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Abstract. A jump inversion theorem for the degree spectra is presented.
For a structure A which degree spectrum is a subset of the jump spectrum
of a structure B, a structure C is constructed as a Marker’s extension of
A such that the jump spectrum of C is exactly the degree spectrum of A
and the degree spectrum of C is a subset of the degree spectrum of B.
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1 Introduction

The notion of a degree spectrum of a countable structure is introduced by Richter
[9] as the set of all Turing degrees generated by all one-to-one enumerations of
the structure. It is studied by Ash, Downey, Jockush and Knight [1, 4, 7]. It is
a kind of a measure of complexity of the structure. Soskov [11] represented the
notion of a degree spectrum of a structure from the point of view of enumeration
degrees.

Let A be a countable structure. The degree spectrum of the structure A is
the set DS(A) of all enumeration degrees generated by all enumerations of A.
The main benefit of considering not only one-to-one but all enumerations of the
structure is that the degree spectrum is always closed upwards with respect to
total degrees [11], i.e. if a ∈ DS(A) then each total enumeration degree b greater
than a is in DS(A). If a is the least element of DS(A) then a is called the degree
of A.

The jump spectrum of A is the set DS1(A) of all enumeration jumps of the
elements of DS(A). If a is the least element of DS1(A) then a is called the first
jump degree of A.

For any countable structures A and B define the relation

B � A ⇐⇒ DS(A) ⊆ DS(B) .

And let A ≡ B if A � B and B � A.
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Let B′ � A if DS(A) ⊆ DS1(B) and A � B′ if DS1(B) ⊆ DS(A). We say
that A ≡ B′ if A � B′ and B′ � A.

Soskov [12] showed that each jump spectrum is a degree spectrum of a struc-
ture. So, for every structure B there is a structure A such that B′ ≡ A, i.e.
DS(A) = DS1(B).

In this paper we shall show that if A and B are structures and B′ � A then
there exists a structure C such that B � C and C′ ≡ A.

The structure C we shall construct as a Marker’s extension of A. In [6]
two model-theoretic extension operators were introduced based on the ideas
of Marker’s construction from [8]. These extensions are called Marker’s ∃ and
∀-extensions and are studied in [5, 6]. In our construction we will use also the
relativized representation lemma for Σ0

2 sets proved by Goncharov and Khous-
sainov [6].

As an application we shall show that if a structure A has a degree and B′ � A
for some structure B then there is a torsion free abelian group G of rank 1 such
that B � G, G′ ≡ A and G has a degree as well.

As a corollary of the main result we receive an analogue of the jump inversion
theorem for the joint spectra of finitely many structures considered in [13, 15].
Let A,A1, . . . ,An be countable structures. The joint spectrum of A,A1, . . . ,An is
the set of all enumeration degrees a ∈ DS(A) such that a′ ∈ DS(A1), . . . ,a(n) ∈
DS(An).

We will prove that if there is a structure B such that B′ � A then there
exists a structure C � B such that the joint spectrum of A,A1, . . . ,An is exactly
the jump joint spectrum of C,A,A1, . . . ,An.

Next application is a similar result for another relativized version of the
notion of a degree spectrum of a structure with respect to finitely many abstract
structures studied in [14]. It is shown [13–15] that both generalized notions of
degree spectra have all general properties of the degree spectra of a structure
such as minimal pair theorem and the existence of quasi-minimal degrees.

The relative spectrum of the structure A with respect to A1, . . . , An is the set
of all enumeration degrees generated by those enumerations of A which “assume”
that each Ai is relatively Σ0

i+1 on A for i = 1, . . . k. We will show that if there is
a structure B such that B′ � A then there exists a structure C � B such that
the relative spectrum of A with respect to A1, . . . ,An coincide with the jump
relative spectrum of C with respect to A,A1, . . . ,An.

