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Abstract

It is known that Bézier curves and surfaces may have multiple representations by different control polygons. The

polygons may have different number of control points and may even be disjoint. Up to our knowledge, Pekerman et

al. (2005) were the first to address the problem of testing two parametric polynomial curves for coincidence. Their

approach is based on reduction of the input curves into canonical irreducible form. They claimed that their approach

can be extended for testing tensor product surfaces but gave no further detail.

In this paper we develop a new technique and provide a comprehensive solution to the problem of testing tensor

product Bézier surfaces for coincidence. In (Vlachkova, 2017) an algorithm for testing Bézier curves was proposed

based on subdivision. There a partial solution to the problem of testing tensor product Bézier surfaces was presented.

Namely, the case where the irreducible surfaces are of same degree (n,m), n,m ∈ N, was resolved under certain

additional condition. The other cases where one of the surfaces is of degree (n,m) and the other is of degree either

(n, n + m), or (n + m,m), or (n + m, n + m) remained open.

We have implemented our algorithm for testing tensor product Bézier surfaces for coincidence using Mathematica

package. Experimental results and their analysis are presented.
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1. Introduction

Assume we are given the control polygons of two tensor product Bézier (TPB) surfaces that are generated by

different sources, e. g. different algorithms or software packages. The two polygons may have different number of

control points and may even be disjoint but nevertheless it is possible that they represent surfaces with coincidence.

Here we consider the problem of finding whether two control polygons represent different surfaces or partially/entirely

coincident surfaces. In the latter case we need to determine their coincident part. By coincident surfaces we mean

that they occupy same locus of points in R3 but they may be parameterized differently, i. e. they are geometrically

equivalent as defined in (Denker and Herron, 1997).

This problem arises in various applications where the two surfaces need to be stitched together so that the obtained

new surface is continuous. The problem is important also for the intersection algorithms based on subdivision which do

not work well if the surfaces have coincident part.

The problem of testing polynomial curves for coincidence received a considerable attention by many authors. Up

to our knowledge, Pekerman et al. (2005) were the first to address the problem of testing two parametric polynomial
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curves for coincidence. They represented the curves into irreducible form1, tested them for coincidence and determined

their shared domain in the case where coincidence occurs. In (Berry and Patterson, 1997) a general approach and result

for comparing rational Bézier curves based on their control polygons was proposed. Then, in a series of papers this

approach for testing Bézier curves for coincidence has been developed and discussed, see (W.-K. Wang et al., 2011;

Sánchez-Reyes, 2011; Chen et al., 2013; Sánchez-Reyes, 2014; Chen et al., 2016; Sánchez-Reyes, 2015a; Chen and

Ma, 2015).

The use of control polygons when comparing Bézier curves is preferable over their reparametrization as proposed in

(Pekerman et al., 2005) due to stability and numerical issues, see (Sánchez-Reyes, 2015b; Farouki, 2012). In addition,

the transformations involved become ill-conditioned for high degrees. In (Vlachkova, 2017) an algorithm for testing

Bézier curves for coincidence based on control polygons and subdivision was presented, analysed and experimentally

tested.

Pekerman et al. (2005) suggested in the concluding remarks that their approach for testing polynomial curves for

coincidence can be extended to TPB surfaces. No further detail was given. Vlachkova (2017) proposed an algorithm

for testing TPB surfaces as a generalization of the algorithm for curves presented in the same paper. The algorithm is

based on comparing the control polygons of the two surfaces. TPB surface S (u, v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, is irreducible

if all comprising Bézier curves in u and v directions are irreducible. Two irreducible TPB surfaces can have coincident

part either (i) if they are of same degree (n,m), n,m ∈ N; or (ii) if one is of degree (n,m) and the other is of degree

either (n, n + m), or (n + m,m), or (n + m, n + m). The algorithm in (Vlachkova, 2017) works only for TPB surfaces of

same degree (n,m) with overlapping boundary curves, see Fig. 2a. All other cases remained open.

Here we apply a different approach and present a complete solution to the problem of comparing TPB surfaces for

coincidence. First, we show that all cases where two irreducible TPB surfaces have coincidence can be reduced to two

main cases: (i) the surfaces are of same degree; (ii) the surfaces are of degree (n,m) and (n + m, n + m), respectively.

Then, we reduce the problem to solving a nonlinear system of equations of degree n + m. The number of the unknowns

is four and eight in cases (i) and (ii), respectively. Finally, we propose a method for solving these systems. Based on

their solutions, we decide whether the input surfaces are different or partially/entirely coincident. In the latter case we

determine the control points of the coincident part using the blossoming principle. We also derive sufficient geometric

criteria for checking whether the surfaces are different.

We have implemented our approach using Mathematica package. We reformulate the arising nonlinear systems of

high degree so that Mathematica finds correctly their solutions. The experimental results are presented, analysed and

visualized.

The paper is organized as follows. In Section 2 we formulate the problem and consecutively resolve cases (i) and

(ii) in Subsection 2.1 and Subsection 2.2, respectively. In Section 3 we discuss the implementation and present our

experimental results. Summary and conclusions are presented in Section 4.

1Different representations of a polynomial curve may occur if it has been degree elevated and/or reparameterized by a composition with a

polynomial. A curve is irreducible if it is not a result of a polynomial composition and has not been degree elevated. Checking curves for irreducibility

is well understood, see e. g. (Barton and Zippel, 1985; Kozen and Landau, 1989; von zur Gathen, 1990). In our experiments we use the built-in

functions in Mathematica package.
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2. Coincidence of TPB surfaces

Tensor product Bézier surface S (u, v) of degree (n,m) for n,m ∈ N, and control points pi j ∈ R3, i = 0, . . . , n,

j = 0, . . . ,m is defined by

S (u, v) =
n∑

i=0

m∑
j=0

pi jBn
i (u)Bm

j (v), (1)

where 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, and Bn
i (u) :=

(
n
i

)
ui(1 − u)n−i are the Bernstein polynomials. Hereafter we assume that the

binomial coefficients
(

n
i

)
= 0 if i < 0 or i > n.

We denote by L(S ) the locus of points (u, v, S (u, v)) in R3 for 0 ≤ u ≤ 1, 0 ≤ v ≤ 1.

Definition 1. TPB surfaces S 1 and S 2 have coincidence if there exists TPB surface S such that L(S k) ⊆ L(S ), k = 1, 2.

We distinguish the following three cases.

(i) if L(S 1) ≡ L(S 2) then S 1 and S 2 are coincident,

(ii) if L(S 1) ∩ L(S 2) , ∅ then S 1 and S 2 have coincident part,

(iii) if L(S 1) ∩ L(S 2) = ∅ then S 1 and S 2 are disjoint.

S 1 and S 2 are different if they do not have coincidence.

Recall that a Bézier curve is irreducible if it is not a result of a polynomial composition and has not been degree

elevated.

Definition 2. TPB surface S (u, v) is irreducible if the Bézier curves Cu
j (u), j = 0, . . . ,m with control points {pi j}

n
i=0,

and Cv
i (v), i = 0, . . . , n with control points {pi j}

m
j=0 are irreducible.

For TPB surface S with control points pi j we denote by ρ, ρ1,0, and ρ0,1 the finite differences at point p00 of order

(n,m), (n − 1,m), and (n,m − 1) respectively, defined by (see (Farin, 2002, pp. 66, 256))

ρ := ∆n,mp00 =

n∑
i=0

m∑
j=0

(−1)n+m−i− j
(
n
i

)(
m
j

)
pi j,

ρ1,0 := ∆n−1,mp00 =
1
n

n∑
i=0

m∑
j=0

(−1)n+m−i− j
(
n
i

)(
m
j

)
(i − n)pi j, (2)

ρ0,1 := ∆n,m−1p00 =
1
m

n∑
i=0

m∑
j=0

(−1)n+m−i− j
(
n
i

)(
m
j

)
( j − m)pi j.

