,0,0) psi = (32, 2(3) )
ps2 =G 22, D) ps; = (87,21 1) pss = (A0, 2 3 pss=(3.1,3)
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Example 3. We consider the irreducible surfaces S| and S, of degree (2,3) and (5, 5), respectively. Their control
points are shown in Table 2. This example matches Case 1 of Lemma 4, and hence system (22) has a unique solution
(ay1,a2,b1,b3,c1,¢2,d1,d2)=(0,1/2,1/2,0,1,1/2,1/2,1). Surfaces S| and S are shown in Fig. 4a. and Fig. 4b.,

respectively. They have coincidence and their coincident part is surface S, see Fig. 4c.

Example 4. We test for coincidence the irreducible surfaces S| and S, of degree (2,2) and (4, 4), respectively. Their
control points are shown in Table 3. The corresponding vectors p, pl’o, pO’1 are coplanar and hence, matrix M, defined
by (25) has rank 2. We apply Algorithm 2 and obtain the following two solutions (a;, a», by, by, ¢y, c2,d}, dz) to system
(23),

(-1,1/3,4/3,1/2,3/4,3/2,-1/4,13/12),

(34/71,271/183,75/284,—181/549, -291/284,15/122, -277/568,329/366).
The first of these solutions generates TPB surface whose control polygon coincides with the control polygon of S ;.
Hence, S| and S, have coincidence. Surfaces S, S, and their coincident part S are shown in Fig. 5 The control points

of S are shown in Table 3.

Figure 5: The irreducible TPB surfaces S ; of degree (2,2) and S, of degree (4,4) and their coincident part S from Example 4. The
corresponding control points are shown in Table 3. a. Surface S;; b. Surface S,; ¢. Surfaces S, S,, and S which is shown with its

control polygon.

Example 5. In our final example we test for coincidence the irreducible surfaces S| and S, of degree (2, 4) and (6, 6),
respectively. Their control points are shown in Table 4. Surfaces S| and S, are shown in Fig. 6a. and Fig. 6b.. The
corresponding system (22) has a unique solution (ay, az, by, b, ¢y, ¢2,dy,dr)=(1/2,-1/2,0,1/3,1/2,7/6,—-1,2/3). The
shared domain of S| and S, is a hexagon. We represent the coincident part S as a union of two TPB surfaces and

compute their control points using blossoming, see Fig 6c.

4. Conclusions and future work

In this paper we considered and solved the problem for testing TPB surfaces for coincidence. We presented two

different methods and develop two algorithms based on these methods that test two irreducible TPB surfaces for
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Table 3: The control points of irreducible TPB surfaces of degree (2,2) and (4,4) from Example 4

S1 poo =(0,0,0) por = (1,0,1) P = (2,0,3)
P10 = (0, 5, —3) pi = (1,1,0) p=021,9)
po =(0,2,-32) p21 = (1, 1,1) P2 =223

S> po=G.-%2) poi = (3,-3,18) P = (12, -3, 38 py3 = (33,108, S0
pos = (£, -533, 3565) po=G.—3%. 38D P =CGlL-5. 225 pr=(E -5 250
Pi3 = (5.~ i) 7eass) P14 = (- 750> Jaom) weo) P21 = (55 155530° 3ri0i0)

— —_
1=} °°|©
\l
[=))
o0
o
S
c\
o
o
S

5, o5t
P20 = (3> 2430° ~ 38880
1151

P2 = (31 551150- Taseao) P23 = (4_83’ T0e30) P2 =30 Beods) P30 = (13- 345 2160)
=D po D =R -G BB
pao = (1,58 pa = (3. 538 P = (2, 5, 1%5) P = . 155 5)
pa=0.35.8)

S -G08 m-G0ED  we-GOED - B0R)
=200 po=GLELAEH v =LA we- 0
=@ LH  pesebD G EED -G ED
P2 = (§ 355 o) P = (g 500 1oosp) P =2 1. %) P30 = (13- 55- 393)
PR -G oG BE -l
Pao = (51, 53, 3505 Pa1 = (- 555> 3o08 Pu2 = 3. T553> 33038) P = (3 > Teg)

pas = (2,2, %)

