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Abstract

This paper continues the project, initiated in [ACK], of describing

general conditions under which relative splittings are derivable in the lo-

cal structure of the enumeration degrees, for which the Ershov hierarchy

provides an informative setting.

The main results below include a proof that any high total e-degree

below 0
′

e
is splittable over any low e-degree below it, a non-cupping result

in the high enumeration degrees which occurs at a low level of the Ershov

hierarchy, and a ∅
′′′-priority construction of a Π0

1 e-degree unsplittable

over a 3-c.e. e-degree below it.
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1 Introduction

Following Friedberg and Rogers [FR], A is said to be enumeration reducible to B

(A ≤e B) if there exists an effective procedure for obtaining an enumeration of A

from any enumeration of B. It turned out that this relation is the most general

well-behaved means of computably comparing the positive information content

of sets. Indeed, Selman proved in [Se71] that this reducibility is a maximal

transitive relation of the relation “is Σ0
1 in”.

Enumeration reducibility can also be thought of as a fundamental form of

non deterministic reducibility: A ≤e B iff there exists a non deterministic oracle

Turing machine M that, when equipped with the semi-characteristic function

of B computes the semi-characteristic function of A (see [Mc84]). On the other

hand Scott [Sc75, Sc76] showed that the operators that arise naturally from the

above definition coincide precisely with the denotation of closed terms of the

type free lambda calculus under the graph model interpretation first suggested

by Plotkin in [Pl72]. Moreover, as Scott pointed out, enumeration reducibility

is tantamount, under this interpretation, to application by a closed lambda

term (see [Sc75, p. 538]). However much of the present interest in enumeration

reducibility stems from its relationship with the most widely studied relation in

computability theory, Turing reducibility (≤T ) and the latter’s degree structure,

the Turing degrees. In effect, being transitive and reflexive ≤e itself induces an

equivalence relation (≡e) on the powerset of N. As a result, two sets belong to

the same equivalence class if they contain the same positive information content

as stipulated by ≤e. We call the structure of these equivalence classes, under

the relation induced by ≤e, the enumeration degrees. This structure is an upper

semi-lattice with zero degree corresponding to the class of c.e. sets. Moreover,

there is a natural isomorphic embedding (ι) of the Turing degrees into the

enumeration degrees. We call the degrees belonging to this substructure total

(since any such degree is characterised by the fact that it contains the graph of a

total function). Accordingly, the enumeration degrees and its total substructure

can be considered as a more general setting for the study of the Turing degrees.

[SC08] represents work in this direction, and illustrates the potentialities of such

a viewpoint.

A jump operation for the enumeration degrees (with the same notation as

that for the Turing degrees) was defined by McEvoy and Cooper in [MC85,

Mc84]. This is defined in such a way that the jump is preserved under the

natural embedding. The jump operation gives rise to the local structure of

the enumeration degrees consisting of all enumeration degrees reducible to 0′e,
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the enumeration jump of the zero degree. Cooper [Co90] proves that the enu-

meration degrees in the local structure are exactly those containing Σ0
2 sets.

Furthermore the images of the computably enumerable Turing degrees under

the natural embedding are the Π0
1 enumeration degrees and the ∆0

2 Turing de-

grees embed onto a proper subset of the ∆0
2 enumeration degrees. Thus the

local structure of the enumeration degrees itself can be considered as a proper

extension of the local structure of the Turing degrees.

This paper continues the project, initiated in [ACK], of describing general

conditions under which relative splittings are derivable in the local structure of

the enumeration degrees.

The main results below include a proof that any high total e-degree below

0′

e is splittable over any low e-degree below it, a proof that there exists within

the high e-degrees a 3-c.e. e-degree which cannot be cupped to some 2-c.e.

(and so total) e-degree above it, and a ∅′′′-priority construction of a Π0
1 e-degree

unsplittable over a ∆2 e-degree below it.

In [ACK] it was shown that using semirecursive sets one can construct min-

imal pairs of e-degrees by both effective and uniform ways, following which new

results concerning the local distribution of total e-degrees and of the degrees

of semirecursive sets enabled one to proceed, via the natural embedding of the

Turing degrees in the enumeration degrees, to results concerning embeddings

of the diamond lattice in the e-degrees. A particularly striking application of

these techniques was a relatively simple derivation of a strong generalisation of

the Ahmad Diamond Theorem.

This paper extends the known constraints on further progress in this direc-

tion, such as the result of Ahmad and Lachlan [AL98] showing the existence of a

nonsplitting ∆0
2 e-degree > 0e, and the recent result of Soskova [Sos07] showing

that 0′
e is unsplittable in the Σ0

2 e-degrees above some Σ0
2 e-degree < 0′

e. This

work also relates to results (e.g. Cooper and Copestake [CC88]) limiting the

local distribution of total e-degrees.

For further background concerning enumeration reducibility and its degree

structure, the reader is referred to Cooper [Co90], Sorbi [Sor97] or Cooper [Co04,

chapter 11].

2 Splitting high degrees

We first show, building on [ACK], that suitably extensive intervals of enumer-

ation degrees below 0′

e can accommodate diamond lattice embeddings. The
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Ahmad Diamond Theorem [Ah91] then appears as a special case.

Theorem 1 If a < h ≤ 0′
e, a is low and h is total and high then there is a low

total enumeration degree b such that a ≤ b < h.

Corollary 2 Let a < h ≤ 0′
e, h be a high total e-degree, and a be a low e-

degree. Then there are ∆0
2 e-degrees b0 < h and b1 < h such that a = b0 ∩ b1

and h = b0 ∪ b1.

Proof of Corollary. Immediately follows from Theorem 1, and Theorem 6 of

[ACK]. �

Proof of Theorem 1. Assume A has low e-degree, H ⊕H has high e-degree (i.e.,

H has high Turing degree) and A ≤e H ⊕ H.

We want to construct an H-computable increasing sequence of strings {σs}s∈ω

such that the set B = ∪sσs satisfies the requirements

Pn : n ∈ A ⇐⇒ (∃y)[〈n, y〉 ∈ B]

and

Rn : (∃σ ⊂ B)[n ∈ W σ
n ∨ (∀τ ⊃ σ)[τ ∈ SA =⇒ n /∈ W τ

n ]]

for each n ∈ ω, where

SA = {τ : (∀x)(∀y)[τ(〈x, y〉) ↓= 1 =⇒ x ∈ A]}.

Note that Pn-requirements guarantee that A ≤e B, and hence A ≤e B ⊕B.

To prove that the Rn-requirements provide B′ ≡T ∅′, first note that SA ≡e A,

which has low e-degree, and

X = {〈σ, n〉 : (∃τ ⊃ σ)[τ ∈ SA & n ∈ W τ
n ]} ≤e SA.

Then X ∈ ∆0
2 and

n /∈ B′ ⇐⇒ (∃σ ⊂ B)[〈σ, n〉 /∈ X ],

so that B′ is co-c.e. in B ⊕ ∅′ ≡T ∅′. Thus B′ ≤T ∅′ by Post’s Theorem.

Since the set B will be computable in H , the set

Q = {n : (∀σ ⊂ B)(∃τ ⊃ σ)[τ ∈ SA & n ∈ W τ
n ]}

will be computable in (H ⊕ ∅′)′ ≡T H ′ – indeed, we have n ∈ Q ⇐⇒ (∀σ ⊂

B)[〈σ, n〉 ∈ X ], so that Q is co-c.e. in H ⊕ ∅′. Now to construct the desired

set B we can apply the Recursion Theorem and fix an H-computable function

g such that Q(x) = lims g(x, s).

Let {As}s∈ω and {SA
s }s∈ω be respective H-computable enumerations of A

and SA.
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The Construction:

Stage s = 0. σ0 = ∅.

Stage s + 1 = 2〈n, z〉 (to satisfy Pn). Given σs define l = |σs|.

If n /∈ As, then let σs+1 = σŝ0.

If n ∈ As, then choose the least k ≥ l such that k = 〈n, y〉 for some y ∈ ω

and define σs+1 = σŝ0k−l̂1 (so that σs+1(k) = 1).

Stage s+1 = 2〈n, z〉+1 (to satisfy Rn). H-computably find the least stage

t ≥ s such that either g(n, t) = 0, or n ∈ W τ
n,t for some τ satisfying τ ∈ SA

t

and τ ⊃ σs. (Such stage t exists since if lims g(n, s) = 1 then n ∈ Q, and hence

there exists some τ ⊃ σs such that n ∈ W τ
n and τ ∈ SA.)

If g(n, t) = 0 then define σs+1 = σŝ0.

Otherwise, choose the first τ ⊃ σs such that τ ∈ SA
t and n ∈ W τ

n,t. Define

σs+1 = τ.

This completes the description of the construction.

Let B = ∪sσs. Clearly B ≤T H since each σs is obtained effectively in H.

Each Pn-requirement is satisfied via the even stages of the construction since

σs ∈ SA for any s ∈ ω.

To prove that each Rn-requirement is met suppose that

(∀σ ⊂ B)(∃τ ⊇ σ)[τ ∈ SA & n ∈ W τ
n ]

for some n. This means that n ∈ Q. Choose any odd stage s = 2〈n, z〉+ 1 such

that g(n, t) = 1 for all t ≥ s. Then by the construction n ∈ W σs
n .

Hence A ≤e B ⊕ B ≤e H ⊕ H , and dege(B ⊕ B) is low. �

3 Non-cupping and the Ershov hierarchy

Cooper, Sorbi and Yi [CSY] constructed below 0′
e an enumeration degree not

cuppable to 0′
e, but showed that every non-zero ∆0

2 e-degree is cuppable to 0′
e.

In particular, every non-zero low e-degree is so cuppable. They also showed that

there is a low e-degree c bounding a non-zero e-degree b which is not cuppable

to c. The following result establishes a non-cupping result at the other end of

the high-low hierarchy, and at a surprisingly low level of the Ershov hierarchy.

Theorem 3 There are high enumeration degrees h < a such that h is 3-c.e., a

is 2-c.e. (and hence total) and h is not cupped to a.