Remark 1. If S is irreducible then ρ is non-collinear to both ρ1,0 and ρ0,1.

It is known that two irreducible TPB surfaces S 1 and S 2 of degrees (n,m) and (n1,m1), respectively, may have

coincidence only if (n1,m1) equals to one of the following: (n,m), (n, n + m), (n + m,m), (n + m, n + m), see (Farin,

2002, pp. 253). We consider first the cases (i) (n1,m1) = (n,m), n,m ∈ N and (ii) (n1,m1) = (n + m, n + m). Then we

show that the other two cases reduce to (ii).

The next proposition is shown in (Berry and Patterson, 1997) and (Sánchez-Reyes, 2011) for curves. It can be

easily extended to case (i) and to case (ii) (see Theorem 1 in (Yang and Zeng, 2008)) as follows.
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Proposition 1. (i) The irreducible TPB surfaces S 1(u, v) and S 2(s, t) of same degree (n,m) have coincidence if and

only if there exists affine transformation

φ :

 u(s) = (1 − s)a + sb,

v(t) = (1 − t)c + td,
(3)

such that S 2(s, t) = S 1(u(s), v(t)) for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, see Fig. 1(i).

(ii) The irreducible TPB surfaces S 1(u, v) and S 2(s, t) of degrees (n,m) and (n + m, n + m), respectively, have

coincidence if and only if there exists bilinear transformation

ψ :

 u(s, t) = (1 − s)(1 − t)a1 + (1 − s)td1 + stc1 + s(1 − t)b1,

v(s, t) = (1 − s)(1 − t)a2 + (1 − s)td2 + stc2 + s(1 − t)b2
(4)

such that S 2(s, t) = S 1(u(s, t), v(s, t)) for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, see Fig. 1(ii).

2.1. Irreducible TPB surfaces of same degree (n,m)

Let S 1(u, v) and S 2(s, t) be irreducible TPB surfaces of same degree (n,m) defined as in (1) with control points p1
i j

and p2
i j, respectively. Let the corresponding vectors ρk, ρ1,0

k , and ρ0,1
k , k = 1, 2, be defined by (2). We assume that S 1

and S 2 have different control polygons. In the next lemma we derive necessary geometric conditions for S 1 and S 2 to

have coincidence.

Lemma 1. If the irreducible TPB surfaces S 1 and S 2 of degree (n,m) have coincidence then the following statements
hold.

(i) ρ1 and ρ2 are collinear;
(ii) ρ1, ρ2, ρ1,0

1 , and ρ1,0
2 are coplanar;

(iii) ρ1, ρ2, ρ0,1
1 , and ρ0,1

2 are coplanar.

Proof. Assume that S 1 and S 2 have coincidence. According to statement (i) of Proposition 1 there are four numbers

a, b, c, d ∈ R such that the domain {(u, v) : a ≤ u ≤ b, c ≤ v ≤ d} is an image of the domain {(s, t) : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1}

under the affine transformation (3) (see Fig. 1(i)) and S 2(s, t) = S 1(u(s), v(t)).

1

1

0

1

0 a b

c

d

u

v

1s

t
ϕ

(i)

1

1

0

1

0 u

v

1s

t

A

B

C

D

ψ

(ii)

Figure 1: (i) The domain {(u, v) : a ≤ u ≤ b, c ≤ v ≤ d} is an image of the domain {(s, t) : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1} under the affine

transformation u = u(s) = (1 − s)a + sb, v = v(t) = (1 − t)c + td. (ii) The convex quadrilateral ABCD is an image of the domain

{(s, t) : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1} under a bilinear transformation.

We have

n∑
i=0

m∑
j=0

p2
i jB

n
i (s)Bm

j (t) =
n∑

i=0

m∑
j=0

p1
i jB

n
i ((1 − s)a + sb)Bm

j ((1 − t)c + td), 0 ≤ s ≤ 1, 0 ≤ t ≤ 1. (5)
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We take ∂n+m

∂sn∂tm derivative in (5) and obtain

n!m!ρ2 = n!m!(b − a)n(d − c)mρ1.

Hence, vectors ρ1 and ρ2 are collinear with ρ2 = κρ1 where we denoted

κ = (b − a)n(d − c)m. (6)

This proves statement (i).

Since ρ1 and ρ2 are the coefficients of unvm and sntm in S 1(u, v) and S 2(s, t), respectively, and S 1 and S 2 are

irreducible then ρ1 , 0 and ρ2 , 0. So the number κ is determined as the ratio of any two corresponding nonzero

coordinates of ρ2 and ρ1.

Next, we take ∂n+m−1

∂sn−1∂tm derivative in (5) and obtain

m!(n − 1)!
n∑

i=0

m∑
j=0

(−1)n+m−i− j
(
n
i

)(
m
j

)
(ns − n + i)p2

i j =

m!(n − 1)!(b − a)n−1(d − c)m
n∑

i=0

m∑
j=0

(−1)n+m−i− j
(
n
i

)(
m
j

)
(n(s(b − a) + a) − n + i)p1

i j,

0 ≤ s ≤ 1,

which for s = 0 implies

ρ1,0
2 = (b − a)n−1(d − c)m(aρ1 + ρ

1,0
1 ). (7)

Hence, vectors ρ1, ρ1,0
1 , and ρ1,0

2 are coplanar and (ii) follows from (i).

Similarly, we take ∂n+m−1

∂sn∂tm−1 derivative in (5) and for s = 0 obtain

ρ0,1
2 = (b − a)n(d − c)m−1(cρ1 + ρ

0,1
1 ). (8)

Therefore vectors ρ1, ρ0,1
1 , and ρ0,1

2 are coplanar and (iii) follows from (i). □

Remark 2. Surface S 2 can be considered as obtained from surface S 1 by subdivision with respect to u at a and b, and

with respect to v at c and d.

Next we obtain necessary and sufficient conditions for surfaces S 1 and S 2 to have coincidence. In the proof

of Lemma 1 we have shown that if S 1 and S 2 have coincidence then there exist numbers a, b, c, d defining affine

transformation (3) and satisfying the system∣∣∣∣∣∣∣∣∣∣∣
ρ1,0

2 = (b − a)n−1(d − c)m(aρ1 + ρ
1,0
1 ),

ρ0,1
2 = (b − a)n(d − c)m−1(cρ1 + ρ

0,1
1 ),

κ = (b − a)n(d − c)m,

(9)

where κ is determined from ρ2 = κρ1.

Lemma 2. If system (9) is consistent then it has a unique solution.
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Proof. We multiply the first vector equation in (9) by b − a and the second one by d − c, use ρ2 = κρ1, and obtain

bρ1,0
2 − a(ρ2 + ρ

1,0
2 ) = κρ1,0

1 , (10)

dρ0,1
2 − c(ρ2 + ρ

0,1
2 ) = κρ0,1

1 . (11)

Hence, (9) is equivalent to the following system∣∣∣∣∣∣∣∣∣∣∣
bρ1,0

2 − a(ρ2 + ρ
1,0
2 ) = κρ1,0

1 ,

dρ0,1
2 − c(ρ2 + ρ

0,1
2 ) = κρ0,1

1 ,

κ = (b − a)n(d − c)m,

(12)

Each of the two vector equations in (12) is equivalent to a linear system of three equations of the unknowns a, b, and

c, d, respectively, for each of the three vector coordinates. By Remark 1 the ranks of the matrices of these systems are

greater than one. Hence the systems have either unique, or no solution. Therefore, if system (12) is consistent then it

has a unique solution. □

The following theorem holds.