Figure 6: a. Irreducible TPB surfaces S, of degree (2,4) and S, of degree (6, 6) from Example 5. The control points of S and S, are

shown in Table 3. a. S; b. S and S, with its control polygon; c. The coincident part S is presented as two TPB surfaces.
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Table 4: The control points of irreducible TPB surfaces of degree (2,4) and (6, 6) from Example 5

1 4 23 4
Sl pOO = (0’ 09 0) pOl - (Ov 10° E) p02 = (Os 27 _g) p03 = (Os 107_3)
pos = (0,3, 1) pio =(1,0,1) pi =(1,1,0) p2=(1,1,1)
_ 6 6 _ 3 4 _ 3 _ 6
p13 - (1’ 5 g) p14 - (17 72 5) p20 - (2, 0’ Z) p21 - (2" l, g)
3 3
p22 = (25 29 _) p23 = (27 3, 1) p24 = (2’ 4’ _)
1 2
_ 1 _719 2717 _ (1 _4I51 19667 _ (4 277 4481 _ (3 1361 44467
Sa poo = (I, =55, 5z) Poi = (5>~ 3530 17280 Po2 = (3> ~ 500> 14400 3 = (5> 3600° 54800
_ (5 5447 255913 _ (11 1991 26399 _ 8 1687 _ (5 _ 3973 4081
Pos = (5 575 291600 Pos = (> 1315> 29160) Pos = (2’ » T620) ( 5§80° 1728)
_ 3143 19171 _ (7 2489 250213 _ (4 9049 1379747 175433 668537
pu=(1,- 4320° 207360) P2 = (6 8640° 777600) P13 = (3’ 12150° 2332800) (2’ 145800 874800)
= (2, 3499 307297 = (41 3341 32099 = (2,229 2291, _(é — 1883 157141
P15 = (3, 7390 » 349920 Pie = (5> 1315 29160 P20 = (35 =3500> 21600 I = 1> 714400 388800
= (1,20249 2076581 = (1,2027447 1061101 = (4, 20417 6107587 = (3, 96541 264520,
P22 = (1, 33880> 23328000 P23 = (5> 1944000 2332800 P24 = (3 364300 8748000 5 = 12> 48600 291600
= 5609 115331 = (1,203 14257 = (2, 35237 96383 = (3, 1863737 17473
P26 = (35 505> 97200 P30 = (3> 500> 32400 P31 = (5 192400 583200 2 = \6> 1944000 233280
(1 72407 Adleoll = (1, 3084847 1652957 = (4,377 21907 = (3,839 26401
P33 = (L, 576000 10368000 P34 = (5> 1944000 2332800 P35 = (3, 16200 28800 6 = \2>32400° 194400
= 1819 18443) = (1, 1204 1339 _ (g 904483 35749 ) _ (§ 318233 29020
P40 3> 12150’ 145800 P41 = (3, 18255> ~ 237200 P42 = (5, 729000 3374000 P43 = (%5 516000° 77760
= (1, 1014110 48464383 = (2, 100631 6996317 = (4, 133901 1543601 = (L 2891 _ 1411y
P4 = (L, 583300 » 59984000 Pas = (5> 46656 > 6998400 P46 = (3> 43600 * 1166400 0 = 16> 4860° ~ 7290
= (L 1613 _ 41 = (1,320 _ 18343 _ (g 328277 169903 y _ (g 213237 2383159
Ps1 = (35 1458 ~ 174960 Ps2 = (35 54300 ~ 145800 Ps3 = (5 194400 583200 ~ 16> 1166400 3499200
_ 87773 1983853 _ (7 8009 224443 _ 17 _ 203 203
Pss = (1, 35555 Tee6040) Ps6 = (5> 2880 155520 Poo = (0, 13, —555) =0, i3 15>~ 205)
= (1, 2679 _ 24437 = (1,311 721 sl = (2, 206657 499307 = (3, 190249 62137
Po2 = (35 131507 ~ 145800 P63 = (3, 16200 97200 Ps4 = (5 97200 » 583200 5 = \6> 77760 * 46656
_ 7553 112733
Pos = (1, 3355 2208 )
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coincidence and report their coincident part if it is present. The first algorithm works for surfaces of same degree (m, n)
and the second one - for surfaces of degree (m, n) and (m + n, m + n), respectively. We presented numerical experiments
and gave examples to visualize and support the obtained results. Our next task for future research is to develop and

implement an algorithm for testing TB surfaces for coincidence.
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