ENUMERATION 1-GENERICITY IN THE LOCAL ENUMERATION DEGREES.

LILIANA BADILLO†, CHARLES M. HARRIS‡, AND MARIYA I. SOSKOVA§∗

Abstract. We discuss a notion of forcing that characterises enumeration 1-genericity and we investigate the immunity, lowness and quasiminimality properties of enumeration 1-generic sets and their degrees. We construct an enumeration operator ∆ such that, for any A, the set ∆A is enumeration 1-generic and has the same jump complexity as A. We also prove that every nonzero ∆0 2 degree bounds a nonzero enumeration 1-generic ∆0 2 degree. We deduce from these results and the properties of good degrees that, not only does every degree a bound an enumeration 1-generic degree b such that a′ = b′, but also that, if a is good and nonzero, then we can find such b satisfying 0_e < b < a. We conclude by proving the existence of both a nonzero low and a properly Σ0 2 nonsplittable enumeration 1-generic degree hence proving that the class of 1-generic degrees is properly subsumed by the class of enumeration 1-generic degrees.

1. Introduction.

Enumeration 1-genericity, a form of 1-genericity appropriate for positive reducibilities, was introduced in [BH12] and used as a tool to show that there exists a properly Π0 2 degree b such that any x ≤ b contains only Π0 2 sets. In [BH12] various questions about the basic properties of enumeration 1-genericity in the enumeration and singleton degrees, as also its relationship with 1-genericity, were investigated. We continue this investigation in Section 3 where in particular we look at immunity and lowness properties of enumeration 1-generic sets. We also address the question of the distribution of the class of enumeration 1-generic degrees and show that it resembles to some extent the distribution of the class of 1-generic degrees, not only over the Π0 2 degrees, but also globally with respect to the class of total degrees. In Section 4 we study downward density and jump inversion of the enumeration 1-generic degrees. In the context of the Σ0 2 degrees this work can be seen as an extension of results in [McE85] and [CM85] to the effect that that every Π0 2 degree b ≥ 0_e is the jump of a Π0 2 degree and that every ∆0 2 degree bounds a nonzero low degree. Indeed, it follows from the results of Section 4, in combination with those of [McE85], that every Π0 2 degree b ≥ 0_e is also the jump of a Σ0 2 enumeration 1-generic (and hence quasiminimal) degree and that every ∆0 2 degree bounds

†Department of Mathematics, University of Leeds, Leeds LS29JT, U.K.
‡Department of Mathematics, University Walk, Clifton, Bristol BS8 1TW, U.K.
§Faculty of Mathematics and Computer Science, Sofia University, 5 James Bourchier Blvd, 1164 Sofia, Bulgaria and Department of Mathematics, The University of California, Berkeley, Evans Hall #3840, Berkeley, CA 94720-3840 U.S.A.
∗The third author was supported by a BNSF grant No. DMU 03/07/12.12.2011 and by a Marie Curie international outgoing fellowship STRIDE (298471) within the 7th European Community Framework Programme.
a nonzero low enumeration $1$-generic degree. Furthermore we will see that our results also throw light on the phenomenon of $\Sigma_2^0$ highness introduced in [McE85]. Section 5, which concludes the present paper, is motivated by the question of how enumeration 1-genericity and 1-genericity may be separated within the enumeration degrees. We approach this question locally, bearing in mind that every 1-generic degree is splittable, by showing the existence of both low and properly $\Sigma_2^0$ nonsplittable enumeration 1-generic degrees.

2. Preliminaries.

We assume $\{W_e\}_{e \in \omega}$ to be a standard listing of c.e. sets with associated c.e. approximations $\{W_{e,s}\}_{e \in \omega}$, and $\{D_n\}_{n \in \omega}$ to be the computable listing of finite sets where $D_n$ denotes the finite set with canonical index $n$. We also assume $(x,y)$ to be a standard computable pairing function over the integers. We use $X^{[\omega]}$ to denote the set $\{\langle e, x \rangle \mid \langle e, x \rangle \in X\}$ and $\chi_Y$ to denote the characteristic function of $Y$. We say that the set $Y$ is characteristic if $Y = X \oplus X$ for some set $X$, and we note that $X \oplus X \equiv_a \chi_X$. We use $\alpha, \beta, \sigma$, etc. to denote finite binary strings (i.e. members of $2^{<\omega}$). $|\alpha|$ denotes the length of $\alpha$, so that $|\alpha| = \mu x[x \notin \dom \alpha]$. $\alpha \leq \beta$ denotes that $\alpha$ is an initial segment of $\beta$ (similarly we use $\alpha \subseteq f$ if $f \in 2^{<\omega}$).

A set $A$ is defined to be enumeration reducible to a set $B$ ($A \leq_e B$) if there exists an effective procedure that, given any enumeration of $B$, enumerates $A$. More formally [FR59], $A \leq_e B$ iff there exists a c.e. set $W$ such that, for all $x \in \omega$,

$$x \in A \iff \exists n \{ \langle x, n \rangle \in W \& D_n \subseteq B \}.$$  \hspace{1cm} (2.1)

We define $\{\Phi_e\}_{e \in \omega}$ to be the effective listing of enumeration operators such that for any set $X$,

$$\Phi^X_e = \{ x \mid \exists n \{ \langle x, n \rangle \in W_e \& D_n \subseteq X \} \}.$$  \hspace{1cm} (2.2)

Also, for any $e$, we use the notation $\Phi^X_e$ to define the finite approximation to $\Phi^X_e$, derived from $W_{e,s}$. For simplicity we allow a certain amount of ambiguity in our notation, by sometimes equating $W_e$ with the operator $\Phi_e$, and in the case of finite sets, using the letter $D$ or similar to denote both a finite set and its index in the listing of finite sets specified above.

We use the notation $x$ for the equivalence classes of $\leq_e$ or, in other words, the enumeration degrees, whereas $deg_e(X)$ is notation for the $\leq_e$ degree of $X$. $0_e$ is the degree of the c.e. sets, $D_e$ denotes the structure of enumeration degrees, and $D_e(\leq x)$ denotes the substructure of $D_e$ over the class of degrees $\{ y \mid y \leq x \}$ (we say that such a class is a prime ideal of $D_e$). We remind the reader that $D_e$ and the substructures of the form $D_e(\leq x)$ are upper semilattices.

We assume the reader to be conversant with Turing ($\leq_T$) and other basic reducibilities for which we use similar notation to the above. $K$ denotes the standard halting set for Turing machines whereas the enumeration semihalting set relative to $X$ is defined to be the set $K_X = \{ x \mid x \in \Phi^X_e \}$ and the enumeration jump of $X$ is defined to be the set $J_X = K_X \oplus \overline{K_X}$. The jump of enumeration degree $x$ is written $x'$. $0'_e$ denotes $deg_e(J_0)$ and $0''_e$ denotes $deg_e(J_0^{(2)})$. $x$ is said to be low if $x' = 0'_e$, and high if $x' = 0''_e$. Using the notation specified above $D_e(\leq 0'_e)$ denotes the upper semilattice of enumeration degrees comprising precisely the class of $\Sigma_2^0$ enumeration degrees. Note that we refer to the latter as the local structure of the enumeration degrees, as opposed to the global structure $D_e$. 


\( \iota \) denotes the canonical embedding of the Turing degrees into the enumeration degrees induced by the map \( X \mapsto X \oplus \overline{X} \). We note that \( \iota \) preserves join and jump.

**Definition 2.1** ([LS92, Har10]). A uniformly computable sequence of finite sets \( \{X_s\}_{s \in \omega} \) is said to be a **good approximation** to the set \( X \) if:

1. \( \forall s (\exists t \geq s) [X_t \subseteq X] \)
2. \( \forall x [x \in X \iff \exists t (\forall s \geq t) [X_s \subseteq X \Rightarrow x \in X_s]] \).

In this case we say that \( X \) is **good approximable**. Moreover, if (2) is replaced by the condition \( \forall x [x \in X \iff \exists t (\forall s \geq t) [x \in X_s] \) then \( \{X_s\}_{s \in \omega} \) is said to be a **good \( \Sigma^0_3 \) approximation**.

**Lemma 2.2** ([Joc68]). \( X \) is \( \Sigma^0_3 \) if \( X \) has a good \( \Sigma^0_3 \) approximation.

In other words the sets underlying \( D_e(\preceq 0') \) all have good \( \Sigma^0_3 \) approximations.

**Lemma 2.3** ([BH12]). If \( a \) is a good enumeration degree then, for every \( A \in a \), \( K_A \preceq_{K_A} e \).

**Lemma 2.4** ([CM85]). Enumeration degree \( x \) is low if \( x \) only contains \( \Delta^0_2 \) sets.

**Definition 2.5.** An enumeration degree \( x \) containing only \( \Sigma^0_2 \) (\( \Pi^0_2 \)) sets is properly \( \Sigma^0_2 \) (\( \Pi^0_2 \)) if it contains no \( \Delta^0_2 \) sets, and is downwards properly \( \Sigma^0_2 \) (\( \Pi^0_2 \)) if every \( y \in \{z \mid 0_0 < z \leq x\} \) is properly \( \Sigma^0_2 \). \( x < 0'_x \) is **cuppable** if there exists \( y < 0'_y \) such that \( 0'_x = x \cup y \) and is noncuppable otherwise.

**Lemma 2.6** ([CSY96]). If \( 0'_e < x < 0'_e \) is \( \Delta^0_2 \) then \( x \) is cuppable.

**Corollary 2.7** ([CSY96]). Every noncuppable \( 0'_e < x < 0'_e \) is downwards properly \( \Sigma^0_2 \).

Given an arithmetical predicate \( \Gamma \) (e.g. \( \Gamma \in \{\Delta^0_2, \Pi^0_2\} \)) we sometimes use the shorthand \( A \in \Gamma \) if \( A \) is a \( \Gamma \) set. Moreover we say that an enumeration degree \( a \) is \( \Gamma \) if \( a \) contains a set \( A \in \Gamma \).

**Notation.** Suppose that \( \{X_s\}_{s \in \omega} \) and \( \{\Phi_s\}_{s \in \omega} \) are approximations to some set \( X \) and enumeration operator \( \Phi \). We use the shorthand \( \Phi^X_s[s] = \Phi^X_s \). For clarity we also sometimes use the shorthand \( X[s] \) instead of \( X_s \).

## 3. Enumeration 1-genericity

We now define the notion of enumeration 1-genericity. We discuss the basic properties of this notion and investigate its relationship with 1-genericity. We also delineate restrictions to the class of enumeration 1-generic degrees by exhibiting two properties inherent to it. We begin with a reminder of the definition of 1-genericity.

