THE GROUPS $AUT(\mathcal{D}_{\omega}')$ AND $AUT(\mathcal{D}_{e})$ ARE ISOMORPHIC

HRISTO GANCHEV AND IVAN SOSKOV

In the present paper we continue the study of the partial ordering \mathcal{D}_{ω} of the ω -enumeration degrees initiated in [2]. We show that the enumeration degrees are first order definable in the structure \mathcal{D}_{ω}' of the ω -enumeration degrees augmented by the jump operator and that the groups of the automorphisms of enumeration degrees and of the automorphisms of \mathcal{D}_{ω}' are isomorphic.

1. The ω -enumeration degrees

Denote by S the set of all sequences $\mathcal{B} = \{B_k\}_{k < \omega}$ of sets of natural numbers. Consider an element \mathcal{B} of S and let the *jump class* $J_{\mathcal{B}}$ defined by \mathcal{B} be the set of the Turing degrees of all $X \subseteq \mathbb{N}$ such that $(\forall k)(B_k \text{ is r.e. in } X^{(k)} \text{ uniformly in } k)$.

Given two sequences \mathcal{A} and \mathcal{B} let $\mathcal{A} \leq_u \mathcal{B}$ (\mathcal{A} is uniformly reducible to \mathcal{B}) if $J_{\mathcal{B}} \subseteq J_{\mathcal{A}}$ and $\mathcal{A} \equiv_u \mathcal{B}$ if $J_{\mathcal{B}} = J_{\mathcal{A}}$. Clearly " \leq_u " is a reflexive and transitive relation on \mathcal{S} and " \equiv_u " is an equivalence relation on \mathcal{S} .

For every sequence \mathcal{B} let $d_{\omega}(\mathcal{B}) = \{\mathcal{A} : \mathcal{A} \equiv_{u} \mathcal{B}\}$ and let $\mathcal{D}_{\omega} = \{d_{\omega}(\mathcal{B}) : \mathcal{B} \in \mathcal{S}\}$. The elements of \mathcal{D}_{ω} are called the ω -enumeration degrees.

The ω -enumeration degrees can be ordered in the usual way. Given two elements $\mathbf{a} = d_{\omega}(\mathcal{A})$ and $\mathbf{b} = d_{\omega}(\mathcal{B})$ of \mathcal{D}_{ω} , let $\mathbf{a} \leq_{\omega} \mathbf{b}$ if $\mathcal{A} \leq_{u} \mathcal{B}$. Clearly $\mathcal{D}_{\omega} = (\mathcal{D}_{\omega}, \leq_{\omega})$ is a partial ordering with least element $\mathbf{0}_{\omega} = d_{\omega}(\emptyset_{\omega})$, where all members of \emptyset_{ω} are equal to \emptyset .

Given two sequences $\mathcal{A} = \{A_k\}$ and $\mathcal{B} = \{B_k\}$ of sets of natural numbers let $\mathcal{A} \oplus \mathcal{B} = \{A_k \oplus B_k\}$. Is it easy to see that $J_{\mathcal{A} \oplus \mathcal{B}} = J_{\mathcal{A}} \cap J_{\mathcal{B}}$ and hence every two elements $\mathbf{a} = d_{\omega}(\mathcal{A})$ and $\mathbf{b} = d_{\omega}(\mathcal{B})$ of \mathcal{D}_{ω} have a least upper bound $\mathbf{a} \cup \mathbf{b} = d_{\omega}(\mathcal{A} \oplus \mathcal{B})$.

There is a natural embedding of the enumeration degrees into the ω -enumeration degrees. Given a set A of natural numbers denote by $A \uparrow \omega$ the sequence $\{A_k\}_{k < \omega}$, where $A_0 = A$ and for all $k \ge 1$, $A_k = \emptyset$.