2 Preliminaries

2.1 Enumeration Degrees

For any sets of natural numbers A and B the set A is enumeration reducible to
B (A ≤e B) if there is an enumeration operator Γz such that A = Γz(B). In
other words:

A ≤e B ⇐⇒ (∃z)(∀x)(x ∈ A ⇐⇒ (∃v)(〈v, x〉 ∈Wz & Dv ⊆ B))



where Dv is the finite set with the canonical code v and {Wz}z<ω is a Gödel
enumeration of the c.e. sets.

The relation ≤e is reflexive and transitive and induces an equivalence relation
≡e on all sets of natural numbers. The respective equivalence classes are called
enumeration degrees.

By de(A) we denote the enumeration degree of the set A and by De the set
of all enumeration degrees. Let A+ = A⊕ (N\A). The set A is total if A ≡e A

+.
An enumeration degree a is total if a contains the e-degree of a total set. The
jump operation “′” denotes here the enumeration jump introduced by Cooper
[3].

Definition 1. Let LA = {〈x, z〉 | x ∈ Γz(A)}.
The e-jump A′ of A is the set (LA)+.

In fact, the set A is Σ0
2 relatively the set B (A ∈ Σ0

2(B)) if and only if
A ≤e (B+)′. This follows from the observation that K+

B ≡e (B+)′ where KB =
{〈e, x〉 | x ∈WB

e }.

A ∈ Σ0
2(B) ⇐⇒ A is c.e. in KB ⇐⇒ A ≤e K

+
B ⇐⇒ A ≤e (B+)′ .

So, if the set B is total then B ≡e B
+ and hence A ∈ Σ0

2(B) ⇐⇒ A ≤e B
′.

2.2 Degree Spectra

Let A = (A;R1, . . . , Rs) be a countable structure such that = is among the
predicates R1, . . . , Rs.

An enumeration f of A is a total mapping of N onto A.
For B ⊆ Aa define f−1(B) = {〈x1, . . . , xa〉 | (f(x1), . . . , f(xa)) ∈ B}.
For each predicate R of A of arity r the pullback Rf of R is defined by

Rf (x1, . . . , xr) ⇐⇒ R(f(x1), . . . , f(xr)). Let

f−1(R) = {〈x1, . . . , xr, 0〉 | Rf (x1, . . . , xr)}∪
{〈x1, . . . , xr, 1〉 | ¬Rf (x1, . . . , xr)} .

Denote by f−1(A) = f−1(R1)⊕ . . .⊕ f−1(Rs).

Definition 2. The degree spectrum of A is the set

DS(A) = {de(f−1(A)) | f is an enumeration of A} .

Our definition of degree spectra is equivalent to Soskov’s from [11]. The structure
A is total if the predicates R1, . . . , Rs are totally defined on A. We consider here
only total structures. It is easy to see that if the structure A is total then all
elements of the degree spectra of A are total enumeration degrees. Let ι be the
Roger’s embedding of the Turing degrees into the enumeration degrees. Then

DS(A) = {ι(dT(f−1(A))) | f is an enumeration of A} .

Richter [9] and Knight [7] defined the degree spectra by taking into account
only the bijective enumerations, while we allow as in [11] arbitrary surjective
enumerations.



Proposition 3. [11] Let f be an arbitrary enumeration of A. There exists a
bijective enumeration g of A such that g−1(A) ≤e f

−1(A).

The above proposition shows that almost all of the known results about Turing
degree spectra remain valid also for enumeration degree spectra.

Proposition 4. [11] Let g be an enumeration of A. Suppose that F is a total set
and g−1(A) ≤e F . There exists an enumeration f of A such that f−1(A) ≡e F .

From the last proposition it follows that the degree spectrumDS(A) is closed
upwards with respect to the totalenumeration degrees.

The jump spectrum of A is the set DS1(A) = {a′ | a ∈ DS(A)}.
Since by [12] every jump spectrum is a degree spectrum of a structure it

follows that DS1(A) is also closed upwards with respect to total enumeration
degrees. One can see this fact directly using the jump inversion theorem from
[10].