Theorem 1. The irreducible TPB surfaces S 1 and S 2 of degree (n,m) have coincidence if and only if system (12) is
consistent and the control polygon of the surface corresponding to the unique solution to (12) coincide with the control
polygon of S 2 (up to eight different enumerations of the control polygons).

Proof.⇒ Let S 1 and S 2 have coincidence. Then according to statement (i) of Proposition 1 there exist four numbers

a, b, c, d ∈ R defining transformation φ which are a solution to system (9) and S 2(s, t) = S 1(φ). According to Lemma 2,

the equivalent to (9) system (12) has a unique solution (a, b, c, d). The control polygon of the surface corresponding to

this solution coincides with the control polygon of S 2.

⇐ Let system (12) be consistent. Then, according to Lemma 2, it has a unique solution. Since the control polygon of

the surface S corresponding to this solution coincide with the control polygon of S 2 (up to eight different enumerations

of the control polygons) then S and S 2 coincide according to Theorem 1 in (Vlachkova, 2017). □

We continue by providing an efficient approach for testing S 1 and S 2 for coincidence. First, we consider the two

linear systems (10) and (11) which have either unique or no solution. Clearly if any of them has no solution then by

Proposition 1 no transformation φ exists and S 1 and S 2 are different. If both systems have unique solutions, say (a∗, b∗),

(c∗, d∗), then we need to check if they satisfy (b∗ − a∗)n(d∗ − c∗)m = κ. If they do not, then system (12) is inconsistent

and S 1 and S 2 are different. Otherwise, following Theorem 1, we need to compute the control polygon of surface S ∗

corresponding to (a∗, b∗, c∗, d∗) and to check if it coincides with the control polygon of S 2. If these polygons coincide

(up to eight different enumerations of the control points) then S 1 and S 2 have coincidence, otherwise they are different.

We compute the control points of S ∗ using the blossoming principle, see (Goldman, 2003). In (Goldman, 2003, p. 339)

and (Yang and Zeng, 2008) it is pointed out that for any polynomial surface patch S (u, v) =
∑n

i=0
∑m

j=0 ci juiv j of degree

(n,m) defined for a ≤ u ≤ b and c ≤ v ≤ d, the Bézier control points pνµ, ν = 0, . . . , n, µ = 0, . . . ,m, of this surface

patch are

pνµ = b□(a, . . . , a︸  ︷︷  ︸
ν

, b, . . . , b︸  ︷︷  ︸
n − ν

, c, . . . , c︸  ︷︷  ︸
µ

, d, . . . , d︸   ︷︷   ︸
m − µ

), (13)

where b□(u1, . . . , un, v1, . . . , vm) =
∑n

i=0
∑m

j=0 ci jb□
i j (u1, . . . , un, v1, . . . , vm) is the blossom of S (u, v), and

b□
i j (u1, . . . , un, v1, . . . , vm) =

∑
{α1,...,αi}⊆{1,...,n}

uα1 . . . uαi(
n
i

) ∑
{β1,...,β j}⊆{1,...,m}

vβ1 . . . vβ j(
m
j

) (14)
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is the blossom of the monomial uiv j. In the case where either i = 0, or j = 0, the corresponding sum in (14) equals

1, e. g. b□00 = 1. In the next corollary we present (13) and (14) in an equivalent closed form that is more suitable for

computations.

Corollary 1. Bézier control points pνµ, ν = 0, . . . , n, µ = 0, . . . ,m, defined by (13) are

pνµ =
n∑

i=0

m∑
j=0

ci j(
n
i

)(
m
j

) min(i,ν)∑
k=max(0,i+ν−n)

min( j,µ)∑
r=max(0, j+µ−m)

(
ν

k

)(
n − ν
i − k

)(
µ

r

)(
m − µ
j − r

)
akbi−kcrd j−r. (15)

We outline our procedure for testing S 1 and S 2 for coincidence in algorithmic form below.

Algorithm 1 Testing two irreducible TPB surfaces of degree (n,m) for coincidence

Input: Irreducible TPB surfaces S 1 and S 2 of degree (n,m) given by their control polygons

Output: (i) S 1 and S 2 are different;

(ii) S 1 and S 2 are disjoint;

(iii) S 1 and S 2 have coincident part. Report its control points.

Step 1. Compute vectors ρi, ρ1,0
i , and ρ0,1

i , i = 1, 2.

Step 2. Check the conditions of Lemma 1.

2.1. If ρ1, ρ2 are non-collinear

then return (i);

else compute κ such that ρ2 = κρ1.

2.2. If either ρ1, ρ2, ρ1,0
1 , ρ1,0

2 , or ρ1, ρ2, ρ0,1
1 , ρ0,1

2 are non-coplanar

then return (i);

else system (12) has either unique, or no solution.

Step 3. Solve linear systems (10) and (11).

If any of them is inconsistent

then return (i);

else denote their unique solutions by (a∗, b∗) and (c∗, d∗).

Step 4. If (b∗ − a∗)n(d∗ − c∗)m , κ

then return (i);

else system (9) is consistent with unique solution (a∗, b∗, c∗, d∗).

Step 5. Compute the control polygon of the transformed TPB surface

S ∗(s, t) = S 1(u(φ(s, t), v(φ(s, t)) using (15) and compare it to the control polygon of S 2.

If they coincide (up to eight different enumerations)

then S 1 and S 2 have coincidence;

else return (i).

Step 6. Compute the shared domain G of S ∗ and S .

If D = ∅

then return (ii);

else compute the control points of the coincident part using (15) and return (iii).

2.2. Irreducible Bézier surfaces of degrees (n,m) and (n + m, n + m)

Let S 1(u, v) =
∑n

i=0
∑m

j=0 p1
i jB

n
i (u)Bm

j (v) defined for 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, and S 2(s, t) =
∑n+m

i=0
∑n+m

j=0 p2
i jB

n+m
i (s)Bn+m

j (t)

defined for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, be irreducible TPB surfaces. For the four boundary curves of S 2 we denote by δk and

7



δ1
k , k = 1, . . . , 4 the following finite differences

δ1 := ∆n+m,0p2
00 =

n+m∑
i=0

(−1)n+m−i
(
n + m

i

)
p2

i0,

δ2 := ∆0,n+mp2
00 =

n+m∑
i=0

(−1)n+m−i
(
n + m

i

)
p2

0i,

δ3 := ∆n+m,0p2
0,n+m =

n+m∑
i=0

(−1)n+m−i
(
n + m

i

)
p2

i,n+m,

δ4 := ∆0,n+mp2
n+m,0 =

n+m∑
i=0

(−1)n+m−i
(
n + m

i

)
p2

n+m,i,

δ1
1 := (n + m)∆n+m−1,0p2

00 =

n+m∑
i=0

(−1)n+m−i
(
n + m

i

)
(i − n − m)p2

i0,

δ1
2 := (n + m)∆0,n+m−1p2

00 =

n+m∑
i=0

(−1)n+m−i
(
n + m

i

)
(i − n − m)p2

0i,

δ1
3 := (n + m)∆n+m−1,0p2

0,n+m =

n+m∑
i=0

(−1)n+m−i
(
n + m

i

)
(i − n − m)p2

i,n+m,

δ1
4 := (n + m)∆0,n+m−1p2

n+m,0 =

n+m∑
i=0

(−1)n+m−i
(
n + m

i

)
(i − n − m)p2

n+m,i.

The finite differences ρ, ρ1,0, and ρ0,1 for S 1 are defined by (2).

In the next lemma we derive necessary geometric conditions for S 1 and S 2 to have coincidence.

Lemma 3. If the irreducible TPB surfaces S 1 and S 2 of degrees (n,m) and (n+m, n+m), respectively, have coincidence
then the five vectors ρ, and δi, i = 1, . . . , 4, are collinear.