**Definition 3.1.** A set \( A \) is said to be 1-generic if for any c.e. set \( W \subseteq 2^{\omega} \) there exists \( \alpha \subseteq \chi_A \) such that either \( \alpha \in W \) or for all \( \beta \) such that \( \alpha \subseteq \beta \), \( \beta \notin W \).

**Notation.** We use \( \mathcal{F} \) to denote the class of finite subsets of \( \omega \). We will follow the convention that the letters \( D, E, F \) always denote members of \( \mathcal{F} \) (although we often also specify that the set denoted is finite). In particular \( \exists E \) is shorthand for \( \exists E \in \mathcal{F} \).

**Definition 3.2.** A set \( A \) is defined to be enumeration 1-generic if, for all c.e. sets \( W \subseteq \mathcal{F} \), either there exists a finite set \( D \subseteq A \) such that \( D \in W \) or a finite set \( E \subseteq \overline{A} \) such that, for every \( D \in W \), \( D \cap E \neq \emptyset \).
Forcing and Enumeration 1-Genericity. We start by inspecting a notion of forcing which gives rise to the enumeration 1-generic sets. We assume that the reader is familiar with forcing in arithmetic and refer to Shore [Sho10] for an introduction on this topic. Let \( \mathcal{P} \) be a partial ordering. \( V \subseteq \mathcal{P} \) is open if for every \( p, q \in \mathcal{P} \) if \( p \leq q \) and \( q \in V \) then \( p \in V \). \( V \) is dense along \( \mathcal{A} \subseteq \mathcal{P} \) if, for every \( p \in \mathcal{A} \), there is an \( q \leq p \) such that \( q \in V \). \( \mathcal{A} \) meets \( V \) if \( \mathcal{A} \cap V \neq \emptyset \). \( \mathcal{A} \subseteq \mathcal{P} \) is a filter if \( \mathcal{A} \) is closed upwards with respect to the partial ordering and every two conditions in \( \mathcal{A} \) have a common lower bound in \( \mathcal{A} \). A filter \( \mathcal{A} \) is generic if \( \mathcal{A} \) meets every open set \( V \), which is dense along \( \mathcal{A} \).

The standard definition of a 1-generic set is derived from Cohen's notion of forcing on the partial ordering of finite binary strings \( 2^{<\omega} \) ordered by inclusion, by limiting the amount of genericity required. \( G \) is 1-generic if it is derived from a filter \( \mathcal{G} \) on \( 2^{<\omega} \), which meets every \( \Sigma^0_1 \) open subset of \( 2^{<\omega} \) which is dense along \( \mathcal{G} \). One of the key features of 1-generic sets of natural numbers is that every \( \Sigma^0_1 \) statement in the language of arithmetic with an additional predicate for \( \mathcal{G} \) is decided by some initial segment of \( G \), i.e. either its negation is forced by some finite binary string \( \sigma \in G \).

An equivalent way to define a 1-generic set \( G \) is as follows. Let \( \mathcal{P}_F \) be the partial ordering with elements pairs of disjoint finite sets \( \langle D, E \rangle \) ordered by \( \langle D_1, E_1 \rangle \leq \langle D_2, E_2 \rangle \) if and only if \( E_1 \supseteq E_2 \) and \( D_1 \supseteq D_2 \). A filter \( \mathcal{G} \subseteq \mathcal{P}_F \) which for every \( n \) meets the set \( V_n = \{ \langle D, \emptyset \rangle \mid n \in D \} \), whenever it is dense along \( \mathcal{G} \), defines a set \( G \) and its complement \( \overline{G} \) - namely \( G = \bigcup_{\langle D, E \rangle \in \mathcal{G}} D \) and \( \overline{G} = \bigcup_{\langle D, E \rangle \in \mathcal{G}} E \). It is fairly easy to check that a set \( G \) is 1-generic if and only if it is obtained from a filter \( \mathcal{G} \subseteq \mathcal{P}_F \) which meets every \( \Sigma^0_1 \) open subset of \( \mathcal{P}_F \), which is dense along \( \mathcal{G} \).

Enumeration 1-generic sets are also obtained from filters \( \mathcal{G} \subseteq \mathcal{P}_F \). The genericity requirements for these filters are limited further to only positive requirements. Let us call a set of condition \( V \subseteq \mathcal{P}_F \) positive if and only if whenever \( \langle D, E \rangle \in V \), we also have that \( \langle D, \emptyset \rangle \in V \). Then \( G \) is enumeration 1-generic if and only if it is obtained from a filter \( \mathcal{G} \subseteq \mathcal{P}_F \) which meets every \( \Sigma^0_1 \) positive open subset of \( \mathcal{P}_F \), which is dense along \( \mathcal{G} \). Similarly we can characterize enumeration 1-genericity syntactically: a filter \( \mathcal{G} \) gives rise to an enumeration 1-generic set if and only if every positive \( \Sigma^0_1 \) statement in the language of arithmetic with an additional predicate for \( \mathcal{G} \) is decided by some condition in \( \mathcal{G} \), where a positive \( \Sigma^0_1 \) statement is one obtained from \( \Sigma^0_1 \) statements in arithmetic (that do not mention \( \mathcal{G} \)) and statements of the form \( \langle D, \emptyset \rangle \in \mathcal{G}^\omega \), closed under conjunctions and existential quantification.

In the same way that 1-genericity has a natural characterisation in terms of Turing functionals we find that enumeration 1-genericity can be characterised in terms of enumeration operators as follows.

**Lemma 3.3 ([BH12]).** A set \( A \) is enumeration 1-generic iff, for every \( e \in \omega \), either \( e \in \Phi^A_e \) or, for some finite set \( E \subseteq \overline{A} \), \( e \notin \Phi^{\omega-E}_e \).

**Remark.** Note that, if \( A \) is enumeration 1-generic then \( A \) is infinite. Indeed, suppose that \( A \subseteq \omega \backslash \{ n \} \) for some \( n \geq 0 \). Then, by enumeration 1-genericity of \( A \) there exists a finite set \( E \) such that \( D \cap E \neq \emptyset \) for every \( D \in \{ \{ m \} \mid m \geq n \} \), an obvious contradiction. However the notion of enumeration 1-genericity is weak in the sense that there are clearly enumeration 1-generic sets which are c.e.—the obvious example being \( \omega \) itself.
In view of the above observations we now consider how the definition of enumeration 1-genericity might be strengthened. The next Lemma shows that coinfiniteness is an obvious candidate for this.

**Lemma 3.4.** If A is enumeration 1-generic and cofinite, then \( \overline{A} \) is hyperimmune. Thus A is not \( \Pi^0_1 \).

**Proof.** Suppose that there exists a sequence of mutually disjoint finite sets \( \{D_f(i)\}_{i \in \omega} \) with f computable such that, for all i, \( D_f(i) \cap \overline{A} \neq \emptyset \). Let \( W = \{D_f(i) \mid i \in \omega\} \).

By enumeration 1-genericity there exists a finite set \( E \subseteq A \) such that for all \( D \in W \), \( D \cap E \neq \emptyset \). This is an obvious contradiction since W contains mutually disjoint finite sets. Hence \( \overline{A} \) is hyperimmune. \( \square \)

However, in the context of the enumeration degrees, coinfiniteness does not confer nontriviality to the notion of enumeration 1-genericity, as we now see.

**Lemma 3.5.** There exists a coinfinite c.e. enumeration 1-generic set A.

**Proof.** The proof involves enumerating a set A in stages so as to satisfy, for all \( e \in \omega \), the following requirements.

\[
R : |A| \text{ is infinite,}
\]

\[
P_e : (\exists D \in W_e)[D \subseteq B] \lor (\exists E \subseteq \overline{B})(\forall D \in W_e)[D \cap E \neq \emptyset]
\]

To do this we use a standard finite injury construction in which at every stage \( s \) a finite approximation \( A_s \) is defined such that \( A = \bigcup_{s \in \omega} A_s \). Each requirement \( P_e \) works with its own restraint witness \( x(e, s) \in \omega \) defined at the end of stage \( s \) and its avoidance parameter \( \Omega(e, s + 1) = \{x(i, s) \mid i \leq e\} \) defined at the beginning of stage \( s + 1 \). \( P_e \) is said to be satisfied at stage \( s + 1 \) if there exists \( D \in W_e[s] \) such that \( D \subseteq A_s \). Likewise \( P_e \) is said to require attention at at stage \( s + 1 \) if it is not satisfied and there exists \( D \in W_e[s + 1] \) such that \( D \cap \Omega(e, s + 1) = \emptyset \). The construction is defined as follows.

**Stage 0.** Define \( x(e, 0) = e \) for all \( e \geq 0 \).

**Stage \( s + 1 \).** If there is no \( e < s \) such that \( P_e \) requires attention reset \( x(e, s + 1) = x(e, s) \) for all \( e \geq 0 \) and go to stage \( s + 2 \). Otherwise let \( e \) be the least such index. Enumerate into A the least set \( D \in W_e[s + 1] \) such that \( D \cap \Omega(e, s + 1) = \emptyset \), i.e. set \( A_{s+1} = A_s \cup D \). Reset \( x(i, s + 1) = x(i, s) \) for all \( i \leq e \) and, letting \( \hat{s} = \max \{x(e, s), s\} \), set \( x(j, s + 1) = \hat{s} + j \) for all \( j > e \), and go to stage \( s + 2 \).

The verification of the construction is a straightforward induction argument over index \( e \). Note firstly that

\[
x(i, s) \notin A_s \text{ for all } i, s \geq 0.
\]

Proceed by assuming that index \( e \) and stage \( s_e \) are such that \( x(i, s) = x(i, s_e) \) for all \( i \leq e \) and \( s \geq s_e \)—and accordingly let \( x(i) = x(i, s_e) \)—and are also such that, for all \( j < e \), \( P_j \) does not require attention at any such stage \( s \). Let \( \Omega(e) = \{x(i) \mid i \leq e\} \) and note that it follows from (3.1) that \( \Omega(e) \subseteq \overline{A} \). Clearly if there exists \( D \in W_e \) such that \( D \cap \Omega(e) = \emptyset \) and \( P_e \) has not been satisfied before stage \( s_e \) then \( P_e \) will receive attention at some stage \( s \geq s_e \). Thus clearly \( P_e \) will be satisfied in the limit (since \( D \cap \Omega(e) \neq \emptyset \) for all \( D \in W_e \) otherwise). Moreover, as \( P_e \) only requires attention at most once after stage \( s_e \) there exists a corresponding stage \( s_{e+1} \geq s_e \) such that \( x(i, s) = x(i, s_{e+1}) \) for all \( i \leq e + 1 \) and \( s \geq s_{e+1} \) and such
that, at any such stage \( s \), and any index \( j < e + 1 \) no requirement \( P_e \) requires attention at stage \( s \). We can therefore conclude that \( x(e) \) is defined for all \( e \), that \( \Omega = \{ x(e) \mid e \in \omega \} \subseteq \overrightarrow{A} \), so that \( R \) is satisfied (since clearly \( x(i) \neq x(j) \) for all \( i \neq j \) by construction), and that \( P_e \) is satisfied for all \( e \geq 0 \).

\[ \square \]

Remark. It follows from Lemma 3.4 that every coinfinite c.e. enumeration 1-generic set is hypersimple.