3 Marker’s Extensions

Marker [8] presented a method of constructing for any n ≥ 1 a ℵ0-categorical
almost strongly minimal theory which is not Σn-axiomatizable. Further Gon-
charov and Khoussainov [6] adapted the construction to the general case in
order to find for any n ≥ 1 examples of ℵ1-categorical computable models as
well as ℵ0-categorical computable models whose theories are Turing equivalent
to ∅(n). We shall give the definition of Marker’s ∃ and ∀ extensions following [6].

Let A = (A;R1, . . . , Rs,=) be a countable total structure and for each i the
predicate Ri has arity ri.

Marker’s ∃-extension of Ri, denoted by R∃i , is defined as follows. Consider a
set Xi with new elements such that Xi = {xi〈a1,...,ari

〉 | Ri(a1, . . . , ari)}. The set

Xi we shall call a ∃-fellow for Ri. We suppose that all sets A, X1,. . . , Xs are
pairwise disjoint.

The predicateR∃i is a predicate of arity ri+1 such thatR∃i (a1, . . . , ari , x) ⇐⇒
a1, . . . , ari ∈ A & x ∈ Xi & x = xi〈a1,...,ari

〉 ( and so Ri(a1, . . . , ari)).

From the definition of R∃i it follows that if a1, . . . , ari ∈ A then
(∃x ∈ Xi)R

∃
i (a1, . . . , ari , x) ⇐⇒ Ri(a1, . . . , ari).

Definition 5. The structure A∃ is defined as follows:

(A ∪
s⋃

i=1

Xi, R
∃
1 , . . . , R

∃
s , X̄1, . . . , X̄s,=),

where each R∃i is a Marker’s ∃-extension of Ri with ∃-fellow Xi and X̄i is a
unary predicate true over the elements of the ∃-fellow for Ri.

Marker’s ∀-extension of Ri, denoted by R∀i , is defined as follows. Consider an
infinite set Yi of new elements such that Yi = {yi〈a1,...,ari

〉 | ¬Ri(a1, . . . , ari)}.
The set Yi we shall call a ∀-fellow for Ri.



The predicate R∀i is a predicate of arity ri + 1 such that
1. If R∀i (a1, . . . , ari , y) then a1, . . . , ari ∈ A and y ∈ Yi;
2. If a1, . . . , ari ∈ A & y ∈ Yi then ¬R∀i (a1, . . . , ari , y) ⇐⇒ y = yi〈a1,...,ari

〉.

Note that from the definition of R∀i it follows that if a1, . . . , ari ∈ A then
(∀y ∈ Yi)R∀i (a1, . . . , ari , y) ⇐⇒ Ri(a1, . . . , ari).

Definition 6. The structure A∀ is defined as follows:

(A ∪
s⋃

i=1

Yi, R
∀
1 , . . . , R

∀
s , Ȳ1, . . . , Ȳs,=),

where each R∀i is a Marker’s ∀-extension of Ri with ∀-fellow Yi and Ȳi is a unary
predicate true over the elements of the ∀-fellow for Ri. The ∀-fellows of the
distinct predicates and the set A are pairwise disjoint.

Definition 7. The structure A∃∀ is obtained from A as (A∃)∀, i.e.

(A ∪
s⋃

i=1

Xi ∪
s⋃

i=1

Yi, R
∃∀
1 , . . . , R∃∀s , X̄1, . . . , X̄s, Ȳ1, . . . , Ȳs,=),

where Xi is a ∃-fellow for Ri and Yi is a ∀-fellow for R∃i .