Proof. Assume that S 1 and S 2 have coincidence. Since S 1 is of degree (n,m) and S 2 is of degree (n + m, n + m) then,

according to statement (ii) of Proposition 1, there exist convex quadrilateral ABCD with vertices A(a1, a2), B(b1, b2),

C(c1, c2), D(d1, d2) which is an image of the domain {(s, t) : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1} under the bilinear transformation

(4) (see Fig. 1(ii)) and S 2(s, t) = S 1(u(s, t), v(s, t)). Hence, for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1 we have

n∑
i=0

m∑
j=0

p1
i jB

n
i (u)Bm

j (v) =
n+m∑
i=0

n+m∑
j=0

p2
i jB

n+m
i (s)Bn+m

j (t), (16)

where u and v are defined by (4).

The image of the boundary segment {(s, t) : 0 ≤ s ≤ 1, t = 0} under the bilinear transformation (4) is the segment

AB and we have u = (1 − s)a1 + sb1, v = (1 − s)a2 + sb2. Hence, from (16) it follows

n∑
i=0

m∑
j=0

p1
i jB

n
i ((1 − s)a1 + sb1)Bm

j ((1 − s)a2 + sb2) =
n+m∑
i=0

p2
i0Bn+m

i (s), 0 ≤ s ≤ 1. (17)

After differentiation of (17) n + m times we obtain

(b1 − a1)n(b2 − a2)mρ = δ1. (18)

8



Hence, vectors ρ and δ1 are collinear with κ1ρ = δ1 where we denoted

κ1 = (b1 − a1)n(b2 − a2)m. (19)

Since ρ and δ1 are the coefficients of unvm in S 1(u, v) and sn+m in S 2(s, 0), respectively, and S 1 and S 2 are irreducible

then ρ , 0 and δ1 , 0. So the number κ1 is determined as the ratio of any two corresponding nonzero coordinates of δ1

and ρ.

For the remaining three boundary segments we obtain, analogously to (18),

(d1 − a1)n(d2 − a2)mρ = δ2,

(c1 − d1)n(c2 − d2)mρ = δ3, (20)

(c1 − b1)n(c2 − b2)mρ = δ4.

Hence, vectors ρ, δ2, δ3, and δ4 are collinear with κiρ = δi, i = 2, 3, 4, where we denoted

κ2 = (d1 − a1)n(d2 − a2)m,

κ3 = (c1 − d1)n(c2 − d2)m, (21)

κ4 = (c1 − b1)n(c2 − b2)m.

Similarly to κ1, the numbers κi for i = 2, 3, 4 are determined as the ratio of any two corresponding nonzero coordinates

of δi and ρ, respectively. □

Next we obtain a necessary and sufficient conditions for surfaces S 1 and S 2 to have coincidence. We differentiate

(17) n + m − 1 times and obtain for s = 0

(b1 − a1)n−1(b2 − a2)m−1(nρ1,0(b2 − a2) + mρ0,1(b1 − a1) + nρa1(b2 − a2) + mρa2(b1 − a1)
)
= δ1

1.

Similarly, for the remaining three boundary segments we obtain

(d1 − a1)n−1(d2 − a2)m−1(nρ1,0(d2 − a2) + mρ0,1(d1 − a1) + nρa1(d2 − a2) + mρa2(d1 − a1)
)
= δ1

2,

(c1 − d1)n−1(c2 − d2)m−1(nρ1,0(c2 − d2) + mρ0,1(c1 − d1) + nρd1(c2 − d2) + mρd2(c1 − d1)
)
= δ1

3,

(c1 − b1)n−1(c2 − b2)m−1(nρ1,0(c2 − b2) + mρ0,1(c1 − b1) + nρb1(c2 − b2) + mρb2(c1 − b1)
)
= δ1

4.

Therefore, if S 1 and S 2 have coincidence then the eight numbers ai, bi, ci, di, i = 1, 2, defining bilinear transformation

(4) satisfy the system∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(b1 − a1)n−1(b2 − a2)m−1(nρ1,0(b2 − a2) + mρ0,1(b1 − a1) + nρa1(b2 − a2) + mρa2(b1 − a1)) = δ1
1,

(d1 − a1)n−1(d2 − a2)m−1(nρ1,0(d2 − a2) + mρ0,1(d1 − a1) + nρa1(d2 − a2) + mρa2(d1 − a1)) = δ1
2,

(c1 − d1)n−1(c2 − d2)m−1(nρ1,0(c2 − d2) + mρ0,1(c1 − d1) + nρd1(c2 − d2) + mρd2(c1 − d1)) = δ1
3,

(c1 − b1)n−1(c2 − b2)m−1(nρ1,0(c2 − b2) + mρ0,1(c1 − b1) + nρb1(c2 − b2) + mρb2(c1 − b1)) = δ1
4,

κ1 = (b1 − a1)n(b2 − a2)m,

κ2 = (d1 − a1)n(d2 − a2)m,

κ3 = (c1 − d1)n(c2 − d2)m,

κ4 = (c1 − b1)n(c2 − b2)m,

(22)
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where κi is determined from κiρ = δi, i = 1, . . . , 4.

Straightforward application of Mathematica packages and build-in functions doesn’t yield solutions to system (22)

efficiently. Hence, it is important to develop a method to simplify and solve it.

Lemma 4. If system (22) is consistent and rank(ρ, ρ1,0, ρ0,1)=3 then it has a unique solution. If rank(ρ, ρ1,0, ρ0,1)=2
then it has at most two solutions.

Proof. We consider the first equation of system (22), denote x := b1 − a1, y := b2 − a2, and obtain

xn−1ym−1(nρ1,0y + mρ0,1x + nρa1y + mρa2x) = δ1
1. (23)

Vector equation (23) is equivalent to the following system∣∣∣∣∣∣∣∣∣∣∣∣∣
κ1(nρ1,0

1 y + mρ0,1
1 x + nρ1a1y + mρ1a2x) = δ1xy,

κ1(nρ1,0
2 y + mρ0,1

2 x + nρ2a1y + mρ2a2x) = δ2xy,

κ1(nρ1,0
3 y + mρ0,1

3 x + nρ3a1y + mρ3a2x) = δ3xy,

(24)

where ρ1,0 = (ρ1,0
1 , ρ1,0

2 , ρ1,0
3 ), ρ0,1 = (ρ0,1

1 , ρ0,1
2 , ρ0,1

3 ), ρ = (ρ1, ρ2, ρ3), and δ1
1 = (δ1, δ2, δ3).

To solve (24) we consider two cases according to the rank of the matrix M, where

M =


nρ1,0

1 mρ0,1
1 nρ1 mρ1

nρ1,0
2 mρ0,1

2 nρ2 mρ2

nρ1,0
3 mρ0,1

3 nρ3 mρ3

 . (25)

By Remark 1 the rank of M is greater that 1. Further on, α, β, C, αi, βi, Ci, i = 1, 2 denote real constants that

depend on the input data only, more precisely on ρ1,0, ρ0,1, ρ, and δ1
1.

Case 1. rank(M)=3

Since ρ is nonzero vector then some of its coordinates, say ρ1, is nonzero. We eliminate a1y and a2x from the last

two equations of (24) by multiplying the first equation by −ρ2/ρ1 and −ρ3/ρ1 consecutively and adding it to the second

and third equations, respectively. We obtain a system of the following type∣∣∣∣∣∣∣ α1x + β1y = C1xy,

α2x + β2y = C2xy,
(26)

which has a unique solution (x, y).

