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Abstract

We complete a study of the splitting/non-splitting properties of the enumeration
degrees below 0′e by proving an analog of Harrington’s non-splitting theorem for
the Σ0

2 enumeration degrees. We show how non-splitting techniques known from the
study of the c.e. Turing degrees can be adapted to the enumeration degrees.

Key words: Enumeration reducibility, Σ0
2 e-degrees, Non-splitting

1 Introduction

In an upper semi-lattice 〈D, <,∪〉 we say that a pair of elements u and v form a
splitting of the element a if u < a and v < a but u ∪ v = a. Sacks [11] showed
that every computably enumerable (c.e.) degree > 0 has a c.e. splitting and [12]
that the combutably enumerable degrees are dense. It had been commonly believed
(see [1]) that these two results can be combined. Lachlan [9] showed that this is not
the case by proving the existence of a c.e. a > 0 which has no c.e. splitting above
some proper c.e. predecessor. His proof introduced the 0′′′-priority method and for
the first time made use of a tree of strategies. This technique is significantly more
complicated than any other known at the time and the article came to be known as
“ The monster paper”. Harrington’s work presented as hand-written notes [8] led
to a better understanding of the technique. He improved the result by showing that
one could take a = 0′. The technique has been widely used thereafter and has had
a number of consequences for definability and elementary equivalence in the Turing
degrees below 0′.
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Naturally we turn our attention to the richer semi-lattice of the enumeration degrees.
Intuitively we say that a set A is enumeration reducible to a set B, denoted as A ≤e

B, if there is an effective procedure to enumerate A given any enumeration of B(a
formal definition shall be given in Section 2). By identifying sets that are reducible
to each other we obtain a degree structure, the structure of the enumeration degrees
〈De,≤〉. It is an upper semi-lattice with jump operator and least element 0e, the
collection of all computably enumerable sets. An important substructure of De is
given by the Σ0

2 e-degrees. Cooper [5] proved that the Σ0
2 e-degrees are the e-degrees

below 0′e.

One of the main motives for studying the structure of the enumeration degrees is
given by Rogers’ embedding ι, an order theoretic embedding of the Turing degrees
into the enumeration degrees which preserves least upper bound and the jump op-
erator. Rogers’ ι embeds the c.e. Turing degrees exactly onto the Π0

1 enumeration
degrees. Thus all structural properties of the Turing degrees including Lachlan’s
and Harrington’s non-splitting theorems can be transferred to the Π0

1 enumeration
degrees, a proper subclass of the Σ0

2-enumeration degrees. Cooper and Soskova [7]
generalized Harrington’s theorem further by showing the existence of a Π0

1 enumer-
ation degree a < 0′e such that no pair of a Π0

1 e-degree c ≥ a and a Σ0
2 e-degree

d ≥ a form a non-trivial splitting of 0′e. This was a step towards adapting Harring-
ton’s method for the far more complicated world of the Σ0

2 enumeration degrees. It
was already known that the restriction of the first degree c to the class of the Π0

1

enumeration degrees in the pairs considered was essential as Arslanov and Sorbi [3]
had shown that there is a ∆0

2-splitting of 0′e above every ∆0
2 enumeration degree.

A further step towards adapting the non-splitting techniques from the c.e. Turing
degrees to the case of the Σ0

2 enumeration degrees is given by Arslanov, Cooper,
Kalimullin and Soskova [2]. There an analog of Lachlan’s non-splitting theorem
is proved, namely that there is a pair of a Π0

1 enumeration degree a and a 3-c.e.
enumeration degree b < a such that a does not split above b.

A question that remains to be answered in order to complete the splitting/non-
splitting study of the e-degrees below 0′e is wether or not 0′e can be split above
every Σ0

2 enumeration degree. In this article we give a negative answer to the ques-
tion above and provide an analog of Harrington’s non-splitting theorem for the Σ0

2

enumeration degrees, thus completing the final step of the transformation of the
non-splitting techniques from the c.e. Turing degrees into the enumeration degrees.

Theorem 1 There is a Σ0
2-enumeration degree a < 0′e such that 0′e cannot be split

in the enumeration degrees above the degree a.

Notation and terminology below is based on that of [6] and [13].
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2 Requirements and Strategies

We shall start by giving a formal definition of enumeration reducibility and then
move on to establish the requirements and basic strategies for the proof of the main
theorem.

Definition 2 (1) A set A is enumeration reducible (≤e) to a set B if there is a
c.e. set Φ such that:

n ∈ A ⇔ ∃u(〈n, u〉 ∈ Φ ∧Du ⊆ B),

where Du denotes the finite set with code u under the standard coding of finite
sets. We will refer to the c.e. set Φ as an enumeration operator and its elements
will be called axioms.

(2) A set A is enumeration equivalent (≡e) to a set B if A ≤e B and B ≤e A. The
equivalence class of A under the relation ≡e is the enumeration degree de(A)
of A.

The structure of the enumeration degrees 〈De,≤〉 is the class of all e-degrees with
relation ≤ defined by de(A) ≤ de(B) iff A ≤e B.

In this article we shall be only concerned with the local structure of the Σ0
2 enumer-

ation degrees. An enumeration degree is Σ0
2 if it contains a Σ0

2 set. The greatest Σ0
2

e-degree is 0′e, the degree of K. Any set in the degree 0′e will be called complete as
it can reduce any other Σ0

2 set.

We will denote enumeration operators by capital Greek letters Φ, Θ . . . . Notation
in the following exposition will be unfortunately quite complicated. An expression
Exp might be considered in relation to a certain stage s denoted by Exp[s], in
relation to a particular requirement with index i, denoted by Expi and in relation
to a particular element n denoted by Expn. We shall try to keep things as clear as
possible, omitting indices where they are clear and using Latin letters s, t for stages,
n,m for elements and i, j, k, l for indices of requirements or strategies.

2.1 Requirements

We assume a standard listing of all enumeration operators {Ψi}i<ω and of all triples
{(Θ, U, V )i}i<ω of enumeration operators Θ, Σ0

2 sets U and V . We shall denote the
elements of the i-th such triple by Θi, Ui and Vi respectively. We will construct a
Σ0

2 set A whose enumeration degree a will be the one required in Theorem 1 and
an auxiliary Π0

1 set E to satisfy the following list of requirements:

(1) The degree a should be strictly less than that of 0′e. It will be enough to
construct the set A as Σ0

2-incomplete. We shall use the set E to witness the
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incompleteness of A.
Ni : E 6= ΨA

i

(2) Any pair of Σ0
2 enumeration degrees u and v above a should not form a splitting

of 0′e. The second group of requirements ensures that either u ∪ v is incomplete
or at least one of the degrees u or v is already complete:

Pi : E = ΘUi,Vi
i ⇒ (∃Γi, Λi)[K = ΓUi,A

i ∨K = ΛVi,A
i ]

where ΓUi,A
i , for example, denotes an e-operator enumerating relative to the

data enumerated from two sources Ui and A.

The requirements shall be given the following priority ordering:

N0 < P0 < N1 < P1 < . . .

Requirements in earlier positions have higher priority. Each particular requirement
can be satisfied in more than one way. We connect to each such way an outcome.
The choice of the correct way to satisfy a certain requirement depends on the out-
comes of higher priority requirements. Therefore we represent the set of all possible
sequences of outcomes as a tree of strategies. Each node α on the tree is labelled by
a requirement R and the node α will be referred to as an R-strategy. The children
of α correspond to each of α’s possible outcomes. So, although each of those nodes
might be labelled by the same requirement, each may have a different approach to
satisfying its requirement depending on what it “believes” to be the outcome of
α. The set of all possible outcomes for each requirement will be linearly ordered
(<L defined below) and the nodes of the tree of strategies will be ordered by the
induced lexicographical ordering ≤. The construction is by stages; in each stage s
we construct a set A[s] approximating A and a string δ[s] of length s in the tree
of strategies. The initial segments δ ⊆ δ[s] are the nodes of the tree visited during
stage s of the construction; they are the strategies that might act to satisfy their
requirements. The intent is that there will be a true path, a leftmost path of nodes
visited infinitely often, such that all nodes along the true path are able to satisfy
their requirements. If the node β is visited on stage s, we say that s is a β-true
stage.

2.2 Basic Strategies

We shall describe the basic strategies for both types of requirements, the problems
that we need to overcome in order to implement them and the conflicts that might
arise when we combine them.

An N -requirement, say Ni, could be satisfied by a simple Friedberg-Muchnik strat-
egy, which we shall denote in our further discussions by FM . Select a witness x
and wait for x ∈ ΨA

i . If this never happens then the requirement will be satisfied
and we denote this outcome by w. Otherwise extract x from E while restraining
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each y ∈ A ¹ use(Ψi, A, x) (the use function use(Ψ, A, x) is defined in the usual way
by use(Ψ, A, x) = µy[x ∈ ΨA¹y]). The requirement is again satisfied with outcome
denoted by f .

We are given three options to satisfy a single P-requirement, say Pi. The first and
simplest one is to provide some proof that ΘUi,Vi

i 6= E. The other two options are to
construct enumeration operators Γi or Λi proving that at least one of the sets Ui or
Vi is already too powerful and can reduce K by itself without the help of the other.

Recall that the length of agreement between two sets A and B, denoted by l(A, B),
is the length of the initial segment on which the sets A and B agree. The intent
is that we monitor the length of agreement l(ΘUi,Vi

i , E)[s] on each stage s of the
construction. A bounded length of agreement should turn out to be sufficient proof
for the inequality between the two sets. Further actions only need to be made on
expansionary stages, stages on which the length of agreement attains a greater value
than it has had on previous stages. Initially we will use a (Pi, Γi)-strategy designed
to monitor the length of agreement and if there are infinitely many expansionary
stages to construct an enumeration operator Γi which will reduce the set K to the
sets Ui and A. A bounded length of agreement shall be represented by the outcome
l and an unbounded length of agreement by the outcome e. We progressively try
to rectify Γi at each stage s by ensuring that n ∈ K[s] ⇔ n ∈ ΓUi,A

i [s] for each
n below l(ΘUi,Vi

i , E)[s]. We will do this by defining markers ui(n) and γi(n) and
enumerating axioms of the form 〈n,Ui[s] ¹ ui(n), {γi(n)}〉 for elements n ∈ K[s]. If
at a later stage n leaves the set K then Γi can be rectified via an extraction of the
marker γi(n) from A.

Difficulties with this strategy arise from the fact that we are dealing with Σ0
2 sets

Ui and Vi. Consider a Σ0
2 set U with a Σ0

2 approximation {U [s]}s<ω. If n ∈ U then
n ∈ U [s] on all but finitely many stages s. If n /∈ U then the only thing we know
is that n /∈ U [s] on infinitely many stages s. So we could easily have that there are
two elements n1, n2 /∈ U such that {n1, n2}∩U [s] 6= ∅ on all stages s. This property
of the Σ0

2 approximations could have as a consequence that:

(1) The length of agreement l(ΘUi,Vi
i , E)[s] measured on each stage s is bounded

while the sets E and ΘUi,Vi
i are equal.

(2) We might not be able to approximate any initial segment of the set Ui and so
we will not be able to use initial segments in the definition of the axioms for the
operator Γi.

To deal with these difficulties we shall define special approximations to the sets Ui,
Vi and Ui ⊕ Vi in Section 3.
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2.3 Conflicts

The second difficulty arises when we consider how to combine the strategies of the
two different types. Consider one N -requirement below one P-requirement. (P,Γ) is
constructing an operator Γ using markers u(n) and γ(n) for the axiom of elements
n on expansionary stages for the sets ΘU,V and E. The A-restraint for N following
the extraction of x from E conflicts with the need to rectify the operator Γ. We try
to resolve this by using a modified strategy (N , Γ). It will choose a threshold d and
try to achieve γ(n) > use(Ψ, A, x) for all n > d at a stage previous to the imposition
of the restraint. We will need to use a modified version of the use-function.