Another obvious way of strengthening enumeration 1-genericity is to impose symmetricity of this notion over a set \( A \) and its complement.

Definition 3.6 ([BH12]). A set \( A \) is defined to be symmetric enumeration (s.e.) 1-generic if both \( A \) and \( \overrightarrow{A} \) are enumeration 1-generic.

Now, unlike enumeration 1-genericity alone, s.e. 1-genericity does confer nontriviality in the context of the enumeration degrees.

Lemma 3.7 ([BH12]). If \( A \) is s.e. 1-generic then \( A \notin \Sigma_1^0 \cup \Pi_1^0 \).

Remark. Note that the above Lemma follows directly from Lemma 3.4.

Notice that by definition the class of enumeration 1-generic degrees subsumes the class of s.e. degrees. Similarly we find that the class of s.e. degrees subsumes the class of 1-generic degrees.

Lemma 3.8 ([BH12]). If \( A \) is 1-generic then \( A \) is s.e. 1-generic.

On the other hand we find that enumeration 1-generic sets display a certain form of lowness.

Lemma 3.9. For every enumeration 1-generic set \( A \), \( J_A \equiv_e A \oplus \overrightarrow{A} \oplus J_\emptyset \).

Proof. We know that \( K_A \equiv_e A \). Moreover, for every finite set \( E \), the set \( \overrightarrow{\Phi_{g^{-1}(E)}} \) is enumeration reducible to \( J_\emptyset \) uniformly in \( e \) and \( E \), via (say) the operator \( \Phi_{g(E)} \).

By enumeration 1-genericity of \( A \), \( \overrightarrow{K_A} = \{ e \mid \exists E[e \in \Phi_{g(e,E)} \& E \subseteq \overrightarrow{A}] \} \) and hence \( \overrightarrow{K_A} \subseteq \overrightarrow{A} \oplus J_\emptyset \).

We conclude that \( J_A = K_A \oplus \overrightarrow{K_A} \equiv_e A \oplus \overrightarrow{A} \oplus J_\emptyset \). \[ \square \]

Corollary 3.10. If \( G \) is s.e. 1-generic then \( J_G \equiv_e J_{\overrightarrow{G}} \). If \( G \) is 1-generic, then \( J_G \equiv_e J_{G \oplus \overrightarrow{G}} \).

Proof. If \( G \) is s.e. 1-generic then both \( G \) and \( \overrightarrow{G} \) are enumeration 1-generic. By the previous Lemma, \( J_G \equiv_e G \oplus \overrightarrow{G} \oplus J_\emptyset \equiv_e J_{\overrightarrow{G}} \).

If \( G \) is 1-generic, then we know that its jump in the Turing degrees also behaves this way: \( G' \equiv_T G \oplus \overrightarrow{G} \). Thus, as \( i \) preserves join and jump, \( J_{G \oplus \overrightarrow{G}} \equiv_e G \oplus \overrightarrow{G} \oplus J_\emptyset \). \[ \square \]

Corollary 3.11. If \( A \in \Pi_1^0 \) is enumeration 1-generic, then \( J_A \equiv_e A \oplus J_\emptyset \). In particular, if \( A \) is \( \Delta_0^0 \) then \( \text{deg}(A) \) is low.

Remark. A straightforward argument shows that any \( \Delta_0^0 \) approximation to \( A \) is in fact both low—in the sense of [CM85]—and good as defined in Definition 2.1.

Corollary 3.11 suggests a way of delineating the distribution of enumeration 1-generic degrees within the \( \Delta_0^0 \) degrees. However, we will see below in Proposition 4.11 that there exists a \( \Sigma_0^0 \) enumeration 1-generic degree in which not every set is enumeration 1-generic. Accordingly Corollary 3.11 could be applied directly
to the $\Delta^0_2$ degrees themselves (and not just to individual sets) only if the latter phenomenon can be ruled out in the case of the $\Delta^0_2$ degrees. Indeed its presence in this context would suggest the existence of $\Delta^0_2$ enumeration 1-generic degrees that are nonlow.

The above discussion leads us on to the question of what overall restrictions there are to the distribution of the enumeration 1-generic degrees.

**Lemma 3.12** ([BH12]). If $B \in \Pi^0_2$ is enumeration 1-generic, then the class $B = \{ X \mid X \leq_a B \}$ is (uniform) $\Pi^0_2$.

Notice that this Lemma is a simple corollary of Corollary 3.11 if every such $B$ is in fact $\Delta^0_2$. We now see that that this is not the case.

**Proposition 3.13** ([BH12]). There exists a properly $\Pi^0_2$ enumeration degree $b$ such that the prime ideal $\mathcal{D}_b(\leq b)$ only contains $\Pi^0_2$ sets.

**Proof.** Let $A$ be a set such that $\text{deg}_b(A)$ is properly $\Sigma^0_2$ and $\overline{A}$ is enumeration 1-generic. For example take $A$ to be the 1-generic set with noncuppable enumeration degree constructed in the proof of Theorem 3.2 in [BH12]. Let $B = \overline{A}$ and $b = \text{deg}_b(B)$. Then $B$ is enumeration 1-generic and hence $\mathcal{D}_b(\leq b)$ only contains $\Pi^0_2$ sets by Lemma 3.12. Moreover no set $X$ in $b \in \Delta^0_2$ since this would imply that $B$ is $\Delta^0_2$ in contradiction with the definition of $A = \overline{B}$.

The above is a first illustration of a natural restriction of the class of enumeration 1-generic degrees within $\mathcal{D}_b$. However these results tell us nothing further (to Corollary 3.11) about the local structure of $\Sigma^0_2$ degrees. For example is $\mathcal{O}^\omega$ enumeration 1-generic? The final result of this section not only settles this question but also shows that the distribution of the enumeration 1-generic degrees bears a certain resemblance to the distribution of the $\Delta^0_2$ degrees, both globally and locally within $\mathcal{D}_b$.

**Proposition 3.14.** Every enumeration 1-generic degree $0_e < \mathfrak{a}$ is quasiminimal.

**Proof.** Suppose that $A$ is an enumeration 1-generic set and that $C$ is a characteristic set such that $C \leq_c A$. Accordingly let $\Phi$ witness this reduction (i.e. $C = \Phi^A$) and consider the c.e. set

$$S = \{ D \mid \exists F \exists F' \langle 2x, F \rangle \in \Phi \land \langle 2x + 1, F' \rangle \in \Phi \land D = F \cup F' \}$$

Since $C$ is characteristic, it follows that $D \nsubseteq A$ for all $D \in S$. Hence, by enumeration 1-genericity of $A$, there exists a finite set $E \subseteq \overline{A}$ such that for all $D \in S$, $D \cap E \neq \emptyset$. However, this implies that $C = \Phi^{\omega - E}$.

Indeed, clearly $C \subseteq \Phi^{\omega - E}$ (as $A \subseteq \omega - E$). Suppose that there exists $y \in \Phi^{\omega - E} \setminus C$. Then, $y = 2x + i$ for some $i \in \{0, 1\}$. Without loss of generality, suppose that $i = 0$. Accordingly there is a finite set $F \subseteq \omega - E$ such that $\langle 2x, F \rangle \in \Phi$. Since $C$ is characteristic and $2x \notin C$ it follows that $2x + 1 \in C = \Phi^A$. Hence there exists a finite set $F'$ such that $\langle 2x + 1, F' \rangle \in \Phi$ and $F' \subseteq A \subseteq \omega - E$. Set $D = F \cup F'$. Clearly $D \in S$ whereas, by the above, $D \cap E = \emptyset$. This contradicts the definition of $E$. Thus $\Phi^{\omega - E} \subseteq C$ and so $C = \Phi^{\omega - E}$, i.e. $C$ is c.e.

4. Enumeration 1-genericity and Jump Inversion.

In this Section we show that there is a uniform method for constructing, below any enumeration degree $\mathfrak{a}$, an enumeration 1-generic degree $b$ having the same jump
complexity as \( a \). We also show that below any nonzero \( \Delta^0_2 \) degree there exists a nonzero \( \Delta^0_2 \) enumeration 1-generic degree of lowest possible jump complexity. These results allow us to conclude that every nonzero good enumeration degree strictly bounds a nonzero enumeration 1-generic degree of the same jump complexity. We also consider the relationship between enumeration 1-genericity and \( \Sigma^0_2 \) highness (defined below) which is brought to light by these results. We begin with some further background material.

**Notation.** Given a \( \Sigma^0_2 \) approximation \( \{ A_s \}_{s \in \omega} \) to a set \( A \) we use the shorthand\(^1\) \( c_A \) to denote the computation function relative to \( \{ A_s \}_{s \in \omega} \) defined by setting, for all \( x \in \omega \), \( c_A(x) = (\mu s > x)[A_s[x \subseteq A]] \).

**Definition 4.1.** A \( \Sigma^0_2 \) approximation \( \{ A_s \}_{s \in \omega} \) is said to be high if its associated computation function \( c_A \) is total and dominates every computable function \( f \) (i.e. \( c_A(x) > f(x) \) for almost every \( x \)). A set \( A \) is said to be \( \Sigma^0_2 \) high if it has a \( \Sigma^0_2 \) approximation (and so, using standard terminology, an enumeration degree is \( \Sigma^0_2 \) high if it contains such a set).

**Lemma 4.2** ([SS99]). A degree \( a \leq 0' \) is high if and only if it is \( \Sigma^0_2 \) high.

We now proceed with the main result of this section.

**Proposition 4.3.** There exists an enumeration operator \( \Delta \), such that for every \( A \), \( \Delta^A \) is enumeration 1-generic and \( J_{\Delta^A} \equiv_e J_A \).