We solve in an analogous way the remaining three vector equations of (22) with respect to the unknowns d1 − a1

and d2 − a2; c1 − d1 and c2 − d2; c1 − b1 and c2 − b2, respectively. Note that the corresponding three equivalent systems

have same matrix M as system (24) and differ by their right sides only. Hence, each of them has also a unique solution

which can be found straightforwardly. Therefore, if system (22) is consistent then it has a unique solution.

Case 2. rank(M)=2

In this case, (24) has two linearly independent equations. Similar to Case 1, since the coefficients of a1y and a2x

are in ratio n : m, then by multiplying one of these equations by a suitable constant and adding it to the other equation

we exclude a1y and a2x and obtain one equation of the following type

αx + βy = Cxy. (27)
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So we have to solve the following system ∣∣∣∣∣∣∣ xnym = κ1,

αx + βy = Cxy.
(28)

Claim 1. System (28) has at most two solutions in real numbers.

Proof. Omitted.

In the general case where α , 0 and β , 0 from (27) we have y = αx/(Cx − β). Hence, system (28) reduces to the

following polynomial equation of degree n + m

xn(αx)m = κ1(Cx − β)m. (29)

We solve (29) using Mathematica and find all its real solutions. We note that if n + m is odd then the solution is unique,

otherwise (29) may have two solutions.

So far we have found all admissible values for the unknown x = b1 − a1 and y = b2 − a2. We solve in an analogous

way the remaining three vector equations of (22) with respect to the unknowns d1 − a1 and d2 − a2; c1 − d1 and c2 − d2;

c1 − b1 and c2 − b2, respectively. Recall that the four systems have same matrix M and differ by their right sides only.

Further, we select all combinations of quadruplets (x1, x2, x3, x4) and (y1, y2, y3, y4) such that (xi, yi), i = 1, . . . , 4

are solutions to the first four equations of (22), respectively, and in addition satisfy the following conditions

x1 − x2 − x3 + x4 = 0, y1 − y2 − y3 + y4 = 0. (30)

Next we show how to obtain the eight unknowns ai, bi, ci, di, i = 1, 2, from the selected quadruplets (x1, x2, x3, x4)

and (y1, y2, y3, y4), if any. Let (x1, x2, x3, x4) and (y1, y2, y3, y4) be a couple of the selected quadruplets. Since bi, ci, di,

i = 1, 2, can be represented through a1, a2 as

b1 = a1 + x1, b2 = a2 + y1; c1 = a1 + x2 + x3, c2 = a2 + y2 + y3; d1 = a1 + x1, d2 = a2 + y2, (31)

then we have to find a1, a2 only. We replace (xi, yi), i = 1, . . . , 4, and the relations (31) in the four vector equations

of (22) and for each of them we obtain a linear equation of a1 and a2. If the system of these four linear equations is

consistent, i. e. its rank is 2, and in addition the corresponding ai, bi, ci, di, i = 1, 2, satisfy the last four equations of (22)

then (a1, a2, b1, b2, c1, c2, d1, d2) is a solution to (22). Otherwise, the selected couple of quadruplets does not produce a

solution to (22). In this case, if system (22) is consistent it may have at most two solutions and we have shown how to

find both of them. □

The following theorem holds.

Theorem 2. The irreducible TPB surfaces S 1 and S 2 of degrees (n,m) and (n+m, n+m), respectively, have coincidence
if and only if system (22) is consistent and the control polygon of the surface corresponding to any solution to (22)
coincide with the control polygon of S 2 (up to eight different enumeration of the control points).

Proof.⇒ Let S 1 and S 2 have coincidence. Then according to statement (ii) of Proposition 1 there exist eight numbers

ai, bi, ci, di ∈ R, i = 1, 2, defining transformation ψ which are a solution to system (22) and S 2(s, t) = S 1(ψ). The

control polygon of the surface corresponding to the solution (a1, a2, b1, b2, c1, c2, d1, d2) coincides with the control

polygon of S 2.
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⇐ Let system (22) be consistent. Then, according to Lemma 4, it may have at most two solutions. Since there is a

solution such that the control polygon of the surface S corresponding to this solution coincides with the control polygon

of S 2 (up to eight different enumerations of the control polygons) then S and S 2 coincide according to Theorem 1 in

(Vlachkova, 2017). □

We continue by providing an efficient approach for testing S 1 and S 2 for coincidence. First, we find all real

solutions to system (22) using the proposed technique in Lemma 4. Clearly, if system (22) has no real solution then by

Proposition 1 no transformation ψ exists and S 1 and S 2 are different. Otherwise, let (a1, a2, b1, b2, c1, c2, d1, d2) be a

solution to system (22). Following Theorem 2, we need to compute the control polygon of surface S corresponding

to this solution and to check if it coincides with the control polygon of S 2. If these polygons coincide (up to eight

different enumerations of the control points) then S 1 and S 2 have coincidence, otherwise they are different and we

continue by checking the second solution to system (22), if any.

Next we describe how we compute the control points of the corresponding surface S defined in quadrangle □ABCD

with vertices A(a1, b1), B(b1, b2), C(c1, c2), and D(d1, d2) by (13). First, we compute the shared domain G of S and S 2.

If G is the empty set then S 1 and S 2 are disjoint. Otherwise S 1 and S 2 have coincident part and we find it by using

the blossoming principle. In this case, unlike the case where S 1 and S 2 are of same degree, the shared domain can

be a polygon with at most eight vertices, see Fig. 6. If the number of the polygon vertices is even we represent the

coincident part as a union of TPB surfaces. For example, the surface in Fig. 6c. is represented as a union of two TPB

surfaces. If the number of the polygon vertices is odd we represent the coincident part as a union of TPB surfaces and a

triangular Bézier (TB) surface. Similar to TPB surface, we compute the control points of the TB surface using the

blossoming principle. In (Goldman, 2003, p. 331) and (Yang and Zeng, 2008) it is pointed out that for any polynomial

surface path S (u, v) =
∑n

i=0
∑m

j=0 ci juiv j of total degree n +m defined in a triangle △MNP, the Bézier control points qνµ
of this surface patch are

qνµ = b△(M, . . . ,M︸     ︷︷     ︸
ν

,N, . . . ,N︸    ︷︷    ︸
µ

, P, . . . P︸ ︷︷ ︸
n+m−ν−µ

), (32)

where b△((u1, v1), . . . , (un+m, vn+m)) =
∑n

i=0
∑m

j=0 ci jb△i j((u1, v1), . . . , (un+m, vn+m)) is the blossom of S (u, v), and

b△i j((u1, v1), . . . , (un+m, vn+m)) =
∑

{α1,...,αi}⊆K

{β1,...,β j}⊆K\{α1,...,αi}

uα1 . . . uαi vβ1 . . . vβ j(
n+m
i, j

) , (33)

K = {1, . . . , n + m},
(

n+m
i, j

)
=

(n+m)!
i! j!(n+m−i− j)! , is the blossom of the monomial uiv j. In the case where either i = 0, or j = 0

the corresponding sum in (33) equals 1. In the next corollary we present (32) in an equivalent closed form that is more

suitable for evaluations of the control points.

Corollary 2. Bézier control points qνµ, ν = 0, . . . , n, µ = 0, . . . ,m,defined by (32) are

qνµ =
n∑

i=0

m∑
j=0

ci j(
n+m
i, j

)b△i j =

j̄β∑
jβ= j

β

j̄α∑
jα= j

α

īβ∑
iβ=iβ

īα∑
iα=iα

(
ν

iα

)(
µ

iβ

)(
λ

iγ

)(
ν − iα

jα

)(
µ − iβ

jβ

)(
λ − iγ

jγ

)
aiα

1 biβ
1 ciγ

1 a jα
2 b jβ

2 c jγ
2 , (34)
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where
λ = n + m − ν − µ, iγ = i − iα − iβ, jγ = j − jα − jβ,

iα = max(0, i − µ − λ), īα = min(i, ν),

iβ = max(0, i − ν − λ), īβ = min(i − iα, µ),

j
α
= max(0, j − (µ − iβ) − (λ − iγ)), j̄α = min( j, ν − iα),

j
β
= max(0, j − (ν − iα) − (λ − iγ)), j̄β = min( j − jα, µ − iβ).