Definition 3 Let Φ be an enumeration operator and A a set. The generalised use-
function ϕ is defined as follows:

ϕ(x) = max
{
use(Φ, A, y)|(y ≤ x) ∧ (y ∈ ΦA)

}
.

(N ,Γ) tries to maintain θ(x) < u(d) in the hope that after we extract x from E
each return of l(E, ΘU,V ) will produce an extraction from U ¹ θ(x) which can be
used to avoid an A-extraction in moving γ(d).

(N ,Γ) will have an extra outcome g which shall be visited in the event that some
such attempt to satisfy N ends with a V ¹ θ(x)-change. Then we must implement a
backup P-strategy, (P, Λ), which is designed to allow lower priority N -requirements
to work below the Γ-activity and to construct an operator Λ reducing K to V
and A, using the V ¹ θ(x)-changes to move λ-markers. Below (P, Λ) is a backup
strategy (N ,Λ) designed to take advantage of the improved strategy for P. Both
strategies (N , Γ) and (N , Λ) will attack simultaneously on stage s1 by extracting
their witnesses x1 and x̂1 from E ensuring that at least one of them will succeed in
providing the necessary U - or V -change on the next expansionary stage s+

1 . Here
x̂1 < x1, thus any change in U or V below θ(x̂1) will be a change in U or V below
θ(x1).

If (N ,Λ) turns out successful then (N ,Γ) will clear the working space for the backup
strategies by extracting the current markers of its threshold forcefully, we shall
refer to this as capricious destruction, choose a new witness x2 and start a new
cycle timing its next attack with the next N -strategy (N ′, Λ) below (P,Λ) with
witness x̂2 > x̂1 on stage s2. The success of (N , Λ) depends on the change in the
set V ¹ θ(x̂1). Unfortunately there is no guarantee that this change will remain
permanent as we are dealing with Σ0

2 sets. So it could happen that after the next
attack on stage s+

2 there is a further V -change below θ(x̂2) at an element greater than
θ(x̂1) making us visit the backup strategies, but the old V -change below θ(x̂1) has
moved to the set U , i.e. the change we observed on stage s+

1 in V has disappeared
(V ¹ θ(x̂1)[s1] = V ¹ θ(x̂1)[s+

2 ]). This will result in an irreparable injury to the
strategy (N ,Λ). The figure below illustrates this situation, the grey circles represent
the changes in he sets U an V as they appear after each attack.
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(P, Γ)

(N , Γ) (N , FM) θ(x̂1)

(P, Λ)

(N ,Λ)

(N ′, Λ)

Attack with x1, x̂1

θ(x̂2)Attack with x2, x̂2

e
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l

U [s+
1 ]

V [s+
1 ]

g

f
w

wf

f w

U [s+
2 ]

V [s+
2 ]

Fortunately we are constructing a Σ0
2 set as well and are thus allowed to extract

its elements any finite number of times without consequence to its characteristic
function. (N , Γ) will keep track of its old witnesses. If the change associated with
the old witness x1 moves to the set U , (N , Γ) will restore A as it was during the
attack with x1 at stage s1 and use the U -change for success. Only after changes in
V for each of the old witnesses have been observed will the backup strategies be
visited.

In Section 4 we shall implement each of these strategies in detail, listing all of
their parameters and outcomes. Section 5 will also contain more explanations about
the strategies and their design. Finally in Sections 6 and 7 we shall consider all
requirements and give the complete construction and proof of Theorem 1.

3 The Approximations

Consider the requirement P (We have omitted the index for simplicity). (P,Γ)
shall approximate the sets U , V and Θ on every stage on which it is active. We
shall choose special approximations to these sets. To ensure an unbounded length
of agreement in the case of equality between the set ΘU,V and E we need a good
approximation (U ⊕ V )[s] = B[s] to the set U ⊕ V = B as defined in [10] i.e. one
that has the following properties:

G1 ∀n∃s(B ¹ n ⊆ B[s] ⊆ B), such stages s are called good stages.

G2 ∀n∃s∀t > s(B[t] ⊆ B ⇒ B ¹ n ⊆ B[t]).

On the other hand, to use initial segments in our axioms for the constructed opera-
tors Γ and Λ, the approximations of the sets U and V that are derived from {B[s]}
by setting U [s] = {n|2n ∈ B[s]} and V [s] = {n|2n + 1 ∈ B[s]} should be good Σ0

2

approximations, i.e should have properties G1, G2 and Σ0
2:
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Σ0
2 ∀n(n ∈ U ⇒ ∃s∀t > s(n ∈ U [t]))

First we will choose a more convenient representation of the sets U and V . The Σ0
2

sets are exactly the ones c.e. in K and can be listed by {WK
e |e < ω}. The index i of

the Pi-requirements will correspond to a triple (e, a, j), where U = WK
e , V = WK

a

and Θ = Wj .

We approximate K via a better approximation as defined in [10]. A better approx-
imation to the set K is computable sequence of finite binary functions κ[s] such
that:

B1 ∀n∃s1,n(χK ¹ n ⊆ κ[s1,n] ⊆ χK).

B2 ∀n∃s2,n∀t > s2,n({x|κ[t](x) = 1} ⊆ K ⇒ χK ¹ n ⊆ κ[t]).

Consider K[s] to be the standard approximating sequence to the c.e. set K. And
let b(s) = µm[m ∈ K[s]\K[s− 1]], b(s) = s if K[s] = K[s− 1]. It is not hard to see
that {κ[s]}, where κ[0] = ∅ and if s > 0

κ[s](x) =





1 if x ∈ K[s],

0 if x /∈ K[s] and x < b(s)

not defined otherwise.

is a better approximating sequence to K. Furthermore as for all t we have that
{x|κ[t](x) = 1} ⊆ K, the second property of a better approximating sequence can
be improved:

B2 ∀n∃s2,n∀t > s2,n(χK ¹ n ⊆ κ[t]).

Now we can approximate U via U [s] = W κ
e [s], V via V [s] = W κ

a [s] and B via
B[s] = U [s]⊕ V [s].

Proposition 4 U [s] is a good Σ0
2 approximation to U . And V [s] is a good Σ0

2 ap-
proximation to V .

PROOF. We will prove the proposition for U [s]. We first note that if κ[s] ⊆ χK

then U [s] ⊆ U . For each n there is an m and an s such that U ¹ n = (We[s])χK¹m.
So if t > max(s2,m, s), where s2,m is the stage from B2 for m then χK ¹ m ⊆ κ[t]
and hence U ¹ n = (We[s])χK¹m ⊆ (We[t])κ[t] = U [t]. This proves G2 and the fact
that the approximation is Σ0

2. For G1 consider t > max(s1,m, s) to be a stage such
that κ[t] ⊆ χK then U [s] ⊆ U and U ¹ n ⊆ U [t]. 2

Proposition 5 B[s] is a good approximation to B.

PROOF. G1: Fix n. Choose s′ to be the stage from the second property of a good
approximation to U for n/2 and s′′ to be the stage from the second property of a

8



good approximation to V for n/2. Then let s > max(s′, s′′) be a stage such that
κ[s] ⊆ χK . Then U [s] ⊆ U and V [s] ⊆ V , hence B[s] ⊆ B. On the other hand s > s′

hence U ¹ n/2 ⊆ U [s] and s > s′′ hence V ¹ n/2 ⊆ V [s]. Thus B ¹ n ⊆ B[s].

G2: Proved easily as well using the stages from property G2 of the good approxi-
mations to U and V . 2

As a consequence of the properties of a good approximation we have that if ΘU,V =
E then there will be infinitely many expansionary stages, as lims is a good stageΘU,V [s] =
ΘU,V . Furthermore for each marker u(n) there will be infinitely many stages s on
which U [s] ¹ u(n) = U ¹ u(n). This allows us to carry out the original design of
the P-strategy. Of course we should keep in mind that the expansionary stages are
not necessarily the good stages and that if ΘU,V 6= E, we could still have infinitely
many expansionary stages.

4 The Basic Modules for one P- and one N -Requirement

4.1 The Main Strategies

The set A is going to be constructed as a Σ0
2 set in the following way. At each stage

A will be initially approximated by N and ultimately by the resulting set after all
extractions by strategies visited on this stage. Then n ∈ A iff there is a stage s such
that ∀t > s(n ∈ A[t]). This will ensure that essentially only the strategies along the
true path will be responsible for the elements extracted from A. This is an important
feature of the construction that distinguishes it from Harrington’s original proof of
the non-splitting theorem in the Turing degrees.

We will describe the modules for each of the strategies and list the parameters that
will be related to them. In each of our descriptions of a particular strategy we shall
have the context of the tree in mind. The strategy shall be assigned to a particular
node δ on the tree (a formal definition of the tree of strategies will be given in
Section 6.1), the current stage will be denoted by s and the previous δ-true stage
by s−(s− = s if δ has been initialized since the last stage on which it was visited).
All parameters will inherit their values from s− unless otherwise specified. For this
reason we will sometimes omit the indices that specify the stage if the stage is clear.

4.1.1 The (P , Γ)-strategy

We have already discussed the main idea for this strategy in Section 2.2. Here
we will add details to it and give the formal module. Let us note again that the
axioms in Γ are of the form 〈n,Un, {m}〉. To every element on every stage s we will
associate current markers u(n)[s] and γ(n)[s] and a corresponding current axiom
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〈n,U [s] ¹ u(n)[s], {γ(n)[s]}〉. An axiom 〈n,Un, {m}〉 is valid on stage s if Un ⊆ U [s]
and m ∈ A[s].

We will examine the current axiom in Γ for an element n ∈ K[s] if n is below the
length of agreement between E[s] and ΘU,V [s], choosing a new axiom as current if
the old one is invalid. In this way will be sure to catch the true approximation to
the set U ¹ u(n) so that if u(n) remains constant, so will the axiom for n after a
certain stage due to the Σ0

2-property of our approximations. If n /∈ K then it will be
enough to ensure that it does not appear in ΓU,A[s] on infinitely many stages s. We
choose the expansionary stages for this purpose. Note that during the construction
we may enumerate a number of axioms for a particular element. Any enumerated
axiom might seem invalid at one stage but turn out to be valid on a later stage. On
expansionary stages s for elements n /∈ K[s] we shall make sure that there are no
valid axioms by extracting the A-markers of any axiom that seems valid on stage s.

Each P-strategy α shall be assigned a distinct infinite recursive set Aα from which it
will choose the values of its A-markers. Whenever a strategy chooses a fresh marker
it will be of value greater than any number appeared so far in the construction.

Suppose for definiteness that the (P, Γ)-strategy we visit on stage s is α.

(1) If the stage is not expansionary then o = l, otherwise o = e.

(2) Choose n < l(ΘU,V , E)[s] in turn (n = 0, 1, . . . ) and perform following actions:

• If u(n) ↑ then define it anew as u(n) = u(n − 1) + 1 (if n = 0 then define
u(n) = 1).

• If n ∈ K[s]
· If γ(n) ↑ then define it anew and enumerate the current axiom 〈n,U [s] ¹

u(n), {γ(n)}〉 in Γ.
· If γ(n) ↓ but the current axiom for n is not valid then define the current

marker γ(n) anew and enumerate the new current axiom 〈n,U [s] ¹
u(n), {γ(n)}〉 in Γ.

• If n /∈ K[s] but n ∈ Γ(U,A)[s] and the stage is expansionary then look through
all the axioms defined for n , say 〈n,Un,m〉 ∈ Γ[s], and extract m for all valid
ones.