**Proof.** We construct a c.e. operator \( \Delta \) so that for every \( e \) the following requirement is met:

\[
P_e : \forall A \left[ (\exists D \in W_e)[D \subseteq \Delta^A] \lor (\exists E \subseteq \overline{\Delta^A})(\forall D \in W_e)[D \cap E \neq \emptyset] \right].
\]

The construction is a finite injury construction in stages. At every stage \( s \) we construct a c.e. set \( \Delta_s \). The intent is that \( \Delta = \bigcup_{s \in \omega} \Delta_s \) is the required operator. For every \( e \) we will have a coding location \( d_e \). The coding locations are our tool to code, for every \( A \), the bits of \( K_A \). \( F_e = \{ d_j \mid j \leq e \} \) is the set of all coding locations for higher priority requirements. Note that \( F_e \) is restrained in the sense that, if we are acting to satisfy the \( e + 1 \)-th genericity requirement \( P_{e+1} \), then we are not allowed to enumerate into \( \Delta \) axioms for the elements in \( F_e \). Depending on the oracle \( A \) each nonempty set \( E \subseteq F_e \) may, or may not, also be a subset of \( \Delta^A \). In fact it may be the case that \( E = \emptyset \) is the only subset of both \( F_e \) and \( \Delta^A \). So we will make sure that all possibilities are covered in the way that we meet the requirement \( P_e \). In particular, at any moment in the construction we will know the status of a requirement—satisfied or not—and, if the requirement is not yet satisfied, then we will know how far we have gone towards satisfying it. Every finite subset of \( S \subseteq F_e \) will be announced as either covered or not yet covered. The intuition behind this notion is that, if the finite subset \( S \) turns out to be a subset of the oracle \( A \) and there is a finite set \( D \) in \( W_e \) such that \( D \cap (F_e \setminus S) = \emptyset \), then we will ensure that \( D \subseteq \Delta^A \) by enumerating axioms for all the elements in \( D \setminus S \). In other words we have satisfied the requirement \( P_e \) provided \( S \) is a subset of the oracle. As there are finitely many subsets of \( F_e \) these actions will be performed finitely many times. Once every such finite subset is covered, we will announce that \( P_e \) is satisfied (for now). Later in the construction however we might announce that \( P_e \) is not yet satisfied.

\(^1\)The function \( c_A \) clearly depends on the approximation \( \{ A_s \}_{s \in \omega} \) and not just on \( A \).
satisfied if a higher priority requirement acts.

The Construction. At stage 0, $\Delta_0 = \emptyset$ and, for all $e$, $d_e$ is undefined, $P_e$ is announced as not yet satisfied, and every subset of $F_e$ is announced as not yet covered.

Remark. During the construction we only take care to define $F_e$ (as specified above) when $d_e$ is defined. If $d_e$ is not defined the value of $F_e$ is unimportant.

We shall say that $P_e$ requires attention at stage $s + 1$ if $P_e$ is (announced as) not yet satisfied and one of the following is true:

1. The coding location $d_e$ is undefined.
2. There is a finite set $D \in W_e[s]$ such that $D \cap F_e = S$ is not yet covered.

At stage $s + 1$ we let $e$ be the least number for which the requirement $P_e$ requires attention at stage $s + 1$.

1. If the required attention is because the coding location is undetermined, then we define the value of $d_e$ to be the least number for which there is no axiom in $\Delta_s$. Then we set $\Delta_{s+1} = \Delta_s \cup \{ (d_e, D) \mid (e, D) \in \Phi_e \}$. Next we injure all lower priority requirements by announcing all of them as not yet satisfied, making $d_j$ for $j > e$ undefined and announcing all finite subsets of $F_j$ not yet covered for $j > e$. (Note that even though $\Delta_{s+1}$ is not necessarily finite, it is c.e. and contains axioms for finitely many elements. Thus this step is computable.)

2. Otherwise, pick the least finite set $D \in W_e[s]$ such that $D \cap F_e = S$ is not yet covered. Announce that all sets $X$, such that $S \subseteq X \subseteq F_e$, are covered. If all subsets of $F_e$ are covered, then announce the requirement $P_e$ satisfied. Then set $\Delta_{s+1} = \Delta_s \cup \{ (n, \emptyset) \mid n \in D \setminus S \}$. Again we injure all lower priority requirements by announcing all of them as not yet satisfied, making $d_j$ for $j > e$ undefined and announcing all finite subsets of $F_j$ not yet covered for $j > e$.

If no requirement requires attention at stage $s + 1$, set $\Delta_{s+1} = \Delta_s$.

End of Construction.

Lemma 4.4. For every $e$ there is a least stage $s_e$, such that $P_e$ does not get injured by higher priority requirements at stages $t > s_e$. Furthermore the function $e \mapsto s_e$ is computable by $K$ (the Turing halting set).

Proof. The proof is by induction. $P_0$ does not get injured at all so $s_0 = 0$. Suppose that $P_e$ does not get injured after stage $s_e$ and $s_e$ is least with this property. This means that $P_e$ is injured for the last time at stage $s_e$. Then at stage $s_e + 1$ $P_e$ requires attention with undetermined coding location $d_e$. By definition of $s_e$, $G_e$ is the least requirement that requires attention at this stage and hence receives attention. At stage $s_e + 1$ the final value of $d_e$ and the final value of the set $F_e$ are defined. $K$ can answer recursively every question of the following “Does there exists a finite set $D$ in the c.e set $W_e$ which covers the finite set $S$?”. Here $D$ covers $S$ if $D \cap F_e \subseteq S$. So $K$ can compute which of the finite subsets of $F_e$ get covered by asking $2^{|F_e|}$ such questions. Note that if $S$ can be covered, then it will be covered, because after stage $s_e$, whenever $P_e$ requires attention, it receives attention. Now $K$ can run the construction for the number of stages necessary until it reaches a stage at which
Lemma 4.5. For every $A$ the set $\Delta^A$ is enumeration 1-generic.

Proof. Fix $A$ and $W_e$. Let $F_e$ be the final value of this parameter obtained at stage $s_e + 1$. Suppose that there is a finite set $D \in W_e$, such that $D \cap F_e \subseteq \Delta^A$. Then $S = D \cap F_e$ can be covered. By the properties of the construction, it will be covered at some stage $t$ ($> s_e + 1$). At stage $t$ we have found a (possibly different) finite set $D^*$ such that $D^* \cap F_e \subseteq S \subseteq \Delta^A$ and for every element $n \in D^* \setminus F_e$ we have enumerated the axiom $(n, \emptyset) \in \Delta_t$, hence $D^* \subseteq \Delta^A$.

Otherwise for every $D \in W_e$ we have that $D \cap F_e \cap \overline{\Delta^A} \neq \emptyset$, i.e. the finite set $E = F_e \cap \overline{\Delta^A}$ intersects every member of $W_e$. □

Lemma 4.6. For every $A$, $J_A \equiv_e J_{\Delta^A}$.

Proof. $J_{\Delta^A} \leq_e J_A$ by monotonicity of the enumeration jump. So we only need to show that $J_A \leq_e J_{\Delta^A}$.

We will show that $K_A \leq_T \Delta^A \oplus K$. Now again, using the fact that $\iota$ preserves join and jump and maps $\text{deg}_H(K_A)$ to $\text{deg}_H(K_A \oplus K_A)$ as also $\text{deg}_H(\Delta^A \oplus K)$ to $\text{deg}_H(\Delta^A \oplus \overline{\Delta^A} \oplus J_B)$, it will follow that $J_A = K_A \oplus K_A \leq_e \Delta^A \oplus \overline{\Delta^A} \oplus J_B$. As $\Delta^A$ is enumeration 1-generic, we know from Lemma 3.9 that $\Delta^A \oplus \overline{\Delta^A} \oplus J_B \equiv_e J_{\Delta^A}$ and hence that $J_A \leq J_{\Delta^A}$.

To compute $K_A(e)$ we use $K$ to compute the stage $s_e$, the last stage at which $P_e$ is injured, and then run stage $s_e + 1$ at which $d_e$ is defined. Now $d_e \in \Delta^A$ if and only if $e \in \Phi^A$. This is because at stage $s_e + 1$ we enumerate the only axioms for $d_e$ that ever get enumerated in $\Delta$ and they mirror exactly the axioms for $e$ in $\Phi_e$. We use $\Delta^A$ to determine this last membership question. □

This concludes the proof of Proposition 4.3. □

Corollary 4.7. For every enumeration degree $a \in D_e$ there exists enumeration 1-generic $b \leq a$ such that $b' = a'$.

Remark. Notice that in the case that $a$ is low, Corollary 4.7 does not guarantee that $b > 0_e$. However we can deduce from our next result that such a degree $b$ does indeed exist.

Proposition 4.8. For every $\Delta^0_2$ $a > 0_e$ there exists low enumeration 1-generic $0_0 < b \leq a$.

Proof. Given $\Delta^0_2$ set $B \in a$ the proof of Theorem 7 in [CM85] constructs a non c.e. low set $A \leq_a B$. We modify this proof by (i) replacing the $P_e$ (lowness) requirements by

$$P_e : (\exists D \in W_e)[D \subseteq A] \lor (\exists E \subseteq \overline{A})(\forall D \in W_e)[D \cap E \neq \emptyset]$$

and (ii) redefining (using our current notation) the parameter $u(e, s)$ so that

$$u(e, s) = \begin{cases} \mu u[D_u \in W_e[s] \& D_u \subseteq \Theta^B[s]] & \text{if such } u \text{ exists}, \\
0 & \text{otherwise,} \end{cases}$$

and (iii) proceeding with the proof with the appropriate minor adjustments. The outcome of this version of the proof yields a non c.e. $\Delta^0_2$ enumeration 1-generic.
set $A \leq_s B$. Accordingly, if we let $b = \text{deg}_e(A)$ we know by Corollary 3.11 that $b$ witnesses the statement of the Proposition.

Before proceeding we now pause to remind the reader that the class of good enumeration degrees subsumes the total degrees as also the $n$-c.e.a. degrees for all $n$—and thus in particular, as already indicated in Lemma 2.2, the $\Sigma^0_2$ degrees.

Theorem 4.9. (i) For every good degree $c > 0_e$ there exists enumeration 1-generic $0_c < b < c$ such that $b' = c'$.

(ii) For every $\Delta^0_2$ $c > 0_e$ there exists low enumeration 1-generic $0_c < b < c$.

Proof. (i) It follows from Theorem 4.1 of [Gri03] (see also Theorem 4.2 of [Har10]) and density of the $\Sigma^0_2$ degrees (for the case of low $c$) that there exists $0_c < a < c$ such that $a' = c'$. For the case $c' > 0'_c$ apply Corollary 4.7 to $a$ and for the case $c' = 0'_c$ apply Proposition 4.8 to $a$ to obtain enumeration 1-generic $b$ such that $0_c < b < a < c$ and $b' = c'$.