1.1. Proposition. For every $A, B \subseteq \mathbb{N}, A \uparrow \omega \leq_u B \uparrow \omega \iff A \leq_e B$.

Let $\mathcal{D}_1 = \{ d_{\omega}(A \uparrow \omega) : A \subseteq \mathbb{N} \}$ and $\mathcal{D}_1 = (\mathcal{D}_1, \mathbf{0}_{\omega}, \cup, \leq_{\omega}).$

Define the mapping $\kappa : \mathcal{D}_e \to \mathcal{D}_1$ by $\kappa(d_e(A)) = d_\omega(A \uparrow \omega)$. Clearly κ is an isomorphism from \mathcal{D}_e to \mathcal{D}_1 and hence κ is an embedding of \mathcal{D}_e into \mathcal{D}_ω .

The elements of \mathcal{D}_1 form a base of the automorphisms of \mathcal{D}_{ω} . Indeed given a sequence \mathcal{A} let $J^e_{\mathcal{A}} = \{\mathbf{a} : \mathbf{a} \in \mathcal{D}_e \& d_{\omega}(\mathcal{A}) \leq_{\omega} \kappa(\mathbf{a})\}$. Let ι be the Roger's embedding of the Turing degrees \mathcal{D}_T into the enumeration degrees. It is easy to see that $\iota(J_{\mathcal{A}}) = J^e_{\mathcal{A}} \cap \iota(\mathcal{D}_T)$ and hence

$$\mathcal{A} \leq_u \mathcal{B} \iff J^e_{\mathcal{B}} \subseteq J^e_{\mathcal{A}}.$$

This work was partially supported by Sofia University Science Fund.

Suppose that φ is an automorphism of \mathcal{D}_{ω} and $\varphi(\mathbf{x}) = \mathbf{x}$ for $\mathbf{x} \in \mathcal{D}_1$. Let $\mathbf{a} \in \mathcal{D}_{\omega}$ and $\mathcal{A} \in \mathbf{a}, \mathcal{B} \in \varphi(\mathbf{a})$. Clearly

$$J^e_{\mathcal{B}} = \{\kappa^{-1}(\varphi(\mathbf{x})) : \mathbf{a} \leq_\omega \mathbf{x} \& \mathbf{x} \in \mathcal{D}_1\} = \{\kappa^{-1}(\mathbf{x}) : \mathbf{a} \leq_\omega \mathbf{x} \& \mathbf{x} \in \mathcal{D}_1\} = J^e_{\mathcal{A}}.$$

Hence $\mathcal{A} \equiv_u \mathcal{B}$ and $\mathbf{a} = \varphi(\mathbf{a})$.

2. The jump operator on the ω -enumeration degrees

Given a sequence $\mathcal{B} = \{B_k\}_{k < \omega}$ of sets of natural numbers we define the respective jump sequence $\mathcal{P}(\mathcal{B}) = \{\mathcal{P}_k(\mathcal{B})\}_{k < \omega}$ by induction on k:

(i) $\mathcal{P}_0(\mathcal{B}) = B_0;$

(ii) $\mathcal{P}_{k+1}(\mathcal{B}) = \mathcal{P}_k(\mathcal{B})' \oplus B_{k+1}.$

We shall assume fixed an effective coding of all finite sets of natural numbers. By D_v we shall denote the finite set with code v.

Given two sets of W and A of natural numbers, let

$$W(A) = \{ x : (\exists v) (\langle x, v \rangle \in W \& D_v \subseteq A) \}.$$

Let W_0, W_1, \ldots be a Gödel numbering of the recursively enumerable sets.

The following result from [3] gives an explicit definition of the uniform reducibility:

2.1. Theorem. Let $\mathcal{A} = \{A_k\}$ and $\mathcal{B} = \{B_k\}$ belong to \mathcal{S} . Then $\mathcal{A} \leq_u \mathcal{B}$ if and only if there exists a recursive function h such that $(\forall k)(A_k = W_{h(k)}(\mathcal{P}_k(\mathcal{B})))$.