Note that if n /∈ K then we will enumerate only finitely many axioms for n in Γ and
hence extract only finitely many markers from A. Also note that this strategy will
extract markers only on expansionary stages. Hence if the true outcome is l, the
strategy will not modify the set A and N can be satisfied via the simple Friedberg-
Muchnik strategy proposed initially (N , FM). Below outcome e we shall need the
more sophisticated (N , Γ)-strategy.

4.1.2 The (N , Γ)-strategy

Suppose the node on which the (N , Γ)-strategy acts is labelled by β ⊃ α. We shall
say that α is the active P-strategy at β.
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We have already mentioned one of the parameters associated with β the threshold
d, a natural number that determines the beginning of the influence of β on the set
A. Furthermore β is equipped with a list of witnesses that it has used so far in its
attempts to satisfy N denoted by Wit. One of the witnesses is called the current
witness, denoted by x, and plays a special role.

The main feature of the construction, the way we approximate A, clashes with the
idea that a certain strategy progressively acts towards satisfying its requirement.
Any influence it has tried to inflict on the set A by extracting some element from it
will be lost unless the element is extracted again and again infinitely many times.
This is why each strategy will keep track of all elements it has previously extracted
in course of its work and extract these elements on every stage on which the strategy
is active. So if a strategy remains inactive, to the left of the true path, it will not
have any influence on the set A. If it is on the true path then it will restore its
previous work at the beginning of every true stage and build onto that work during
the stage. We will have three different groups of parameters responsible for elements
extracted by β during its activities. The first will be the set of markers extracted
for elements less than the threshold in Od by the active P-strategy. Note that the
valid axioms whose markers are extracted at expansionary stages need not be the
same on every stage. We need to provide some stability for β: if a marker that was
extracted from A on a previous β-true stage but is not extracted on this one, β will
extract it nevertheless and keep track of such elements in Od. The second group, Oβ,
will consist of markers extracted during the activity of β. The third will be markers
extracted due to capricious destruction after an attack that seems unsuccessful,
kept in a parameter Ow for each witness w. These can be later reenumerated in A
(i.e. not extracted from A on β-true stages) if the attack turns out to be successful.

We start β’s activity by performing Check first to see wether the threshold is chosen
correctly and wether any activity of the active P-strategy for elements below the
threshold has injured β’s work sofar. If so we restart the module from Initialization,
otherwise we continue the module from where we left it at the previous β-true stage
s−. If β has been initialized since the last stage on which it was visited or if it has
never been visited then s− = s and β starts from Initialization.

At Initialization the values of the threshold and witness are determined after that
the markers for all elements n ≥ d are reset so that (N ,Γ) will have some control over
the current axioms. The third part of the module, called Honestification, ensures
that a change in U after an attack will in fact be useful. Then (N , Γ) waits for its
witness to enter ΨA but always checks if Γ has remained honest. If x ∈ ΨA and the
operator is honest, (N , Γ) is ready to start the Attack. After the attack comes the
evaluation of the Result, which will determine wether the backup strategies should
be activated or the requirement N is satisfied for the moment.

• Check

(1) If d /∈ K[s], i.e the threshold has just been extracted from K, then find the least
n > d, n ∈ K[s] and let that be the new value of the threshold. Empty Wit,
cancel the current witness and start from Initialization, initializing all strategies
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below β. Note that the set K is infinite, hence we shall eventually find the right
threshold.

(2) Scan the elements n ≤ d such that n /∈ K[s]. If a marker m of n, m /∈ Oβ∪Od, has
been extracted from A on this expansionary stage by α then we will enumerate
it in Od, empty Wit, cancel the current witness and start from Initialization,
initializing all strategies below β. Note that this can happen finitely often as
long as the threshold remains permanent, as there are finitely many axioms and
hence markers that can be extracted from A for elements n ≤ d, n /∈ K.

(3) Extract from A: Outβ = Oβ ∪Od ∪
⋃

w∈Wit,w<x Ow.

• Initialization

(1) If a threshold has not yet been defined or is cancelled, choose a fresh threshold
d > l(ΘU,V , E)[s].

(2) If a witness has not yet been defined or is cancelled, choose a new witness
x ∈ E[s], d < x, bigger than any witness defined until now. Enumerate x ∈ Wit.

(3) Wait for a stage s such that x < l(ΘU,V , E)[s] . (o = w)
(4) Extract from A and enumerate in Oβ all Aα-markers m(n) of potentially ap-

plicable axioms for elements n such that d ≤ n < l(ΘU,V , E)[s]. An axiom is
potentially applicable, if its Aα-marker is not already extracted from A and
enumerated in Outβ. Cancel the current markers for these elements.

(5) For every element y ≤ x, y ∈ E[s], enumerate in the list Axioms the current
valid axiom from Θ[s], which was valid the longest, i.e. for each axiom for y
Axy ∈ Θ[s] let tAxy = µr[∀t(s ≥ t ≥ r ⇒ the axiom Ax was valid on stage
t)], then choose the axiom 〈y, Uy, Vy〉 ∈ Θ[s] with least tAxy . Here the definition
of θ(x) at stage s will be modified again to capture the greatest element of
precisely these axioms currently listed in the list Axioms. (o = h)

• Honestification Scan the list Axioms. If for any element y ≤ x, y ∈ E[s], the
listed axiom was not valid on any stage t since the last β-true stage then update
the list Axioms, let (o = h) and

(1) Extract and enumerate in Oβ all Aα-markers m(n) of potentially applicable
axioms for elements n such that d ≤ n, cancel the current markers for these
elements and define u(d) > θ(x). This ensures the following property: for all
elements n ≥ d, n ∈ K[s] the U -parts of the axioms in Γ include the U -parts
of all axioms listed in Axioms for elements y ≤ x, y ∈ E[s]. If n /∈ K[s] then
all its Aα-markers will be extracted from A and enumerated in Oβ so that no
new extraction of a marker by the active P-strategy α for these elements can
surprise us.

Otherwise go to:

• Waiting Wait for a stage s such that x ∈ ΨA[s] returning at each successive
stage to Honestification (o = w).

• Attack

(1) If x ∈ ΨA[s] and u(d) > θ(x) then extract x from E. The outcome is (o= g)
starting a nonactive stage for the backup strategies. On this stage they cannot
perform any actions except for attacking with their own witnesses. Define Ox

to be the set of all Aα-markers of potentially applicable axioms for elements n

12



such that d ≤ n and Inx = (A ¹ use(Ψ, A, x))[s]. At the next true stage go to
Result.

• Result Let x̄ ≤ x be the least element that has been extracted from E during
the stage of the attack. As this is an expansionary stage x̄ /∈ ΘU,V [s], hence
all axioms for x̄ in Θ[s] are not applicable, in particular the one enumerated in
Axioms, say 〈x̄, Ux̄, Vx̄〉. At least one element from Ux̄ or Vx̄ has been extracted
from U or V respectively(i.e. is not in U [s] or V [s]). We will attach to the witness
x the necessary information about this attack, namely a parameter Attack(x) =
〈x̄, Ux̄, Vx̄〉.

If Vx̄ ⊆ V [s] then the attack is successful. The Aα-markers of elements n ≥ d have
been lifted above use(Ψ, A, x) as all previously enumerated axioms for elements
n ≥ d will not be valid. Hence if later on we want to ensure that ΓU,A(n) = 0 we
will only need to extract a marker that is already above the restraint.

If the attack was unsuccessful then we had a change in V . The plan is to start
the backup strategies and then try again with a new witness. In this case we will
move the markers γ(n) for n ≥ d, n ∈ K[s], by extracting the current ones and
defining the markers anew in order to provide a safe working space for the backup
strategy. At any later stage when we activate the backup strategy we would like
to have all changes in V for all unsuccessful witnesses that have already been
used. As we already discussed in Section 2.3 the Σ0

2 nature of the sets U and
V can trick us to believe a certain witness is unsuccessful, where in fact after
finitely many changes in V it turns out to be successful. We would like to be able
to restore the old situation as it were during the attack with this old witness and
use it to satisfy the requirement. This is where the parameter Ox comes into use.
Every time we reach this step of the module we will stop and look back at what
has happened with the previous witnesses recorded in the list Wit. If it turns
out that we have a permanent U -change useful for some w ∈ Wit then we can
reenumerate the corresponding Ow in A and satisfy the requirement N with this
witness. Otherwise as the stage is expansionary and hence w /∈ ΘU,V [s] we have
the necessary change in V to rely on the backup strategy.

Thus we scan all w ∈ Wit.

(1) Let Attack(w) = 〈w′, Uw′ , Vw′〉. If there was a change in Vw′ since this witness
was last examined, i.e. there is a stage t such that t is bigger than the stage
of the last attack and Vw′ * V [t] then extract Ow from A and go to the next
witness.

(2) Otherwise w is successful, the outcome is (o = fw). We set the current witness
to be w so that Ow is not extracted from A during Check. Return to Result at
the next stage. We say that β restrains the elements Inx in A.

(3) If all witnesses are scanned and all are unsuccessful then cancel the last witness
together with the current markers of the elements n ∈ K[s], d ≤ n and let the
outcome be o = g starting an active stage for the backup strategies. Return to
Initialization at the next stage, choosing a new witness. Remove β′s restraint
on A.
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4.1.3 Analysis of Outcomes

We shall list the possible outcomes of the defined modules and determine a right
boundary R below which successive strategies are allowed to work. The right bound-
ary is relevant only for N -strategies. It tells a strategy that it is safe to believe
that the set A shall not change below R due to the activity of higher priority N -
strategies. The right boundary will move off to infinity as the stages grow. So for
example the (N , FM) strategy working below R after selecting a witness x will
(1) Wait for x ∈ ΨA[s] with use(Ψ, A, x) < R and then (2) extract x from E and
restrain (A ¹ use(Ψ, A, x))[s] in A.

(P, Γ) has two possible outcomes:

(l) There is a stage after which l(ΘU,V , E)[s] remains bounded by its previous ex-
pansionary value. Then P is trivially satisfied. In this case N will be satisfied by
the strategy (N , FM) working below right boundary R = ∞.

(e) There are infinitely many expansionary stages. The (N , Γ)-strategy β is acti-
vated.

The possible outcomes of (N , Γ) are:

(w) There is an infinite wait at Waiting for ΨA(x) = 1 for some witness x. Then
N is satisfied because E(x) = 1 6= ΨA(x) and (P, Γ) remains intact. Successive
strategies work below R = ∞.

(fx) There is a stage after which some witness x with Attack(x) = 〈x̄, Ux̄, Vx̄〉 never
gets its Vx̄-change. Then there is a permanent change in Ux̄ and the markers of all
witnesses are moved above use(Ψ, A, x). At sufficiently large stages K ¹ d has its
final value. So there is no injury to the strategies below fx. ΨA(x) = 1 6= E(x) and
N is satisfied, leaving (P, Γ) intact. Successive strategies work below R = ∞.

(h) There are infinitely many occurrences of Honestification for some witness x
precluding an occurrence of Attack. Then there is a permanent witness x which has
unbounded limsupθ(x). This means that ΘU,V (y) = 0 for some y ≤ x, y ∈ E, thus
P is satisfied. In this case N is satisfied by a second instance of (N , FM) working
below R = γ(d).

(g) We implement the unsuccessful attack step infinitely often. As anticipated we
must activate the backup strategies. They work below R = x.

4.2 The Backup Strategies

Notice that the outcome (g) is visited in two different cases: at the beginning of
an attack and when the attack turns out to be unsuccessful. The first case starts a
nonactive stage for the subtree below (g) allowing other N -strategies to synchronize
their attacks with the one performed by (N , Γ). The second case starts an active
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stage on which the strategies will do their usual work. Unless otherwise specified
the described actions are only performed on active stages.

4.2.1 The (P , Λ)-strategy

The (P, Λ)-strategy is quite similar to the (P,Γ)-strategy. The only difference is
that it needs to be extra careful in order to catch the true approximations of the
initial segments of V as it is only visited on expansionary stages, not necessarily
true ones. It has only one outcome e.