The structure A∃∀ has the following properties:

Proposition 8. Let a1, . . . , ari ∈ A. Then:
1. Ri(a1, . . . , ari) ⇐⇒ (∃x ∈ Xi)(∀y ∈ Yi)R∃∀i (a1, . . . , ari , x, y);
2. For each y ∈ Yi there exists a unique sequence a1, . . . , ari ∈ A and x ∈ Xi

such that ¬R∃∀i (a1, . . . , ari , x, y);
3. For each x ∈ Xi there exists a unique sequence a1, . . . , ari ∈ A such that

for all y ∈ Yi it holds that R∃∀i (a1, . . . , ari , x, y).

Proof. 1.(⇒) Let Ri(a1, . . . , ari). Then there exists x ∈ Xi such that
R∃i (a1, . . . , ari , x). From the definition of Yi it follows that for any y ∈ Yi
R∃∀i (a1, . . . , ari , x, y).

(⇐) Let x ∈ Xi and R∃∀i (a1, . . . , ari , x, y) for all y ∈ Yi. Then
R∃i (a1, . . . , ari , x) and hence Ri(a1, . . . , ari).

2. Follows from the definition of Yi.
3. Let x ∈ Xi then x = xi〈a1,...,ari

〉 and Ri(a1, . . . , ari). Hence

R∃i (a1, . . . , ari , x). Then for any y ∈ Yi it is not possible that
¬R∃∀i (a1, . . . , ari , x, y).

4 Join of Two Structures

Let A = (A;R1, . . . , Rs,=) and B = (B;P1, . . . , Pt,=) be countable structures in
the language L1 and L2 respectively. Suppose that L1∩L2 = {=} and A∩B = ∅.
Let L = L1 ∪ L2 ∪ {Ā, B̄}, where Ā and B̄ are unary predicates.



Definition 9. The join of the structures A and B is the structure A ⊕ B =
(A ∪B;R1, . . . , Rs, P1, . . . , Pt, Ā, B̄,=) in the language L, where

(a) the predicate Ā is true only over the elements of A and similarly B̄ is
true only over the elements of B;

(b) the predicate Ri is defined on the elements of A as in the structure A
and false on all elements not in A and the predicate Pj is defined similarly.

Lemma 10. Let A and B be countable total structures and C = A ⊕B. Then
A � C and B � C.

Proof. We have to prove that DS(C) ⊆ DS(A) and DS(C) ⊆ DS(B).
Let f be an enumeration of C. Fix x0 ∈ f−1(A). Define
m(0) = x0; m(i+ 1) = µz ∈ f−1(A)[(∀k ≤ i)(〈m(k), z〉 6∈ f−1(=))].
Set h = λx.f(m(x)). Note that m ≤e f

−1(C) since
z ∈ f−1(A) ⇐⇒ 〈z, 0〉 ∈ f−1(Ā).

Define h−1(Ri) = {〈x1, . . . , xri , e〉 | 〈m(x1), . . . ,m(xri), e〉 ∈ f−1(Ri)}. And
h−1(=) = {〈x, y, e〉 | 〈m(x),m(y), e〉 ∈ f−1(=)}.

Then h is an enumeration of A and h−1(A) ≤e f
−1(C). Since C is a total

structure and DS(A) is closed upwards then de(f
−1(C)) ∈ DS(A).

5 Representation of Σ0
2(D) Sets

Let D ⊆ N. A set M ⊆ N is in Σ0
2(D) if there exists a computable in D predicate

Q such that
n ∈M ⇐⇒ ∃a∀bQ(n, a, b) .

Definition 11. [6] If M ∈ Σ0
2(D) then M is one-to-one representable if there

is a computable in D predicate Q with the following properties:

1. n ∈M ⇐⇒ there exists a unique a such that ∀bQ(n, a, b);
2. for every b there is a unique pair 〈n, a〉 such that ¬Q(n, a, b);
3. for every a there exists a unique n such that ∀bQ(n, a, b).

The predicate Q from the above definition is called an one-to-one representation
of M . Goncharov and Khoussainov [6] proved the following lemma:

Lemma 12. [6] If M is a coinfinite Σ0
2(D) subset of N which has an infinite

computable in D subset S such that M \ S is infinite then M has an one-to-one
representation.