2.2. Corollary. For every $A \in S$, $A \equiv_u \mathcal{P}(A)$.

Given a sequence $\mathcal{A} \in \mathcal{S}$ set $\mathcal{A}' = \{\mathcal{P}_{1+n}(\mathcal{A})\}$. We have that $J_{\mathcal{A}'} = \{\mathbf{a}' : \mathbf{a} \in J_{\mathcal{A}}\}$ and hence $\mathcal{A} \leq_u \mathcal{B}$ implies $\mathcal{A}' \leq_u \mathcal{B}'$. So we may define a jump operator "'" on the ω -enumeration degrees by letting $d_{\omega}(\mathcal{A})' = d_{\omega}(\mathcal{A}')$. On can easily see that the jump operator is monotone and for every ω -enumeration degree $\mathbf{a}, \mathbf{a} <_{\omega} \mathbf{a}'$. Moreover the jump operator agrees with the enumeration jump under the embedding κ defined in the previous section. Namely for every enumeration degree $\mathbf{a}, \kappa(\mathbf{a}') = \kappa(\mathbf{a})'$.

Some of the properties of the jump operator on the ω -enumeration degrees are surprising. For example we have the following jump inversion theorem:

2.3. Theorem. Let n > 0. Let $\mathbf{a}, \mathbf{b} \in \mathcal{D}_{\omega}$ be such that $\mathbf{a}^{(n)} \leq_{\omega} \mathbf{b}$. Then the equation $\mathbf{x}^{(n)} = \mathbf{b}$ has a least solution above \mathbf{a} .

Proof. Let $\mathbf{a} = d_{\omega}(\mathcal{A})$ and $\mathbf{b} = d_{\omega}(\mathcal{B})$. Since $\mathbf{a}^{(n)} \leq_{\omega} \mathbf{b}$ we have that $\{P_{k+n}(\mathcal{A})\} \leq_{u} \mathcal{B}$, and therefore $P_{n}(\mathcal{A}) \leq_{e} B_{0}$. Consider the sequence $\mathcal{X} = \{X_{k}\}_{k < \omega}$, where for $0 \leq k < n, X_{k} = A_{k}$, and for $k \geq n, X_{k} = B_{k-n}$. We have that for $0 \leq k < n$, $P_{k}(\mathcal{A}) = P_{k}(\mathcal{X})$ and for $k \geq 0, P_{k+n}(\mathcal{X}) \equiv_{e} P_{k}(\mathcal{B})$ uniformly in k. Thus we obtain that $\mathcal{A} \leq_{u} \mathcal{X}$ and $\mathcal{X}^{(n)} \equiv_{u} \mathcal{B}$.

Now suppose that $\mathcal{Y} \in \mathcal{S}$ is such that $\mathcal{A} \leq_u \mathcal{Y}$ and $\mathcal{Y}^{(n)} \equiv_u \mathcal{B}$. Then we have that for $0 \leq k < n$, $P_k(\mathcal{A}) \leq_e P_k(\mathcal{Y})$ and for all k, $P_{n+k}(\mathcal{Y}) \equiv_e P_k(\mathcal{B})$ uniformly in k. Therefore $\mathcal{X} \leq_u \mathcal{Y}$.

The last theorem shows that the structures \mathcal{D}_{e}' and \mathcal{D}_{ω}' are not elementary equivalent.

Now using this property of the ω -enumeration degrees we will show that the set of all elements of \mathcal{D}_1 is first order definable in \mathcal{D}_{ω}' .

 $\mathbf{2}$

For $\mathbf{a} \in \mathcal{D}_{\omega}$, by $I(\mathbf{a})$ we shall denote the set of all least jump inverts over \mathbf{a} , i.e.,

$$I(\mathbf{a}) = \{\mathbf{x} \mid \mathbf{a} \leq_{\omega} \mathbf{x} \And \forall \mathbf{y} (\mathbf{a} \leq_{\omega} \mathbf{y} <_{\omega} \mathbf{x} \Longrightarrow \mathbf{y}' <_{\omega} \mathbf{x}')\}.$$

 $I(\mathbf{a})$ has the following properties:

