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Abstract. We propose a meta-theorem from which some splitting theorem for
total e-degrees can be derived.

1 Introduction

Let A and B be two sets of natural numbers. We say that A ≤e B iff there is i ∈ N such
that

x ∈ A ⇐⇒ ∃u(〈x, u〉 ∈ Wi & Du ⊆ B),

where Wi is the i-th r.e. set of natural numbers and Du is the finite set with canonical
code u. We also define the enumeration operators Γi : P(N) → P(N) with Γi(B) = {x |
〈x, u〉 ∈ Wi & Du ⊆ B} for arbitrary B ⊆ N. Then

A ≤e B ⇐⇒ ∃i(A = Γi(B)).

The relation ≤e is reflexive and transitive, which allow us to define the equivalence
relation ≡e with A ≡e B ⇐⇒ A ≤e B & B ≤e A. The equivalence classes respect to
≡e are called enumeration degrees. The equivalence class generated by A is denoted with
de(A). The degrees bf a and bsatisfy the relation a ≤e b iff there is A ∈ a and B ∈ b,
such that A ≤e B.

We will say that the set A is total iff A ≤e A. Thus we obtain that a set A is total iff
A ≡e f where f is a total function.

Let A and B be two sets of natural numbers. We set A⊕B = {2x | x ∈ A}∪{2x+1 |
x ∈ B}. It is clear that, if A,B ≤e C, then A ⊕ B ≤e C. In this way de(A ⊕ B) is the
least upper bound for de(A) and de(B). We define A+ = A ⊕ A. A+ is a total set.

Finally we define the jump operator in the following way: Let A be an arbitrary set
of natural numbers. Let LA = {〈x, n〉 | x ∈ Γn(A)}. Then we define the jump of A to be
A′ = L+

A
.

2 Splitting theorems

We will say that τ is a (total) final part iff τ : {0, . . . , n − 1} → N for some n ∈ N. We
set lh(τ) = n. Every finite part is in fact a finite sequence of natural numbers and so we



will suppose that an effective coding of all finite parts is fixed. Thus the set of codes of
all finite parts is recursive. From now on we will not make a difference between the finite
part and its code. If τ is a finite part and x ∈ N we will denote with τ ∗ x the function
from {0, . . . , lh(τ)} in N for which: (τ ∗ x)(k) = τ(k) if k < lh(τ) and (τ ∗ x)(lh(τ)) = x.

Let B be a set of natural numbers. We say that the finite part τ is B-regular iff
lh(τ) = 2k and τ(2i + 1) ∈ B for all i < k. We say that the total function f is a regular
numeration of B if f(2N + 1) = B.

Let now T be a set of finite parts such that ∅ ∈ T and if x is arbitrary and τ ∈ T
then there is τ ′ ⊇ τ ∗ x, such that τ ′ ∈ T . Let also F be the set of all partial functions
such that infinitely many their finite parts are in T . For example if B is a set of natural
numbers then T can be the set of all B-regular finite parts and F is the set of all regular
numerations of B.

Lemma 1. Let R1, R2,. . . , Rn,. . . be a sequence of binary relations over F . Let A be a

total set such that T ≤e A and there are recursive in A functions φ and γ, such that for

all n ∈ N and all τ1, τ2 ∈ T :

(i) φ(n, τ1) ⊇ τ1 and φ(n, τ1, τ2) ∈ T ;
(ii) γ(n, τ2) ⊇ τ2 and γ(n, τ1, τ2) ∈ T ;
(iii) for all f, g ∈ F if f ⊇ φ(n, τ1) and g ⊇ γ(n, τ2), then Rn(f, g).

Then there are functions f, g ≤e A such that f ⊕ g ≡e A and for all n ∈ N Rn(f, g).

Now from the Lemma above we will derive some splitting theorems.

Theorem 1. Let A and B be sets of natural numbers such that A′ ≤e B and B is

total. Then there, are total functions f and g, such that A ≤e f, g, f 6≤e g, g 6≤e f and

f ⊕ g ≡e B

Proof. Let T be the set of all A-regular finite parts. Then F is the set of all regular
numerations of A. Set the relations Rn over F be:

(f, g) ∈ R2n ⇐⇒ g 6= Γn(f)

(f, g) ∈ R2n+1 ⇐⇒ f 6= Γn(g).