(1) Choose n < l(ΘU,V , E)[s] in turn (n = 0, 1, . . . ) and perform following actions:

• If v(n) ↑ then define it anew as v(n) = v(n− 1) + 1.
• If n ∈ K[s]

· If λ(n) ↑ then define it anew and enumerate the current axiom 〈n, V [s] ¹
v(n) + 1, {λ(n)}〉 in Λ.

· If λ(n) ↓ but the current axiom was not valid on some stage t: s− <
t ≤ s. Then define λ(n) anew and choose out of all V [p] ¹ v(n) for
s− < p ≤ s the one that has been a subset of V the longest much like
we chose the valid axiom for the witnesses in the list Axioms in Section
4.1.2, let that be Vn. Define the current axiom to be 〈n, Vn, {λ(n)}〉 and
enumerate it in Λ.

• If n /∈ K[s] but n ∈ ΛV,A[s] then extract from A all Aα′-markers of axioms
for n with V -part Vn such that ∀t(s− < t ≤ s ⇒ Vn ⊆ V [t]).

4.2.2 The (N , Λ)-strategy

Let the (N , Λ)-strategy be β′. The actions that (N , Λ) performs are similar to the
ones performed by (N ,Γ) but are directed at the active P-strategy at β′ which
is now α′. The strategy β′ extracts only Aα′-markers used in the definition of the
operator Λ.

• Check

(1) If d̂ /∈ K[s] then find the least n > d̂, n ∈ K[s] and let that be the new
value of the threshold. Cancel the current witness and start from Iinitialization,
initializing all strategies below β′.

(2) Scan the elements n ≤ d̂ such that n /∈ K[s]. If an Aα′-marker m(n) /∈ O
d̂

has
been extracted from A on this stage then enumerate it in O

d̂
, cancel the current

witness and start from Initialization, initializing all strategies below β′.
(3) Extract Outβ′ = Oβ′ ∪O

d̂
from A.

• Initialization

(1) Choose a new threshold d̂, bigger than any defined until now such that
l(ΘU,V , E)[s] < d̂.
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(2) Choose a new witness x̂ ∈ E[s] such that d̂ < x̂, bigger than any witness defined
until now. Note that when x̂ is chosen β has just started an active backup stage
and cancelled its own witness. The next witness that β will use will be defined
after this stage and hence will be of value greater than x̂.

(3) Wait for a stage s such that x̂ < l(ΘU,V , E)[s]. (o = w)
(4) Extract all Aα′-markers m(n) enumerating them in Oβ′ for elements n such that

d̂ ≤ n and cancel the current markers.
(5) For every element y ≤ x̂, y ∈ E[s], enumerate in the list Axioms the current

valid axiom from Θ[s], i.e. the one that has been valid longest. Define v(d̂) >
θ(x̂). (o = h)

• Honestification If for some y ≤ x̂, y ∈ E[s], the corresponding axiom in Axioms
was not valid at any stage since the last β′-true stage then update the list and
let (o = h) and then:

(1) Extract all Aα′-markers m(n), enumerating them in Oβ′ , for elements n such
that d̂ ≤ n < l(ΘU,V , E)[s], cancel the current markers and define v(d̂) > θ(x̂).

Otherwise go to Waiting :

• Waiting Wait for a stage s such that x̂ ∈ ΨA[s] with use(Ψ, A, x̂)[s] < R return-
ing at each successive step to Honestification (o = w). Once this happens go to
Attack.

• Attack

(1) Wait for a nonactive stage (o = w). This synchronizes the attacks of the two
strategies.

(2) If Λ is not honest do nothing and return to Honestification at the next active
stage. Otherwise extract x̂ from E. Let Inx̂ = A ¹ use(Ψ, A, x̂). (o = w)

The next stage at which this strategy will be accessible will be an unsuccessful
attack for (N , Γ), hence if the strategy does not get initialized due to a K ¹ d̂-
change, there will be a V ¹ θ(x̂)-change. Indeed as x̂ < x the least element
that has been extracted during the attack is x̄ ≤ x̂. This outcome is visited
on unsuccessful attacks hence V ¹ θ(x̄) has changed but θ(x̄) ≤ θ(x̂), hence
V ¹ θ(x̂) has changed as well. Hence at the next accessible stage we can simply
go to Result :

• Result Successful attack. We say that β′ is restraining Inx̂ in A. (o = fx̂). Return
to Result at the next stage. Note that every time this strategy is visited a corre-
sponding V ¹ θ(x̂) change will be present so the successful attack is permanent.

4.2.3 Analysis of Outcomes

The possible outcomes of the (N ,Λ)-strategy are (w), (fx), and (h), exactly cor-
responding to the outcomes (w),(fx) and (h) of (N , Γ) discussed in Section 4.1.3.
In each of these outcomes we either have satisfied the requirement P and can im-
plement (N , FM) to satisfy N or N is satisfied while the (P, Λ)-strategy remains
intact.
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The tree of outcomes at this point looks as follows:

(P, Γ)

(N, Γ) (N,FM)

(P, Λ)

(N, FM)

(N, FM)
f

(N,Λ)

e l

f w
w

h

fx1fx2

g

e

w
h

f w

f w

5 One N -requirement below two P-requirements

In this section we shall try to give the basic intuition about the case when one
N -requirement needs to handle two P-requirements P0 and P1 of higher priority,
leaving the formal definition of the various strategies for Section 6.2, where a general
construction regarding all requirements will be given.

The N -strategy now needs to respect two higher priority requirements, each con-
structing its own operator. During the course of the construction it might become
obvious that a P-requirement is satisfied or should switch to a Λ-strategy. Therefore
we shall have more possibilities for the strategies. Each P-requirement will have a
(Pi, Si)-strategy with Si ∈ {Γi, Λi} and the N -strategies will be (N , S0, S1), where
Si ∈ {Γi,Λi, FMi}. P0 < P1 so should the the P0-strategy change it can afford to
restart the P1-strategy. If the P1-strategy is changed though, we must make sure
that this does not affect the strategy for P0.

The tree of strategies is quite a bit more complicated than in the first case we
considered. The (Pi, Si)-strategies are exactly the ones used in Sections 4.1.1 and
4.2.1. We shall concentrate here on the subtree below both expansionary outcomes
of the P-strategies and discuss how the (N , Γ0, Γ1)-strategy works as this is the
most general case and captures all main ideas.
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(P0, Γ0)

(P1, Γ1)

(N , Γ0, Γ1)

wh1h0fx1fx2

. . .
g0g1

le

e l

Let β be the (N , Γ0, Γ1)-strategy with active P-strategies α0 and α1. The module
of β will be divided in the same submodules: Check, Initialization, Honestification,
Waiting, Attack and Result. Most submodules and most parameters shall have two
copies, one for each active P-strategy.

Initialization There will be two thresholds d1 < d0 and one current witness x.
Each new witness is enumerated in Wit0. The first witness used is enumerated in
Wit1 as well. Any further witness will be enumerated in Wit1 only if the attack
performed with it will be timed with the backup strategies below outcome g1, that
is if after the previous attack we visited actively outcome g1.

Honestification is performed first to Γ0 with the list Axioms0. If Γ0 is not honest
then β will clear both the Aα0- and Aα1-markers, providing safe working space
for strategies below outcome h0. This will destroy the strategy α1, therefore below
outcome h0 we shall have a new copy of the P1-strategy (P1,Γ1) starting work
from the beginning. If Γ0 is honest then we will perform Honestification1. In case
Γ1 is not honest only Aα1-markers will be extracted. If this is the true outcome β
shall not extract any Aα0-markers and α0 will remain intact and still be active for
N -strategies below outcome h1.

Attack is performed once x ∈ ΨA and both operators are honest. There are two
sorts of backup strategies: the ones below outcome g0 and the ones below outcome
g1. A nonactive stage shall be started for strategies below the outcome visited during
the previous attack.

Result is performed first for Γ0. If the attack is 0-unsuccessful then outcome g0

is visited and capricious destruction is performed on both operators. Again below
outcome g0 we have a copy of the (P1,Γ1)-strategy starting its work from the begin-
ning. The outcome g0 can be visited after many consecutive attacks so the witnesses
used will be collected in Wit0. Only after we see a successful witness w ∈ Wit0 will
we examine the result for the second operator Γ1.

The witnesses in Wit1 are then examined one by one. In this case we are not able
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to guarantee a V1-change for each of the witnesses to the backup strategies below
outcome g1. Instead a witness w with Attack(w) = 〈w̄, Uw̄,0, Vw̄,0, Uw̄,1, Vw̄,1〉, where
w̄ is the least witness extracted by some strategy during the attack with w, is
considered 1-unsuccessful if there is a Vw̄,0-change or a Vw̄,1-change. If all witnesses
are 1-unsuccessful the outcome g1 is visited.

To explain how an attack works we will need to consider the backup strategies below
outcome g1 as well. We have β′ which is the (N ,Γ0, Λ1)-strategy, then below it β′′

which is the (N , Λ0, Γ1)-strategy, finally β′′′ is the (N ,Λ0, Λ1)-strategy.

fw′′′ h0 w

β′′′

β′′

α′′1

α′′0

β′

α′1

β

α′′′1

...
fw h0 h1 w

h1

...

fw′ h0 w

l

fw′′

...

h0 h1 w

h1

g1

g0

g0

g1

β : (N , Γ0,Γ1)
α′1 : (P1,Λ1)
β′ : (N ,Γ0, Λ1)
α′′0 : (P0,Λ0)
α′′1 : (P1,Γ1)
β′′ : (N , Λ0, Γ1)
α′′1 : (P1,Λ1)′

β′′′ : (N , Λ0, Λ1)

All strategies attack together with w′′′ < w′′ < w′ < w. We have a connec-
tion between their parameters: (Uw̄,0, Vw̄,0) = (Uw̄′,0, Vw̄′,0) = (Uw̄′′,0, Vw̄′′,0) =
(Uw̄′′′,0, Vw̄′′′,0), then (Uw̄,1, Vw̄,1) = (Uw̄′,1, Vw̄′,1) and (Uw̄′′,1, Vw̄′′,1) = (Uw̄′′′,1, Vw̄′′′,1).

Suppose that after we evaluate the result of β it has outcome g1. This means that
there is a change in Vw̄,0 or Vw̄,1. Then β′ evaluates the result of the attack. If the
change was not in Vw̄,0 = Vw̄′,0 then β′ is successful as it has the desired Uw̄′,0, Vw̄′,1-
change. Otherwise we have a Vw̄′,0 = Vw̄′′,0-change and β′ will have outcome g0.
Now β′′ has its desired Vw̄′′,0-change. If there is a Uw̄′′,1-change then it is successful,
otherwise there is a Vw̄′′,1 = Vw̄′′′,1-change. β′′ will have outcome g1 and the strategy
β′′′ will be successful. Thus whatever the distribution of the changes at least one of
the strategies along the tree will be successful.

Of course we need to provide safe working space for the backup strategies below
outcome g1. We can afford to capriciously destroy Γ1 as we know that a backup
(P1,Λ1)-strategy will follow. On the next cycle β will need carry on its work by
extracting the Aα0-markers to prepare Γ0 for the attack with the next witness. This
puts α0 in danger of being destroyed although no advancement on the satisfaction
of P0 has been made. To prevent this a new value of the threshold d0 will be chosen
on every active visit of the outcome g1, the set Od0 will be emptied. So on each new
cycle after an active g1-visit β will move its activity regarding Aα0 , allowing α0 to
remain intact.
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As a consequence we will need to rethink the Check0 submodule. It should not be
allowed the initialize all strategies below β should an Aα0-marker of an element less
than d0 be extracted by the active P0-strategy and enumerated in Od0 . If the true
outcome is g1 then the value of d0 will grow unboundedly and we might initialize
all strategies β infinitely often. Check0 shall instead be only allowed to initialize
strategies that believe the threshold d0 is constant, that is all except for the ones
below g1.