- (i) $\mathbf{a} \leq_{\omega} \mathbf{z} \leq_{\omega} \mathbf{x} \& \mathbf{x} \in I(\mathbf{a}) \Longrightarrow \mathbf{z} \in I(\mathbf{a})$
- (ii) $\mathbf{x}_1, \mathbf{x}_2 \in I(\mathbf{a}) \Longrightarrow \mathbf{x}_1 \cup \mathbf{x}_2 \in I(\mathbf{a})$
- (iii) $I(\mathbf{a}_1) \subseteq I(\mathbf{a}_2) \Longrightarrow \mathbf{a}_2 \leq_{\omega} \mathbf{a}_1$
- (iv) $\mathbf{d}_{\omega}(\mathcal{B}) \in I(\mathbf{d}_{\omega}(\mathcal{A})) \Longrightarrow B_0 \equiv_e A_0$
- (v) $I(\mathbf{d}_{\omega}(\mathcal{A})) \subseteq I(\mathbf{d}_{\omega}(\mathcal{B})) \iff \mathcal{B} \leq_{u} \mathcal{A} \& A_{0} \equiv_{e} B_{0}$
- (vi) $\mathbf{d}_{\omega}(\mathcal{B}) \in I(\kappa(A)) \iff B_0 \equiv_e A$

Proof. (iv) Suppose that $\mathbf{d}_{\omega}(\mathcal{B}) \in I(\mathbf{d}_{\omega}(\mathcal{A}))$. From the definition of $I(\mathbf{d}_{\omega}(\mathcal{A}))$ we obtain that $\mathcal{A} \leq_{u} \mathcal{B}$ and hence $A_{0} \leq_{e} B_{0}$. Now assume that $A_{0} <_{e} B_{0}$ and consider the sequence $\mathcal{Y} = (A_{0}, P_{1}(\mathcal{B}), P_{2}(\mathcal{B}), \ldots)$. Then it is clear, that $\mathcal{Y} <_{u} \mathcal{B}$ and $\mathcal{Y}' \equiv_{u} \mathcal{B}'$. Besides, from $\mathcal{A} \leq_{u} \mathcal{B}$ we obtain $\mathcal{A} \leq_{u} \mathcal{Y}$. Therefore $d_{\omega}(\mathcal{A}) \leq_{\omega} d_{\omega}(\mathcal{Y}) <_{\omega} d_{\omega}(\mathcal{B})$ and $d_{\omega}(\mathcal{Y})' = d_{\omega}(\mathcal{B})'$. But this contradicts $\mathbf{d}_{\omega}(\mathcal{B}) \in I(\mathbf{d}_{\omega}(\mathcal{A}))$ and thus the statement $A_{0} \equiv_{e} B_{0}$ is proven.

The other five properties are corollaries of property (iv) and the definition of $I(\mathbf{a})$.

Using (v) and (vi) we obtain a characterization of the degrees in \mathcal{D}_1 in the form: An ω -enumeration degree **a** is in \mathcal{D}_1 iff $I(\mathbf{a})$ is a maximal element of $\{I(\mathbf{x}) \mid \mathbf{x} \in \mathcal{D}_{\omega}\}$ with respect to the set theoretical inclusion.

From here we obtain that the set of all degrees in \mathcal{D}_1 is first order definable in \mathcal{D}_{ω}' . Indeed, consider the binary predicate *I* defined by:

 $I(\mathbf{a}, \mathbf{x}) \iff \mathbf{a} \leq_{\omega} \mathbf{x} \And \forall \mathbf{y} (\mathbf{a} \leq_{\omega} \mathbf{y} <_{\omega} \mathbf{x} \Longrightarrow \mathbf{y}' <_{\omega} \mathbf{x}').$

Clearly $\mathbf{x} \in I(\mathbf{a}) \iff I(\mathbf{a}, \mathbf{x})$ and therefore:

$$\mathbf{a} \in \mathcal{D}_1 \iff I(\mathbf{a}) \text{ is maximal } \iff$$
$$(\forall \mathbf{x}(I(\mathbf{a}, \mathbf{x}) \Rightarrow I(\mathbf{b}, \mathbf{x})) \Longrightarrow \forall \mathbf{x}(I(\mathbf{b}, \mathbf{x}) \Rightarrow I(\mathbf{a}, \mathbf{x}))),$$

which is a first order formula.