Remark 13. We will use this lemma in the next section in our proof of Theo-
rem 14. In order to satisfy the conditions of the lemma we need the following
technical explanations.

Let A = (A;R1, . . . , Rs). Suppose that each Ri is true over infinitely many
elements and it is false over infinitely many elements also.

We can add to the domain A of the structure A two new elements say “T”
and “F”. Define the predicate R∗i as follows:



1. Let ri ≥ 2. Then R∗i (a1, . . . , ari) is defined as Ri(a1, . . . , ari) if F and T are
not among the arguments {a1, . . . , ari}. If T ∈ {a1 . . . ari} then R∗i (a1, . . . , ari)
and if F ∈ {a1, . . . , ari} and T 6∈ {a1, . . . , ari} then ¬R∗i (a1, . . . , ari).

2. Let the predicate Ri be unary. Then we define the binary predicate R∗i as
follows: R∗i (a, a) ⇐⇒ Ri(a) if a 6∈ {T, F}. If T ∈ {a, b} then R∗i (a, b) is true
and if F ∈ {a, b} and T 6∈ {a, b} then ¬R∗i (a, b).

Let A∗ be the obtained structure with domain A∪{T, F} and predicates R∗i
for i = 1, . . . , s. Then one can easily see using Proposition 4 and Proposition 3
that DS(A) = DS(A∗). Indeed, note that if an enumeration of the structure
A is bijective then the pullback of the equality is computable. Let f be an
enumeration of A and de(f

−1(A)) ∈ DS(A). By Proposition 3 there is a bijective
enumeration g of A such that g−1(A) ≤e f−1(A). Then there is a bijective
enumeration h of A∗ such that h−1(A∗) ≡e g

−1(A). Moreover in h−1(A∗) each
h−1(R∗i ) is infinite and posses a computable subset S such that h−1(R∗i ) \ S is
infinite. The set S is formed by all tuples containing the number h−1(T ). Since
h−1(A∗) ≤e f

−1(A) and A is total then de(f
−1(A)) ∈ DS(A∗) by Proposition 4.

The proof of DS(A∗) ⊆ DS(A) is similar.

6 Jump Inversion Theorem for the Degree Spectra

Theorem 14. Let A and B be total structures such that B′ � A. Then there
exists a structure C such that B � C and C′ ≡ A.

Proof (Sketch). Without loss of generality we may suppose that the structures
B and A∃∀ are disjoint. Let C = B⊕A∃∀. By Lemma 10 B � C. We shall prove
that C′ ≡ A, i.e. DS(A) = DS1(C).

1. =⇒ [DS1(C) ⊆ DS(A)].
Let c ∈ DS1(C) and let h be an enumeration of C such that c = de(h

−1(C))′.
We shall construct an enumeration f of A such that f−1(A) ≤e h

−1(C)′. Since
h−1(C)′ is a total set, by Proposition 4 it will follow that c ∈ DS(A).

Fix x0 ∈ h−1(A). Define
m(0) = x0; m(i+ 1) = µz ∈ h−1(A)[(∀k ≤ i)(〈m(k), z〉 6∈ h−1(=))].
Set f = λa.h(m(a)). We have m ≤e h

−1(A∃∀) since z ∈ h−1(A) ⇐⇒
(∀i ≤ s)(〈z, 1〉 ∈ h−1(X̄i) ∩ h−1(Ȳi) ∩ h−1(B̄)). Define:

R∃∀,hi = {〈a1, . . . , ari , x, y, e〉 | 〈m(a1), . . . ,m(ari), x, y, e〉 ∈ h−1(R∃∀i ) &
〈x, 0〉 ∈ h−1(X̄i) & 〈y, 0〉 ∈ h−1(Ȳi)} .