The strategy β′ working below outcome g1 has the same active P0-strategy. It
has threshold d′0 < d0 and prepares its attack by extracting Aα0-markers. This
preparation is useful for β as it ensures that α0 will not extract markers for elements
n ≥ d′0 if the attack is 0-successful. If we neglect this preparation the following
situation might happen: Suppose β and β′ attack with w and w′. Then while we
are evaluating β’s Result a new marker m for an element n such that d′0 < n ≤ d0

is extracted by α0. Check0 would like to restart β from initialization. In this case
the witness w will be discarded and the attack with w′ will be neglected. So the
next time we visit β′ we might not have the right permission for w′. On the other
hand if we incorporate the preparation provided by β′ an extraction by α0 which
is below use(Ψ, A, w) will give us more information, namely that the witness w′ is
1-unsuccessful, as a U0,w̄ = U0,w̄′ change will ensure that no markers for elements
n > d′0 will be extracted by α0. For this reason the parameter Ow will appear in two
ways: Ow,own will have the same definition as in the first case, it will include the
markers that we extract during capricious destruction, Ow,else will contain markers
extracted by backup strategies during their preparation for an attack that will be
performed together with β’s attack with w. The set Ow,else will only be extracted
by β during Honestification and Waiting. After the attack we must not extract
it as it might interfere with the elements that previous witnesses need to keep in A
for their own success.

Now we are ready to proceed to the main construction and the proof that it works.

6 All requirements

We will start by describing the tree of outcomes. Each P-requirement has at least
one node along each path in the tree of strategies. Each N -requirement has many
nodes along each path, the number depends on the number of P-requirements of
higher priority.

For every P-requirement Pi we have two different strategies: (Pi,Γi) with outcomes
e <L l and (Pi, Λi) with one outcome e.

For every N -requirement Ni, where i > 0, we have strategies of the form
(Ni, S0, . . . , Si−1), where Sj ∈ {Γj ,Λj , FMj}. The requirement N0 has one strategy
(N0, FM). The outcomes are fx for x ∈ ω, w and for each j < i if Sj ∈ {Γj ,Λj} there
is an outcome hj , if Sj = Γj , there is an outcome gj . They are ordered according to
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the following rules:

(1) For all j1 and j2, gj1 <L . . . fn <L fn−1 <L · · · <L f0 <L hj2 <L w

(2) If j1 < j2 then gj2 <L gj1 and hj1 <L hj2 .

Let O be the set of all possible outcomes and S be the set of all possible strategies.

6.1 The tree of strategies

The tree of outcomes is a computable function T : dom(T ) ⊂ O∗ → S which has
the following properties:

(1) T (∅) = (N0, FM).

(2) If T (α) = S and OS is the set of outcomes for the strategy S then for every
o ∈ OS , α ô ∈ D(T ).

(3) If S = (Ni, S0, S1, . . . , Si−1) then

Below outcome gj: T (α ĝj) = (Pj , Λj) and T (α ĝj ê) = (Pj+1, Γj+1), . . .
T (α ĝj ê̂ oj+1 ôi−2) = (Pi−1, Γi−1), where ok ∈ {ek, lk} for j + 1 ≤ k ≤ i − 2.
T (α ĝj ê̂ oj+1 ôi−1) = (Ni, S0, . . . ,Λj , S

′
j+1 . . . , S′i−1), where S′k = Γk if ok = ek and

S′k = FMk if ok = lk for every k such that j < k < i.

Below outcome hj: T (αˆhj) = (Pj+1, Γj+1), . . . T (αˆhj ôj+1 ôi−2) = (Pi−1, Γi−1),
where ok ∈ {ek, lk} for j + 1 ≤ k ≤ i− 2.
T (αˆhj ôj+1 ôi−1) = (Ni, S0, . . . , FMj , S

′
j+1 . . . , S′i−1), where S′k = Γk if ok = ek

and S′k = FMk if ok = lk for every k such that j < k < i.

Below outcome fx: T (α f̂x) = (Pi,Γi). Then T (α f̂x ê) = (Ni+1, S0, . . . , Si−1,Γi),
T (α f̂x l̂) = (Ni+1, S0, . . . , Si−1, FMi).

Below outcome w: T (αˆw) = (Pi, Γi). Then T (αˆw ê) = (Ni+1, S0, . . . , Si−1,Γi),
T (αˆw l̂) = (Ni+1, S0, . . . , Si−1, FMi).

The following picture illustrates these properties for (N2, Γ0, Γ1).
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6.2 The construction

On each stage s we shall construct a finite path through the tree of outcomes δ[s] of
length s starting from the root. The nodes that are visited on stage s shall perform
activities as described below. Their parameters will be modified. Each N -node α
shall have a right boundary Rα which will also be defined below. R∅ = ∞. After the
stage is completed, all nodes to the right of the constructed δ[s] will be initialized
and their parameters will be cancelled or set to their initial value ∅.

An N -strategy on node α works with respect to the active P-strategies at α. It also
synchronizes its work with some of the higher priority N -strategies. It will be useful
to define a notion of dependency between the different N -strategies.

Definition 6 A node α with T (α) = (Ni, S0, S1, . . . , Si−1) depends on node β ⊂ α,
if α ⊇ βˆgj and Sj = Λj for some j. The node α is independent if it is not dependent
on any node β ⊂ α.

If α is dependent it might depend on many of its initial segments. The biggest(closest)
node on which α depends will be called the instigator of α, denoted by ins(α). The
strategy α must time its attacks with the attacks performed by ins(α), i.e. when-
ever α is ready to attack, it waits for an ins(α)-nonactive stage and attacks on that
stage. All the rest of the activity by α is performed only on active stages. We define
a stage s to be nonactive if a strategy σ ⊂ δ[s] starts an attack on stage s. Stage s
is also σ-nonactive. A stage is active if it is not nonactive. Note that if β ĝj is on
the true path then there will be infinitely many β-nonactive stages on which β ĝj

is visited. In fact every β ĝj-true active stage is followed by a β ĝj-nonactive stage
before the next β ĝj-true active stage.

In our further discussions we shall denote with Mα, mα, Zα and zα: Γα, γα, Uα and
uα respectively if α is a (P,Γ)-strategy and Λα, λα, Vα and vα respectively if α is
a (P,Λ)-strategy. We will denote by s− the previous α-true stage and by o− the
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outcome it had on that stage. If α has been initialized since its previous true stage
or if it has never before been visited then s− = s and o− is the most right outcome.

Suppose we have constructed δ[s] ¹ n = α. If n = s then the stage is finished and we
move on to stage s + 1. If n < s then α is visited and the actions that α performs
are as follows:

(I.) T (α) = (Pi, Γi). This strategy is responsible for approximating the sets Ui, Vi

and Θi. It will consider the next approximation only on active stages. On these we
perform the actions as stated in the main module in Section 4.1.1. δ[s](n + 1) = l
at non-expansionary stages. At expansionary stages δ[s](n + 1) = e. At nonactive
stages no actions are performed. The outcome is o = o− .

(II.) T (α) = (Pi,Λi). On active stages we perform the actions as stated in the
main module in Section 4.2.1. δ[s](n + 1) = e. At nonactive stages no actions are
performed, δ[s](n + 1) = e.

(III.) T (α) = (Ni, S0, . . . , Si−1) with active P-nodes α0, . . . αi−1. On active stages
we perform Check first. If it doesn’t instruct us otherwise then we carry on with the
module from where it was left at the previous α-true stage s−( from Initialization
if s− = s). On nonactive stages α may only attack.

• Check: Let Outα =
⋃

j<i Odj ∪Oα
⋃

w∈Witα,w<x Ow,own ∪Ox,else. The strategy α
performs Check(j) for j = i− 1, i− 2 . . . 1.

Check(i−1) Scan all n ≤ di−1. If an Aαk
-marker for n, mk(n) /∈ Outα, has been

extracted from A by αk, the active Pk-strategy at α, for k ≤ i− 1 at a stage t:
s− < t ≤ s then we will enumerate it in Odi−1

and empty Wit and Witj , j < i,
initialize all strategies below α and start from initialization.

Check(j) Scan all dj+1 < n ≤ dj . If an Aαk
-marker for n, mk(n) /∈ Outα, has

been extracted from A by αk for k ≤ j, at a stage t: s− < t ≤ s then we will
enumerate it in Odj . Then all successors of α that assume that dj does not change
infinitely many times are initialized. These are strategies γ such that γ ⊇ α ĝk

for k ≤ j or γ ⊇ α ô where o ∈ {hl, fx, w|l < i, x ∈ ω}, hence all strategies below
and to the right of outcome gj . Then we will empty Witk for k ≤ j and leave
only the current witness x in them.

If α is evaluating Result and the last active g-outcome was gl and l < j then α
continues from the Initialization step. Otherwise α continues to evaluate Result.

If a threshold dj is extracted from K[s] then it is shifted to the next possible value,
i.e to the least n > dj , n ∈ K[s]. If this injures the order between thresholds then
the other thresholds are shifted as well. In this case the strategy resets its work
in the same way as described in Checkj when an element enters Odj .

Extract Outα from A.

• Initialization: Each strategy Sj 6= FMj picks a threshold if it is not already
defined. The different thresholds must be in the following order:

di−1 < di−2 < · · · < d0.
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Strategy Sj picks its threshold as a fresh number such that its marker has not
yet been defined by the active Pj-strategy at α. Then α picks a witness x ∈ E
again as a fresh number. Then it enumerates x in Witα.

If this is the first witness that α picks after it was initialized then x is enumerated
in all Witj j < i where Sj = Γj and Ox,else = ∅.
If the previous active g-outcome was gj on stage s− then x is enumerated in
Witk, for k ≤ j, such that Sk = Γk. Then Ox,else is the set of all Aαk

-markers
mk of potentially applicable axioms in the operator defined at the current active
Pk-strategy for elements n < dk, for k < j, that were extracted from A on stage
s−.

If l(ΘUj ,Vj

j , E)[s] ≤ x for some j < i then δ(n+1)[s] = w, working below R = Rα.

If l(E,ΘUj ,Vj

j )[s] > x for all j < i then α extracts from A and enumerates in Oα

all Aαj -markers for all potentially applicable axioms for all elements n ≥ dj from
all active operators Sj . Then cancels all current j-markers for n ≥ dj and defines
zαj (dj) > θj(x).

For every element y ≤ x, y ∈ E[s], α enumerates in the list Axiomsj the current
valid axiom from Θj [s] that has been valid longest as defined in Section 4.1.2.
The next stage will start from Honestification. δ[s](n + 1) = w, working below
R = Rα.

• Honestification: The strategy α performs Honestification(0).

Honestification(j):If Sj = FMj then (o = w). Otherwise:

(1) Scan the list Axiomsj . If for any element y ≤ x, y ∈ E[s], the listed axiom was
not valid on any stage t since the last α-true stage then update the list Axiomsj ,
let (o = h) and go to (2) otherwise let (o = w)

(2) Extract and enumerate in Oα all Aαj -markers mj(n) of potentially applicable
axioms for elements n such that dj ≤ n < l(ΘUj ,Vj

j , E)[s]. Cancel their current
j-markers. For the elements n ∈ K[s] define zαj (n) > θj(x).

If the outcome of Honestification(j) is w then α performs Honestification(j+1)
if j +1 < i and goes to waiting if j +1 = i. If the outcome is h then α extracts all
Aαk

-markers of potentially applicable axioms for elements n ≥ dk, enumerating
them in Oα for all k > j. Then cancels their current Aαk

-markers. The outcome
is δ[s](n + 1) = hj working below R = min(Rα,mαj (dj)). At the next stage α
start from Honestification.