∀b

The definability of \mathcal{D}_1 shows that every automorphism of \mathcal{D}_{ω}' induces an automorphism of the structure \mathcal{D}_1 . On the other hand, since \mathcal{D}_1 is a base of the automorphisms of \mathcal{D}_{ω} we have that if two automorphisms of \mathcal{D}_{ω} induce the same automorphism of \mathcal{D}_1 then they coincide. In particular every nontrivial automorphism of \mathcal{D}_{ω} induces a nontrivial automorphism of \mathcal{D}_1 .

Now we are going to prove that every automorphism of \mathcal{D}_e' can be extended to an automorphism of \mathcal{D}_{ω}' . We will use the following Theorem:

2.4. Theorem. Let φ be an automorphism of \mathcal{D}_e' . Then for all $\mathbf{a} \geq \mathbf{0}^{(4)}$, $\varphi(\mathbf{a}) = \mathbf{a}$.

The proof of the last theorem follows along the lines of the proof of the theorem that every automorphism of \mathcal{D}_{T}' is identity on the cone above $\mathbf{0}'''$ presented in [1].

Suppose that φ is an automorphism of \mathcal{D}_e' . We shall show, that given a sequence $\mathcal{A} \in \mathcal{S}$ one can construct a sequence \mathcal{B} such that $J^e_{\mathcal{B}} = \{\varphi(\mathbf{a}) : \mathbf{a} \in J^e_{\mathcal{A}}\}$. Indeed let $\mathbf{p}_k = d_e(\mathcal{P}_k(\mathcal{A}))$. Notice that if $k \geq 4$ then $\mathbf{p}_k \geq \mathbf{0}^{(4)}$ and hence $\varphi(\mathbf{p}_k) = \mathbf{p}_k$.

Fix some elements B_0, B_1, B_2, B_3 of $\varphi(\mathbf{p_0}), \varphi(\mathbf{p_1}), \varphi(\mathbf{p_2})$ and $\varphi(\mathbf{p_3})$ respectively and let for $k \ge 4$, $B_k = \mathcal{P}_k(\mathcal{A})$. Now let $\mathbf{x} \in J_{\mathcal{A}}^{e}$ and $X \in \mathbf{x}$. Then $d_{\omega}(\mathcal{A}) \leq_{\omega} \kappa(\mathbf{x})$ and hence $\mathcal{P}(\mathcal{A}) \leq_{u} X \uparrow \omega$. Since for all $k, \mathcal{P}_{k}(X \uparrow \omega)$ is enumeration equivalent to $X^{(k)}$ uniformly in k we have that for all $k, \mathcal{P}_{k}(\mathcal{A}) \leq_{e} X^{(k)}$ uniformly in k. Now let $Y \in \varphi(\mathbf{x})$. We have to show that $\mathcal{B} \leq_{u} Y \uparrow \omega$. For it is sufficient to show that for all $k, B_{k} \leq_{e} Y^{(k)}$ uniformly in k. Notice that for all $k, X^{(k)} \in \mathbf{x}^{(k)}$ and $Y^{(k)} \in \varphi(\mathbf{x}^{(k)})$. Hence $X^{(4)} \equiv_{e} Y^{(4)}$. From here it follows immediately that for all $k \geq 4, B_{k} \leq_{e} Y^{(k)}$ uniformly in k and hence $\mathcal{B} \leq_{u} Y \uparrow \omega$.

So we have proved the inclusion $\varphi(J^e_{\mathcal{A}}) \subseteq J^e_{\mathcal{B}}$. The proof of the reverse inclusion is similar.

