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Abstract. A jump inversion theorem for the degree spectra is presented.
For a structure 20 which degree spectrum is a subset of the jump spectrum
of a structure B, a structure € is constructed as a Marker’s extension of
2 such that the jump spectrum of € is exactly the degree spectrum of A
and the degree spectrum of € is a subset of the degree spectrum of %B.
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1 Introduction

The notion of a degree spectrum of a countable structure is introduced by Richter
[9] as the set of all Turing degrees generated by all one-to-one enumerations of
the structure. It is studied by Ash, Downey, Jockush and Knight [1,4,7]. It is
a kind of a measure of complexity of the structure. Soskov [11] represented the
notion of a degree spectrum of a structure from the point of view of enumeration
degrees.

Let 20 be a countable structure. The degree spectrum of the structure 2 is
the set DS(2l) of all enumeration degrees generated by all enumerations of 2.
The main benefit of considering not only one-to-one but all enumerations of the
structure is that the degree spectrum is always closed upwards with respect to
total degrees [11], i.e. if a € DS(2() then each total enumeration degree b greater
than a is in DS(2(). If a is the least element of DS(2() then a is called the degree
of 2.

The jump spectrum of 2 is the set DS;(2A) of all enumeration jumps of the
elements of DS(2). If a is the least element of DS;(2) then a is called the first
Jjump degree of .

For any countable structures 2 and B define the relation

B <A < DS(A) CDS(*B) .
Andlet A =B if A <B and B < 2.
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Let B’ < 2 if DS(2A) C DS;1(B) and A < B’ if DS;(B) C DS(A). We say
that A =B’ if A < B’ and B’ < 2.

Soskov [12] showed that each jump spectrum is a degree spectrum of a struc-
ture. So, for every structure 9B there is a structure 2 such that B’ = %, i.e.
DS(2) = DS;(%B).

In this paper we shall show that if 20 and 9B are structures and 8’ < 2( then
there exists a structure € such that B < € and ¢’ = .

The structure € we shall construct as a Marker’s extension of 2. In [6]
two model-theoretic extension operators were introduced based on the ideas
of Marker’s construction from [8]. These extensions are called Marker’s 3 and
V-extensions and are studied in [5,6]. In our construction we will use also the
relativized representation lemma for X9 sets proved by Goncharov and Khous-
sainov [6].

As an application we shall show that if a structure 2 has a degree and B’ < 2
for some structure B then there is a torsion free abelian group ® of rank 1 such
that 8 < &, & =2 and & has a degree as well.

As a corollary of the main result we receive an analogue of the jump inversion
theorem for the joint spectra of finitely many structures considered in [13,15].
Let 2,24, ..., %2, be countable structures. The joint spectrum of A, A4, ..., A, is
the set of all enumeration degrees a € DS(2l) such that a’ € DS(2L;),...,a™ €
DS(2,,).

We will prove that if there is a structure 98 such that B’ < 2 then there
exists a structure € > 9B such that the joint spectrum of A, 2, ... 2, is exactly
the jump joint spectrum of €, A, Ay, ... A,.

Next application is a similar result for another relativized version of the
notion of a degree spectrum of a structure with respect to finitely many abstract
structures studied in [14]. It is shown [13-15] that both generalized notions of
degree spectra have all general properties of the degree spectra of a structure
such as minimal pair theorem and the existence of quasi-minimal degrees.

The relative spectrum of the structure 2 with respect to 244, ..., U, is the set
of all enumeration degrees generated by those enumerations of 2( which “assume”
that each 2; is relatively 2, on A for i = 1,...k. We will show that if there is
a structure B such that B’ < 2 then there exists a structure € > B such that
the relative spectrum of 2 with respect to 2y, ...,%, coincide with the jump
relative spectrum of € with respect to A, Ay, ..., 2,.

2 Preliminaries

2.1 Enumeration Degrees

For any sets of natural numbers A and B the set A is enumeration reducible to
B (A <. B) if there is an enumeration operator I, such that A = I,(B). In
other words:

A<, B <= (F2)(Va)(zr € A < (Fv)({v,z) e W, & D, C B))



where D, is the finite set with the canonical code v and {W,}.<. is a Godel
enumeration of the c.e. sets.