Proof. We will enumerate c.e. sets A and B such that a = deg(A) and h =

deg(H) are the required degrees, where H = A∪B. Note that we automatically
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have H ≤e A. The symbols As and Bs will denote finite sets of elements

enumerated in A and B respectively at stages ≤ s. Let Hs be As ∪ Bs. We

meet the requirements

Ni : A = Φi(Θ
A
i ⊕ H) =⇒ A ≤e ΘA

i ,

Qi : ϕi total =⇒ (∃z)(∀x > z)[ϕi(x) ≤ cH(x)],

where {Φi, Θi}e∈ω is some effective listing of all pairs of e-operators, {ϕi}i∈ω is

an effective listing of all p.r. functions and

cH(x) = (µs ≥ x)[Hs ↾ x ⊆ H ↾ x].

By [MC85] the Q-requirements imply highness of the e-degree of the set H .

The strategy for an Ni, i ∈ ω, requirement acts as follows:

• Wait for a stage s such that for some integer y and finite sets F ⊆ As and

G we have y ∈ A ∩ Φ
ΘF

i ⊕G

i [s].

• Enumerate G in B and restrain F from being enumerated in A.

If there is a stage s with such y, F and G then we were successful in satisfying

the Ni-requirement diagonalizing A against Φ
ΘA

i ⊕H

i via y. Otherwise (if there

are no such y, F, G) the assumption A = Φ
ΘA

i ⊕H

i would imply A ≤e ΘA.

The strategy for a Qi, i ∈ ω, requirement acts as follows:

With this requirement we associate the column {〈i, n〉 | n ∈ ω}. Then,

• Wait for a stage s1 such that ϕi(x) ↓< s1 for each x ≤ 〈i, 1〉.

• Enumerate 〈i, 0〉 in A. Restrain 〈i, 0〉 from being enumerated in B.

• Wait for a stage s2 > s1 such that ϕi(x) ↓< s2 for each x ≤ 〈i, 2〉.

• Enumerate 〈i, 1〉 in A. Restrain 〈i, 1〉 from being enumerated in B.

...

• Wait for a stage sk+1 > sk such that ϕi(x) ↓< sk+1 for each x ≤ 〈e, k+1〉.

• Enumerate 〈i, k〉 in A. Restrain 〈i, k〉 from being enumerated in B.
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Now, if φi is total then cH would dominate φi beginning at 〈i, 0〉.

There is an obvious conflict between N and Q-requirements (a Q-requirement

restrains an element 〈i, k〉 from being enumerated in B, but an N -requirement

enumerates it in B). This conflict is solved by an ordering of the strategies on

the priority tree (Q-strategies of can guess the result of an N -strategy of higher

priority, which produces either empty, or co-finite column in H).

Let T = ω<ω be the tree of nodes (strings) of our construction with the

root node ∅, the concatenation ̂, and the usual orderings ⊂, <L and ≺:

σ ⊂ τ ⇐⇒ (∃ρ 6= ∅)[τ = σ̂ρ],

σ <L τ ⇐⇒ (∃ρ ∈ T )(∃m)(∃n < m)[ρ̂n ⊆ σ & ρ̂m ⊆ τ ],

σ ≺ τ ⇐⇒ ρ ⊂ τ ∨ ρ <L τ.

We also can consider the reflexive versions of these orderings: ⊆, ≤L and �.

Fix some 1 − 1 computable map n : T −→ ω.

We attach each node σ with the even length |σ| = 2i with the requirement

Ni, and we attach each node σ with the odd length |σ| = 2i + 1 with the

requirement Qi.

Notation. For every set X ⊆ ω and σ ∈ T let

X [≺σ] =
⋃

{X [n(τ)] : τ ≺ σ}

and Sσ
0 (X) =

⋃
{X [n(τ)] : τ ̂0 ⊆ σ & |τ | is odd}.

Given As and Hs at some stage s we define the following parameters:

lN (σ, s) = max{x≤s : (∀y<x)(∀t<x)[y /∈ As ∩ Φi,s(Θi,s(
s
∩

u=t
As) ⊕

s
∩

u=t
Hs)]}

if |σ| = 2i, and

lQ(σ, s) = max({0}∪{x ≤ s : (∀y ≤ 〈n(σ), x〉)[ϕi,s(y) ↓< s]}) if |σ| = 2i+1.

The Construction.

The initialization of a node σ at stage s ∈ ω just means that we mark the

node as initialized commencing with this stage.

Stage s = 0. Set A0 = B0 = ∅ and δ0 = ∅. No node is initialized at stage

s = 0.

Stage s + 1.

Step 1. (The definition of δs+1.) Define the string δs+1 ∈ T with the length

s + 1 by the induction below. Assume δ ↾ n = σ is defined and n ≤ s.

7



Suppose n = 2i (i.e. σ is a N -node.) Let δs+1(n) = m > 0 if

1) lN (σ, s) ≤ max{lN (σ, t) : t < s & σ ⊆ δt},

2) m = (µk > 0)[σ̂k is not initialized at stages ≤ s].

Otherwise δs+1(n) = 0.

Suppose now that n = 2i + 1 (i.e. σ is a Q-node.) Then define δs+1(n)

exactly as above but with lQ instead lN .

Step 2. (The action.) A node σ requires attention at stage s + 1 if

1) |σ| = 2i,

2) σ̂0 ⊆ δs+1,

3) there is y ≤ s, such that y ∈ As ∩ Φi,s(Θ
F
i,s ⊕ G) for some finite F, G such

that F ⊆ As, G[≺σ] ⊆ Hs and Sσ
0 (F ) = Sσ

0 (G) = ∅.

Case 1. There is a node σ which requires attention. Then fix one such σ0

with the least length; choose the corresponding finite sets F and G (with the

least sum of their canonical indices); enumerate the set G into B.

Also, for all odd nodes σ (i.e. |σ| = 2i + 1 for some i), such that σ̂0 ⊂ σ0,

enumerate into A all pairs 〈n(σ), x〉 for each x < lQ(σ, s). Choose a sufficiently

large z (in particular, greater than all elements of F and G) and initialize all

nodes α ≻ σ0 such that n(α) < z.

We say σ0 receives attention at stage s + 1.

Case 2. There is no node which requires attention. Then for all odd nodes

σ, such that σ̂0 ⊂ δs+1, enumerate in A all pairs 〈n(σ), x〉 for each x < lQ(σ, s).

Choose a sufficient large z and initialize all nodes α, such that δs+1 <L σ and

n(α) < z.

Then for all odd nodes σ (i.e. |σ| = 2i + 1 for some i), such that σ̂0 ⊂ σ0,

enumerate in A all pairs 〈n(σ), x〉 for each x < lQ(σ, s). Choose a sufficiently

large z and initialize all nodes α ≻ σ0 such that n(α) < z. Go to the next stage.

Let σ ⊂ δ indicate that σ ⊆ δs for infinitely many s and δs <L σ for only

finitely many s.

Lemma 4 a) No node σ ⊂ δ can be initialized during the construction.

b) S0
σ(A) = S0

σ(H) = ∅ for every σ ⊂ δ.

c) H [≺σ] is computable for every σ ⊂ δ.

d) There is the true path δ, namely the infinite path containing all σ such that

σ ⊂ δ.

Proof. a) Suppose not. Let σ be the ⊂-least node, such that σ ⊂ δ, which is

initialized at some stage. Let this stage be stage s + 1, say.

8



If Case 2 holds at this stage then δs+1 <L σ. Hence, for some ρ ⊂ δs+1 and

m > 0 we have ρ̂m ⊆ σ. Since by the construction σ 6⊆ δt for any t > s, this

contradicts σ ⊂ δ.

Suppose now that Case 1 holds at stage s + 1, and the node σ0 receives

attention at this stage. Let |σ0| = 2i. Again, if σ0 <L σ or σ0̂m ⊆ σ, with

m > 0, then σ 6⊆ δt for every t > s, which is impossible. Hence, σ0̂0 ⊆ σ.

By the choice of σ, node σ0 cannot be initialized. Hence, for some y ≤ s

we have y ∈ As+1 ∩ Φi,s+1(Θ
F
i,s+1 ⊕ G), where F ⊆ At and G ⊆ Ht for every

t > s. It follows that lN(σ0, t) ≤ s for all t > s. But this contradicts the fact

that σ0̂0 ⊆ σ ⊂ δ.

b) If τ̂0 ⊆ σ ⊂ δ and |τ | is odd then lims lQ(τ, s) = ∞ so that each element

of ω[n(τ)] will be enumerated into A during the construction. No element from

ω[n(τ)] will be enumerated into B since τ cannot be initialized.

c) Since σ ⊂ δ = lims δs we have H [n(τ)] = ω[n(τ)] for almost every τ ≺ σ

(that is, apart from finitely many). Furthermore, for each τ ≺ σ either the set

H [n(τ)] is finite or the set ω[n(τ)] − H [n(τ)] is finite.

d) Suppose that there is a ⊂-maximal σ ⊂ δ. By a) σ cannot be initialized,

and can receive attention at only finitely many stages (if |σ| is even). By the

choice of σ we have σ̂0 ⊆ δs at only finitely many stages. Let s0 be a stage

greater than all these above mentioned stages such that σ̂m ⊆ δs0
for some

m > 0. Then σ̂m ⊂ δ. Which gives a contradiction. �

Lemma 5 Ni is satisfied for each i ∈ ω.

Proof. Suppose A = Φi(Θ
A
i ⊕ H) and choose σ ⊂ δ such that |σ| = 2i. Then

lims lN (σ, s) = ∞, σ̂0 ⊂ δ, and σ never receives attention.

Then for all y ∈ ω

y ∈ A ⇐⇒ (∃ finite G, R)[y ∈ ΦR⊕G
i & R ⊆ ΘA

i & G[≺σ] ⊆ H [≺σ]].

Indeed, the left-to-right implication is evident. For the reverse direction suppose

that y ∈ A ∩ ΦR⊕G
i , where R ⊆ ΘA

i and G[≺σ] ⊆ H [≺σ]]. Let F ⊆ A be such

finite set that R ⊆ ΘF . By Lemma 1 b) we have S0
σ(F ) = S0

σ(G) = ∅. Then σ

requires and receives attention at some stage, which is impossible.

Since H [≺σ] is computable by Lemma 1 c), we have A ≤e Θi(A). �

Lemma 6 Qi is satisfied for each i ∈ ω.

Proof. Let σ ⊂ δ be such node that |σ| = 2i + 1. Suppose that ϕi is total.