(ii) Apply Proposition 4.8 to $a$ where $a = c$ if $c' > 0'_c$ and, if $c' = 0'_c$, $a$ is chosen (using density of the $\Sigma^0_2$ degrees) to be some nonzero degree strictly below $c$.

Given Lemma 4.2 and Corollary 4.7 applied to the special case when $a = 0'_c$ we might expect there to exist a set $A$ that is both $\Sigma^0_2$ high and enumeration 1-generic. We now investigate whether this is the case.

Lemma 4.10. If $A$ is $\Sigma^0_2$ high then $A$ is not enumeration 1-generic (and hence neither symmetric enumeration 1-generic, nor 1-generic).

Proof. Let $\{A_s\}_{s \in \omega}$ be a high $\Sigma^0_2$ approximation to $A$ with associated computation function $c_A$. Let $s_A \in \omega$ be such that $c_A(s) > s + 1$ (i.e. the successor function) for all $s > s_A$. Define the c.e. set

$$W = \{ A_{s+1} \mid s > s_A \}$$

and notice that, by definition of $s_A$, for all $D \in W$, $D \not\subseteq A$. Suppose that $A$ is enumeration 1-generic. Then there exists a finite set $E \subseteq \overline{A}$ such that $D \cap E \neq \emptyset$ for all $D \in W$. Let

$$m = \max \{ E \cup \{s_A\} \} + 1$$

and let $s_m$ be such that $s_m + 1 = c_A(m)$ (and so $s_m \geq m$). By definition of $c_A$, $A_{s_m+1} \mid m \subseteq A$ (whereas $E \subseteq \overline{A} \mid m$). Thus, letting $D = A_{s_m+1} \mid s_m$ we see that $D \in W$ and $D \cap E = \emptyset$, a contradiction. Thus $A$ is not enumeration 1-generic.

Proposition 4.11. There exists a high enumeration 1-generic degree $b \leq 0'_c$ and sets $B, C \in b$ such that $B \neq C$, and

(i) $B$ is not $\Sigma^0_2$ high,

(ii) $C$ is not enumeration 1-generic.

Proof. Choose $A = A_0$ in Proposition 4.3 and set $B = \Delta^A$. Then $b = \text{deg}_e(B)$ is high. By Lemma 4.2, $b$ contains a $\Sigma^0_2$ high set $C$. By Lemma 4.10 if follows that $B \neq C$ and that $B$ is a witness for (i) whereas $C$ is a witness for (ii).

□
5. Enumeration 1-genericity and Nonsplitting.

We saw in Lemma 3.8 that every 1-generic set \( A \) is s.e. 1-generic and hence enumeration 1-generic. We also saw that the class of nonzero enumeration 1-generic degrees shares at least two nontrivial structural properties with the 1-generic degrees, namely quasiminimality (Proposition 3.14) and \( \Pi^0_2 \) downwards closure (Lemma 3.12). So are these two classes identical or is there some other property that separates them? Consider the following property.

Definition 5.1. A degree \( a \) is said to be splittable if there exist incomparable degrees \( a_0 \) and \( a_1 \) such that \( a = a_0 \cup a_1 \). Otherwise \( a \) is said to be nonsplittable.

In this section we show that splittability is just one such property, and that this separation occurs within the \( \Sigma^0_2 \) degrees.

Proposition 5.2 (Folklore). Every 1-generic enumeration degree \( a \) is splittable.

Note. The proof below is a straightforward adaptation of the proof of this property in the context of function 1-genericity given in [Cop88].

Proof. Suppose that \( A \in a \) is 1-generic. Define the sets \( A_0 \) and \( A_1 \) such that, for \( i \in \{0, 1\}, A_i = \{ x \mid 2x + i \in A \} \). Notice that, by immunity of \( A \), both \( A_0 \) and \( A_1 \) are infinite. Clearly \( A \equiv_s A_0 \oplus A_1 \). Suppose that \( A_0 \leq_e A_1 \) and let \( \Phi \) be the enumeration operator witnessing this reduction. Consider the c.e. set \( S \subseteq 2^{<\omega} \) defined by setting

\[
S = \{ \tau \mid \exists x \exists D (\tau(2x) = 0 \& x \in \Phi^D \& D \subseteq \{ z \mid \tau(2z + 1) = 1 \} ) \} .
\]

Note that, by definition of \( \Phi \), \( \tau \notin S \) for any \( \tau \in \chi_A \). Thus (by 1-genericity of \( A \)) there exists \( \sigma \in \chi_A \) such that, for all \( \tau \supseteq \sigma \), \( \tau \notin S \). Now, as \( A_0 \) is infinite we can pick \( x \) and \( D \subseteq A_1 \) such that \( 2x \geq |\sigma| \) and \( x \in \Phi^D \). Let \( \gamma \supseteq \sigma \) be any string defined so that\(^2\) \( \gamma(2x) = 0 \) and \( \gamma(2z + 1) = 1 \) for all \( z \in D \). Then clearly \( \gamma \in S \), a contradiction. In other words \( A_0 \not\leq_s A_1 \). By a similar argument \( A_1 \not\leq_s A_0 \). Therefore, letting \( a_0 = \deg_e(A_0) \) and \( a_1 = \deg_e(A_1) \) we see that the pair \( a_0, a_1 \) witnesses the splittability of \( a \).

In contrast to this, we will show that there exists both a low and a properly \( \Sigma^0_2 \) nonsplittable enumeration 1-generic degree. In order to do this we transpose the methodology of the low nonsplattability proof of [AL98] onto a tree of strategies construction using techniques formulated in [Ken08, KS07]. We note that Theorem 5.3 can in fact be proved by a straightforward modification of Ahmad and Lachlan’s [AL98] proof. However the reader will notice that the manner in which the tree of strategies construction is applied here not only clarifies the mechanics of the proof (in that the streams of free numbers used by the splitting strategies are precisely reflected in the structure of the tree of strategies itself), but also that it allows the low nonsplattability version to be easily adapted to show properly \( \Sigma^0_2 \) nonsplittability. We also note that the present construction is an adaptation of Kent’s [Ken08] nonsplittability proofs with the difference that a close interpretation of the elegant \( \epsilon \)-states method used in [AL98] is implicitly adhered to in the definition of the tree of strategies.

\(^2\)For example, if \( m = \max D \), let \( \gamma \) the the string of length \( \max \{2x, 2m + 1\} + 1 \) defined such that \( \gamma(n) = \sigma(n) \) for all \( n < |\sigma| \) and such that for all \( |\sigma| \leq m < |\gamma| \), \( \gamma(m) = 0 \) if \( m \) is even, and \( \gamma(m) = 1 \) if \( m \) is odd.
Theorem 5.3. There exists a low enumeration 1-generic nonsplitable degree \( \alpha > 0_e \).

Proof. We will define a \( \Delta^0_2 \) approximation \( \{A_i\}_{i \in \omega} \) satisfying, for all \( e \in \omega \), the following requirements.

\[
R_{\Psi,\Omega_0,\Omega_1} : A = \Psi^{\Omega_0 \oplus \Omega_1} \Rightarrow A \leq_e \Omega_i^A \quad \text{for some } i \in \{0,1\} \text{ or } A \text{ c.e.}
\]

\[
N_W : A \neq W
\]

\[
P_W : (\exists D \in W) [ D \subseteq A ] \lor (\exists E \subseteq \overline{A}) (\forall D \in W) [ D \cap E \neq \emptyset ].
\]

Note the use of our shorthand notation in the above (introduced to simplify the presentation) whereby we understand \( (\Psi, \Omega_0, \Omega_1) \in \{(\Psi_e, \Omega_e, \Omega_e, \Omega_e)\}_{e \in \omega} \) where the latter is a standard effective listing of all triples of enumeration operators. Likewise \( W \) ranges over a standard effective listing of c.e. sets \( \{W_e\}_{e \in \omega} \). In each case we assume that the listing is associated with standard uniform c.e. approximations of the sets/operators involved.

1) The Tree of Strategies.

We define the overall set of outcomes to be \( \Sigma = \omega \cup \{\text{void}\} \) and the set of tree outcomes to be \( \omega \). We fix an arbitrary effective priority ordering \( \{L_e\}_{e \in \omega} \) of all \( R, N \) and \( P \) requirements. We also define \( T \subseteq \omega^{<_\omega} \) and we refer to it as the tree of strategies. Each node \( \alpha \in T \) will be associated, and so identified, with the strategy for the satisfaction of \( R_{\alpha} \). We use the notation \( R_{\Psi,\Omega_0,\Omega_1} \) for the set of \( R_{\Psi,\Omega_0,\Omega_1} \) strategies and \( R \) for the set of all \( R \) strategies. Likewise, for \( (Q, Q) \in \{(N, N), (P, P)\} \) we will use the notation \( Q_{\omega} \) for the set of strategies associated with \( Q_{\omega} \) and we let \( Q \) denote the set of all such strategies.

We assign requirements to nodes on \( T \) by induction as follows. Define \( \emptyset \in T \). Given \( \alpha \in T \) we distinguish three cases depending on the requirement \( L \) associated with \( \alpha \).

Case 1. \( \alpha \in R \): define \( \alpha^\wedge(n) \in T \) for \( n \in \{0, 1, 2\} \).

Case 2. \( \alpha \in N \): define \( \alpha^\wedge(n) \in T \) for all \( n \in \{0, 1\} \).

Case 3. \( \alpha \in P \): define \( \alpha^\wedge(n) \in T \) for all \( n \in \{0, 1\} \).

2) Notation and Terminology for Strings.

We use standard notation and terminology for strings as found for example in [Soa87]. Accordingly we use \( \leq \) and \( < \) (\( \subseteq \) and \( < \)) to denote respectively nonstrict and strict lexicographical ordering (inclusion\(^3\)) on \( T \). \( \sigma < L \tau \) denotes \( \sigma < \tau \) but \( \sigma \not\leq \tau \).