The relation <, is reflexive and transitive and induces an equivalence relation
=, on all sets of natural numbers. The respective equivalence classes are called
enumeration degrees.

By d.(A) we denote the enumeration degree of the set A and by D, the set
of all enumeration degrees. Let AT = A@® (N\A). The set A is total if A =, A*.
An enumeration degree a is total if a contains the e-degree of a total set. The
jump operation “” denotes here the enumeration jump introduced by Cooper
[3].

Definition 1. Let La = {{(z,2) |z € I,(A)}.

The e-jump A’ of A is the set (La)T.

In fact, the set A is X9 relatively the set B (A € X9(B)) if and only if
A <. (BT)". This follows from the observation that K}; =, (B*)" where Kp =
{{e,a) | = € WD},

Ac X)(B) <= Aisce. in Kp < A< K} < A<.(BT) .

So, if the set B is total then B =, B* and hence A € X9(B) <= A<, B’

2.2 Degree Spectra

Let 2 = (4;Ry,...,Rs) be a countable structure such that = is among the
predicates Ry, ..., R;.

An enumeration f of 2 is a total mapping of N onto A.

For B C A® define f~1(B) = {{x1,...,2.) | (f(x1),..., f(x,)) € B}.

For each predicate R of 2 of arity = the pullback R/ of R is defined by
Rf(x1,...,2,) <= R(f(x1),...,f(z,)). Let

Ty, 20, 0) | R (21, .., 2,)}U
Ty Y | 2R (2,00 2,) )
Denote by f~1(A) = f~Y(R) @ ... ® f1(Rs).
Definition 2. The degree spectrum of 2 is the set
DS(2A) = {de(f~*(A)) | f is an enumeration of A} .

Our definition of degree spectra is equivalent to Soskov’s from [11]. The structure
2l is total if the predicates Ry, ..., Ry are totally defined on A. We consider here
only total structures. It is easy to see that if the structure 2 is total then all
elements of the degree spectra of 2l are total enumeration degrees. Let ¢« be the
Roger’s embedding of the Turing degrees into the enumeration degrees. Then

DS(A) = {¢(dr(f~H(2A))) | f is an enumeration of A} .

Richter [9] and Knight [7] defined the degree spectra by taking into account
only the bijective enumerations, while we allow as in [11] arbitrary surjective
enumerations.



Proposition 3. [11] Let f be an arbitrary enumeration of A. There exists a
bijective enumeration g of A such that g~ () <. f~H(2L).

The above proposition shows that almost all of the known results about Turing
degree spectra remain valid also for enumeration degree spectra.

Proposition 4. [11] Let g be an enumeration of A. Suppose that F is a total set
and g~* () <. F. There exists an enumeration f of A such that f~*(A) =, F.

From the last proposition it follows that the degree spectrumDS(2() is closed
upwards with respect to the totalenumeration degrees.

The jump spectrum of A is the set DS;(A) = {a’ | a € DS(A)}.

Since by [12] every jump spectrum is a degree spectrum of a structure it
follows that DS;(2l) is also closed upwards with respect to total enumeration
degrees. One can see this fact directly using the jump inversion theorem from
[10].

3 Marker’s Extensions

Marker [8] presented a method of constructing for any n > 1 a Ng-categorical
almost strongly minimal theory which is not X, -axiomatizable. Further Gon-
charov and Khoussainov [6] adapted the construction to the general case in
order to find for any n > 1 examples of Nj-categorical computable models as
well as Ng-categorical computable models whose theories are Turing equivalent
to (™). We shall give the definition of Marker’s 3 and V extensions following [6].

Let 2 = (A; Ry,..., Rs,=) be a countable total structure and for each i the
predicate R; has arity r;.

Marker’s 3-extension of R;, denoted by R?, is defined as follows. Consider a
set X; with new elements such that X; = {QL“’éalW’ar_> | Ri(a1,...,ar,)}. The set
X; we shall call a 3-fellow for R;. We suppose that all sets A, Xq,..., X, are
pairwise disjoint.

The predicate R7 is a predicate of arity r;+1 such that R (a1, ..., a,,, z) <=
a,...,ar, EA&kreX; &x=2af ( and so R;(ay,...,ar,)).