Then lims lQ(σ, s) = ∞, and therefore σ̂0 ⊂ δ and H [n(σ)] = B[n(σ)] = ∅. It
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will suffice to prove that ϕi(y) < cH(y) = (µs ≥ y)[Hs ↾ y ⊆ H ↾ y] for every

y > 〈n(σ), 0〉. Suppose not, so that cH(y) ≤ ϕi(y) for some y > 〈n(σ), 0〉.

Let 〈n(σ), x − 1〉 < y ≤ 〈n(σ), x〉 for some x > 0. Then there is a stage

sy + 1 ≤ ϕi(y) at which 〈n(σ), x − 1〉 was enumerated into A, that is at which

we have 〈n(σ), x − 1〉 ∈ Hsy
− Hsy+1. Then by the construction σ̂0 ⊆ δsy+1

and x − 1 < lQ(σ, sy). But then x ≤ lQ(σ, sy), so that ϕi(y) < sy by the

definition of lQ, a contradiction. �

This completes the proof of the theorem. �

4 Non-splitting and the Ershov hierarchy

It is easy to see, using the natural embedding of splitting results from the Tur-

ing degrees, that the nonsplitting degree > 0e given by the Ahmad-Lachlan

nonsplitting theorem is necessarily properly ∆0
2. While previous splitting re-

sults from [ACK] show that the nonsplitting base given by the Soskova [Sos07]

nonsplitting theorem for 0′

e is at best properly Σ0
2. We show below that, sur-

prisingly, there is a Π0
1 e-degree which is not splittable over some ∆0

2 e-degree

— in fact, unsplittable over one which is 3-c.e.

Theorem 7 There is a Π0
1 e-degree a and a 3-c.e. e-degree b < a such that a

is not splittable over b.

Proof. Cooper [Co90] has shown that the class of the Π0
1 enumeration degrees

coincides with the class of the 2-c.e. enumeration degrees. We shall there-

fore construct a 2-c.e. set A and 3-c.e. set B satisfying the following list of

requirements:

1. We have a global requirement which ensures that B ≤e A via an enumer-

ation operator Ω constructed by us:

S : B = ΩA.

2. To ensure the non-splitting property of the degree of A consider a com-

putable enumeration of all triples of enumeration operators {(Ξ, Ψ, Θ)i}i<ω.

We denote the members of the i-th triple by Ξi, Ψi and Θi. For every i

we shall have a requirement:

Pi : A = Ξ
ΨA

i ,ΘA
i

i ⇒ (∃Γi, Λi)[A = Γ
ΨA

i ,B

i ∨ A = Λ
ΘA

i ,B

i ].

3. Finally we need to ensure that the degree of A is strictly greater than the

degree of B. Let {Φe}e<ω be a computable enumeration of all enumera-

tion operators. For every e we shall have a requirement:

Ne : A 6= ΦB
e .
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An overview of the strategies

The requirements shall be given the priority ordering:

S < P0 < N0 < P1 < N2 < . . .

In the course of the construction whenever we enumerate an element in

the set B, we will enumerate a corresponding axiom in the set Ω. Whenever we

extract an element from B, we invalidate the corresponding axiom by extracting

an element from A. Thus the global requirement S shall be satisfied without an

explicit strategy on the tree ensuring this. More precisely every element n that

enters B will be assigned a marker ω(n) in A and an axiom 〈n, {ω(n)}〉 in Ω.

If n is extracted from B then we extract ω(n) from A. This can happen only

once as we will be constructing a 3-c.e. approximation to the set B. If n is later

re-enumerated in B, it will remain in B forever and we can just enumerate the

axiom 〈n, ∅〉 in Ω.

To satisfy a P-requirement working with the triple (Ξ, Ψ, Θ) we will initially

attempt to reduce A to the set ΨA ⊕ B by constructing an e-operator Γ to

witness this. In this case as well the enumeration of elements in A is always

accompanied by an enumeration of axioms in Γ, and extraction of elements from

A can be rectified via B-extractions.

The N -strategies follow a variant of the Friedberg-Muĉnik strategy (FM -

strategy) while at the same time respecting the rectification of the operators

constructed by higher priority strategies. We shall use labels for N -strategies

which clarify with respect to which constructed operators they work. An N -

strategy working with respect to the initial P-strategy, for example, shall be

denoted by (N , Γ). The (N , Γ)-strategy working with the operator Φ shall

choose a witness x, enumerate it in A and then wait until x ∈ ΦB. If this

happens it shall extract the element x from A while restraining B ↾ use(Φ, B, x)

in B.

The need to rectify Γ after the extraction of the witness x from A can be

in conflict with the restraint on B. To resolve this conflict we try to obtain a

change in the set ΨA which would enable us to rectify Γ without any extraction

from the set B. We introduce an explicit P-strategy on the tree whose only

job will be to monitor the length of agreement l(ΞΨA,ΘA

, A)[s] at every stage s.

The (N , Γ)-strategy will proceed with actions directed at a particular witness

once it is below the length of agreement. This ensures that the extraction of x

from A will have one of the following consequences.

1. The length of agreement will never return to its previous value as long as

at least one of the axioms that ensure x ∈ ΞΨA,ΘA

remains valid. In this
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case the P-requirement is satisfied and we can use the simple FM -strategy

for N .

2. The length of agreement returns and there is a useful extraction from

the set ΨA rectifying Γ. The P-strategy remains intact while the (N , Γ)-

strategy is successful.

3. The length of agreement returns and there is an extraction from the set

ΘA.

We will initially assume that the third consequence is true and commence a

backup strategy (N , Λ) which is devoted to building an enumeration operator

Λ attempting to reduce A to ΘA ⊕ B. This strategy will work with the same

witness which it receives from (N , Γ). It will use the change in ΘA in order to

satisfy its own requirement. Only when we are provided with evidence that our

assumption is wrong will we return to the initial strategy (N , Γ)-strategy.

Basic cases

To provide the reader with more intuition about the construction we shall discuss

a few simpler cases before we proceed with the general construction. We start

off with the simplest case of just one N -requirement below one P-requirement.

Then we shall explain how we can deal with all N -requirements below a single

P-requirement. Finally we will discuss how to handle an N -requirement working

with respect to two P-requirements.

One N -requirement below one P-requirement

Consider a P-requirement associated with the triple (Ξ, Ψ, Θ) and an N -requirement

associated with the enumeration operator Φ. We describe the strategies associ-

ated with each requirement and at the same time define the first few levels of

the tree of strategies.

The (P , Γ)-strategy

The root of the tree is associated with the (P , Γ)-strategy. We will denote it by

α. It will have two outcomes e <L l. At stage s the strategy α will monitor

all elements x /∈ A[s]. If there is an element x /∈ A[s] such that x ∈ ΓΨA,B[s]

then the operator Γ cannot be rectified. We shall later see that this yields

x ∈ ΞΨA,ΘA

[s] and the P-requirement is satisfied. The strategy α shall have

outcome l in this case. Strategies working below this outcome will follow the
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simple FM -strategy. If for every element x /∈ A ⇒ x ∈ ΓΨA,B the strategy shall

have outcome e and the (N , Γ)-strategy shall be activated.

At stage s the strategy α acts as follows:

1. Scan all witnesses x /∈ A[s] defined at stages t ≤ s.

2. If x ∈ ΓΨA,B[s], then let the outcome be o = l.

3. If all witnesses are scanned and none has produced an outcome o = l, then

let the outcome be o = e.

The (N , Γ)-strategy

The N -requirement below outcome e will be assigned to an (N , Γ)-strategy

denoted by β. It will have four outcomes: three finitary outcomes, f , w and l,

and one infinitary outcome g, arranged in the following way: g <L f <L w <L l.

The strategy first defines a witness x, enumerates it in the set A and then

waits for this witness to enter the set ΞΨA,ΘA

. While it waits the outcome is l

indicating a global win for the P-requirement as A(x) 6= ΞΨA,ΘA

(x).

If the witness x enters the set ΞΨA,ΘA

then there is a valid axiom of the

form 〈x, G(x) ⊕ H(x)〉 ∈ Ξ with G(x) ⊆ ΨA and H(x) ⊆ ΘA. The strategy β

shall then define a B-marker for x, γ(x) and enumerate it in the set B. This

is accompanied by enumerating a corresponding axiom for γ(x) in Ω. Then it

shall define a new axiom for x in Γ of the form 〈x, G(x) ⊕ (B ↾ γ(x) + 1)〉.

While x /∈ ΦB it has outcome w. Finally if x ∈ ΦB the strategy shall perform

capricious destruction on the operator Γ by extracting the marker γ(x) from

B. Then instead of extracting the witness x from the set A, it shall send the

witness x to a backup (N , Λ)-strategy which will be described in detail later

and have outcome g. After this β starts a new cycle with a new witness x1. As

the old witness x is still in the set A but has no valid axiom in the operator

Γ, the strategy shall rectify the operator Γ at x, using the axiom that will be

defined for the new witness x1. If the old witness x is later returned by the

backup strategy then it was extracted from the set A with no useful extraction

from the set H(x). Thus if x /∈ ΞΨA,ΘA

then there is a useful extraction in

G(x). The strategy β shall then restore the set B by reenumerating the marker

γ(x). If at the next stage the (P , Γ)-strategy α does not see a global win for its

requirement then G(x) * ΨA, the operator Γ is rectified and β can successfully

preserve x ∈ ΦB \ A at further stages. It will have outcome f in this case.

Every witness or marker that we define shall be selected as a fresh number,

one that has not yet appeared in the construction so far under any form.
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At stage s the strategy β will initially start its work at Setup and then later

from the step of the module indicated at the previous stage.

• Setup:

1. Choose a new current witness x as a fresh number. Enumerate x in

A[s].

2. If x /∈ ΞΨA,ΘA

[s] then let the outcome be l and return to this step

at the next stage. Otherwise define G(x) and H(x) to be finite sets

such that x ∈ ΞG(x),H(x)[s], G(x) ⊆ ΨA[s], H(x) ⊆ ΘA[s]. Go to the

next step.

3. Define the B-marker γ(x), along with its A-marker ω(γ(x)), as fresh

numbers. Enumerate γ(x) in B[s] and ω(γ(x)) in A[s]. Enumerate a

new axiom 〈γ(x), {ω(γ(x))}〉 in Ω[s].

Enumerate each 〈z, Gx⊕(B ↾ γ(x)+1)〉 in Γ, where z ∈ A[s] is either

x, or ω(γ(x)), or a witness from a previous cycle of the strategy for

which there is no valid axiom in Γ. This axiom for x shall be called

the main axiom for x in Γ. Let the outcome be o = w. Go to Waiting

at the next stage.