Let $\Phi : \mathcal{D}_{\omega} \to \mathcal{D}_{\omega}$ be defined as follows. Given $\mathbf{a} \in \mathcal{D}_{\omega}$, let $\mathcal{A} \in \mathbf{a}$ and \mathcal{B} be such that $J^{e}_{\mathcal{B}} = \{\varphi(\mathbf{x}) : \mathbf{x} \in J^{e}_{\mathcal{A}}\}$. Let $\Phi(\mathbf{a}) = d_{\omega}(\mathcal{B})$.

Since for every two sequences \mathcal{A} and \mathcal{B} , $\mathcal{A} \leq_u \mathcal{B} \iff J^e_{\mathcal{B}} \subseteq J^e_{\mathcal{A}}$ the mapping Φ is well defined and is an automorphism of \mathcal{D}_{ω} . It is easy to see also that for every element **a** of \mathcal{D}_1 , $\Phi(\mathbf{a}) = \kappa(\varphi(\kappa^{-1}(\mathbf{a})))$. Hence for every element **x** of \mathcal{D}_1 we have that $\Phi(\mathbf{x}') = \Phi(\mathbf{x})'$. From here it follows that Φ is an automorphism of \mathcal{D}_{ω}' by means of the following:

2.5. Theorem. Let Φ be an automorphism of \mathcal{D}_{ω} such that for all $\mathbf{x} \in \mathcal{D}_1$, $\Phi(\mathbf{x}') = \Phi(\mathbf{x})'$. Then Φ is an automorphism of \mathcal{D}_{ω}' .

Thus we have shown that there is a mapping $\pi : \operatorname{Aut}(\mathcal{D}_e') \to \operatorname{Aut}(\mathcal{D}_\omega')$, acting by the rule $\pi(\varphi) = \Phi$, where Φ is defined from φ as above. It is clear that π is a homomorphism of groups and since \mathcal{D}_1 is an automorphism base for \mathcal{D}_{ω}' , we have that π is one to one. In order to show that π is an isomorphism of groups it remains to show that π is onto. Indeed, suppose that $\phi \in \operatorname{Aut}(\mathcal{D}_{\omega}')$. Then $\varphi = \kappa^{-1} \circ \phi_{|\mathcal{D}_1} \circ \kappa$ is an automorphism of \mathcal{D}_e' . Now, we have that

$$\pi(\varphi)_{|\mathcal{D}_1} = \kappa \circ \varphi \circ \kappa^{-1} = \kappa \circ \kappa^{-1} \circ \phi_{|\mathcal{D}_1} \circ \kappa \circ \kappa^{-1} = \phi_{|\mathcal{D}_1}$$

and hence $\phi = \pi(\varphi)$.

So we have proven the following theorem.

2.6. Theorem. The groups $\operatorname{Aut}(\mathcal{D}_e')$ and $\operatorname{Aut}(\mathcal{D}_{\omega}')$ are isomorphic.

Finally, according to [4] the jump operation in \mathcal{D}_e is first order definable and hence every automorphism of \mathcal{D}_e is an automorphism of \mathcal{D}_e' and vice versa, i.e., $\operatorname{Aut}(\mathcal{D}_e) = \operatorname{Aut}(\mathcal{D}_e')$. So we can reformulate Theorem 2.6 in the form:

2.7. Theorem. The groups $\operatorname{Aut}(\mathcal{D}_e)$ and $\operatorname{Aut}(\mathcal{D}_{\omega}')$ are isomorphic.

References

- M. Lerman, Degrees of unsolvability, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1983.
- [2] I. N. Soskov, The ω -enumeration degrees, Journal of Logic and Computation, to appear.
- [3] Ivan Soskov and Bogomil Kovachev, Uniform regular enumerations, Mathematical Structures in Comp. Sci. 16 (2006), no. 5, 901–924.
- [4] I. Sh. Kalimullin, Definability of the Jump Operator in the Enumeration Degrees, Journal of Mathematical Logic, Vol. 3, No. 2 (2003), 257-267

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, SOFIA UNIVERSITY, 5 JAMES BOURCHIER BLVD, 1164 SOFIA, BULGARIA

E-mail address: h.ganchev@gmail.com, soskov@fmi.uni-sofia.bg