Rf
i (a1, . . . , ari) ⇐⇒ (∃x)(∀y)( 〈a1, . . . , ari , x, y, 0〉 ∈ R

∃∀,h
i &

〈x, 0〉 ∈ h−1(X̄i) & 〈y, 0〉 ∈ h−1(Ȳi)) .

Then it is clear that f is an enumeration of A and f−1(A) ∈ Σ0
2(h−1(A∃∀)).

Then f−1(A) ≤e h
−1(A∃∀)′ ≤e h

−1(C)′ by the monotonicity of the e-jump.
2. =⇒ [DS(A) ⊆ DS1(C)].



Let a ∈ DS(A) and f̄ be an enumeration of A such that a = de(f̄
−1(A)).

By Proposition 3 there is a bijective enumeration f of A such that f−1(A) ≤e

f̄−1(A). We are going to construct an enumeration h of C such that h−1(C)′ ≤e

f−1(A). Then since A is a total structure and the DS1(C) is upwards closed with
respect to total degrees then a ∈ DS1(C).

Since B′ � A, i.e. DS(A) ⊆ DS1(B) there is an enumeration g of B such that
f−1(A) ≡e (g−1(B))′. Denote by D = g−1(B) and note that D is a total set
since the structure B is total. So for each predicate Ri of the structure A we have
that f−1(Ri) ≤e D

′. Then f−1(Ri) ∈ Σ0
2(D). Denote by Mi = f−1(Ri). If the

positive part or the negative part of f−1(Ri) is finite then f−1(Ri) is computable.
Otherwise by Remark 13 we can suppose that Mi satisfies all conditions from
Lemma 12. Then by Lemma 12 for each i ≤ s there exists a computable in D
predicate Qi which is an one-to-one representation of Mi. Then

— n̄ ∈Mi ⇐⇒ there exists a unique a such that (∀b)Qi(n̄, a, b);
— for every b let r(b) = 〈n̄, a〉 be the unique pair such that ¬Qi(n̄, a, b);
— for every a let l(a) = n̄ be the unique n̄ such that ∀bQi(n̄, a, b).
Denote by N1 = {〈1, n〉 | n ∈ N}, N2 = {〈2, i, a〉 | i ≤ s & a ∈ N} and

N3 = {〈3, i, b〉 | i ≤ s & b ∈ N}. Let N0 = N \ (
⋃3

i=1 Ni). Consider a computable
bijection m of N0 onto N and denote by 〈0, n〉 = m(n).

The definition of the enumeration h of C is the following:
h(〈0, n〉) = g(n);
h(〈1, n〉) = f(n);
h(〈2, i, a〉) = xi〈f(n1),...,f(nri

)〉, if l(a) = 〈n1, . . . , nri〉;
h(〈3, i, b〉) = yi〈f(n1),...,f(nri

),h(〈2,i,a〉)〉, if r(b) = 〈〈n1, . . . , nri〉, a〉.
Here Xi = {xi〈a1,...,ari

〉 | Ri(a1, . . . , ari)} is the ∃-fellow for Ri and

Yi = {yi〈a1,...,ari
,x〉 | ¬R

∃
i (a1, . . . , ari , x)} is the ∀-fellow for R∃i . Define

R∃∀,hi (〈1, n1〉, . . . , 〈1, nri〉, 〈2, i, a〉, 〈3, i, b〉) ⇐⇒ Qi(〈n1, . . . , nri〉, a, b) .

Let h−1(A) = N1, h−1(Xi) = N2, h−1(Yi) = N3.
It follows that

Ri(f(n1) . . . f(nri)) ⇐⇒ 〈n1, . . . , nri , 0〉 ∈ f−1(Ri)
⇐⇒ (∃a)(∀b)Qi(〈n1, . . . , nri〉, a, b)
⇐⇒ (∃a)(∀b)R∃∀,hi (〈1, n1〉, . . . , 〈1, nri〉, 〈2, i, a〉, 〈3, i, b〉)
⇐⇒ (∃x)(∀y)R∃∀i (f(n1) . . . f(nri), x, y) &x ∈ Xi&y ∈ Yi.