• Waiting: If x ∈ ΦB[s] then go to Attack. Otherwise let the outcome be

o = w and return to Waiting at the next stage.

• Attack:

1. Check if any previously sent witness has been returned. If so go to

Result. Otherwise go to the next step.

2. Define λ(x) = max(use(Φ, B, x)[s], γ(x) + 1) and R[s] = γ(x). Ex-

tract γ(x) from B[s] and ω(γ(x)) from A[s]. Note that the extraction

of ω(γ(x)) does not injure x ∈ ΞΨA,ΘA

[s] as the marker is defined as

a fresh number larger than max(use(Ψ, A, G(x)), use(Θ, A, H(x))).

Send x. Let the outcome be o = g. At the next stage start from

Setup, choosing a new current witness. The strategy working below

outcome g will work under the assumption that B does not change

below the right boundary R[s].

• Result: Let the returned witness be x. Enumerate γ(x) back in B[s]

and 〈γ(x), ∅〉 in Ω[s]. Cancel each witness z ∈ A[s] of this strategy by

enumerating the axiom 〈z, ∅〉 in Γ[s]. Let the outcome be o = f . Return

to Result at the next stage.
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The backup strategies

We have two backup strategies: a (P , Λ)-strategy α̂ and an (N , Λ)-strategy β̂.

The (P , Λ)-strategy α̂ will only monitor the status of the sent witnesses. If

it spots a witness that is ready to be sent back it will do so ending the stage

prematurely. It has only one outcome e. At stage s it operates as follows:

1. Scan all sent witnesses x /∈ A[s].

2. If x ∈ ΛΘA,B[s] then return x. End this stage.

3. If all witnesses are scanned and none are returned then let the outcome

be e.

The (N , Λ)-strategy β̂ shall wait for an available witness x to be sent by β.

It shall enumerate the axiom 〈x, H(x)⊕ (B ↾ λ(x))〉 in the operator Λ and carry

on with the usual FM -strategy: wait for x ∈ ΦB with outcome w, then extract

x from A. If this does not entail a useful extraction from the set H(x) then α̂

shall send the witness x back and β̂ shall not be accessible at further stages. If

β̂ is visited again then it shall have outcome f . At stage s the (N , Λ)-strategy

β̂ operates as follows:

• Setup: Let x ∈ A[s] be a new witness which was sent by the (N , Γ)-

strategy. Now x becomes the witness of the (N , Λ)-strategy. Enumerate

〈x, H(x) ⊕ (B[s] ↾ λ(x) + 1)〉 in Λ[s]. This is the main axiom for x in Λ.

Go to Waiting.

• Waiting: If x ∈ ΦB[s] and use(Φ, B, x)[s] < R[s] then go to Attack.

Otherwise the outcome is o = w, return to Waiting at the next stage.

• Attack: Extract x from A[s]. Go to Result.

• Result: Let the outcome be o = f . Return to Result at the next stage.

The next picture shows the first few levels of the tree of strategies:
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(P0, Γ0)

e l

(N0, FM0)

(N0, Γ0)

g f w l

(N0, FM0)
e

(P0, Λ0)

(N0, Λ0)

f w

When we inspect the tree in detail we notice that we might visit an (N , FM)-

strategy on several occasions, allow it to enumerate its own witness in the set A

and then initialize it. In the design of the operators Γ and Λ we have neglected

to enumerate axioms for such elements. If the (N , FM)-strategy manages to

extract from A its witness before it is initialized then this will not cause any

errors in the constructed operators. If the element is still in A then we could

have a problem. To avoid this every time we initialize an (N , FM)-strategy

we will enumerate axioms 〈x, ∅〉 in both Γ and Λ for every witness x of this

strategy which is not extracted from the set A. This extra action will keep Γ

and Λ always rectified.

Many N -strategies below one P-strategy

To incorporate a further N -strategy in the construction described in the previ-

ous section we use the same basic ideas. The second N -requirement N1 shall be

assigned to an (N1, FM)-strategy below the l-outcomes of both α and β. Below

β’s outcomes w and f we have (N1, Γ)-strategies βˆw and β f̂ which operate

just like the strategy β described above. Similarly below the outcome f and w

of the backup strategy β̂ we have (N1, Λ)-strategies β̂ˆw and β̂ f̂ which operate

just like the strategy β̂.
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(P0, Γ0)

e l
(N0, FM0)

f w

(N1, FM0)

(N0, FM0)

f w

(N1, FM0)

(N0, Γ0)

g f w l

(N1, Γ0) (N1, Γ0)

(P0, Λ0)

e
(N0, Λ0)

f w

(N1, Λ0) (N1, Λ0)

We only need to take extra care to keep the constructed operators Γ and

Λ rectified at elements enumerated in A by strategies that are later initialized.

Firstly we will use the initialization rule inspired by the (N , FM)-strategy de-

scribed in the previous section. Whenever we initialize an N -strategy α we will

enumerate axioms 〈x, ∅〉 in all operators constructed by higher priority strategies

β < α for every witness x of α which is not extracted from the set A.

This action is sufficient if the initialized strategy does not enumerate axioms

in any of the constructed operators. An (N , Γ)-strategy such as βˆw or β̂ˆw

however enumerates axioms in the operator Γ. When it is initialized it will stop

monitoring the correctness of Γ at its witnesses. We will therefore enumerate an

axiom 〈z, ∅〉 in Γ if z ∈ A is a witness of the initialized strategy or an Ω-marker

defined by this strategy.

If a witness of the initialized strategy is already extracted from the set A

we need to ensure that there are no valid axioms for it in Γ. We will modify

the axioms a bit to ensure this. We will transfer the responsibility for the

rectification of an operator at witnesses of initialized strategies to the strategy

which initializes them. We notice that an N -strategy such as β initializes the

(N , Γ)-strategies below its outcome w only when it invalidates an axiom for its

witness. The axiom for this witness will continue to be invalid at all further

stages at which β is visited. So whenever we define an axiom for a witness x of

a strategy extending βˆw it shall have the form 〈x, G(x) ⊕ (B ↾ γ(x) + 1) ∪ U〉,

where U is the union of all sets D such that 〈v, D〉 is a valid axiom in Γ and

v ∈ A is a witness of a higher priority (N , Γ) strategy constructing the same

operator Γ. Thus if β with current witness v initializes the strategies extending

βˆw which had enumerated an axiom for a witness x, then this axiom contains
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an axiom for v which will be invalid at further stages, making the axiom for x

invalid as well.

Similarly the axioms enumerated in Λ shall have the form 〈x, (H(x) ⊕ B ↾

λ(x)) ∪ U〉, where U is the union of all finite sets D such that 〈v, D〉 ∈ Λ and

v ∈ A is a witness of a higher priority (N , Λ)-strategy, constructing the same

operator Λ.

One N -requirement below two P-requirements

Before we present the full construction we shall discuss the design of an N -

strategy working with respect to two P-requirements. Each new Pi-requirement

is initially assigned a (Pi, Γi)-strategy. Suppose we have two such successive

strategies α0 and α1 working on the requirements P0 and P1 and with the

operators Γ0 and Γ1, respectively. The most general of the strategies for an N -

requirement below P0 and P1 is the one placed below both e-outcomes, denote it

by β. This is an (N , Γ0, Γ1)-strategy which now needs to respect the rectification

of both constructed operators Γ0 and Γ1.

(P0, Γ0)

e l
(P1, Γ1)

e l
(N , Γ0, Γ1)

g f w l1 l0 (P1, Γ1)

e l

(N , FM0, Γ1) (N , FM0, FM1)

The strategy β selects a witness x which is enumerated in A. Before x can

start its journey along the tree β needs to setup its axioms in both operators

Γ0 and Γ1. The setup module comes in two copies, one for each operator. The

rectification of the operator Γ0 has higher priority, so β first tries to find a valid

axiom for x in Ξ
ΨA

0
,ΘA

0

0 . If the strategy is unsuccessful it has true outcome l0 and

P0 is globally satisfied. The operator Γ1 will remain unrectified at this point and

therefore we need to restart the P1-strategy below outcome l0. Once the sets

G0(x) and H0(x) are successfully defined the strategy defines the markers γ0(x)
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and ω(γ0(x)) and enumerates the necessary axioms in the operators Γ0 and Ω.

The strategy β then proceeds to search for a valid axiom for x in Ξ
ΨA

1
,ΘA

1

1 . If it

cannot find such an axiom the outcome is l1, P1 is satisfied and the operator Γ0

is correct. After β has successfully defined the sets G1(x) and H1(x) as well it

defines markers γ1(x) and ω(γ1(x)) and enumerates the necessary axioms in the

operators Γ1 and Ω for x and for both markers ω(γ1(x)) and ω(γ0(x)). Finally

we need to enumerate an axiom in Γ0 for the newly defined ω(γ1(x)). The

marker ω(γ1(x)) belongs to A if and only if the marker γ1(x) belongs to B and

x belongs to A. Thus we enumerate an axiom which reflects this - constructed

from the axiom enumerated in Γ0 for x by adding the marker γ1(x).

The strategy β then waits for x to enter ΦB with outcome w while x /∈

ΦB. Once x enters the set ΦB the strategy β needs to ensure useful extrac-

tions from both sets G0(x) and G1(x). Of course the extraction of x from A

might cause changes in any of the combinations [G0(x), G1(x)], [G0(x), H1(x)],

[H0(x), G1(x)], [H0(x), H1(x)]. Therefore we will need a backup strategy for

each of these combinations.