We outline our procedure for testing S 1 and S 2 for coincidence in algorithmic form in Algorithm 2.

Algorithm 2 Testing two irreducible TPB surfaces of degree (n,m) and (n + m, n + m) for coincidence

Input: Irreducible TPB surfaces S 1 and S 2 of degree (n,m) and (n + m, n + m) given by their control polygons

Output: (i) S 1 and S 2 are different;

(ii) S 1 and S 2 are disjoint;

(iii) S 1 and S 2 have coincident part. Report its control

points.

Step 1. Compute vectors ρ, ρ1,0, ρ0,1, δi, and δi
1, i = 1, . . . , 4.

Step 2. If ρ and δi for any i, i = 1, . . . , 4, are non-collinear

then return (i);

else compute κi such that κiρ = δi, i = 1, . . . , 4.

Step 3. Solve the first four vector equations of (22) according to Case 1 and Case 2 of Lemma 4

and find all admissible couples of quadruplets (x1, x2, x3, x4) and (y1, y2, y3, y4).

Step 4. For any admissible couple of quadruplets

if either x1 − x2 − x3 + x4 , 0, or y1 − y2 − y3 + y4 , 0

then return (i);

else if xn
i ym

i , ki for any i, i = 1, . . . , 4

then return (i);

else substitute (31) in the vector equations of (22) and

obtain a system of four linear equations of a1 and a2.

If this system is inconsistent

then return (i);

else (a1, a2, b1, b2, c1, c2, d1, d2) is a solution to (22).

Step 5. Compute the control polygon of the transformed TPB surface S (s, t) = S 1(ψ(s, t)) using (15) and (34)

and compare it to the control polygon of S 2.

If they coincide (up to eight different enumerations)

then S 1 and S 2 have coincidence;

else return (i).

Step 6. Compute the shared domain G of S and S 2.

If D = ∅

then return (ii);

else divide G into quadrangles and a triangle (if necessary), compute the control points of

the corresponding coincident Bézier surfaces using (15) and (34), and return (iii).
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Remark 3. In the case where the shared domain is not a rectangle, multiple representations of the coincident part as a

union of Bézier surfaces exist.

Remark 4. The case where S 1 is of degree (n,m) and S 2 is of degree either (n, n + m), or (n + m,m) is analogous to

the case where S 2 is of degree (n + m, n + m). The only difference is that (16) becomes (e. g. for degree (n + m,m))

n∑
i=0

m∑
j=0

p1
i jB

n
i (u)Bm

j (v) =
n+m∑
i=0

m∑
j=0

p2
i jB

n+m
i (s)Bm

j (t).

Further, the arguments are the same as in the case where S 1 is of degree (n,m) and S 2 is of degree (n + m, n + m).

3. Examples and results

We have implemented our method using Mathematica package. In this section we present and analyze the results

from our experimental work. In our examples we consider irreducible TPB surfaces.

Example 1. This example illustrates the only case where the direct generalization of the algorithm for curves works,

see (Vlachkova, 2017). More precisely, this is the case where the two TPB surfaces of same degree have overlapping

boundary curves. Here we apply the new method outlined in Algorithm 1. The irreducible surfaces S 1 and S 2 are

of degree (4, 2). Their control points are shown in Table 1. The unique solution of system (9) is (a∗, b∗, c∗, d∗) =

(0, 1/2, 1/6, 3/4). Surfaces S 1 and S 2 are shown in Fig. 2a. and Fig. 2b., respectively. Their coincident part is surface

S 2. Both surfaces and their coincident part with its control polygon are shown in Fig. 3a.

a. b. c.

Figure 2: (illustrates examples 1 and 2) Three irreducible TPB surfaces of degree (4, 2) with control points shown in Table 1. a.
Surface S 1; b. Surface S 2; c. Surface S 3;

Example 2. We test for coincidence the irreducible surfaces S 1 and S 3 of degree (4, 2) with control points shown in

Table 1. We apply Algorithm 1. The unique solution of system (9) is (a∗, b∗, c∗, d∗) = (−1/5, 1/2, 1/6, 3/4). Surfaces

S 1 and S 3 are shown in Fig. 2b. and Fig. 2c., respectively. Their coincident part is S 2 and it is shown with its control

polygon in Fig. 2b.
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a. b.

Figure 3: Testing for coincidence the surfaces shown in Fig. 2. a. Example 1: The coincident part of S 1 and S 2 is S 2; b. Example 2:

The coincident part of S 1 and S 3 is S 2.

Table 1: The control points of irreducible TPB surfaces S 1, S 2, S 3 of degree (4, 2) from examples 1 and 2

S 1 p00 = (0, 0, 0) p01 = (0, 7
10 ,−

1
2 ) p02 = (0, 2,− 4

5 )

p10 = (1, 0, 1) p11 = (1, 1, 0) p12 = (1, 1, 1)

p20 = (2, 0, 3
4 ) p21 = (2, 1, 6

5 ) p22 = (2, 2, 3
4 )

p30 = (3,−1, 3
20 ) p31 = (3, 1, 2

5 ) p32 = (3, 2, 1
5 )

p40 = (4, 0, 1
5 ) p41 = (4, 2, 1

4 ) p42 = (4, 3, 3
4 )

S 2 p00 = ( 2
3 ,−

5
324 ,

6157
12960 ) p01 = ( 2

3 ,
2179
5184 ,

9829
51840 ) p02 = ( 2

3 ,
1073
1296 ,

9689
103680 )

p10 = ( 5
4 ,
−23
432 ,

425
576 ) p11 = ( 5

4 ,
1567
3456 ,

5881
11520 ) p12 = ( 5

4 ,
1447
1728 ,

6673
13824 )

p20 = ( 11
6 ,−

1
6 ,

3907
5760 ) p21 = ( 11

6 ,
107
256 ,

15241
23040 ) p22 = ( 11

6 ,
515
576 ,

30277
46080 )

p30 = ( 29
12 ,−

27
64 ,

1837
3840 ) p31 = ( 29

12 ,
165
512 ,

2837
5120 ) p32 = ( 29

12 ,
703
768 ,

17401
30720 )

p40 = (3,− 27
64 ,

849
2560 ) p41 = (3, 2287

5120 ,
4253

10240 ) p42 = (3, 1433
1280 ,

9489
20480 )

S 3 p00 = ( 2
3 ,−

11941
32400 ,

475469
648000 ) p01 = ( 2

3 ,
247
960 ,

29557
129600 ) p02 = ( 2

3 ,
1073
1296 ,

9689
103680 )

p10 = ( 5
4 ,−

3443
7200 ,

411113
432000 ) p11 = ( 5

4 ,
1727
5760 ,

11267
21600 ) p12 = ( 5

4 ,
1447
1728 ,

6673
13824 )

p20 = ( 11
6 ,−

1877
2880 ,

199789
288000 ) p21 = ( 11

6 ,
2621

11520 ,
849
1280 ) p22 = ( 11

6 ,
515
576 ,

30277
46080 )

p30 = ( 29
12 ,−

9997
9600 ,

26091
64000 ) p31 = ( 29

12 ,
653

7680 ,
659
1200 ) p32 = ( 29

12 ,
703
768 ,

17401
30720 )

p40 = (3,− 36737
32000 ,

33149
128000 ) p41 = (3, 909

5120 ,
10141
25600 ) p42 = (3, 1433

1280 ,
9489

20480 )

15



a.

b. c.