From the definition of h it follows that h is an enumeration of A∃∀. It is clear
that h−1(A∃∀) ≤e D.

Let B = (B;P1, . . . , Pt,=) then for each j ≤ t
h−1(Pj) = {〈〈0, n1〉, . . . , 〈0, npj 〉, e〉 | 〈n1, . . . , npj , e〉 ∈ g−1(Pj)} and

h−1(B) = N0. It is obvious that h−1(B) ≤e D.
The pullback of the equality is defined naturally over the elements which are

pullbacks of elements of A as f−1(=) and over the elements which are pullbacks
of elements of B as g−1(=). Over the elements which are the pullbacks of Xi and



Yi is a normal equality, since the special form of the Marker’s ∃ and ∀ extensions.
So, h−1(=) ≤e D since f−1(=) is computable.

Thus h is an enumeration of C = B⊕ A∃∀. Moreover h−1(C) ≤e D. Hence
h−1(C)′ ≤e f

−1(A) as D′ ≡e f
−1(A).

7 Some Applications

The degree of the structure A, if it exists, is the least element of the degree spec-
trum of A. The results of Richter [9] show that there exist structures, e.g. linear
orders, which do not have degrees. Richter proved that if the degree spectrum
of a linear order has a degree then it is 0.

If the jump spectrum DS1(A) has a least element then it is called the first
jump degree of A. For example Knight [7] shows that if a linear order has a first
jump degree then it is 0′. There are examples of structures [1, 4] which have a
first jump degree but do not posses a degree. In [2, 11] it is shown that every
torsion free abelian group G of rank 1, i.e. G is a subgroup of the group of the
rational numbers Q, has a first jump degree.

Let G be a nontrivial subgroup of the additive group of the rational numbers.
Fix a 6= 0 an element of G. For every prime number p set

hp(a) =

{
k if k is the greatest number such that pk|a in G,
∞ if pk|a in G for all k.

Let p0, p1, . . . be the standard enumeration of the prime numbers and set

Sa(G) = {〈i, j〉 : j ≤ hpi
(a)}.

If a and b are non-zero elements of G then Sa(G) ≡e Sb(G). Let dG =
de(Sa(G)), where a is some non-zero element of G.

In [11] it is proved that for every total enumeration degree d, there exists a
bijective enumeration f of G such that f−1(G) ∈ d if and only if dG ≤ d. Since
for every enumeration f we have that f−1(G) is a total set and dG ≤ de(f−1(G)),
DS(G) = {a : a is total & a ≥ dG}.

It turns out that for any total structures A and C such that C′ ≡ A if C has
a degree a then a′ is the first jump degree of C and clearly a′ is the degree of A
since DS(A) = DS1(C).

Proposition 15. Let A and B be total structures such that B′ � A. Then if
the structure A has a degree then there exists a torsion free abelian group G of
rank 1 which has a degree such that B � G and G′ ≡ A.

Proof. Let C = B⊕ A∃∀ be the structure constructed in Theorem 14 such that
B � C and C′ ≡ A.

Suppose now that a is the degree of A. Then there is a total degree c ∈ DS(C)
such that c′ = a. Then by [11] since c is a total degree there exists a subgroup
G of Q such that dG = c. So, DS(G) = {e : e is total and e ≥ dG}. And
hence DS1(G) = {e′ : e is total & e′ ≥ a}. It is clear that DS1(G) ⊆ DS(A). If



d ∈ DS(A) then d ≥ a. Since the structure A is total d is total. By the jump
inversion theorem from [10] there is a total enumeration degree e such that e′ = d
and e ≥ c. Then e′ ∈ DS1(G) and thus d ∈ DS1(G). Hence DS(A) = DS1(G).
Clearly DS(G) ⊆ DS(B) since dG = c ∈ DS(G) ⊆ DS(B).