• Waiting: If all outcomes of all Honestificationj-modules are w, i.e all enumer-
ation operators are honest then α checks if x ∈ ΨA

i [s] with use(Ψ, A, x) < Rα.
If not then the outcome is δ[s](n + 1) = w, working below R = Rα. At the next
stage α returns to Honestification. If x ∈ ΨA

i [s] with use(Ψ, A, x) < Rα then α
goes to Attack.

• Attack: If α is dependent then it waits for an ins(α)-nonactive stage. δ[s](n+1) =
w, working below R = Rα.

If the stage is ins(α)-nonactive, x ∈ ΨA[s], use(Ψ, A, x) < Rα and all operators
are honest,(i.e. the axioms recorded in the lists Axiomsj , j < i, have remained
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valid on all stages since s− ) then α extracts x from E. Define Ox,own to be the
set of all potentially applicable axioms in the active Pj-operators for elements
n ≥ dj and j < i. Let tx = s and Lx = use(Ψ, A, x) and Inx = A ¹ Lx.

This starts an α-nonactive stage for the strategies below the most recently vis-
ited outcome gj (if none has been visited until now then g0) working below the
boundaries they worked before.

• Result Let x̄ be the least element extracted from E during the attack. It has a
corresponding entry 〈x̄, Ux̄,j , Vx̄,j〉 in Axiomsj . Define Attack(x) = 〈x̄, Ux̄,0, Vx̄,0,
. . . Ux̄,i−1, Vx̄,i−1〉. We will denote by Attack(x)[j] the pair (Ux̄,j , Vx̄,j). Redefine
Lx to be the maximum of all Ly for all elements y that were extracted during the
attack. Empty Ox,else as it has done its job. The strategy α performs Result(0).

Result(j):If Sj = FMj or Sj = Λj then go to Result(j + 1). Otherwise scan
all witnesses w in Witj . Let Attack(w)[k] = (Uw̄,k, Vw̄,k) for k ≤ j. If one of the
following two conditions is true for any k ≤ j:

(1) Sk = Γk and there was a change in Vw̄,k since this witness was last examined,
i.e. there is a stage t, such that t is bigger than the stage on which this witness
was last examined such that Vw̄,k * Vk[t].

(2) An Aαk
-marker mk < Lw of an element n < dk[tw] such hat mk ∈ A[tw] was

enumerated in Odk
for k < j.

Then extract Ow,own from A and go to the next witness.

Otherwise w is k-successful for all k ≤ j then go to Result(j + 1).

If all witnesses are scanned then cancel the last witness cancel the current Aαk
-

markers for elements n ≥ dk, k > j. Empty Witl and cancel dl together with Odl

for l < j. Return to Initialization at the next stage, choosing a new witness and
thresholds. The outcome is δ[s](n + 1) = gj . boundary is R = min(x,Rα).

Result(i) We reach this result only in case we have found some witness w that
is j-successful for all j < i. Then let the current witness be w. Restrain Inw in
A. Let the outcome be o = fw, working below R = Rα. At the next stage go back
to Resultq where q is the greatest index of a Γ-strategy among (S0, . . . Si−1) and
q = i if the are no Γ-strategies.

7 The Proof

We shall now prove that the construction described in Section 6.2 works. We shall
start by defining a true path in the tree of strategies. Using this path we shall
then prove some basic properties of the construction. This will enable us to prove
that all P-requirements are satisfied. Finally we will turn our attention to the N -
requirements.
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7.1 The true path

Lemma 7 There is an infinite path f in our tree of strategies with the following
properties:

(1) ∀n∃∞s(f ¹ n ⊆ δ[s]) - the infinite visit property.

(2) ∀n∃sl(n)∀s > sl(n)(δ[s] 6<L f ¹ n) - the leftmost property.

(3) ∀n∃si(n)∀s > si(n)(f ¹ n is not initialized anymore) - the stability property.

PROOF. We will define the true path with induction on n and prove that it has
the properties needed. The case n = 0 is trivial: f ¹ 0 = ∅ is visited on every stage
of the construction and is never initialized, sl(0) = si(0) = 0.

Suppose we have constructed f ¹ n = α with the required properties. We shall
define f ¹ (n + 1):

If α is a (Pi, Γ)-strategy then it has two possible outcomes e <L l. If outcome
e is visited infinitely often then let f ¹ (n + 1) = α ê. It has the infinite visit
property and being the most left possible outcome has the leftmost property with
sl(n + 1) = sl(n). Otherwise there is a stage t after which whenever we visit α, we
visit also α l̂. Then f ¹ (n + 1) = α l̂ is visited infinitely often and has the leftmost
property with sl(n + 1) = max(sl(n), t). α does not initialize its successors, hence
si(n + 1) = max(si(n), sl(n + 1)).

If α is a (Pi, Λi)-strategy then it has only one outcome o = e visited on every α-true
stage, hence f ¹ (n + 1) = α ê has the needed properties with sl(n + 1) = sl(n). α
does not initialize its successors, hence si(n + 1) = max(si(n), sl(n + 1)).

Let α be an (Ni, S0, . . . , Si−1)-strategy, where S ∈ {Γ,Λ, FM}. After a stage t >
si(n), α has a permanent threshold di−1 ∈ K. If we assume otherwise this would
mean that K is finite and hence computable which is not true. There are finitely
many elements n ∈ K, n < di−1, with finitely many axioms defined for them in the
corresponding operators S0, . . . Si−1, as once an element exits K no more axioms
are enumerated for it in any operator. Hence there are finitely many markers, which
can initialize all nodes below α each only once, on its entry in Odi−1 , which is never
again emptied after stage si(n). Hence there is a stage t1 > t after which no more
markers enter Odi−1 . If α has an outcome gi−1 (and hence Si−1 = Γi−1) that is
visited infinitely often, then let f ¹ (n + 1) = α ĝi−1 with sl(n + 1) = sl(n) and
si(n + 1) = max(t1, sl(n + 1)). It is the leftmost possible outcome, hence it has all
required properties.

In general suppose gj is the leftmost outcome that is visited infinitely often. Then
there is a stage t > si(n) such that for all α-true stages s > t no outcome gk

for j < k < i is visited again. In this case the thresholds di−1 . . . dj are never
cancelled and the corresponding sets Odi−1 . . . Odj are never emptied after stage t.

26



Eventually the thresholds stop shifting, as K is infinite. There are finitely many
elements n < dj such that n ∈ K with finitely many axioms defined in each of the
operators S0, . . . Si−1. There will be a stage t1 > t after which no new marker enters
Odk

, for j ≤ k < i. After this stage the outcome gj will not be initialized. Hence we
can define f ¹ (n + 1) = α ĝj with sl(n + 1) = t and si(n + 1) = max(t1, sl(n + 1)).

If no g-outcome is visited infinitely many times then there is a stage t > si(n) such
that for all α-true stages s > t no g-outcome gk for k < i is visited again. In this
case none of the thresholds are ever cancelled again and none of the sets Odj

are
emptied after stage t. Similarly to the previous case we get a stage t1 > t such
that no new markers enter any of the sets Odj

and α does not initialize any of its
successors during Check.

If the last time we visited a g-outcome it was on an active stage, if Check restarts
α after stage t or if we never visited any g-outcome then the only possible outcome
accessible at stages s > t are w and hj for j < i.

If h0 is visited infinitely often then let f ¹ (n + 1) = αˆh0 with sl(n + 1) =
max(si(n), t) and si(n + 1) = max(t1, sl(n + 1)).

In general let hj be the leftmost h-outcome visited infinitely often. Then after stage
t2 > t no other h outcome is visited again and then we can define f ¹ (n+1) = αˆhj

with sl(n + 1) = max(si(n), t2) and si(n + 1) = max(t2, sl(n + 1)).

If none of the h-outcomes are visited infinitely often then there is a stage t2 > t
after which hj for j < i is never visited again. Then f ¹ (n + 1) = αˆw with
sl(n + 1) = max(si(n), t2) and si(n + 1) = max(t2, sl(n + 1)).

Suppose the last time we visited a g-outcome it was on a non-active stage and α
is not restarted after stage t. Then after stage t no more witnesses will be defined
as in order to cancel a witness and choose a new one we pass through a g-outcome.
Hence at stages s > t Wit[s] = Wit[t]. The only accessible outcomes after stage t
are finitely many: fx for x ∈ Witi−1. Denote them by fxk

<L · · · <L fx1 .

Suppose outcome fxp is visited on a stage s > t. Then the only outcomes that can
be accessible at later stages will be fxq with q ≥ p. In order to reach outcomes w ,h
or fxr with r < p we need to pass through a g-outcome again, which we know does
not happen. Then choose the biggest p such that there is a stage t1 > t on which
we pass through outcome fxp . It follows that after this stage we will always pass
through fxp whenever we visit α.

Hence f ¹ (n + 1) = α f̂xp with sl(n + 1) = max(sl(n), t1) and si(n + 1) = sl(n +
1). 2

Now that we have established the existence of the true path we can prove formally
one more property of the true path, one that we have already claimed in the previous
sections concerning the distribution of active and nonactive stages.
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Proposition 8 Suppose αˆgj ⊆ β ⊂ f . Then β is visited on infinitely many active
and on infinitely many α-nonactive stages.

PROOF. We will prove this proposition with induction on the distance d between
α and β.

If the distance is 1 then β = α ĝj . The g-outcome that α has during an attack
is determined by α’s previous active g-outcome. β is visited infinitely many times,
hence it is visited on infinitely many active stages and after each β is visited on an
α non-active stage.

Suppose the distance is greater than 1. If there are no nodes σ such that α ĝj ⊂
σ ĝk ⊆ β then the same argument proves that β will be visited on an active stage
followed by an α-nonactive stage, as on nonactive stages the strategies between
α and β will have the same outcome as on the previous active stage. If there is
such a σ then induction hypothesis gives us the lemma for α and σ: σ is visited on
infinitely many active stages each followed by an α-nonactive visit. By the induction
hypothesis again but now for σ and β the strategy β will be visited on infinitely
many active stages each followed by a σ-nonactive visit. The only thing left to note
is that any σ-nonactive stage is also α-nonactive.(although not every α-nonactive
stage will be σ-nonactive). 2

7.2 The P-strategies

Proposition 9 Suppose ΘUi,Vi
i = E and α ⊂ f is a Pi-strategy.

(1) Suppose T (α) = (Pi, Γi). And suppose that for some element n ∈ K the current
Uα-marker and the Aα-marker are not changed by any other strategy after stage t.
Then α will stop changing the current marker eventually and n ∈ ΓUi,A

α .

(2) Suppose α = (Pi,Λi). And suppose that for some element n ∈ K the current
Vα-marker and the Aα-marker are not changed by any other strategy after stage t.
Then α will stop changing the current markers eventually and n ∈ ΛVi,A

α .

PROOF. We shall omit the index α in the proof as we will be talking only about
parameters that belong to α. We shall omit the index i as well as we will only be
concerned with Ui,Vi and Θi.

(1) Suppose u(n) remains the same after stage t. We will use what we know from
Section 3, more precisely Proposition 4, about the approximation to the set U ,
namely that it is Good and Σ0

2. As α is the strategy responsible for the approxi-
mations of the set all the rest of the stages that appear in the proof of (1) can be
considered α-true. Let G denote the set of all good stages, then there will be a stage
t1 > t such that:
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Good: (∀s > t1)(s ∈ G ⇒ U ¹ u(n) = U [s] ¹ u(n)).

Σ0
2: (∀s > t1)(U ¹ u(n) ⊆ U [s]).