(a1,...,ar;)
From the definition of Rf' it follows that if a1,...,a,, € A then
(3.’17 S Xi)R?(al, ey ari,x) <~ Ri<a1, - aam>-

Definition 5. The structure 27 is defined as follows:

(AulJXi,RY,... R}, Xy,..., X,, =),

=1

where each Rf' is a Marker’s F-extension of R; with 3-fellow X, and X; is a
unary predicate true over the elements of the 3-fellow for R;.

Marker’s V-extension of R;, denoted by RY, is defined as follows. Consider an
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infinite set Y; of new elements such that Y; = {yzal oy | TRiar, s ar) )
The set Y; we shall call a V-fellow for R;. '



The predicate RY is a predicate of arity r; + 1 such that
1. If RY(a1,...,a,,,y) then ay,...,a,, € Aand y € Y;; _
2. Ifay,...,a,, € A& y €Y, then =R (ay,...,a.,y) <= y= Yiar,an)-

Note that from the definition of RY it follows that if ay,...,a,, € A then
(Vy € Y;)RY (a1, ...,ar,,y) < Ri(ai,...,a,).

Definition 6. The structure 2 is defined as follows:
(AU U E?RY7"'7RZI7Y17"'7}757:>7
i=1

where each Riv is a Marker’s V-extension of R; with V-fellow Y; and Y; is a unary
predicate true over the elements of the V-fellow for R;. The V-fellows of the
distinct predicates and the set A are pairwise disjoint.

Definition 7. The structure 2177 is obtained from 2 as (21%)", i.e.
AulxiuJY,RY, ... RF Xy, XY, Y =),
i=1 i=1

where X; is a J-fellow for R; and Y; is a V-fellow for R?.

The structure A77 has the following properties:

Proposition 8. Let aq,...,a,, € A. Then:
1. Ri(ay,...,a,,) <= (Fr € X;)(Vy € ;)R (a1, ..., a,,,7,y);

2. For each y € Y; there exists a unique sequence as,...,a,, € A andx € X;
such that =R (ay, ..., am, 2, y);
3. For each x € X; there exists a unique sequence ai,...,a,, € A such that

for all y € Y; it holds that R (ay,. .., a,,,z,Y).

Proof. 1.(=) Let R;(a1,...,a,,). Then there exists € X; such that
R3(ai,...,a,,,z). From the definition of Y; it follows that for any y € Y;
Riav(ala s '7am7xay)'

(<) Let x € X; and R?¥(ay,...,a,,,x,y) for all y € Y;. Then
Ri(ay,...,a,,,x) and hence R;(a1,...,a,,).

2. Follows from the definition of Y;.

3. Let z € X thenm:xi ) and R;(aq,...,a,,). Hence
R3(ai,...,a,,,z). Then for any y € Y; it is not possible that
—R¥¥(a1,...,a.,,2,9).

A yeeny ari

4 Join of Two Structures

Let A = (A; Ry,...,Rs,=) and B = (B; P, ..., P,, =) be countable structures in
the language £; and §2 respectively. Suppf)se that £1NLy = {=} and ANB = {.
Let £ =L ULy U{A, B}, where A and B are unary predicates.



Definition 9. The join of the structures 2 and B is the structure 2 & B =
(AUB;Ry,...,Rs,Py,...,P;, A, B,=) in the language £, where

(a) the predicate A is true only over the elements of A and similarly B is
true only over the elements of B;

(b) the predicate R; is defined on the elements of A as in the structure 2
and false on all elements not in A and the predicate P; is defined similarly.

Lemma 10. Let A and B be countable total structures and € = A ® B. Then
A<¢C and B < C.

Proof. We have to prove that DS(€) C DS(2() and DS(€) C DS(B).

Let f be an enumeration of €. Fix zg € f~!(A). Define

m(0) = 305 mli +1) = iz € F(A)[(Vh < D) ((m(k), 2) & F(=)].

Set h = Az.f(m(z)). Note that m <. f~'(€) since
z€ fHA) = (2,0) € f~(A).

Define h™Y(R;) = {{z1,..., 2, €) | (m(z1),...,m(x,
h=H(=) = {{z,y,e) | (m(z), m(y),e) € f71(=)}.

Then h is an enumeration of 2 and h=1(2) <. f~1(€). Since € is a total
structure and DS(2) is closed upwards then d.(f~1(€)) € DS(2L).