Figure 4: The irreducible TPB surfaces S 1 of degree (2, 3) and S 2 of degree (5, 5) from Example 3. The corresponding control points

are shown in Table 2. a. Surface S 1; b. Surface S 2; c. The coincident part of S 1 and S 2 is S 2.

Table 2: The control points of irreducible TPB surfaces of degree (2, 3) and (5, 5) from Example 3

S 1 p00 = (0, 0, 0) p01 = ( 3
2 , 0,−3) p02 = ( 3

2 , 0, 3) p03 = (3, 0, 0)

p10 = (0, 3
2 ,−3) p11 = ( 4

3 ,
4
3 , 0) p12 = ( 7

6 ,
5
3 ,−

10
3 ) p13 = (3, 1, 1)

p20 = (0, 3
2 , 3) p21 = ( 5

3 ,
7
6 ,

10
3 ) p22 = ( 11

6 ,
11
6 , 0) p23 = (3, 2, 1)

S 2 p00 = (0, 9
8 ,−

3
4 ) p01 = ( 7

16 ,
49
40 ,−

1
5 ) p02 = ( 31

40 ,
13
10 ,

11
16 ) p03 = ( 137

128 ,
879
640 ,

187
160 )

p04 = ( 11
8 ,

29
20 ,

3
2 ) p05 = ( 27

16 ,
25
16 ,

7
4 ) p10 = ( 7

16 ,
37
40 ,−

4
5 ) p11 = ( 157

200 ,
217
200 ,−

27
50 )

p12 = ( 3367
3200 ,

3901
3200 ,

49
800 ) p13 = ( 2073

1600 ,
431
320 ,

13
40 ) p14 = ( 1251

800 ,
1177
800 ,

21
40 ) p15 = ( 37

20 ,
13
8 ,

7
10 )

p20 = ( 3
4 ,

3
4 ,−

81
80 ) p21 = ( 3287

3200 ,
3053
3200 ,−

679
800 ) p22 = ( 199

160 ,
181
160 ,−

163
400 ) p23 = ( 4659

3200 ,
4149
3200 ,−

223
800 )

p24 = ( 171
100 ,

29
20 ,−

59
400 ) p25 = ( 1277

640 ,
1039
640 ,

3
160 ) p30 = ( 637

640 ,
351
640 ,−

189
160 ) p31 = ( 1957

1600 ,
251
320 ,−

197
200 )

p32 = ( 903
640 ,

3173
3200 ,−

99
160 ) p33 = ( 517

320 ,
1887
1600 ,−

14
25 ) p34 = ( 6023

3200 ,
4301
3200 ,−

343
800 ) p35 = ( 2703

320 ,
97
64 ,−

7
40 )

p40 = ( 99
80 ,

23
80 ,−

3
4 ) p41 = ( 1149

800 ,
439
800 ,−

101
200 ) p42 = ( 647

400 ,
311
400 ,−

87
400 ) p43 = ( 5887

3200 ,
125
128 ,−

183
800 )

p44 = ( 859
400 ,

91
80 ,−

7
100 ) p45 = ( 101

40 ,
103
80 ,

7
20 ) p50 = ( 3

2 , 0, 0) p51 = ( 27
16 ,

23
80 ,

3
20 )

p52 = ( 241
128 ,

343
640 ,

7
32 ) p53 = ( 687

320 ,
237
320 ,

1
40 ) p54 = ( 101

40 ,
71
80 ,

3
20 ) p55 = (3, 1, 3

4 )
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Example 3. We consider the irreducible surfaces S 1 and S 2 of degree (2, 3) and (5, 5), respectively. Their control

points are shown in Table 2. This example matches Case 1 of Lemma 4, and hence system (22) has a unique solution

(a1, a2, b1, b2, c1, c2, d1, d2)=(0, 1/2, 1/2, 0, 1, 1/2, 1/2, 1). Surfaces S 1 and S 3 are shown in Fig. 4a. and Fig. 4b.,
respectively. They have coincidence and their coincident part is surface S 2, see Fig. 4c.

Example 4. We test for coincidence the irreducible surfaces S 1 and S 2 of degree (2, 2) and (4, 4), respectively. Their

control points are shown in Table 3. The corresponding vectors ρ, ρ1,0, ρ0,1 are coplanar and hence, matrix M, defined

by (25) has rank 2. We apply Algorithm 2 and obtain the following two solutions (a1, a2, b1, b2, c1, c2, d1, d2) to system

(23),
(−1, 1/3, 4/3, 1/2, 3/4, 3/2,−1/4, 13/12),

(34/71, 271/183, 75/284,−181/549,−291/284, 15/122,−277/568, 329/366).

The first of these solutions generates TPB surface whose control polygon coincides with the control polygon of S 2.

Hence, S 1 and S 2 have coincidence. Surfaces S 1, S 2, and their coincident part S are shown in Fig. 5 The control points

of S are shown in Table 3.

a. b. c.

Figure 5: The irreducible TPB surfaces S 1 of degree (2, 2) and S 2 of degree (4, 4) and their coincident part S from Example 4. The

corresponding control points are shown in Table 3. a. Surface S 1; b. Surface S 2; c. Surfaces S 1, S 2, and S which is shown with its

control polygon.

Example 5. In our final example we test for coincidence the irreducible surfaces S 1 and S 2 of degree (2, 4) and (6, 6),

respectively. Their control points are shown in Table 4. Surfaces S 1 and S 2 are shown in Fig. 6a. and Fig. 6b.. The

corresponding system (22) has a unique solution (a1, a2, b1, b2, c1, c2, d1, d2)=(1/2,−1/2, 0, 1/3, 1/2, 7/6,−1, 2/3). The

shared domain of S 1 and S 2 is a hexagon. We represent the coincident part S as a union of two TPB surfaces and

compute their control points using blossoming, see Fig 6c.

4. Conclusions and future work

In this paper we considered and solved the problem for testing TPB surfaces for coincidence. We presented two

different methods and develop two algorithms based on these methods that test two irreducible TPB surfaces for

17



Table 3: The control points of irreducible TPB surfaces of degree (2, 2) and (4, 4) from Example 4

S 1 p00 = (0, 0, 0) p01 = (1, 0, 1) p02 = (2, 0, 3
4 )

p10 = (0, 7
10 ,−

1
2 ) p11 = (1, 1, 0) p12 = (2, 1, 6

5 )

p20 = (0, 2,− 4
5 ) p21 = (1, 1, 1) p22 = (2, 2, 3

4 )

S 2 p00 = ( 2
3 ,−

86
45 ,

95
36 ) p01 = ( 25

24 ,−
35
18 ,

409
180 ) p02 = ( 17

12 ,−
121
90 ,

5951
5760 ) p03 = ( 43

24 ,−
10109
11520 ,

8609
23040 )

p04 = ( 13
6 ,−

1123
2304 ,

5957
23040 ) p10 = ( 3

4 ,−
85

108 ,
2027
2160 ) p11 = ( 37

32 ,−
93
160 ,

9631
11520 ) p12 = ( 25

16 ,−
5743

17280 ,
9151

17280 )

p13 = ( 63
32 ,−

23423
138240 ), 116701

276480 ) p14 = ( 19
8 ,

53
7680 ,

23203
46080 ) p20 = ( 5

6 ,
1051
2430 ,−

1273
38880 ) p21 = ( 61

48 ,
87029

155520 ,
89543
311040 )

p22 = ( 41
24 ,

427381
933120 ,

1410439
1866240 ) p23 = ( 103

48 ,
3137
7680 ,

5157
5120 ) p24 = ( 31

12 ,
1151
2560 ,

154297
138240 ) p30 = ( 11

12 ,
317
240 ,

101
2160 )

p31 = ( 133
96 ,

5191
4320 ,

22847
34560 ) p32 = ( 89

48 ,
108571
103680 ,

18113
13824 ) p33 = ( 223

96 ,
5179
5120 ,

150163
92160 ) p34 = ( 67

24 ,
259
256 ,

12917
7680 )

p40 = (1, 83
45 ,

63
80 ) p41 = ( 3

2 ,
947
576 ,

5461
5760 ) p42 = (2, 12431

5760 ,
18029
34560 ) p43 = ( 5

2 ,
4631
1920 ,

2587
3840 )

p44 = (3, 741
320 ,

621
640 )