Then consider the function U(τ, n, k) that returns the less ρ ∈ T for which τ ⊂ ρ and
ρ ⊢ Fn(〈x, y〉) for some x, y ∈ N, where x > k, if such a ρ exists and returns τ otherwise.
It is clear that U is recursive in A′ and thus recursive in B. It is also clear that, if
U(τ, n, k) = τ , then for all f ∈ F that satisfy τ ⊆ f , if Γn(f) is a function, then it is a
finite part. Now using U we can construct the functions φ and γ of the lemma by setting:

φ(2n, τ1, τ2) = U(τ1, n, lh(τ2))

and γ(2n, τ1, τ2) = τ2 if U(τ1, n, lh(τ2)) = τ1 and µρ ∈ T [ρ ⊇ τ&ρ(x) 6= y] otherwise.
For 2n + 1, φ and γ are defined analogously. As T and U are recursive in B, φ and γ

are also recursive in B and so we can apply the lemma. Thus we obtain the desired total
functions f and g.

¤

Thus we obtain the following corollary:



Corollary 1. Let A be a total set with 0′ ≤e A. Then

A ≤e B ⇐⇒ (∀X−total)(X ≤e A ⇒ X ≤e B).

Let us now consider the sets B0, B1,. . . , Bn. We define the ”polynomials” P(B0, . . . , Bk)
in the following way:

1)P(B0) = B0;

2)P(B0, . . . , Bk) = P(B0, . . . , Bk−1)
′ ⊕ Bk for 1 ≤ k ≤ n

In [1] Soskov proved the following theorem:

Theorem 2. Let n > k ≥ 0 and B0, . . . , Bn be arbitrary sets of natural numbers. Let

A ⊆ N and Q be a total set such that P(B0, . . . , Bn) ≤e Q and A+ ≤e Q. Suppose also

that A 6≤e P(B0, . . . , Bk). Then there exists total set F having the following properties:

(1) for all i ≤ n Bi ≤e F (i);

(2) for all 1 ≤ i ≤ n F (i) ≡e F ⊕ P(B0, . . . , Bi−1);

(3) F (n) ≡e Q;

(4) A 6≤e F (k).

In order to prove the theorem Soskov introduced the notion of n-regular finite parts
and the notion of n-rank of n-regular finite part. He proved that the set of all n-regular
finite parts is e-reducible to Q. He formulated conditions ψi for the n-regular finite parts,
such that if f is a total function such that for all i ∈ N there is a n-regular finite part
τ ⊆ f for which ψi(τ), then f satisfies the properties of F in the theorem. He showed a
recursive in Q procedure to obtain n-regular τ with ψi+1(τ) from ρ ∗x, where x ∈ N and
ρ is n-regular satisfying ψi.

Let T be the set of all n-regular finite parts and define Ri as follows:

(f, g) ∈ Ri ⇐⇒ (∃τ ∈ T )(τ ⊆ f & ψi(τ)) & (∃τ ∈ T )(τ ⊆ g & ψi(τ)).

The conditions of the Lemma are satisfied and so we obtain:

Theorem 3. Let n > k ≥ 0 and B0, . . . , Bn be arbitrary sets of natural numbers. Let

A ⊆ N and Q be a total set such that P(B0, . . . , Bn) ≤e Q and A+ ≤e Q. Suppose

also that A 6≤e P(B0, . . . , Bk). Then there exists total sets F and G having the following

properties:

(1) for all i ≤ n Bi ≤e F (i) and Bi ≤e G(i);

(2) for all 1 ≤ i ≤ n F (i) ≡e F ⊕P(B0, . . . , Bi−1) and G(i) ≡e G ⊕P(B0, . . . , Bi−1);

(3) F (n) ≡e Q and G(n) ≡e Q;

(4) A 6≤e F (k) and A 6≤e G(k);

(5) F ⊕ G ≡e Q.

We can obtain the following

Corollary 2. Let Q be a total set such that 0(n) ≤e Q. Then there exists total sets F

and G such that F (n) ≡e G(n) ≡e Q and F ⊕ G ≡e Q.
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