β

g f w l1 l0α̂1

β′

g f wα̂0

α′
1

β′′

g f w l1α̂′
1

β′′

f w

β : (N , Γ0, Γ1)

α̂1 : (P1, Λ1)

β′ : (N , Γ0, Λ1)

α̂0 : (P0, Λ0)

α′
1 : (P1, Γ

′
1)

β′′ : (N , Λ0, Γ
′
1)

α̂′
1 : (P1, Λ

′
1)

β′′′ : (N , Λ0, Λ
′
1)

The strategy β performs capricious destruction only on the operator Γ1 by

extracting the marker γ1(x) from B and correspondingly ω(γ1(x)) from A. Note

that this action does not injure x ∈ Ξ
ΨA

0
,ΘA

0

0 as the marker ω(γ1(x)) is defined

as fresh number after the definition of G0(x) and H0(x). The strategy then

sends the witness x to the first backup strategy β′, an (N , Γ0, Λ1)-strategy

which constructs the same operator Γ0 and uses the set H1(x) to enumerate

an axiom for x in the new operator Λ1. This strategy requires for success the
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second combination of useful changes [G0(x), H1(x))]. If the witness x reappears

in ΦB the strategy β′ performs capricious destruction on the operator Γ0 and

sends the witness further to a second backup strategy β′′. Before the second

backup strategy is activated we need to restart the P-strategy on a node α′
1, as

the original operator Λ1 might be destroyed: β′ extracts the marker ω(γ0(x)),

possibly injuring H1(x) ⊆ Θ1(A). The second backup strategy has the form

(N , Λ0, Γ
′
1) and constructs two new operators: Λ0 using the set H0(x) to define

an axiom for x and Γ′
1 for which the setup process is repeated and new finite

sets G′
1(x) and H ′

1(x) are defined if possible. Finally if x enters the set ΦB again

it is sent to the last backup strategy β′′′, which is of the form (N , Λ0, Λ
′
1). It is

the strategy that will extract x from A if it reenters ΦB for the third time.

Depending on the changes that this extraction causes we have the following

cases:

• H0(x) * A\{x}: If there is no change in either G′
1(x) or H ′

1(x), then P1 is

satisfied and α′
1 will have outcome l forever. Otherwise the N -requirement

will be satisfied by β′′′ or β′′.

• H0(x) ⊆ A \ {x}: The witness x will be sent back to β′ and the axiom for

x in Γ0 will be restored. If G0(x) ⊆ A \ {x} then the requirement P0 will

be satisfied and α0 will have outcome l. If G0(x) * A \ {x} then either

H1(x) * A\{x} and β′ is successful or the witness x is sent back to β and

the axiom for x in Γ1 is restored. If G1(x) ⊆ A \ {x} then P1 is satisfied

and α1 will have outcome l forever, otherwise G1(x) * A \ {x} and β is

successful.

Thus in every case we have made progress on the satisfaction of requirements

as at least one of the considered strategies α0, α1, β, β′, α′
1, β′′ or β′′′ is

successful.

We shall put all these ideas in techniques together to define the general

construction.

All Requirements

For every requirement we have different possible strategies along the tree. For

every P-requirement Pi we have two different strategies: (Pi, Γi) with outcomes

e <L l and (Pi, Λi) with one outcome e. For every N -requirement Ni we have

strategies of the form (Ni, S0, . . . , Si), where Sj ∈ {Γj , Λj , FMj}. We will call

Sj the j-method of this strategy. The possible outcomes of an (Ni, S0, . . . , Si)-

strategy are

g <L f <L w <L l0 · · · <L li,
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although not every strategy shall have all of these outcomes. Before we can

make the outcomes precise we shall introduce the notion of dependence between

N -strategies:

Definition 4.1 If α is a node in the tree of strategies labelled by an (Ni, S0, . . . , Si)-

strategy then let β be the largest node in the tree with βˆg ⊂ α. If there is no

such node then we say that α is independent. Otherwise we say that α depends

on β. We denote β by ins(α) and call it the instigator of α.

A dependent strategy α will receive its witnesses from its instigator. The

strategy ins(α)̂ g will be a (P , Λk)-strategy for some k ≤ i. We shall introduce

a further parameter related to α, k(α) and its value will be the index of the

requirement that ins(α)̂ g is working on. In this case k(α) = k. If α is indepen-

dent then k(α) = −1. The methods that α works with will be divided into the

following groups:

• If Sj = FMj we shall call it an invisible method.

• If Sj 6= FMj and j < k then it is an old visible method.

• If Sj 6= FMj and j ≥ k then it is a new visible method.

The strategy α shall then have outcome g only if there is some j ≤ i such

that Sj = Γj and an outcome lj for every new visible method Sj = Γj. Let O

be the set of all possible outcomes and S be the set of all possible strategies.

The tree of strategies

The tree of strategies is a computable function T : D(T ) ⊂ O<ω → S which has

the following properties:

1. If T (α) = S and OS is the set of outcomes for the strategy S then for

every o ∈ OS , α ô ∈ D(T ).

2. The root of the tree is labelled by (P0, Γ0). The node e is labelled by

(N0, Γ0) and the node l is labelled by (N0, FM0).

3. If T (α) = (Ni, S0, S1, . . . , Si).

Below outcome g: T (α ĝ) = (Pk, Λk), where k ≤ i is the largest index

such that Sk = Γk. The next levels of the subtree with root α ĝ are assigned

to (Pj , Γj)-strategies for every j, k < j ≤ i such that Sj is visible. After this

follows a level of N -strategies β = α ĝ ê . . . ôj . . . ôi, where j > k and oj = ∅

if Sj = FMj , with the structure (Ni, S0, . . . , Λk, S′
k+1 . . . S′

i). For j > k if

Sj = FMj or oj = l then S′
j = FMj and otherwise S′

j = Γj .
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Below outcomes f ,w: T (α ô) = (Pi+1, Γi+1), where o ∈ {f, w}. T (α ô̂ e) =

(Ni, S0, S1, . . . , Si, Γi+1) and T (α ô̂ l) = (Ni, S0, S1, . . . , Si, FMi+1)

Below outcome lk: The first levels of the subtree with root α l̂k are as-

signed to (Pj , Γj)-strategies for every j, k < j ≤ i such that Sj is visible.

After this follows a level of N -strategies β = α l̂k . . . ôj . . . ôi, where j > k and

oj = ∅ if Sj = FMj, with the structure (Ni, S0, . . . , Λk, S′
k, . . . , S′

i). For j > k

if Sj = FMj or oj = l then S′
j = FMj and otherwise S′

j = Γj .

The construction

At each stage s we shall construct a finite path through the tree of outcomes δ[s]

of length s starting from the root. The nodes that are visited at stage s shall

perform activities as described below and modify their parameters. Each N -

node α shall have a right boundary Rα which will also be defined below. At all

stages s the N -strategies on the first level of the tree have Rl[s] = Re[s] = ∞.

After the stage is completed all σ > δ[s] will be initialized, their parameters

including all their witnesses will be cancelled or set to their initial value ∅.

Whenever we cancel a witness x ∈ A[s] of a strategy σ we additionally enumerate

an axiom 〈x, ∅〉 in every operator constructed by strategies δ ≤ σ. If ω(γj(x)) ∈

A[s] for any j then we will also enumerate the axiom 〈ω(γj(x)), ∅〉 in these

operators.

Suppose we have constructed δ[s] ↾ n = α. If n = s then the stage is finished

and we move on to stage s + 1. If n < s then α is visited and the actions that

α performs are as follows:

(I.) T (α) = (Pi, Γi).

1. Scan all witnesses x /∈ A[s] for which there is an axiom in Γi starting from

the least.

2. If x ∈ Γ
ΨA

i ,B

i [s] then let the outcome be o = l.

3. If all witnesses are scanned and none has produced an outcome o = l then

let the outcome be o = e.

(II.) T (α) = (Pi, Λi).

1. Scan all sent witnesses x /∈ A[s] for which there is an axiom in Λi starting

from the least.

2. If x ∈ Λ
ΘA

i ,B

i [s] with least valid axiom 〈x, Tx ⊕ Bx〉 then define Li(x) =

use(Θi, A, Tx)[s]. Restrain A on Li(x) and return x. End this stage.
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3. If all witnesses are scanned and none are returned then let the outcome

be e.

(III.) T (α) = (Ni, S0, . . . , Si) with defined k(α), right boundary Rα[s] and pos-

sibly undefined ins(α). We will denote by s− the previous α-true stage. If α

has been initialized since its previous true stage or if it has never before been

visited then s− = s. The strategy starts at Setup if s− = s, otherwise it goes

to the step indicated at s−. Unless otherwise stated Rαˆo[s] = Rα[s].

• Setup: If ins(α) ↓ then wait for a witness x together with its marker

λk(α)(x) to be assigned by ins(α). End this stage if there is no assigned

witness and return to this step at the next stage. If ins(α) ↑ choose

a new witness x as a fresh number and enumerate it into A[s]. Once

the witness is defined, for every j ≥ max(k(α), 0) such that Sj is visible

perform Setup(j) starting from the least such j. Note that if k(α) ≥ 0

then Sk(α) = Λk(α) and if j > k(α) then Sj = Γj .

Setup(j) for j = k(α) ≥ 0:

Enumerate in Λj[s] an axiom 〈z, Hj(x) ⊕ (B[s] ↾ λj(x) + 1) ∪ U〉, where

– z ∈ A[s], there is no valid axiom for z in Λj [s] and z is x or a witness

from a previous cycle of the strategy or z is a marker ω(γl(z
′)) for

which there is no valid axiom in Λj and z′ is x or a previous witness

of the strategy.

– U is the union of all finite sets D such that 〈n, D〉 ∈ Λj[s] is a valid

axiom at stage s and n < x is an uncancelled witness in A[s].

The axiom enumerated for x shall be called the main axiom for x in Λj .

If j < i go to Setup(j + 1). Otherwise let the outcome be o = w and go

to Waiting at the next stage.

Setup(j) for j > k(α):

1. If x /∈ Ξ
ΨA

j ,ΘA
j

j [s] then let the outcome be o = lj and return to this

step at the next stage. Otherwise go to the next step.

2. Define Gj(x), Hj(x) as finite sets such that Gj(x) ⊆ ΨA
j [s], Hj(x) ⊆

ΘA
j [s] and x ∈ Ξ

Hj(x)⊕Gj(x)
j [s]. Define γj(x) and ω(γj(x)) as fresh

numbers. Enumerate γj(x) in B[s] and ω(γj(x)) in A[s]. Define a

new axiom

〈γj(x), {ω(γj(x))}〉 in Ω[s].

Enumerate in Γj [s] an axiom 〈z, Gj(x)⊕(B[s] ↾ γj(x) + 1) ∪ U〉, where
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– z ∈ A[s], there is no valid axiom for z in Γj [s] and z is either x,

or a witness from a previous cycle of the strategy or ω(γl(z
′)),

where z′ = x or z′ is previous witness of the strategy.

– U is the collection of all finite sets D such that 〈n, D〉 ∈ Γj[s] is

a valid axiom at stage s and n < x is an uncancelled witness in

A[s].

The axiom enumerated for x shall be called the main axiom for x in

Γj .