3) Environment Parameters

**Local parameters for** \( \alpha \in R_{\Psi,\Omega_0,\Omega_1} \). \( R(\alpha, s) \in \{0, 1, 2, \text{void}\} \) is the outcome parameter, and \( \Gamma_{\alpha,0}[s] \) and \( \Gamma_{\alpha,1}[s] \) finite approximations to enumeration operators constructed so as to (possibly) witness \( A \leq_e \Omega_0^A \) or \( A \leq_e \Omega_1^A \). (Note that, for \( i \in \{0, 1\} \), we use \( \Gamma_i \) as shorthand for \( \Gamma_{\alpha,i} \) when there is no danger of ambiguity.) Outcome \( R(\alpha, s) = j \) for \( j \leq 1 \) corresponds to \( \alpha \)'s belief that, if \( A = \Psi^{\Omega_0 \oplus \Omega_1} \), then \( \Omega_i^A \leq_e A \) (as witnessed by \( \Gamma_j \) in the limit). Likewise, under the same assumption, \( R(\alpha, s) = 2 \) corresponds to \( \alpha \)'s belief that \( A \) is c.e. (contradicting the definition of

\(^3\)For inclusion, \( \subset \) is only used when strictness is important.
(1). For ease of description in the construction α also has a dummy witness parameter $x(α, s) = -1$.

Local parameters for $α ∈ N_W$. $N(α, s) ∈ \{0, 1, \text{void}\}$ is the outcome parameter, and $x(α, s) ∈ \{-1\} \cup \omega$ is the witness parameter associated with $α$. Outcome $R(α, s) = 0$ corresponds to $α$'s knowledge that $x(α, s) ∈ W$ and belief that $x(α, s) ∉ A$ (which will be vindicated if $α$ is not initialised at any stage $t > s$). $N(α, s) = 1$, on the other hand, means that $α$ believes that $x(α, s) ∈ A \setminus W$.

Local parameters for $α ∈ P_W$. $P(α, s) ∈ \{0, 1, \text{void}\}$ is the outcome parameter and $x(α, s) = -1$ a dummy witness parameter for $α$. $P(α, s) = 0$ corresponds to $α$’s belief that there is some $D ∈ W$ such that $D \subseteq A$ (which will be vindicated if $α$ is on the true path and is not initialised at any stage $t > s$). $P(α, s) = 1$, on the other hand, corresponds to $α$’s belief that there is no such $D$ in $W$.

The stream for any $α \in T$. $S(α, s) = \{ x(β, s) \mid x(β, s) ≥ 0 \& \ α \subseteq β \}$ is the (finite) stream associated with $α$ at stage $s$ and corresponds to the set of numbers already processed by the construction at stage $s$ and which are (roughly speaking) available for processing by $α$ at stage $s + 1$. Note that by definition $x(α, s) ∉ S(α^−(n), s)$ for any $n ∈ \{0, 1, 2\}$. (This observation is significant for the construction for the case $α ∈ N$ and trivial otherwise.)

Global parameters for stage $s + 1$. Each stage $s + 1$ has the following parameters.

(i) $z(s + 1, t) ∈ ω \cup \{\text{break}\}$ is a floating witness which is passed down the $s + 1$ stage approximation to the true path. When $t = 0$, $z(s + 1, t)$ starts life by denoting the number $s$. For $t ≥ 0$, the witness $z(s + 1, t)$ is passed to the strategy $α$ of length $t$ eligible to act at substage $t + 1$ provided that $z(s + 1, t) ≢ \text{break}$. The strategy $α$ decides whether (a) to set $z(s + 1, t + 1) = \text{break}$, thus causing stage $s + 1$ to terminate\(^4\), or (b) to reallocate $z(s + 1, t + 1)$ to some number belonging to its stage stream, or (c) to reset $z(s + 1, t + 1) = z(s + 1, t)$. In case (a) the strategy $α$ either sets $x(α, s + 1) = z(s + 1, t)$ or dumps $z(s + 1, t)$ into $A$, whereas in case (b) $α$ always dumps $z(s + 1, t)$ into $A$. Note that case (a) corresponds to $α ∈ N \cup P$, case (b) to $α ∈ R$ whereas case (c) may apply to any strategy $α$. Also notice that in cases (b) and (c) the new value of the floating witness $z(s + 1, t + 1)$ is passed to the strategy $α^−(i)$ of length $t + 1$ eligible to act at stage $t + 2$.

(ii) $D(s + 1, t) ∈ F$ is a record, established at substage $t$, that defines a set of numbers that will be dumped at the end of stage $s$. When $t = 0$, $D(s + 1, t)$ starts life as $∅$. $D(s + 1, t + 1)$ is defined provided that $z(s + 1, t) ≢ \text{break}$ (i.e. the stage has not yet terminated) and in this case $D(s + 1, t) ⊆ D(s + 1, t + 1)$.

(iii) $D(s + 1)$ is the overall set of numbers dumped into $A$ at the end of stage $s + 1$. Thus by definition $D(s + 1) = D(s + 1, |β_s| + 1)$ where $β_s$ is the $s$ stage approximation to the true path.

Initialisation. For $(Q, Q) ∈ \{(R, R), (N, N), (P, P)\}$ and any $α ∈ Q$ we say that ‘void’ is the initial value of $Q(α, s)$ and that $-1$ is the initial value of $x(α, s)$. For

\(^4\)Note that termination of a stage is determined by the value of $z(s + 1, t)$ only, not by the length of the strategies eligible to act.

\(^5\)This first case (i.e. $x(α, s + 1) = z(s + 1, t)$) happens only if $α ∈ N$. 

14 LILIANA BADILLO†, CHARLES M. HARRIS†, AND MARIYA I. SOSKOVA‡
\( \alpha \in \mathcal{R} \) we say that \( \emptyset \) is the initial value of \( \Gamma_{\alpha,i} \) for \( i \in \{0, 1\} \). \textit{Initialisation} of a node \( \alpha \in \mathcal{T} \) is the process of resetting its associated parameters to their initial values.

**The Construction.** The construction proceeds in stages \( s \in \omega \). At each stage \( s \) the construction defines the following finite sets. \( D_A[s] \) is the set of numbers already \textit{dumped} into \( A \) while \( F_A[s] \) is the set of numbers already used by the construction (i.e. having visited \( A \) during at least one stage) but still \textit{free}, i.e. nondumped. \( I_A[s] \) is the set of (free) numbers \textit{inside} \( A \) and \( O_A[s] \) is the set of (free) numbers \textit{outside} \( A \). The intention here is that \( I_A[s] \cap O_A[s] = \emptyset \), \( F_A[s] = I_A[s] \cup O_A[s] \), \( F_A[s] \cap D_A[s] = \emptyset \), and \( F_A[s] \cup D_A[s] = \omega \). The \( s \)-stage approximation to \( A \) will be defined to be \( A[s] = I_A[s] \cup D_A[s] \).

We say that a number \( x \in \omega \) is \textit{new} if it is greater than any number used in the construction so far.

To facilitate understanding of the construction we suggest that the reader also consult the informal observations relative to stage \( s + 1 \) made on page 17.

**Stage \( s = 0 \).**
Set \( A[s] = I_A[s] = O_A[s] = F_A[s] = D_A[s] = \emptyset \) and initialise all \( \alpha \in \mathcal{T} \).

**Stage \( s + 1 \).**
This stage consists of substages \( t \geq 0 \) such that some strategy \( \alpha \in \mathcal{T} \) acts (i.e. is processed) at substage \( t + 1 \) provided that \( z(s + 1, t) \neq \emptyset \). If so, \( \alpha \) decides the value of \( z(s + 1, t + 1) \) and \( D(s + 1, t + 1) \), the value of its local parameters and (accordingly), if \( z(s + 1, t + 1) \in \omega \), which strategy \( \alpha^{\sim}(n) \) is \textit{eligible to act next}.

**Substage 0.**
Set \( z(s + 1, 0) = s \) and \( D(s + 1, 0) = \emptyset \).

**Substage \( t + 1 \).** (Under the assumption that \( z(s + 1, t) \in \omega \).
We suppose that \( \alpha \) is the strategy of length \( t \) which is eligible to act at this substage. We distinguish cases depending on the requirement \( R \) assigned to \( \alpha \).

**Case 1.** \( \alpha \in \mathcal{R}_{\Psi, \Omega_0, \Omega_1} \). Process the first of the following cases applicable.

**Reminder.** We are using the notation \( \Psi \) and \( \Omega_i \) as shorthand for \( \Psi_e \) and \( \Omega_{e,i} \) for some index \( e \) and \( \Gamma_i \) as shorthand for \( \Gamma_{a,i} \).

**Case 1.1** There is a number \( z \in S(\alpha^{\sim}(1), s) \) such that \( z \notin A[s] \) but \( z \in \Gamma_{1}^{\Omega_{a}^{1}}[s] \).
Then set \( z(s + 1, t + 1) = z \) for the least such \( z \), define

\[
D(s + 1, t + 1) = D(s + 1, t) \cup \{z(s + 1, t)\} \cup \bigcup_{1 \leq i \leq 2} S(\alpha^{\sim}(i), s) \setminus \{z(s + 1, t + 1)\},
\]
and \( \Gamma_1[s + 1] = \emptyset \). Also reset \( \Gamma_0[s + 1] = \Gamma_0[s] \). Set \( R(\alpha, s + 1) = 0 \).

**Remark.** \( R(\alpha, s + 1) = 0 \) indicates that \( \alpha^{\sim}(0) \) will be eligible to act at substage \( t + 2 \). (See \textit{Ending substage} \( t + 1 \) on page 17.) Note that the floating witness \( z(s + 1, t + 1) \) will be passed to \( \alpha^{\sim}(0) \).

**Case 1.2** There is a number \( z \in S(\alpha^{\sim}(2), s) \) such that \( z \in A[s] \cap \Psi_{\Omega_0^{\alpha} \oplus \Omega_1^a}[s] \).
Then set \( z(s+1, t+1) = z \) for the least such \( z \), define
\[
D(s+1, t+1) = D(s+1, t) \cup \{z(s+1, t)\} \cup \left( S(\alpha^{-}(2), s) \setminus \{z(s+1, t+1)\} \right),
\]
and, for \( 0 \leq i \leq 1 \) define \( \Gamma_{i}[s+1] = \Gamma_{i}[s] \cup \{(z(s+1, t+1), \Omega^{A}_{i}[s])\} \).
Set \( R(\alpha, s+1) = 1 \).

\textbf{Case 1.3} Otherwise.
Then reset \( z(s+1, t+1) = z(s+1, t) \), \( D(s+1, t+1) = D(s+1, t) \), \( \Gamma_{i}[s+1] = \Gamma_{i}[s] \) for \( 0 \leq i \leq 1 \) and set \( R(\alpha, s+1) = 2 \).

\textbf{Case 2.} \( \alpha \in N_{W} \). Process the first of the following cases applicable.

\textbf{Case 2.1} \( N(\alpha, s) = 0 \).
(Note that this means that \( x(\alpha, s) \in O_{\bar{a}}[s] \subseteq \omega \setminus A[s] \).) Set \( z(s+1, t+1) = z(s+1, t) \), \( D(s+1, t+1) = D(s+1, t) \) and reset \( x(\alpha, s+1) = x(\alpha, s) \) and \( N(\alpha, s+1) = 0 \).