),e) € f7Y(R;)}. And

5 Representation of X9(D) Sets

Let D C N. A set M C Nis in X9(D) if there exists a computable in D predicate
Q@ such that
ne€M < JavbQ(n,a,b) .

Definition 11. [6] If M € X§(D) then M is one-to-one representable if there
is a computable in D predicate @) with the following properties:

1. n € M <= there exists a unique a such that VbQ(n, a,b);
2. for every b there is a unique pair (n,a) such that -Q(n, a,b);
3. for every a there exists a unique n such that VbQ(n,a,b).

The predicate @ from the above definition is called an one-to-one representation
of M. Goncharov and Khoussainov [6] proved the following lemma:

Lemma 12. [6] If M is a coinfinite X9(D) subset of N which has an infinite
computable in D subset S such that M \ S is infinite then M has an one-to-one
representation.

Remark 13. We will use this lemma in the next section in our proof of Theo-
rem 14. In order to satisfy the conditions of the lemma we need the following
technical explanations.

Let 2l = (A; Ry, ..., Rs). Suppose that each R; is true over infinitely many
elements and it is false over infinitely many elements also.

We can add to the domain A of the structure 20 two new elements say “T”
and “F”. Define the predicate R} as follows:



1. Let r; > 2. Then R} (aq,...,a,,) is defined as R;(ay,...,a,,) if F and T are
not among the arguments {ay,...,a,,}. f T € {a1...a,,} then R!(a1,...,a,)
and if F €{ay,...,ar,} and T & {aq,...,a,,} then =R} (ay,...,ar,).

2. Let the predicate R; be unary. Then we define the binary predicate R as
follows: Rf(a,a) <= Ri(a)ifa & {T,F}. I T € {a,b} then Rf(a,b) is true
and if F € {a,b} and T ¢ {a, b} then —R}(a,b).

Let A* be the obtained structure with domain AU {T, F'} and predicates R}
for i = 1,...,s. Then one can easily see using Proposition 4 and Proposition 3
that DS(2() = DS(2*). Indeed, note that if an enumeration of the structure
2 is bijective then the pullback of the equality is computable. Let f be an
enumeration of 2 and d.(f~1(2)) € DS(2). By Proposition 3 there is a bijective
enumeration g of 2 such that g=1(A) <. f~1(2). Then there is a bijective
enumeration h of A* such that h=1(A*) =, g~ 1(A). Moreover in h~1(2*) each
h=1(R}) is infinite and posses a computable subset S such that h=1(R}) \ S is
infinite. The set S is formed by all tuples containing the number h=1(T). Since
h=H(2A*) <. f71(2) and 2 is total then d.(f~1(2A)) € DS(2A*) by Proposition 4.
The proof of DS(2*) C DS(2) is similar.

6 Jump Inversion Theorem for the Degree Spectra

Theorem 14. Let A and B be total structures such that B’ < A. Then there
exists a structure € such that B < € and ¢ = 2.

Proof (Sketch). Without loss of generality we may suppose that the structures
B and 27 are disjoint. Let € = B @A77, By Lemma 10 8 < €. We shall prove
that € =2, i.e. DS(A) = DS ().

1. = [DS1(€) C DS(A)].

Let ¢ € DS;(€) and let h be an enumeration of € such that ¢ = d.(h=1(€))".
We shall construct an enumeration f of 2 such that f=1(2) <. h=1(€)’. Since
h=1(€)" is a total set, by Proposition 4 it will follow that ¢ € DS(2L).

Fix zg € h™1(A). Define

m(0) = xo; m(i + 1) = pz € h=H(A)[(Vk < i)((m(k), z) € b~ (=))].

Set f = Aa.h(m(a)). We have m <, h~ 1 (A7) since z € h~1(A) =
(Vi < 8)((z,1) € = HX;) N h=1(Y;) N h=1(B)). Define:

WY (RY) &
Yy}

Rl(ay,....ar) = G2)(Vy)((a1,...,an,2,9,0) € B} &
<£L’,0> c hil(Xl) & <y70> c hfl(yvl)) .

Then it is clear that f is an enumeration of 2 and f~1(A) € X9(h~1(A7Y)).
Then f~1(2A) <. h~1(A7Y)" <, h~(€)’ by the monotonicity of the e-jump.
2. = [DS(A) C DS4(9)].