3. For all operators Sl, where l < j with current axiom for x, say 〈x, Dl〉,

enumerate the axiom 〈ω(γj(x)), Dl ∪ ∅ ⊕ {γj(x)}〉.

If j < i then go to Setup(j + 1). Otherwise let the outcome be w and go

to Waiting.

• Waiting: If x ∈ ΦB
i [s] and the computation has use u(Φi, B, x)[s] < Rα[s]

then go to Attack. Otherwise let the outcome be o = w and return to

Waiting at the next stage.

• Attack:

1. If α does not have an outcome g then extract x from A[s]. Go to

Result 2. Otherwise let j be the largest index such that Γj = Sj and

go to the next step.

2. If there is a returned witness from a previous cycle x̄ then go to

Result. Otherwise go to the next step.

3. Define Rαˆg[s] = γj(x). Extract γj(x) from B[s] and ω(γj(x)) from

A[s]. Define λj(x) = max(γj(x), use(Φi, B, x)[s]). Let s−a be the

previous stage when α sent a witness. Send x assigning it to the

least strategy β such that α ĝ ⊂ β ⊆ δ[s−a ] which requires a witness.

If this is the first witness then assign it to the least strategy β ⊃ α ĝ

which requires a witness. Let the outcome be o = g. At the next

stage start from Setup.

• Result:

1. Enumerate γj(x̄) back in B[s] and 〈ω(γj(x̄)), ∅〉 in Ω. Cancel all

witnesses z ∈ A[s] of the strategy α. Restrain A on Lj(x̄) defined by

α ĝ. Go to the next step.

2. Let the outcome be o = f , return to this step at the next stage.
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The verification

We start the verification with some of the more easier properties of the con-

struction. We note that the sets A and B are constructed as a 2-c.e. and a

3-c.e. set respectively. It is straightforward to prove also that B ≤e A.

Lemma 4.1 The set B is enumeration reducible to the set A.

Proof. We shall prove that ΩA = B. Fix any number n. If n is not a B-

marker of a witness then n /∈ B and there is no axiom in Ω for n, so n /∈ ΩA.

Suppose n is a marker of a witness x defined by a strategy α at stage s then

α enumerates n ∈ B[s], ω(n) ∈ A[s] and an axiom 〈n, {ω(n)}〉 in Ω[s]. If n is

not extracted from B at any stage then neither is ω(n) and hence the axiom is

valid n ∈ B ∩ ΩA. If n is extracted at stage s1 then so is ω(n) and the axiom

will remain invalid at all further stages. If n is not reenumerated in B then no

further axioms for n are enumerated in Ω and hence n /∈ B ∪ ΩA. Otherwise n

is reenumerated in B at stage s2 at which the axiom 〈ω(n), ∅〉 is enumerated in

Ω. As n does not get extracted more than once, n ∈ B ∩ ΩA.

Another quite easy statement about the tree of strategies is that along each

path there are finitely many Pi- and Ni-strategies for every i. We saw that this

is the case for i = 0, 1 in the preliminary description of the strategies. The rest

of the statement follows with an easy induction using the fact that the method

for Pi can be restarted only if the method for Pj , where j < i changes, and after

that it can change at most once to Λi or to FMi. The Ni-strategy is restarted

only if one of the Pj methods for j ≤ i changes.

The rest of the properties of the construction are quite harder to prove.

The main difficulty will be to examine the construction of a certain operator

as now many strategies define a single operator in contrast to most previous

constructions. Furthermore the axioms for a witness in a fixed operator are

related to the axioms of previous witnesses. We shall have to study in detail

the interactions between strategies before we can prove that the construction is

successful.

Properties of the witnesses

We will first try to establish some properties of the witnesses and the axioms

defined for them. The first one is that every witness travels a finite path in the

tree of strategies.

Propostion 4.1 Each witness can be assigned to finitely many strategies.

25



Proof.

Suppose x is a witness defined by the (Ni, S0, . . . , Si)-strategy β. Then β

is an independent strategy. Suppose that x is β’s first witness. If it is sent by

β at stage s then it will be assigned to the first N -strategy β1 extending β ĝ.

This is also an Ni-strategy and x will also be β1’s first witness. As there are

only finitely many Ni-strategies along each path in the tree, the witness x will

be assigned to finitely many strategies.

Suppose that x is β’s n-th witness. Consider the sequence{(βk, ik, nk)},

where βk is the k-th strategy to which x is assigned, ik denotes the index of the

N -requirement that βk works with and nk denotes that x is βk’s nk-th witness.

We know already that the sequence is finite if for some k we have nk = 1. We

will prove that:

If ik+1 = ik then nk+1 ≤ nk and if ik+1 > ik then nk+1 < nk.

Thus for almost all k we have ik = ik+1 and as there are only finitely many

Ni-strategies for every i, the sequence is finite and the proposition follows.

The first part of this statement is quite obvious. The strategy βk+1 receives

all its witnesses from βk so nk+1 ≤ nk. Suppose that ik+1 > ik. From the

definition of the tree it follows that there is an Nik
-strategy σ such that βk ⊂

σ ⊂ βk+1. Then before the first witness is assigned to βk+1 one of βk’s witnesses

must be assigned to σ, thus nk+1 < nk. �

Propostion 4.2 Suppose β is an N -strategy.

1. If β sends its witness at stage s then the next witness assigned to β is

defined after stage s.

2. If β is initialized at stage si and β is not independent then the next

witness that β works with will be defined after the next β-true stage s > si.

3. Suppose β is not initialized after stage si and visited at infinitely many

stages. If at stage s > si the strategy does not have an assigned witness then it

will eventually be assigned a witness.

Proof.

1. This is obviously true for independent strategies. Let β0 ĝ ⊂ β1 ĝ . . . βk +

1 = β be the strategies such that β0 is independent and ins(βi+1) = βi for

i < k. Every witness assigned to β is defined by β0.

Suppose that β sends its witness at stage s. Then at stage s all of these

strategies have outcome g and send their witnesses. Thus the next witness that

β0 uses is defined after stage s. At stage s + 1 each strategy βi+1 does not have

a defined witness. It will receive its witness from βi at the next stage t ≥ s + 1

at which βi has outcome g and sends its witness.
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2. If β is initialized at stage si then a strategy σ ⊂ β has outcome o such

that σ ô <L β. If at stage si a witness is assigned to β then it is cancelled at

stage si. Before the next witness is assigned to β there must be a stage s at

which β is visited. Then at stage s the instigator ins(β) sends its witness and

by step 1. of this proposition its next witness will be defined after stage s.

3. This is again obviously true for independent strategies. Let ins(β) = δ.

Then δ ĝ is visited infinitely often and not initialized after stage s. There are

finitely many strategies α such that δ ĝ ⊂ α ô ⊆ β and for every such strategy

o 6= g. Suppose at stage s the strategy α is the least such strategy that also

has no witness. The strategy β is visited at stage s1 ≥ s. At the next δ ĝ-true

stage s2 > s1 if α still has no witness then the witness that δ sends at stage s2

will be assigned to α. As β is not initialized at stages t ≥ si this will remain α’s

permanent witness. As there are finitely many such strategies α they will each

be assigned a permanent witness eventually. After this a witness will finally be

assigned to β. �

These two properties have a very important consequence which tells us a bit

about the true path. It shows that the outcomes e and l of a P-strategy are

finitary. Thus the only infinitary outcome in this construction is the outcome

g.

Propostion 4.3 Let α be a (Pi, Γi)-strategy initialized at stage s1 and not ini-

tialized at stages t such that s1 < t < s2. If α has outcome l at a least stage s

such that s1 ≤ s < s2 then α has outcome l at all true stages t, s < t < s2.

Proof. Suppose this is true for higher priority strategies than α. Any strategy

σ ⊂ α has outcome g at stage s or does not change its outcome at stages t,

s < t < s2. This follows from the induction hypothesis for P-strategies. For

N -strategies with outcome o 6= g it follows from the construction: σ is not

initialized at stages s < t < s2 so if it changes its outcome to o′ at stage t

then o′ <L o and α would be initialized. Furthermore all of these strategies

have a permanent witness for which they do not act by extracting elements at

stages t, s < t < s2. Strategies that have outcome g send their witnesses at

stage s. A witness sent by σ is assigned to a strategy which was visited during

σ’s previous attack, thus is not assigned to a strategy extending α l̂. At stages

t, s < t < s2 accessible strategies have witnesses defined after stage s. This

follows from Proposition 4.2 and the fact that all strategies δ ≥ α l̂ are in initial

state at stage s. These witnesses together with their A- and B-markers are

therefore larger then any number that has appeared in the construction until

and including at stage s. At stage s the strategy α sees a valid axiom in Γi for
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a witness x /∈ A[s]. This axiom remains valid at all further stages t < s2 and

whenever α is visited it will have outcome l. �

The next two properties will give us rules about the cancellation of a witness.

Propostion 4.4 Suppose x is a witness that is defined at stage s0 and sent or

extracted at sub-stage s. If z is defined at substage t0 with s0 < t0 < s it is

cancelled at the latest at stage s.

Proof. Note that x is not cancelled until and at substage s. Let β0 denote the

strategy which defines x and δ0 the strategy which defines z.

If β0 < δ0 then β0 f̂ <L δ0 as strategies below outcome β0 ĝ do not define

witnesses, rather they receive them from β0 and strategies below outcome f are

not accessible until x is extracted. Then δ0 together with all its successors is

initialized at stage s. The witness z, if not already cancelled, is assigned at

stage s to a strategy extending δ0 and hence is cancelled.

If δ0 < β0 then similarly δ0 ĝ <L β0. The witness z is defined at stage

t0 > s0 so δ0 is either in initial state at stage t0 or at the previous δ0-true stage

t, s0 < t < t0, the strategy δ0 sends its previous witness having outcome g. In

all cases the strategy β0 is in initial state at stage t0 and x is cancelled contrary

to assumption.

Finally suppose that δ0 = β0. Let β0, . . . , βk be all strategies to which x

is assigned until stage s at stages s0 < s1 < · · · < sk ≤ s respectively. Then

t0 > s1. At stage s ≥ t0 the witness x is extracted or sent by βk thus every

strategy βi, i < k has outcome g at stage s. It follows that z is sent by β at

stage t1 such that s1 < t0 < t1 ≤ s and assigned to a strategy δ1.