\textbf{Case 2.2} \( N(\alpha, s) = 1 \) and \( x(\alpha, s) \in W[s] \).
Set \( z(s+1, t+1) = \text{break and} \)
\[
D(s+1, t+1) = D(s+1, t) \cup \{z(s+1, t)\} \cup S(\alpha^{-}(1), s).
\]
(Note that \( S(\alpha, s) = S(\alpha^{-}(1), s) \setminus \{x(\alpha, s)\} \) in this case.) Reset \( x(\alpha, s+1) = x(\alpha, s) \) and set \( N(\alpha, s+1) = 1 \).

\textbf{Case 2.3} \( N(\alpha, s) = 1 \) and \( x(\alpha, s) \notin W[s] \).
Reset \( z(s+1, t+1) = z(s+1, t) \) and \( D(s+1, t+1) = D(s+1, t) \). Also reset \( x(\alpha, s+1) = x(\alpha, s) \) and \( N(\alpha, s+1) = 1 \).

\textbf{Case 2.4} \( N(\alpha, s) = \text{void} \) and \( z(s+1, t) \geq |\alpha| \).
Set \( z(s+1, t+1) = \text{break and} \)
\[
D(s+1, t+1) = D(s+1, t) \cup \{z(s+1, t)\} \cup S(\alpha^{-}(1), s).
\]
(Also set \( x(\alpha, s+1) = z(s+1, t) \) and \( N(\alpha, s+1) = 1 \).

\textbf{Case 2.5} Otherwise (i.e. \( \alpha \in A[\bar{a}] \)).
Set \( z(s+1, t+1) = \text{break and} \)
\[
D(s+1, t+1) = D(s+1, t) \cup \{z(s+1, t)\} \cup S(\alpha^{-}(1), s).
\]
(Also reset \( x(\alpha, s+1) = -1 \) and \( N(\alpha, s+1) = \text{void} \).

\textbf{Case 3.} \( \alpha \in P_{W} \). Process the first of the following cases applicable.

\textbf{Notation.} For the sake of Cases 3.2 and 3.3 we use the notation
\[
\Omega_{\alpha, s+1} = \{ x(\beta, s) \mid x(\beta, s) \geq 0 \ & \& \ N(\beta, s) = 1 \ & \& \ \beta <_{L} \alpha \} \\
\quad \cup \{ x(\beta, s+1) \mid x(\beta, s+1) \geq 0 \ & \& \ N(\beta, s+1) = 1 \ & \& \ \beta \subset \alpha \}.
\]
(Note that \( N(\beta, s+1) = 1 \) and \( \beta \subset \alpha \) implies that \( \beta^{-}(1) \subseteq \alpha \).

\textbf{Case 3.1} \( P(\alpha, s) = 0 \).
(Note that the implication here is that there is some \( D \in W[s] \) such that \( D \subseteq A[s] \).
Reset \( z(s+1, t+1) = z(s+1, t) \), \( D(s+1, t+1) = D(s+1, t) \) and reset \( P(\alpha, s+1) = 0 \).

\textbf{Case 3.2} \( P(\alpha, s) = 1 \) and for some \( D \in W[s] \).
\[
D \subseteq \Omega_{\alpha, s} \cup D_{A}[s] \cup D(s+1, t) \cup \{z(s+1, t)\} \cup S(\alpha, s).
\]
(Note that \( S(\alpha, s) = S(\alpha^{-}(1), s) \) in this case.) Set \( z(s+1, t+1) = \text{break,} \)
\[
D(s+1, t+1) = D(s+1, t) \cup \{z(s+1, t)\} \cup S(\alpha, s),
\]
and set \( P(\alpha, s+1) = 0 \).

**Case 3.3.** Otherwise. (i.e. \( P(\alpha, s) \in \{1, \text{void}\} \) and (5.1) holds for no \( D \in W[s] \))

Reset \( z(s+1,t+1) = z(s+1,t) \), \( D(s+1,t+1) = D(s+1,t) \) and set \( P(\alpha, s+1) = 1 \).

**Ending substage \( t+1 \).** Supposing that \( \alpha \in Q \) with \( Q \in \{ \mathcal{R}, \mathcal{N}, \mathcal{P} \} \), if \((s+1,t+1) \in \omega \) then define \( \alpha^\sim(Q(\alpha, s+1)) \) to be eligible to act next and go to substage \( t + 2 \). Otherwise (i.e. if \((s+1,t+1) = \text{break}\)) go to End of Stage \( s + 1 \).

**Remark.** The last node eligible to act, and hence processed, at stage \( s + 1 \) is either an \( N \) node via Case 2.2, 2.4 or 2.5 or otherwise a \( P \) node via Case 3.2.

**End of Stage \( s + 1 \).** Supposing that \( \alpha \) of length \( t \) is the last strategy to be processed define \( \beta_{s+1} = \alpha \). Set \( D(s+1) = D(s+1,t+1) \) and initialise all nodes in the set \( G = \{ \beta \mid \alpha < \beta \} \) (i.e. all nodes \( \beta \) such that \( \alpha <_{L} \beta \) or \( \alpha \in \beta \)). For every \( \beta \in \mathcal{T} \) such that \( \beta <_{L} \alpha \) reset \( \beta \)'s parameters for stage \( s + 1 \) to their value at stage \( s \). Before proceeding note that, by initialisation, for any \( \beta \in \mathcal{N} \) such that \( N(\beta, s+1) \in \{0,1\}, \beta \leq \alpha \).

Define

\[
\begin{align*}
I_A[s+1] &= \{ x(\beta,s+1) \mid x(\beta,s+1) \geq 0 & N(\beta,s+1) = 1 \}, \\
O_A[s+1] &= \{ x(\beta,s+1) \mid x(\beta,s+1) \geq 0 & N(\beta,s+1) = 0 \}, \\
F_A[s+1] &= I_A[s+1] \cup O_A[s+1], \\
D_A[s+1] &= D_A[s] \cup D(s+1),
\end{align*}
\]

and

\[
A[s+1] = I_A[s+1] \cup D_A[s+1].
\]

(And note that \( F_A[s+1] = \{ x(\beta,s+1) \mid x(\beta,s+1) \geq 0 \}. \) For every \( \gamma \in \mathcal{T} \) redefine the stream for \( \gamma \) as follows.

\[
S_A(\gamma,s+1) = \{ x(\beta,s+1) \mid x(\beta,s+1) \in F_A[s+1] & \gamma \subseteq \beta \}.
\]

Note that by resetting, if \( \gamma <_{L} \alpha \) then \( S(\gamma,s+1) = S(\gamma,s) \) whereas, by initialisation, if \( \alpha < \gamma \) then \( S(\gamma,s+1) = \emptyset \).

Go to stage \( s + 2 \).

**Verification.**

The following informal observations clarify the mechanics of the construction and underline its inherent simplicity.

**Some properties of stage \( s + 1 \).**

(i) \( F_A[s+1] \) comprises precisely the set of witnesses \( x(\gamma,s+1) \geq 0 \) such that \( \gamma \leq \beta_{s+1} \).

(ii) At most one number is removed from \( A \) at stage \( s + 1 \). Indeed, this can only happen if Case 2.2 applies at substage \( |\beta_{s+1}| + 1 \) and the witness \(^6 x = x(\beta_{s+1},s) \) is extracted from \( A \).

(iii) \( F_A[s+1] \setminus F_A[s] \subseteq \{s\} \). And if indeed \( s \in F_A[s+1] \) then Case 2.4 applies at substage \( |\beta_{s+1}| + 1 \) and \( s = x(\beta_{s+1},s+1) \). Also this means that the floating witness \( z(s+1,t) \) never changes value. I.e. \( z(s+1,t) = s \) for all \( 0 \leq t \leq |\beta_{s+1}|. \)

\(^6x = x(\beta_{s+1},s) = x(\beta_{s+1},s+1) \) in this case.
(iv) If \( z(s + 1, |β_{s+1}|) \neq s \) (i.e. if the floating witness changes value at least once) then \( z(s + 1, |β_{s+1}|) = x(γ, s) \) for some \( β_{s+1} < L γ \). Likewise each intermediate value of the floating witness \( z(s + 1, t) \) is a witness \( x(γ', s) \) for some \( β_{s+1} < L γ' \). Moreover, the only one of the values of the floating witness that (possibly) remains in \( F_A[s + 1] \) is \( x(γ, s) \). Note that this happens if Case 2.4 applies at substage \(|β_{s+1}| + 1 \) forcing \( x(β_{s+1}, s + 1) = x(γ, s) \). All other values (including \( s \)) of \( z(s + 1, t) \) are dumped into \( A \).

(v) Nontrivial cases of (ii), (iii) and (iv) are mutually exclusive. In other words, extraction of a number from \( A \) (see (ii)) forces \( s \) and all \( x(γ, s) \geq 0 \), such that \( β_{s+1} < γ \) to be dumped into \( A \). On the other hand \( s \in F_A[s + 1] \) (see (iii)) precludes any extraction from \( A \) and forces all \( x(γ, s) > 0 \) such that \( β_{s+1} < γ \) to be dumped into \( A \). Likewise \( x(γ, s) \in F_A[s + 1] \) for some \( β_{s+1} < L γ \) (see (iv)) precludes any extraction from \( A \) and forces \( s \) (as well as all other \( x(γ, s) > 0 \)) such that \( β_{s+1} < γ \) to be dumped into \( A \).

(vi) \( β_{s+1} \) is either in \( N \) and Case 2.2, 2.4 or 2.5 applies at substage \(|β_{s+1}| + 1 \) or otherwise \( β_{s+1} \) is in \( P \) and Case 3.2 applies at substage \(|β_{s+1}| + 1 \).

We now verify the construction via the Lemmas below. Note firstly that Lemmas 5.4-5.6 are proved by inspection (only, for some of the statements involved) and straightforward induction arguments over the stages of the construction, using the observations above. (Detailed proofs are given in [Bad].)