Let a € DS(21) and f be an enumeration of 2 such that a = d.(f~1(21)).
By Proposition 3 there is a bijective enumeration f of 2 such that f=1(2A) <,
f~H(A). We are going to construct an enumeration h of € such that h=(€)" <,
f71(21). Then since 2 is a total structure and the DS;(€) is upwards closed with
respect to total degrees then a € DS;(€).

Since B’ < 2, i.e. DS(A) C DS;(*B) there is an enumeration g of B such that
1) =, (g7 1(B))". Denote by D = g~!(8) and note that D is a total set
since the structure B is total. So for each predicate R; of the structure 2l we have
that f~1(R;) <. D’. Then f~}(R;) € X§(D). Denote by M; = f~*(R;). If the
positive part or the negative part of f~1(R;) is finite then f~!(R;) is computable.
Otherwise by Remark 13 we can suppose that M; satisfies all conditions from
Lemma 12. Then by Lemma 12 for each ¢ < s there exists a computable in D
predicate Q; which is an one-to-one representation of M;. Then

— i € M; <= there exists a unique a such that (V0)Q; (7, a,b);

— for every b let r(b) = (n2, a) be the unique pair such that =Q; (7, a, b);

— for every a let [(a) = 7 be the unique 7 such that VbQ; (7, a,b).

Denote by Ny = {(1,n) | n € N}, No = {(2,4,a) | ¢ < s & a € N} and
N3 ={(3,i,b) | i < s & be N}. Let Ng =N\ (Uf:1 N;). Consider a computable
bijection m of Ny onto N and denote by (0,n) = m(n).

The definition of the enumeration h of € is the following:

B((0,n)) = g(n);

(L n) = F(n):

h({(2,i,a)) = xzf(n1)7___7f(n”)), ifli(a) = (n1,...,np);

h((3,i,b)) = yzf(m),...,f(nm),h(<2,i,a>)>’ if r(b) = ((n1,...,n.,),a).

Here X; = {xZ(ah__.’%) | Ri(ai,...,ar,)} is the 3-fellow for R; and

Y; = {yém,m,av-i,m) | -R7(ay,...,a,,,r)} is the V-fellow for R7. Define

R?V’h(<]—anl>a AR <1a nm>, <27i,a>a <3,ia b)) — Qi(<n17 et nri>’a’ b) :
Let h=1(A) = Ny, h~1(X;) = Ny, h71(Y;) = Ns.
It follows that

Ri(f(m1)... f(ny,))
)Qi((n1,...,n.),a,b)
DR ((1,ma), ..., (1,ny,), (2,4, a), (3,,b))

From the definition of h it follows that A is an enumeration of 23¥. It is clear
that h=1 (A7) <, D.

Let B = (B; P1,...,P;,=) then for each j <t

h=H(P;) = {((0,n1),...,(0,np,),€) | (n1,...,np,,e) € g~ (P;)} and
h=1(B) = Ny. It is obvious that h=}(B) <. D.

The pullback of the equality is defined naturally over the elements which are
pullbacks of elements of A as f~!(=) and over the elements which are pullbacks
of elements of B as g~!(=). Over the elements which are the pullbacks of X; and



Y; is a normal equality, since the special form of the Marker’s 3 and V extensions.
So, h™(=) <. D since f~!(=) is computable.

Thus & is an enumeration of ¢ = B @ A37. Moreover h~1(¢) <, D. Hence
=€) <. f7HRA) as D' =, f~1(A).

7 Some Applications

The degree of the structure 2, if it exists, is the least element of the degree spec-
trum of 2(. The results of Richter [9] show that there exist structures, e.g. linear
orders, which do not have degrees. Richter proved that if the degree spectrum
of a linear order has a degree then it is 0.

If the jump spectrum DS;(2() has a least element then it is called the first
Jjump degree of 2. For example Knight [7] shows that if a linear order has a first
jump degree then it is 0’. There are examples of structures [1, 4] which have a
first jump degree but do not posses a degree. In [2,11] it is shown that every
torsion free abelian group & of rank 1, i.e. & is a subgroup of the group of the
rational numbers @, has a first jump degree.