Again we have three cases. If β1 < δ1 then δ1 is initialized at stage s, z

is cancelled. If δ1 <L β1 then β1 is in initial state at stage t1 and x cancelled

contrary to assumption. The final case is β1 = δ1. Then s2 < t1. The same

argument for i = 1, 2, . . . , k − 1 proves that βi ≤ δi and if δi 6= βi then z is

cancelled at stage s, where δi denotes the i-th strategy to which z is assigned.

If δi = βi then ti > si+1, where ti denotes the stage at which z is assigned to

βi. Now as βk extracts or sends x at stage s the witness z is sent by βk−1 at a

stage tk such that sk < tk ≤ s. At stage tk the strategy βk does not require a

witness. Thus if z is not cancelled already by stage s it is assigned to a strategy

δk >L βk f̂ and hence z is cancelled at stage s at which βk has outcome f or g.

�

Propostion 4.5 If x is a witness with marker mj(x), where mj is either γj or

λj, defined at stage s0 and a marker γl(z) < mj(x) of a different witness z 6= x

is extracted from B at stage s > s0 then x is cancelled.
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Proof. Any B-marker defined after stage s0 is greater than mj(x). Suppose

that the marker γl(z) is defined at stage t0 ≤ s0 and extracted by δ at stage s.

Suppose that x is assigned to β at stage s.

If δ ĝ <L β then β is initialized at stage s and x is cancelled.

If β <L δ then δ is initialized at the last β-true stage t < s. The marker

mj(x) must be defined before stage t, hence s0 < t otherwise it will be defined

after stage s. The witness z must be defined after stage t by Proposition 4.2

hence t < t0. Thus s0 < t < t0 contradicting the assumptions.

If βˆo ⊂ δ we shall examine the different possibilities for o. If o = g then

at stage s the strategy β has outcome g, sends its witness and does not have

a witness when δ is visited. In all other cases δ is in initial state when x is

assigned to β. The marker mj(x) must be defined before the next δ-true stage

t. Then the witness z is defined at t0 > t if δ is not independent by Proposition

4.2 or at stage t0 ≥ t if δ is independent. Thus the marker mj(x) is defined

before the marker γl(z) contrary to assumption.

Finally suppose δ ĝ ⊂ β. Any witness assigned to β must first be sent by

δ. It follows that z > x and δ has already sent the witness x at a previous

stage δ ĝ-true stage. By Proposition 4.2 the witness z is defined after the last

δ ĝ-true stage t < s and this is the last stage when strategies to which x is

assigned might be accessible to define the markers of x. Thus s0 ≤ t < t0. �

Properties of the axioms

This section reveals some properties of the axioms in the constructed operators.

Our main goal will be to prove that if a P-strategy has outcome l at all but

finitely many stages then the corresponding P-requirement is satisfied. We shall

need to investigate the axioms that are enumerated in an operator for elements

x which are extracted from A. We shall prove three properties for the axioms.

First we will show a connection between a witness x and a witness z such that

an axiom for x is enumerated in an operator using the main axiom for z. This

rather technical property will enable us to prove that the only axiom that can

be valid for a witness x /∈ A[s] at an operator Si is the main axiom for x in Si.

Finally we shall show that if the main axiom for a witness x /∈ A[s] is valid in

Si then Ξ
ΨA

i ,ΘA
i

i 6= A.

Propostion 4.6 Let α be a (Pi, Si)-strategy and x be a witness which is not

cancelled until stage s and for which there is an axiom in the operator constructed

by α. Suppose that δ invalidates the main axiom for x. Then every further
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axiom for x related to a different witness z remains valid at all stages t ≤ s or

is invalidated by the same strategy δ, to which z is sent eventually.

Proof. Suppose x is assigned to strategies β0 ⊂ β1 ⊂ βk at stages s0 < s1 <

· · · < sk ≤ s, where β0 is the strategy which enumerates the main axiom for x

in Si at stage s0. At stage s0 all strategies σ >L β0 ĝ are in initial state and

will work with witnesses defined after stage s0. Strategies below β0 ĝ are not

accessible until stage s1. At stage si the witness x is assigned to βi strategies

σ such that βi−1 ⊂ σ ⊂ βi+1 have a defined witness which does not change and

do not extract any numbers from A or B at stages si ≤ t ≤ sk or else x would

be cancelled before stage sk. Strategies σ >L βi are in initial state at stage si

and work with witnesses defined after stage si. Thus the only strategies that

can invalidate the axiom for x are among β0, . . . , βk.

If δ = βk then it must extract x as otherwise x would be sent to a further

strategy. Thus no new axioms will be enumerated in Si.

Suppose δ = βi, i < k. Then δ has outcome g extracting a B-marker of x at

stage t0. At the next β0-true stage t1 the strategy β0 defines a new axiom for

x using its new current witness z. If this witness is never sent then the axiom

remains valid at all stages t ≤ s as the only accessible strategies are in initial

state at stage t1. If this witness is sent it is assigned to the least strategy visited

at stage t0 which requires a witness. By the argument above this must be β1.

If β1 does not send z then the axiom for z remains valid at all further stages

otherwise β1 sends z and it is assigned to β2.

Thus eventually z will reach δ at stage t2 with a valid main axiom in Si. At

all stages t with t1 < t ≤ t2 there is a valid axiom for x in Si - the one that uses

main axiom for z, thus β0 does not enumerate any further axioms for x. If the

axiom for z is not invalidated by δ or it is invalidated at the same stage at which

x extracted then no more axioms will be enumerated in Si for x. Otherwise δ

invalidates the axiom for z at stage t3 and at the next β0-true we have a very

similar situation as at stage t1: at stage t3 all strategies β0, . . . , δ ĝ were visited

and there is no valid axiom for x. The strategy β0 will define a witness z′ and

enumerate an axiom for x and z in Si using the main axiom for z′. If this axiom

is invalidated then the witness z′ must be sent to δ and δ invalidates it. �

Corollary 4.1 Let x be any witness extracted from A at stage s and α be a

(Pi, Si)-strategy such that there is an axiom for x in Si. The only axiom in Si

that can be valid at a further stage t > s is the main axiom for x.

Proof. Suppose that there is a different axiom for x valid at stage t > s and

it uses the main axiom for z > x defined before stage s. It follows from the
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proof of proposition 4.6 that this witness z is sent to the same strategy δ that

invalidates the main axiom for x. Otherwise x could not be extracted at stage

s. This strategy has greatest Γ-method with index k ≤ i and always extracts a

B-marker γk(y) when it sends its witness y. Before x is extracted it must send

z at stage s1 invalidating the axiom for z. If this axiom is valid at stage t > s

then z must be returned by δ ĝ, constructing the operator Λk after stage s. We

will prove that this is impossible.

At stage s1 the witness z is assigned to the least strategy which requires a

witness. Suppose δ1 is the strategy to which x was assigned after it was sent

by δ. Consider a strategy σ such that δ ⊂ σˆo ⊆ δ1. Then o 6= g as otherwise

x would be assigned to σ. Furthermore σ works with the same operator Λk as

this method can change only below a further g-outcome. Until x is extracted σ

has the same outcome o or else x would be cancelled. Thus z is assigned to a

strategy δ′1 ⊇ δ1. And by the same argument both δ1 and δ′1 construct the same

operator Λk.

If δ′1 6= δ1 then at stage s1 the strategy δ1 has outcome o 6= g, f and it has

this outcome until δ′1 is cancelled. At all such stages there is a valid axiom for x

in Λk defined by δ1 which does not change and it is included in any axiom for z

that δ′1 defines. The element z is cancelled at stage s at which δ1 has outcome

g or f .

If δ′1 = δ1 then both x and z are witnesses for of δ1. Every axiom enumerated

in Λk for z either includes an axiom for x or otherwise the same axiom is

enumerated for x and all axioms for z are enumerated before stage s as z is

cancelled at stage s by Proposition 4.4.

Thus in both cases if z can be returned by δ ĝ at stage sz then there is a

valid axiom for both x and z in Λk. If we assume that sz ≤ s then x could

not be extracted at stage s as δ ĝ ends stage sz prematurely and δ would have

outcome f at all stages t > sz until it is initialized. Thus s < sz, the witness x

is already extracted from A[sz] and δ ĝ will return x instead of z. �

Propostion 4.7 Let α be a (Pi, Γi)-strategy and let β ⊇ αˆe be a strategy such

that Si = Γi and this is the largest Γ-method at β. Suppose a witness x is

returned to β at stage s and β restrains A on Li(x). If this restraint is injured

at stage s1 > s then there is no valid axiom for x in Γi at all stages t > s1 or

else Ξ
ΨA

i ,ΘA
i

i 6= A.

Proof. Suppose the lemma is true inductively for witnesses z < x.

If α is initialized at stage s1 then there will be no valid axiom for x in Γi at

any further stage. Suppose that α is not initialized at stages t, s ≤ t ≤ s1.
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Any strategy that at stage s is in initial state or does not have an assigned

witness will not injure the restraint by Proposition 4.2. The restraint is therefore

injured by a strategy δ1 ⊇ α ê such that δ1 ≤ β. In order for this strategy to

be accessible there must be a strategy δ ⊇ δ1 such that α ê ⊂ δ ô ⊂ β, o 6= g,

and which has outcome g at stage s1.

The strategy δ has the same witness y < x and the same outcome o at all

stages at which it is visited from the stage s0 at which x is assigned to β until

and including at stage s. Furthermore it works with the same operator Γi and

the main axiom for y is not yet invalidated. The main axiom for x includes a

valid axiom for every one of δ’s witnesses z ≤ y and every B-marker defined

for such a witness before stage s0. Any further B-marker for a witness of δ is

defined after stage s and the corresponding A-marker respects the restraint.

At stage s1 the strategy δ1 injures the restraint on A. Therefore it must

extract from A a witness z ≤ y defined before stage s0 or an A-marker ω(γl(z))

together with γl(z) for a witness z ≤ y both defined before stage s0. If z ∈ A

then δ1 extracts γl(z) which invalidates all axioms for x and this marker is never

reenumerated in B.

If z /∈ A and there is a valid axiom for z in Γi then by Corollary 4.1 this

is the main axiom for z and by the induction hypothesis Hi(z) ⊆ Θi(A) hence

z ∈ Ξ
ΨA

i ,ΘA
i

i . Otherwise there is no valid axiom for z and hence no valid axiom

for x. �

Satisfaction of the requirements

We define the true path h to be the leftmost path in the tree such that the

strategies along it are visited at infinitely many stages. As in two cases of the

construction a strategy can end a stage prematurely we will need to prove that

the so defined path is infinite. Once we have established that this is true we can

prove that all N - and P-requirements are satisfied.