By Proposition 5 {U [s]⊕ V [s]} is a good Σ0
2 approximation to U ⊕ V and hence if

x ∈ ΘU,V , there is a stage s such that ∀s′ > s(x ∈ ΘU,V [s′]) and if x /∈ ΘU,V then
on good stages s′ ∈ G(x /∈ ΘU,V [s′]). It follows that as E = ΘU,V for any number x
there will be a stage tx such that on all good stages s > tx(l(ΘU,V , E)[s] > x).

So there will be a good stage t2 > max(t1, tn) on which n < l(ΘU,V , E)[t2]. On
this stage we will examine the current axiom for n in Γ, say 〈n,Un, {m}〉. If it is
valid then Un ⊆ U [t2] = U ¹ u(n). And hence at all stages s > t2 (Un ⊆ U [s]). If
it isn’t valid then we will enumerate a new axiom 〈n,U [t2] ¹ u(n), {γ(n)}〉 and for
this axiom we will have that at all stages s > t2(U [t2] ¹ u(n) ⊆ U [s]). In both cases
the marker γ(n) will not be moved at any later stage and the axiom remains valid
forever, hence n ∈ ΓU,A.

(2) Here the strategy α is not responsible for the approximations of the sets. Instead
there is a (Pi, Γi)-strategy β ⊂ α that approximates the sets. All stages considered
for the rest of this proof are β-true. Suppose v(n) remains constant after stage t.
As in part (1) we can find a stage t1 > t such that:

Good: (∀s > t1)(s ∈ G ⇒ V ¹ v(n) = V [s] ¹ v(n)).

Σ0
2: (∀s > t1)(V ¹ v(n) ⊆ V [s]).

There will be a good stage t2 > t1 on which n < l(ΘU,V , E)[s]. On the next α-true
stage t3 ≥ t2 we will examine the current axiom for n in Λ, say 〈n, Vn, {m}〉. If the
current axiom is valid, i.e it was valid on all stages since the last α-true stage t−3
then Vn ⊆ V [t2] ¹ v(n) = V ¹ v(n). And hence at all stages s > t3(Vn ⊆ V [s]). If
it isn’t valid then we will enumerate a new axiom 〈n, V ′

n, {λ(n)}〉. We choose this
V ′

n as V [t] ¹ v(n) for some t : t−3 < t ≤ t3 so that it was valid longest, i.e. the one
with the least t such that V [t] ⊆ V [s] for all s : t ≤ s ≤ t3. Obviously V [t2] ¹ v(n)
would be among these choices. Hence V ′

n ⊆ V [t2]. In both cases the marker λ(n)
will not be moved at any later stage and the axiom remains valid forever, hence
n ∈ ΛV,A. 2

Proposition 10 (1) Let α be the biggest (Pi,Γi)-strategy along the true path f .
Suppose that the current Aα for some element n grows unboundedly. If ΘUi,Vi

i = E
then there is an outcome gi along the true path.

(2) Let α ⊂ f be the biggest Pi-strategy. Suppose it builds an operator Mi. Suppose
that the current Aα-marker for some element n grows unboundedly. Then ΘUi,Vi

i 6=
E.

PROOF. (1) Assume for a contradiction that ΘUi,Vi
i = E and there is no gi-

outcome along the true path. Let n be the least element, whose current Aα-marker
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moves off to infinity. If n ∈ K then there will be a stage at which n enters K. After
that stage no more axioms for n are enumerated in Γα, hence the marker γα(n) will
remain constant. Hence n ∈ K.

On every stage s there are finitely many N -strategies along that can move n’s
markers, namely the ones with threshold di[s] ≤ n.

Every time a newN -strategy is activated it chooses its threshold di > l(ΘUi,Vi
i , E)[s].

Hence once the length of agreement l(ΘUi,Vi
i , E)[s] is above n, no newly activated

N -strategy or no strategy whose threshold di is cancelled and then rechosen will
have influence on n . So out of the finitely many N -strategies which have di ≤ n
on any stage only the once that are active infinitely many times and do not get
initialized after they have chosen this threshold can have a permanent effect on n,
i.e. only the strategies along the true path. The ones to the right will be initialized
and will rechoose their thresholds to be bigger than n, the ones to the left will not
be accessible after a certain stage.

We assumed ΘUi,Vi
i = E, hence there will not be an outcome hi along the true

path. Indeed if β ⊃ α has active Pi-strategy α and true outcome hi then there
is a permanent witness xβ so that Axiomsi,β changes its entries infinitely often.
Axiomsi has finitely many entries, one for each y ≤ x, y ∈ E. Hence the entry for
at least one element y ∈ E changes infinitely often, thus y /∈ ΘUi,Vi

i .

Assume that there is no outcome gi along the true path. Then let f ¹ m be the
biggest N -strategy which has an active Pi-strategy α and a permanent threshold
di ≤ n after stage t0. Let t2 be a stage that is bigger than max(sl(m+1), si(m+1), t0)
and such that all other N -strategies along the true path and to the right of it have
already changed the value of their threshold di to a value greater than n.

We claim that after stage t2 no N -strategy β will change the current i-markers of
n. So suppose β is visited on stage t > t2 and has outcome o. Suppose β ⊂ f and
has a permanent threshold di[t] < n. In all other cases it follows from the choice
of stage t2 that β will not change the i-markers of n. Note that according to the
choice of t2 > si(m+1) the outcome o is equal to or to the right of the true outcome
oβ of β. We shall examine the different possibilities for oβ. Outcome oβ = gj for
j > i would cancel di on every β ôβ-true stage contradicting the assumption that
di is permanent. If oβ = gk or oβ = hk, for k < j then there will be a new (Pi, Γi)-
strategy along the true path, contradicting the assumption that α is the biggest
one. If oβ = fx then it follows from Lemma 7 and the choice of t2 ≥ si(m + 1) that
o = fx′ where x′ ≥ x. If oβ = w or oβ = hj , for j > i then o = w or o = hk for
k > j. In all three cases β will not move any i-markers on stage t.

Proposition 9 proves that in this case the strategy α will not move the markers
either. Hence our assumption is wrong and there is an outcome gi along the true
path.

(2) Assume for a contradiction that ΘUi,Vi
i = E. Let n be the least element whose

Aα-marker moves off to infinity. If Mi = Γi then according to the previous case
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there will be an N -strategy along the true path with true outcome gi, followed by
another Pi-strategy, namely working with Λi. Hence Mi = Λi.

We will prove that after a certain stage t the current marker of n is not moved by any
N -strategy β. The ones that are not in α’s subtree do not have access to the markers
defined by α. There are only finitely many strategies with permanent threshold
di ≤ n. They are all on the true path. Let s be a stage bigger than si(m+1), where
f ¹ m is the greatest suchN -strategy and such that all nonpermanent thresholds are
already bigger than n, n < l(ΘUi,Vi

i , E)[s] and all strategies to the right of f ¹ m are
initialized. Note that after this stage, whenever we visit β ⊃ α such that β ⊆ f ¹ m
then β can only have an outcome equal to or to the right of the true path.

Let β ⊃ α be an N -strategy along the true path with true outcome oβ. Outcomes
oβ = gj for j > i would mean that di > n and β does not influence n′s marker
after stage t. There is no outcome gi. Outcomes oβ = gk and oβ = hk, k < i would
activate a bigger Pi-strategy. As in (1) the only possible true outcomes turn out to
be oβ = hj , j > i, outcomes oβ = w and oβ = fx. But we have seen that in this
case the β does not move any i-markers after stage t.

If n ∈ K then there will be a stage s at which n enters K and after which the λα(n)
remains the same. Hence n /∈ K and Proposition 8 proves that in this case α will
also stop moving the current marker.

We have reached a contradiction, hence ΘUi,Vi
i 6= E. 2

Corollary 11 The Pi-requirements are satisfied.

PROOF. If ΘUi,Vi 6= E then Pi is trivially satisfied. Assume ΘUi,Vi = E. Consider
the biggest Pi-node α on the true path. It follows from Proposition 10 that for all
its elements all its current markers eventually settle down. Hence by Proposition 9
for any n ∈ K we have that n ∈ ΓUi,A

i if α is constructing Γi and n ∈ ΛVi,A
i if α is

constructing Λi.

If n /∈ K. Then n /∈ K[t] for all t > s0. If T (α) = (Pi, Γi) then n /∈ ΓUi,A
i [t] on all

α-true expansionary stages t > s0, thus n /∈ ΓUi,A
i . If T (α) = (Pi, Λi) then for each

axiom 〈n, Vn,m〉 ∈ Λi there are infinitely many stages t > s0 on which this axiom is
not valid. Namely for each α-true stage t > s0 with previous α-true stage t− either
there is a stage tn, t− < tn ≤ t on which Vn * Vi[tn] or else on stage t we extract m

from A. Thus n /∈ ΛVi,A
i 2

7.3 The N -strategies

Proposition 12 Let α ⊂ f be an N -strategy with ins(α) = β. Suppose α ⊃ βˆgj

and α attacks with a witness x on stage t together with an attack of β with x1. Then
Attack(x)[k] = Attack(x1)[k] for all k ≤ j.
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PROOF. Let T (α) = (Ni, S0 . . . Si−1). It follows from the definition of an instiga-
tor that Sj = Λj and both strategies α and β are dealing with the same approx-
imations of the sets Θj , Uj , Vj controlled by the active Pj-strategy at β. First we
will prove that the active Pk-strategies at α for k < j are the active Pk-strategies
at β. Suppose this is not true. Then some Pk active strategy at β was destroyed by
some N -strategy σ such that β ĝj ⊆ σ ⊂ α. If σ has a g-outcome then it would be
the instigator of α. Hence it had outcome hk where k < j. But then Pj starts from
(Pj ,Γj) below σˆhk and can only change back to Λj if a second strategy σ′ such
that σˆhk ⊆ σ′ ⊂ α has outcome gj in which case σ′ would be the instigator of α.
Hence for all k ≤ j both α and β are dealing with the same approximations to the
sets Θk, Uk and Vk.

By Proposition 8 α is visited on β-active stages, followed by β-nonactive stage. Stage
t is a β-nonactive stage, let t− be the previous β-active α-true stage. On this stage
α had in its Axiomsα

k for k ≤ j a list of axioms for all elements y ≤ x, which were
valid the longest. After stage t− the strategy β chooses its witness x1 > x and fills
in the corresponding lists Axiomsβ

k . For elements y ≤ x these are the same axioms
that α recorded. If during β′s work, one of the list changes its entry for an element
y ≤ x then on stage t the strategy α would not attack but go back to Honestification
instead and wait for an active stage on which to modify its own lists. Hence the
entry in all Axiomsβ

k for elements y ≤ x is the same as the entry Axiomsα
k for all

k ≤ j and in particular the entries are the same for the least element extracted
during the attack at stage t, say x̄ ≤ x < y. Hence Attack(x)[k] = Attack(x1)[k] for
all k ≤ j. 2

The main aim now is to prove that if an Ni-strategy α on the true path has outcome
fx for some x then the requirement Ni is satisfied as x ∈ ΨA

i . To ensure this we
will need to establish that the set Inx that α is trying to restrain in A ends up
indeed in A. Various strategies around α might try to prevent this from being true
by extracting elements from A. We will first prove that a P-strategy that is not
active at α cannot extract any elements that α is trying to restrain in A. Then we
shall prove that neither can any of the other N -strategies. Finally we will establish
this for the active P-strategies at α.

Proposition 13 Suppose we have an Ni-strategy α = f ¹ n along the true path
with active Pj-strategies βj ⊂ α for j < i and true outcome f(n + 1) = gj or hj

where j < i. Suppose f ¹ (n+1) is visited on stage s > si(n+1) with right boundary
R[s]. Then if m < R[s] is an Aβk

-marker where k ≥ j and m is extracted on stage
t > s by the active Pk strategy βk then m is extracted from A on all f ¹ (n+1)-true
stages t ≥ s.