The next application concerns a generalization of the notion of degree spectra
considered in [13, 15]. Let A,A1, . . . ,An be countable structures.

Definition 16. The joint spectrum of A,A1, . . . ,An is the set

DS(A,A1, . . . ,An) = {a | a ∈ DS(A),a′ ∈ DS(A1), . . . ,a(n) ∈ DS(An)} .

The next proposition follows directly from Theorem 14.

Proposition 17. Let A and B be total structures such that B′ � A. Then there
exists a structure C � B such that DS(A,A1, . . . ,An) = DS1(C,A,A1, . . . ,An).

We can show a similar result for the relativized spectra from [14].

Definition 18. An enumeration f of A is n-acceptable with respect to the struc-
tures A1, . . . ,An, if f−1(Ai) ≤e (f−1(A))(i) for each i ≤ n.

The relative spectrum of the structure A with respect to A1, . . . , An is the
set

RS(A,A1, . . . ,An) = {de(f−1(A)) | f is a n-acceptable enumeration of A} .

Proposition 19. Let A and B be total structures such that B′ � A. Then there
exists a structure C � B such that RS(A,A1, . . . ,An) = RS1(C,A,A1, . . . ,An).

Proof (sketch). Let C = B⊕A∃∀. Suppose that h is a (n+1)-acceptable enumer-
ation of C and de(h

−1(C))′ ∈ RS1(C,A,A1, . . . ,An). Let F = h−1(C). Consider
a computable in F function m with range h−1(A). Let s 6= t ∈ A. Define an
enumeration of A:

f(x) '

h(m(x/2)) if x is even,
s if x = 2z + 1 and z ∈ F ′,
t if x = 2z + 1 and z 6∈ F ′.

Then f−1(A) ≡e F ′ and f−1(Ai) ≤e h−1(Ai) ⊕ F ′ ≤e h−1(C)(i+1) ⊕ F ′ ≡e

F (i+1) ≡e f
−1(A)(i) for every i ≤ n. So, de(h

−1(C))′ ∈ RS(A,A1, . . . ,An).

Let f be a n-acceptable enumeration of A such that
de(f

−1(A)) ∈ RS(A,A1, . . . ,An). Then as in Theorem 14 one can construct an
enumeration h of C such that h−1(C)′ ≡e f

−1(A) and additionally h−1(Ai) ≤e

f−1(Ai) for each i ≤ n. Then h−1(Ai) ≤e f−1(A)(i) ≤e h−1(C)(i+1). Then
de(f

−1(A)) ∈ RS1(C,A,A1, . . . ,An).
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B. Löwe; J. Tucker eds.), CiE2006, University of Wales Swansea, Report Series,
No. CSR 7-2006 (2006) 105–108

6. Goncharov, S., Khoussainov, B. : Complexity of categorical theories with com-
putable models. Algebra and Logic, 43, No. 6, (2004) 365–373

7. Knight, J. F. : Degrees coded in jumps of orderings. J. Symbolic Logic 51 (1986)
1034–1042.

8. Marker, D. : Non Σn-axiomatizable almost strongly minimal theories. J. Symbolic
Logic 54 No. 3,(1989) 921–927

9. Richter, L. J. : Degrees of structures. J. Symbolic Logic 46 (1981) 723–731.
10. Soskov, I. N. : A jump inversion theorem for the enumeration jump. Arch. Math.

Logic 39 (2000), 417–437
11. Soskov, I. N. : Degree spectra and co-spectra of structures. Ann. Univ. Sofia 96

(2004), 45–68
12. Soskov, I. N. : The Jump Spectra are Spectra. in preparation
13. Soskova, A. A. : Minimal pairs and quasi-minimal degrees for the joint spectra of

structures. New Computational Pradigms (S. B. Cooper; B. Löwe eds.) Lecture
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