Lemma 4.2 There is an infinite path h in the tree of strategies with the follow-

ing properties:

1. (∀n)(∃∞s)[h ↾ n ⊆ δ[s]].

2. (∀n)(∃sl(n))(∀s > sl(n))[δ[s] ≥ h ↾ n], i.e. h ↾ n is not initialized after

stage sl(n).

Proof. We prove the statement with induction on n. The case n = 0 is trivial:

h ↾ 0 = ∅ is visited at every stage of the construction and is never initialized,

sl(0) = 0.
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Suppose the statement is true for h ↾ n = α. If α is a (Pi, Γi)-strategy

by Proposition 4.3 either α has outcome e at every α-true stage in which case

h(n +1) = e and sl(n +1) = sl(n), or there is a stage s > sl(n) such that α has

outcome l at every true stage t > s, so h(n + 1) = l and sl(n + 1) = s.

If α = β ĝ is a (Pi, Λi)-strategy then α does not returns a witness after stage

sl(n). Otherwise β will have outcome f at almost all true stages contradicting

the assumption that α is visited at infinitely many stages. Thus α has outcome

e at every true stage t ≥ sl(n) and h(n + 1) = e, sl(n + 1) = sl(n).

If α is an (Ni, S0, . . . , Si) then we have the following cases:

• α has outcome g at infinitely many stages. Then h(n+1) = g, sl(n+1) =

sl(n).

• There is a stage s > sl(n) at which α receives back a witness. Then α has

outcome f at all further stages, h(n + 1) = f , sl(n + 1) = s.

• There is a stage s at which α attacks for the last time. By Proposition 4.2

α will be assigned a new witness x at a stage s1 > s. If α enters Setup(j)

at stage s2 > s and never completes it then α has outcome lj at all stages

t > s2, h(n + 1) = lj , sl(n + 1) = s. Otherwise there is a stage s3 at

which α enters Waiting and then α has outcome w at all stages t > s3,

h(n + 1) = w, sl(n + 1) = s.

�

Lemma 4.3 Every N -requirement is satisfied.

Proof. Let β be the last Ni-strategy along the true path. Then βˆw ⊂ h or

β f̂ ⊂ h as along all paths below every other outcome of β there is another

Ni-strategy. By Lemma 4.2 the strategy β has a permanent witness x at stages

t ≥ sl(|β| + 1). If βˆw ⊂ h then x ∈ A and at every true stage t > sl(|β| + 1)

if x ∈ ΦB
i [t] then use(Φi, B, x)[t] > Rβ [t]. If β is independent then Rβ [t] = ∞.

Otherwise at every stage t the right boundary is defined by ins(β) = α. If α

has witness z at stage t then Rβ [t] = γk(β)(z). The next witness that α uses is

defined after stage t and its B-markers are of value greater than Rβ [t]. Thus

limt Rβ [t] = ∞ and x /∈ ΦB
i .

Suppose β f̂ ⊂ h. If β has an outcome g the witness x is returned by β ĝ = α

which is a (Pj , Λj)-strategy at stage s = sl(|β| + 1). When β sent this witness

at stage s0 < s we had x ∈ ΦB
i [s0]. The strategy then defined the marker

λj(x) ≥ use(Φi, B, x)[s0]. As x is not cancelled at any stage by Proposition 4.5
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no B-marker b < λj(x) for a different witness z 6= x is extracted at any stage

t ≥ s0.

At stage s0 the main axiom for x, say 〈x, Ax ⊕ Bx〉 is enumerated in the

operator Λj constructed at α and B[s0] ↾ λj(x) \ {γj(x)} ⊆ Bx. The strategy α

returns this witness at stage s as it is the least x ∈ Λ
ΘA

j ,B

j \ A[s]. By Corollary

4.1 the only axiom that can be valid at stage s is the main axiom for x in Λj .

So B[s0] ↾ λj(x) \ {γj(x)} ⊆ B[s], no more markers for x are extracted at any

stage t > s, and at stage sl(|β|+1) the strategy β enumerates γj(x) back in the

set B. So x ∈ ΦB
i [t] at all stages t ≥ sl(|β| + 1) and hence x ∈ ΦB

i \ A.

Suppose β does not have an outcome g. Then at stage sl(n + 1) = s the

strategy sees x ∈ ΦB
i [s] and extracts x from the set A. Let u = use(Φi, B, x)[s].

Strategies σ ô ⊂ β with o 6= g do not extract any markers from the set B.

Strategies σ ĝ ⊂ β have just sent their witness and by Proposition 4.2 will not

extract any markers that are less than u. Strategies δ ≥ β f̂ are in initial state

at stage s and by the same proposition will not extract markers of value less

than u. Thus B[s] ↾ u ⊆ B[t] at all t ≥ s and hence x ∈ ΦB
i \ A. �

Lemma 4.4 Every P-requirement is satisfied.

Proof. Let α be the last (Pi, Si)-strategy along the true path.

If α l̂ ⊆ h then α is a (Pi, Γi)-strategy. Let x /∈ A be the witness such that

x ∈ ΓΨA,B
i . There is a least strategy β ⊇ α ê such that x is assigned to and

whose greatest Γ-method is Γi. Before x is extracted from A the marker γi(x)

is extracted from B. As x ∈ ΓΨA,B
i then by Corollary 4.1 the main axiom for

x in Γi is valid and hence γi(x) is enumerated back in B by β on a stage s at

which β restrained Hi(x) in ΘA
i . By Proposition 4.7 if this restraint is injured

then Ξ
ΨA

i ,ΘA
i

i 6= A. If this restraint is not injured then Gi(x)⊕Hi(x) ⊂ ΨA
i ⊕ΘA

i

and again Ξ
ΨA

i ,ΘA
i

i 6= A as x ∈ Ξ
ΨA

i ,ΘA
i

i \ A.

Suppose α is a (Pi, Γi)-strategy such that there is an N -strategy β working

with i-th method Γi and β l̂i ⊂ h. Then β has a permanent witness x such

that x ∈ A \ Ξ
ΨA

i ,ΘA
i

i [t] at all β-true stages t > sl(|β| + 1). The requirement is

satisfied by A 6= Ξ
ΨA

i ,ΘA
i

i .

For all other cases denote by U the set ΨA
i if Si = Γi and ΘA

i if Si = Λi. We

will prove that for all elements n enumerated in A at stages t > sl(n) we have

SU,B
i (n) = A(n). Thus A ≤e U ⊕ B and the requirement Pi is satisfied.

Let n /∈ A be a witness. If n is extracted at stage sn then at all α-true

stages t > max(sl(n), sn) we have n /∈ SU,B
i [t]. Otherwise if Si = Γi then by

Proposition 4.3 the strategy α would have true outcome l and if Si = Λi the
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witness n would be returned by α which is impossible as we saw in the proof of

Lemma 4.2. Thus n /∈ SU,B
i .

Let n /∈ A be an A-marker ω(γl(z)). Every axiom for n in Si is of the form

〈n, D ∪ {γl(z)}〉 and there is similar axiom 〈z, D〉 for z in Si. As n /∈ A the

marker γl(z) is extracted from B. If an axiom for n is valid at a further stage

then γl(z) is reenumerated in B and hence z /∈ A. By the argument above there

is no valid axiom for z and hence for n in Si at any α-true stage.

If n ∈ A and n is cancelled then there is valid axiom 〈n, ∅〉 ∈ Si. Thus

A(n) = SU,B
i (n). Suppose n is a witness that is never cancelled. We will prove

that there is a valid axiom for n in Si. Let β0, . . . , βk be all strategies to which

n gets assigned in the course of the construction. As n is not cancelled h ≮L βk.

Furthermore βk ⊇ α ê. Otherwise βk would not be visited after stage sl(|α|)

and hence the witness x must be assigned to βk before or at this stage. We are

however dealing with witnesses that are defined after stage sl(|α|).

Consider the least strategy βj ⊇ α ê. First we observe that βj ⊂ h. If

we assume otherwise then there is a strategy σ such that α ê ⊂ σ ô1 ⊂ h and

βj ⊇ σ ô2 and o2 <L o1. Then o2 = g or else βj is initialized before stage sl(|σ|)

and not accessible after this stage and x is cancelled. But if o2 = g then βj

receives n from σ, so σ = βj−1 and this contradicts our choice of βj as the least

strategy below α ê.

The i-method of βj is hence new and is Si, as no strategy σ along the true

path has outcome li and there is no strategy between α and βj has outcome g,

the only cases when the i-method changes. Thus βj will enumerate axioms for

n at all βj-true stages at which there is no valid axiom in Si.

If the main axiom 〈n, D〉 for n enumerated by βj is never invalidated then

n ∈ SU,B
i . For every A-marker of n that is never extracted and is defined by

stage sl(|βj |), the strategy βj enumerates an axiom in Si using the current

axiom for n. If a further A-marker m = ω(γk(n)) for n is defined after this

stage by a strategy β then β ⊇ βj and β has the same method Sl as βj for l ≤ i

otherwise the main axiom for n would be invalidated. As β can define a marker

only for a new method, k > i and β enumerates a new axiom for m of the form

〈m, D ∪ ∅⊕ {γk}〉 in Si. If m ∈ A then γk(n) ∈ B and this axiom is valid at all

further stages.

Suppose that the main axiom for n in Si is invalidated by δ at stage s0 >

sl(|βj |). By Proposition 4.6 this is done by a strategy βl, l > j. At the next

true stage βj enumerates an axiom for x using the main axiom for its current

witness z. If this axiom is invalidated at all, it is invalidated by βl. Now as βl

extracts a B-marker for a method with index less than i. It follows that βl ĝ is
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not on the true path, as otherwise there would be a further Pi-strategy along the

true path. Let s be the last βl ĝ-true stage. Then the axiom for n enumerated

at the first βj-true stage after s will remain valid forever. Any A-marker of n,

m = ω(γl(n)) ∈ A must be defined before stage s. Then if there is no valid

axiom for m at the first β-true stage after s then an axiom is enumerated for

m during Setup(i). The axiom for m in Si valid at this stage will remains valid

forever.

This concludes the proof of the lemma and the theorem. �
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