Let & be a nontrivial subgroup of the additive group of the rational numbers.
Fix a # 0 an element of &. For every prime number p set

h(a) = k if k is the greatest number such that p*|a in &,
P = oo if p¥|a in & for all k.

Let po,p1, ... be the standard enumeration of the prime numbers and set

5a(®) = {(i,4) : J < hyp,(a)}-

If a and b are non-zero elements of & then S,(®) =. Sp(B). Let dp =
de(Sq(®)), where a is some non-zero element of &.

In [11] it is proved that for every total enumeration degree d, there exists a
bijective enumeration f of ® such that f~1(®) € d if and only if dg < d. Since
for every enumeration f we have that f~1(®) is a total set and de < d.(f~1(®)),
DS(®) = {a:ais total & a > de}.

It turns out that for any total structures 2l and € such that €’ = 2 if € has
a degree a then a’ is the first jump degree of € and clearly a’ is the degree of 2
since DS(2) = DS; ().

Proposition 15. Let 2 and B be total structures such that B’ < 2A. Then if
the structure 2 has a degree then there exists a torsion free abelian group & of
rank 1 which has a degree such that B X & and &' = 2.

Proof. Let ¢ =B @ A7Y be the structure constructed in Theorem 14 such that
B < ¢ and ¢ =2

Suppose now that a is the degree of 2(. Then there is a total degree ¢ € DS(€)
such that ¢/ = a. Then by [11] since c is a total degree there exists a subgroup
® of @ such that dg = c. So, DS(8) = {e : eis total and e > dg}. And
hence DS;(®) = {€’ : e is total & € > a}. It is clear that DS;(®) C DS(21). If



d € DS(2) then d > a. Since the structure 2 is total d is total. By the jump
inversion theorem from [10] there is a total enumeration degree e such that ' = d
and e > c. Then € € DS;(®) and thus d € DS;(&). Hence DS(A) = DS;(&).
Clearly DS(®) C DS(B) since de = ¢ € DS(&) C DS(*B).

The next application concerns a generalization of the notion of degree spectra
considered in [13,15]. Let 2,2, ...,2(, be countable structures.

Definition 16. The joint spectrum of A, Ay, ..., 2, is the set
DS(2A,2Ay,...,A,) ={a]aecDS),a" € DS(2A),...,a™ e DS(A,)} .
The next proposition follows directly from Theorem 14.

Proposition 17. Let 2 and B be total structures such that B’ < A. Then there
exists a structure € = B such that DS(A, Ay, ..., 2A,) =DS1(€, 2, Ay, ..., 2,).

We can show a similar result for the relativized spectra from [14].

Definition 18. An enumeration f of 2 is n-acceptable with respect to the struc-
tures Ay, ..., Wy, if F7HA) <o (F7HA)D for each i < n.

The relative spectrum of the structure 2l with respect to 2q,..., 2, is the
set

RS(2A, 21, ...,2,) = {de(f~1(2)) | f is a n-acceptable enumeration of A} .

Proposition 19. Let 2 and B be total structures such that B’ < 2. Then there
exists a structure € = B such that RS(A, Aq,...,2,) = RS1 (€, A, 2Aq,...,2,).

Proof (sketch). Let ¢ = BHAY. Suppose that h is a (n+1)-acceptable enumer-
ation of € and d.(h71(€))" € RS1(€, 2,2y, ...,2,). Let F = h~1(€). Consider
a computable in F function m with range h=(A). Let s # t € A. Define an
enumeration of A:

h(m(z/2)) if = is even,
fl@)~<s ifx=2z+4+1and z € F’,
t ifr=224+1and z ¢ F'.

Then f~'(A) =, F" and f~1(A;) <o A1) @ F' <, b {(@)HD g F' =,
FOHD =, f=12A)@ for every i < n. So, d.(h™1(€))" € RS(A, Ay, ..., 2Ay).

Let f be a n-acceptable enumeration of 2 such that
de(f71(2A)) € RS(™A, %A1, ...,2A,). Then as in Theorem 14 one can construct an
enumeration h of € such that A=1(€) =, f~1(2A) and additionally A= (2A;) <,
f=12;) for each i < n. Then A= '(A;) <. f~1R)® <, h~1(€)0FD. Then
de(fil(gl)) S RSl(G, A, Aq, ... ,Q[n)
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