S p00 = ( 17
21 , 0,

4267
7056 ) p01 = ( 31

28 , 0,
10609
14112 ) p02 = ( 59

42 , 0,
34927
42336 ) p03 = ( 143

84 , 0,
277
336 )

p04 = (2, 0, 3
4 ) p10 = ( 71

84 ,
1051
2352 ,

11633
35280 ) p11 = ( 127

112 ,
2227
4704 ,

71797
141120 ) p12 = ( 239

168 ,
6931

14112 ,
143093
211680 )

p13 = ( 575
336 ,

1
2 ,

5587
6720 ) p14 = (2, 1

2 ,
39
40 ) p20 = ( 37

42 ,
4537
5292 ,

9115
42336 ) p21 = ( 65

56 ,
1163
1323 ,

182957
423360 )

p22 = ( 121
84 ,

28897
31752 ,

817367
1270080 ) p23 = ( 289

168 ,
479
504 ,

8563
10080 ) p24 = (2, 1, 21

20 ) p30 = ( 11
12 ,

109
90 ,

103
392 )

p31 = ( 19
16 ,

6127
5040 ,

4673
9408 ) p32 = ( 35

24 ,
4783
3780 ,

24463
35280 ) p33 = ( 83

48 ,
457
336 ,

5731
6720 ) p34 = (2, 3

2 ,
39
40 )

p40 = ( 20
21 ,

662
441 ,

991
2205 ) p41 = ( 17

14 ,
1313
882 ,

5867
8820 ) p42 = ( 31

21 ,
2074
1323 ,

41659
52920 ) p43 = ( 73

42 ,
73
42 ,

137
168 )

p44 = (2, 2, 3
4 )

a. b. c.

Figure 6: a. Irreducible TPB surfaces S 1 of degree (2, 4) and S 2 of degree (6, 6) from Example 5. The control points of S 1 and S 2 are

shown in Table 3. a. S 1; b. S 1 and S 2 with its control polygon; c. The coincident part S is presented as two TPB surfaces.

18



Table 4: The control points of irreducible TPB surfaces of degree (2, 4) and (6, 6) from Example 5

S 1 p00 = (0, 0, 0) p01 = (0, 7
10 ,−

1
2 ) p02 = (0, 2,− 4

5 ) p03 = (0, 23
10 ,−

4
5 )

p04 = (0, 3, 1) p10 = (1, 0, 1) p11 = (1, 1, 0) p12 = (1, 1, 1)

p13 = (1, 6
5 ,

6
5 ) p14 = (1, 3

2 ,
4
3 ) p20 = (2, 0, 3

4 ) p21 = (2, 1, 6
5 )

p22 = (2, 2, 3
4 ) p23 = (2, 3, 1) p24 = (2, 4, 3

2 )

S 2 p00 = (1,− 79
32 ,

2717
768 ) p01 = ( 7

6 ,−
4151
2880 ,

19667
17280 ) p02 = ( 4

3 ,−
277

1800 ,
4481
14400 ) p03 = ( 3

2 ,
1361
3600 ,

44467
64800 )

p04 = ( 5
3 ,

5447
6075 ,

255913
291600 ) p05 = ( 11

6 ,
1991
1215 ,

26399
29160 ) p06 = (2, 8

3 ,
1687
1620 ) p10 = ( 5

6 ,−
3973
2880 ,

4081
1728 )

p11 = (1,− 3143
4320 ,

191717
207360 ) p12 = ( 7

6 ,
2489
8640 ,

250213
777600 ) p13 = ( 4

3 ,
9049
12150 ,

1379747
2332800 ) p14 = ( 3

2 ,
175433
145800 ,

668537
874800 )

p15 = ( 5
3 ,

13499
7290 ,

307297
349920 ) p16 = ( 11

6 ,
3341
1215 ,

32099
29160 ) p20 = ( 2

3 ,−
2269
3600 ,

22961
21600 ) p21 = ( 5

6 ,−
1883
14400 ,

157141
388800 )

p22 = (1, 26249
38880 ,

2976581
23328000 ) p23 = ( 7

6 ,
2027447
1944000 ,

1061101
2332800 ) p24 = ( 4

3 ,
520417
364500 ,

6107587
8748000 ) p25 = ( 3

2 ,
96541
48600 ,

264529
291600 )

p26 = ( 5
3 ,

5609
2025 ,

115331
97200 ) p30 = ( 1

2 ,−
203
900 ,

14257
32400 ) p31 = ( 2

3 ,
55237
194400 ,

96383
583200 ) p32 = ( 5

6 ,
1863737
1944000 ,

17473
233280 )

p33 = (1, 272407
216000 ,

4416611
10368000 ) p34 = ( 7

6 ,
3084847
1944000 ,

1652957
2332800 ) p35 = ( 4

3 ,
33577
16200 ,

27907
28800 ) p36 = ( 3

2 ,
89399
32400 ,

246491
194400 )

p40 = ( 1
3 ,

1819
12150 ,

18443
145800 ) p41 = ( 1

2 ,
12494
18225 ,−

1339
437400 ) p42 = ( 2

3 ,
904483
729000 ,

35749
4374000 ) p43 = ( 5

6 ,
318233
216000 ,

29029
77760 )

p44 = (1, 1014119
583200 ,

48464383
69984000 ) p45 = ( 7

6 ,
100631
46656 ,

6996317
6998400 ) p46 = ( 4

3 ,
133901
48600 ,

1543601
1166400 ) p50 = ( 1

6 ,
2891
4860 ,−

1411
7290 )

p51 = ( 1
3 ,

1613
1458 ,−

42221
174960 ) p52 = ( 1

2 ,
37217
24300 ,−

18343
145800 ) p53 = ( 2

3 ,
328277
194400 ,

169903
583200 ) p54 = ( 5

6 ,
2213237
1166400 ,

2383159
3499200 )

p55 = (1, 87773
38880 ,

1983853
1866240 ) p56 = ( 7

6 ,
8009
2880 ,

224443
155520 ) p60 = (0, 17

15 ,−
203
405 ) p61 = (0, 17

15 ,−
203
405 )

p62 = ( 1
3 ,

22679
12150 ,−

24437
145800 ) p63 = ( 1

2 ,
31721
16200 ,

34481
97200 ) p64 = ( 2

3 ,
206657
97200 ,

499307
583200 ) p65 = ( 5

6 ,
190249
77760 ,

62737
46656 )

p66 = (1, 7553
2592 ,

112733
62208 )

19



coincidence and report their coincident part if it is present. The first algorithm works for surfaces of same degree (m, n)

and the second one - for surfaces of degree (m, n) and (m+ n,m+ n), respectively. We presented numerical experiments

and gave examples to visualize and support the obtained results. Our next task for future research is to develop and

implement an algorithm for testing TB surfaces for coincidence.
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167–169. doi:https://doi.org/10.1016/j.cag.2015.10.007.

Chen, X.D., W. Ma, W., Deng, C., 2013. Conditions for the coincidence of two quartic Bézier curves. Appl. Math. and Comput. 225, 731–736.
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