PROOF. After stage si(n + 1) defined in Lemma 7 α has permanent thresholds
dk and permanent sets Odk

for k ≥ j and Outα[t] ⊇ ⋃
k≤j Odj ∪Oα[s] on all t ≥ s.

Suppose m is extracted by βk where k ≥ j on stage t > s. Then m is an Aβk
-marker

of an axiom for an element e /∈ K such that e > dk as otherwise a new element
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would enter Odk
contradicting our choice of stage s. If the marker m was defined

after stage s then it is bigger than R[s]. If the marker is defined before stage s then
so is the axiom Axm that it belongs to.

(1) If f(n+1) = hj then Outα[s] ⊆ Outα[t] for all t > s. On stage s the axiom Axm

is examined by α and if m is not already in Outα then m is enumerated in Outα at
stage s. Hence m ∈ Outα[t] for all t ≥ s.

(2) If f(n+1) = gj then Witj [s] ⊆ Witj [t] for all t > s and the current witness x[s]
is in the set Witj . If m /∈ Oα[s] on stage s then it is enumerated in Ox[s],own and
Oα[s] ∪Ox,own[s] ⊆ Outα[t] on all α ĝj-true stages t. 2

Proposition 14 Suppose β ⊂ f is visited on stages s1 > si(β) and s2 > s1.
Suppose on stage s1 β attacks and then restrains an element m in A until stage s2.
If the active P-strategies at β do not extract m at stages t s1 < t ≤ s2 then neither
do the other strategies.

PROOF. It follows that β is an N -strategy that has outcome fw on all β-true
stages t, s1 < t < s2. The stage of the attack with w is tw ≥ si(β). The set that β
restrains in A is Inw ⊆ A[tw] ¹ Rβ[tw] and m < Rβ[tw]. Suppose α 6= β extracts m
on a stage t, s1 < t ≤ s2. And let that be the least stage and α be the least strategy.
We will prove that it is an active P-strategy at β by examining the different possible
cases for α.

• α <L β is not possible, as α would not be accessible on stage t.

• α >R β, then on stage s1 α is initialized. If α is a P-strategy then all its markers
would be defined after stage s1 and would be greater than Rβ[s1] > Rβ[tw] ≥ m.
If α is an N -strategy then it chooses its thresholds after stage s1 as fresh numbers
whose markers are not yet defined. The only markers m′ < Rβ[s1] that can enter
Outα[t] are the ones that enter α′s Odi and have to be already extracted from A
after stage s1 by a smaller strategy, an active P-strategy at α.

• α ⊃ β, then α extracts markers only on active stages, hence if it is visited after
stage s1 then α ⊇ β f̂w. Then α was initialized on the stage s1. Similarly to the
previous case it cannot be a P-strategy and if m ∈ Outα[t] then it must have
been first extracted by an active P at α after s1 which is smaller than α.

• α ⊂ β. If α is a Pj-strategy different from the active one at α then there is an
N -strategy σ ô ⊂ β with o ∈ {hj , gj} that destroys α. Proposition 13 proves that
α does not extract m on stage t as otherwise m < Rβ[tw] ≤ Rσ[tw] is extracted
on all σ ô-true stages after and including tw contradicting m ∈ A[tw].

If α is an N -strategy then we need to examine the possibilities for the true
outcome of α:

(1) β ⊇ αˆw or β ⊇ α f̂x. Then after stage tw ≥ si(β) the strategy α has this
outcome on all true stages, the set Outα is constant. No new elements enter Oα,dj ,
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otherwise we initialize β. Wit is permanent as is the current witness. The strategy
α does not enumerate more elements in Oα as it needs to have some hj to do so.

(2) β ⊇ αˆhj , then the elements that enter Outα at stages t > tw are markers
mk k ≥ j for axioms from the operators of the active P-strategies at α that
are potentially applicable at stage t for elements bigger than dk, hence markers
defined after stage tw. Indeed all markers defined before stage tw that ever get
extracted by α would already be in Outα[tw] but m ∈ A[tw].

(3) β ⊇ α ĝj . Then α had an active outcome gj on the last active stage t−w before
the attack with w on stage tw. The marker m was not extracted by α on stage t−w
and after stage t−w α does not enumerate elements m′ < Rβ[tw] = Rβ[t−w ] in Oα

or in Ox,own for witnesses x defined after stage t−w .

On stage s1 the strategy α attack again. If α extracts an element m < Rβ[tw]
at a stage t > s1 there are two possibilities. The first one is that m < dk and m
enters Odk

. If k < j then it is first extracted by the active Pk-strategy at α after
stage s1 which is smaller. If k ≥ j then this would initialize β.

The second possibility is that m ∈ Ox,else on stage t for some witness x of α
defined after stage s1 and after stage s′1 on which α had an active g-outcome
after the attack on s1. Then m was extracted from A[s′1] and s1 < s′1 < t. But
we assumed that t is the first stage on which m is extracted from A, hence this
is not possible. 2

Lemma 15 Let α = f ¹ n be the last Ni-node along the true path. Then α is
successful.

PROOF. Suppose T (α) = (Ni, S0 . . . , Si−1) and let βj , j < i, be the active Pj-
nodes at α, where Pj is undefined if Sj = FMj . We know that no other node can
interfere with α and injure its restraint except for α itself and βj . As α is the last
Ni-node on the true path, it must have outcome w or outcome fx for some x. Every
other outcome is followed by another copy of an Ni-strategy.

If the outcome is w then on all α-true stages t > si(n) defined in Lemma 7, α has
a permanent witness x and x /∈ ΨA[t] with use(Ψ, A, x)[t] < Rα[t]. It is straight
forward to prove that limtRα[t] = ∞ for all N -nodes on the true path by induction
on their length. Hence x /∈ ΨA and on the other hand x ∈ E. Thus the requirement
is satisfied.

Suppose the outcome is fx and let Attack(x) = 〈x̄, Ux̄,0Vx̄,0 . . . Ux̄,i−1, Vx̄,i−1〉. Then
once we visit α f̂x after stage si(n + 1) α will permanently restraint Inx in A. We
will prove that the active P-strategies at α do not extract markers from Inx after
stage si(α f̂x), the last stage of the attack, and by Proposition 14 no other strategy
will, hence x ∈ ΨA.

First we will establish that markers extracted by the active P-strategies after
si(α f̂x) cannot belong to elements n < dj [tx] for all j < i. Here tx is the stage
of the attack with witness x. Let q be the greatest index such that Sq = Γq. Then
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x ∈ Witq. After stage si(α) the thresholds di−1, . . . dq are not cancelled. If an ele-
ment enters Odj

or the value of dj is shifted where, we initialize α f̂x. Hence this
does not happen after stage si(α f̂x). Now lets look at j < q. Every time we visit α
we start from Resultq, examine all witnesses in Witq and reach x. Note that once
we’ve reached x, then for all w < x we have established one of the two properties
that make us move to the next witness automatically until an active g-outcome is
visited, so in this case forever. And our assumption tells us that we will never estab-
lish either of the two properties for x. For all Γk, k ≤ q there is no Vx̄,k change and
for all Sk, k < q there is no m ∈ Odk

such that m < Lx and m ∈ A[tx]. Otherwise
we would move to the left of fx. Hence the only markers restrained in A that might
be extracted by the active P-strategies after si(α f̂x) need to belong to elements
greater than dj [tx] for all j.

If there are no Γk = Sk for any k < i then no thresholds are ever cancelled, if they
are shifted or an elements enters Odj for j < i then fx is initialized. So this does
not happen after stage si(α f̂x).

Thus, suppose βj extracts m < Lx such that m ∈ Inx ⊆ A[tx] at stage t > si(α f̂x).
Then m is a marker of an axiom 〈n,Zn, {m}〉 for some n > dj [tx] which is valid
on stage t and was defined at stage t0 < tx. The marker m was in A[tx] hence the
axiom was potentially applicable on stage tx.

If Sj = Γj (T (βj) = (Pj , Γj)) then j ≤ q and Zn ⊇ Ux̄,j . Indeed the axiom is
potentially applicable hence the stage t0 on which it was defined is after the last
Honestification, so max(Zn) = uj(n)[t0] > θ(x)[t0] = θ(x)[tx] and Ux̄,j ⊆ Uj ¹
uj(n)[t0] = Zn or else α would perform another Honestification after stage t0
before it attacks on stage tx. The axiom 〈n,Zn, {m}〉 is valid on stage t so Ux̄,j ⊆
Uj [t] and t is expansionary (as markers are extracted only on expansionary stages)
so x /∈ ΘUj ,Vj

j [t]. Hence Vx̄,j * Vj [t]. But then on the next α-true stage one of the
conditions for the unsuccessfulness of x would be valid and α would have outcome
to the left of fx contradicting our assumptions.

The only case left to consider is Sj = Λj . We shall deal with all Λ-strategies at once.
Suppose that the Λ-strategies at α are Sj0 , Sj1 , . . . Sjr , with j0 < j1 < · · · < jr. Then
there are strategies α0, . . . αr such that α0 ĝj0 = βj0 ⊂ · · · ⊂ αr ĝjr = βjr ⊂ α. Then
ins(α) = αr, ins(αr) = αr−1 . . . , ins(α1) = α0.

When α attacks at stage tx, it times its attack with all of the listed strategies:
α0 which attacked with x0, . . . , αr, which attacked with xr. By Proposition 12
Attack(x)[k] = Attack(x0)[k] for all k < j0, . . . Attack(x)[k] = Attack(xr)[k] for all
k < jr. On the previous α-active stage t−x the strategy α0 had outcome gj0 , α1 had
outcome gj1 , . . . , αr had outcome gjr . And so Outα[t−x ] ⊆ Oxr,else · · · ⊆ Ox0,else.

We claim that every time αp has outcome gjp after stage txp = tx there is a Vx̄,jp-
change for all p ≤ r. So when we take j = jp, we have a Vx̄,j-change on all βj-true
stages after tx. Now we have that the axiom 〈n,Zn, {m}〉, potentially applicable on
stage tx has the property that Vx̄,j ⊆ Zn and so βj will not extract m on any stage
after tx.
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Suppose the claim is true for k < p and αp has outcome gjp on stage t > txp .
One reason for this outcome would be the desired Vx̄,jp-change. The other possible
reasons for αp to have this outcome are for some k < jp:

• Sk = Γk and there was a change in Vx̄p,k = Vx̄,k since this witness was last
examined, i.e. there is a stage t′ such that t′ is bigger than the stage of the last
attack such that Vx̄,k * Vk[t′]. But then when we visit α on the next α-true stage
after t it would have an outcome to the left of fx, so this reason is not possible.

• A marker mk < Lxp of an element n < dk,αp [txp ] such that mk ∈ A[txp ] was
enumerated in Odk

of αp.

Recall that the active Pk-strategy at αp and α is the same as k < jp. We already
established that n > dk,α[tx = txp ]. Also the marker mk was defined before stage
tx and even t−x as otherwise it would be greater than Lxp . The marker was not
extracted by α on stage t−x or else it would be in Oxp,else and not in A[txp ]. So
on stage tx the corresponding axiom 〈n,Zn, {mk}〉 was potentially applicable at
α and Zx,k ⊆ Zn. The marker m was extracted by the active Pk-strategy on a
stage t′ after the attack, so Zx,k was a subset of Zk[t′] on an expansionary stage
t′. Now if Sk = Γk this would result in a Vx̄,k-change on stage t′ and α would once
again have an outcome to the left of fx on the next true stage, contradicting our
assumptions. If Sk = Λk this would result in no Vx̄,k = Vx̄p,k-change on a βk-true
stage t′ contradicting the induction hypothesis.

This concludes the proof of the claim, this lemma and the theorem. 2
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