**Lemma 5.4.** For all stages \( s > 0 \) and \( x \in F_A[s] \) both (1) and (2) are true.

1. One of the three following (mutually exclusive) cases applies for \( x \).
   a. \( x = s - 1, β_s \in N \) and \( x = x(β_s, s). \)
   b. There exists \( γ \in N \) such that \( γ ≤ β_{s-1}, β_s < L γ, x = x(γ, s - 1), x(γ, s) = \text{void} \) and \( x(β_s, s) = x. \)
   c. There exists \( γ \in N \) such that \( γ ≤ β_{s-1}, γ ≤ β_s \) and \( x = x(β, s - 1) = x(β, s). \)

2. For all \( γ_1, γ_2 \in N \) such that \( x = x(γ_1, s) = x(γ_2, s), γ_1 = γ_2. \)

**Remark.** By Lemma 5.4, and the definition of \( F_A[s] \) we can now assume that \( x \in F_A[s] \) if and only if there exists a unique (\( N \) strategy) \( γ ≤ β_s \) such that \( x = x(γ, s). \)

Clearly also in this case for \( (L, i) \in \{(I, 1), (O, 0) \} \), we have that \( x \in L_A[s] \) if and only if \( N(γ, s) = i \).

**Lemma 5.5.** For all \( s \geq 0 \), the following statements are true.

1. \( D(s) ⊆ D_A[s] ⊆ D_A[s + 1]. \)
2. \( F_A[s] = I_A[s] ∪ O_A[s] \) and \( I_A[s] \cap O_A[s] = \emptyset. \)
3. \( D_A[s] \cap F_A[s] = \emptyset. \)
4. \( \{ n \mid 0 ≤ n < s \} = F_A[s] ∪ D_A[s]. \)
5. For any \( α \in T \) such that \( α ≤ β_s, \)

\[ F_A[s] = S(α, s) \cup \{ x(γ, s) \mid x(γ, s) ≥ 0 \ & γ ≤ β_s \}. \]

**Lemma 5.6.** Suppose that \( β \in T \) is such that \( x(β, s) ≥ 0 \). Then for all \( γ \leq β \) such that \( γ \in N, N(γ, s) \in \{0, 1\} \) and \( x(γ, s) ≥ 0 \).

**Lemma 5.7.** For any \( α \in T \) and stage \( s ≥ 0 \), \( |S(α, s + 1) \setminus S(α, s)| ≤ 1. \)

**Proof.** This follows by inspection of the construction at stage \( s + 1 \). Indeed, if \( z \in S(α, s + 1) \setminus S(α, s) \) then for some substage \( t \) of stage \( s + 1 \), \( z(s + 1, t) = z. \)
Lemma 5.10. For all $x \in A$.

Remark 1. Less formally Lemma 5.10, says that if $x < y$ then $|S(x, s + 1)\setminus S(x, s)|$. Moreover notice that if $x \notin S(x, s + 1)$ then $|S(x, s + 1)| = 0$.

Proof. By induction over stages $s \geq 0$. The case $s = 0$ is trivially true. So consider case $s + 1$. For the hypotheses of the Lemma to be true at stage $s + 1$ it must be the case that $\beta \leq \beta_{s+1}$ (otherwise $S(\beta, s + 1) = \emptyset$). If $\beta < L_{\beta_{s+1}}$ then $S(\alpha, s + 1) = S(\alpha, s)$ and $S(\beta, s + 1) = S(\beta, s)$ and the result follows by the induction hypothesis. Otherwise $\beta \leq \beta_{s+1}$. As seen in Lemma 5.7, if $D = S(\beta, s + 1)\setminus S(\beta, s)$, then $|D| \leq 1$. If $|D| = 0$ then the result follows as above. Otherwise suppose that $z$ is the number contained in $D$. Then either $z = s$ and so $z > \max S(\alpha, s) \subseteq \{ n \mid n < s \}$ or $z \in S(\gamma, s)$ for some $\beta < L_{\gamma}$ (via Case 1.1 or 1.2 applied to some stage $1 \leq t \leq |\beta|$ of stage $s + 1$) in which case $z > \max S(\beta, s) > \max S(\alpha, s)$, by application of the induction hypothesis.

From inspection of Lemma 5.8 and its proof we have the following Corollary.

Corollary 5.9. For any stage $s \geq 0$, strategy $\alpha \in T$, and number $z$, if $z \in S(\alpha, s + 1)\setminus S(\alpha, s)$ then $z > \max S(\alpha, s)$.

Lemma 5.10. For all $x, y \in \omega$, stages $0 \leq s < t$ and nodes $\alpha \in T$, if $x \in S(\alpha, s) \cap I_{A}[s]$, $y \in S(\alpha, s + 1)\setminus S(\alpha, s)$, and $\{x, y\} \subseteq S(\alpha, t)$, then $x \in I_{A}[t]$.

Proof. We reason by induction over stages $t \geq s + 1$.

Case $t = s + 1$. By inspection of the construction we see that $y = x(\beta_{s+1}, s + 1) + 1$. Let $\beta \in N$ be such that $x = x(\beta, s + 1)$. From Lemma 5.6 and the definition of Case 2.4 of the construction we can deduce that it is not the case that $\beta_{s+1} \leq \beta$. Moreover $\beta_{s+1} \neq L_{\beta}$ since then $\beta$ would be initialised at stage $s + 1$ forcing $x \in D(s + 1) \subseteq D_{A}[s + 1]$ and hence $x \notin S(\alpha, s + 1) \subseteq F_{A}[s + 1]$ by Lemma 5.5(3). Thus there are two subcases as follows.

Subcase $\beta < L_{\beta_{s+1}}$. Then $x = x(\beta, s + 1)$ by Lemma 5.4(1)(c) and $N(\beta, s + 1) = N(\beta, s)$ by resetting. Hence $x \in I_{A}[s + 1]$ by definition.

Subcase $\beta \subseteq \beta_{s+1}$. Then, as above, $x = x(\beta, s + 1)$. Moreover, notice that if $x \notin O_{A}[s + 1]$, then Case 2.2 applies at substage $|\beta| + 1$ forcing $\beta_{s+1} = \beta$, a contradiction. Hence $x \in I_{A}[s]$. By Lemma 5.7 $y$ is the unique such number.

Case $t > s + 1$. We assume the extended induction hypothesis that, not only does the Lemma hold for stage $t - 1$, but also that the nodes $\beta, \gamma \in N$ such that $x(\beta, t - 1) = x$ and $x(\gamma, t - 1) = y$ satisfy $\beta < \gamma$. (Notice that we have already seen that the extended induction hypothesis is true when $t = s + 1$.) Again we reason by subcases.

Subcase $\beta_{t} < \beta$. Notice that $\beta_{t} \subseteq \beta$ can only happen via Case 3.2 of the construction.
in which case \( \beta \) is initialised forcing \( x \in D(t) \). So we can suppose that \( \beta_t < L \beta \). However in this case there is at most one strategy \( \beta_t < L_\mu \) such that\(^8\) \( x(\mu, t-1) \) is not forced into \( D(t) \) by initialisation. However, \( \beta_t < L \beta < \gamma \) and we have \( \{x, y\} \cap D(t) = \emptyset \) by hypothesis; a contradiction. Thus \( \beta_t < \beta \) does not happen.

**Remark.** We can now assume that \( \beta \leq \beta_t \) and, by Lemma 5.4, that \( x(\beta, t) = x(\beta, t - 1) \).

**Subcase \( \beta_t < \gamma \).** As above we can suppose that \( \beta_t < L \gamma \). As \( y = x(\gamma, t - 1) \), for \( y \) to survive in \( S(\alpha, t) \subseteq F_A[t] \) it must be the case that \( y = x(\beta_t, t) \) (since otherwise \( y \in D(t) \)) via Case 2.4 applied to \( z(t, |\beta_t|) = y \) at substage \( \beta_t + 1 \). Thus Case 2.2 does not occur at any substage\(^9\) of stage \( t \). In particular (under the inductive assumption that \( x \in I_A[t - 1] \)) this means that \( x \in I_A[t] \). Also \( \beta_t \neq \beta \) (as \( x(\beta_t, t - 1) = \emptyset \) by definition of Case 2.4). Hence \( \beta < \beta_t \).

**Subcase \( \beta_t \geq \gamma \).** In this subcase, Case 2.2 of the construction does not apply to node \( \beta \) during stage \( t \) since this would force \( \beta_t = \beta < \gamma \). Moreover, \( x(\beta, t) = x(\beta, t - 1) = x \text{ and } x(\gamma, t) = x(\gamma, t - 1) = y \) (by Lemma 5.4(1)(c)). Combining these two observations we see that \( x \in I_A[t] \) and that the extended induction hypothesis is again satisfied. \( \square \)

**Notation, Assumptions and Definitions.** For \( n \geq 0 \) we define

\[
\text{True}_{\infty, n} := \{ \alpha \mid |\alpha| = n \land \forall t(\exists s \geq t)[\alpha \subseteq \beta_s] \}.
\]

If \( \text{True}_{\infty, n} \neq \emptyset \), letting \( \beta = \min_{< L} \text{True}_{\infty, n} \) (i.e. the least strategy of length \( n \) under \( < L \)), we define \( \delta_n = \beta \) if there exists \( s_\beta \) such that, for all \( s \geq s_\beta \), \( \beta \) is not initialised at stage\(^{10}\) \( s \). Otherwise \( \delta_n \) is undefined.

For any \( \gamma \in T \) and parameter \( p(\gamma, s) \). If \( \lim_{s \to \infty} p(\gamma, s) \) exists we define \( p(\gamma) \) to be this value (otherwise we say that \( p(\gamma) \) is undefined). We define

\[
D_A = \bigcup_{s \in \omega} D_A[s],
\]

\[
F_A = \{ n \mid \exists s(\forall t \geq s)[n \in F_A[t]] \}
\]

and define \( I_A \) and \( O_A \) likewise (so that \( F_A = I_A \cup O_A \)). Define

\[
A = \{ n \mid \exists s(\forall t \geq s)[n \in A[t]] \}.
\]

Also for all \( \alpha \in T \) define,

\[
S(\alpha) = \{ n \mid \exists s(\forall t \geq s)[n \in S(\alpha, t)] \}.
\]

**Lemma 5.11.** For all \( n \geq 0 \), \( \delta_n \) is defined.

---

\(^8\)\( x(\mu, t-1) \notin D(t) \) if and only if (i) Case 1.1 or 1.2 applies at some stage \( r \leq |\beta_t| \) and (ii) \( z(t, p) = x(\mu, t-1) \) for all \( r \leq p \leq |\beta_t| \) and (iii) \( x(\beta_t, t) = x(\mu, t-1) \) via Case 2.4 at substage \( |\beta_t| + 1 \).

\(^9\)Case 2.2 can only happen at substage \( |\beta_t| + 1 \) since it induces \( z(t, |\beta_t| + 1) = \text{break} \).

\(^{10}\)I.e. such that for all \( s \geq s_\beta \), \( \beta_s < L \beta \) and, if \( |\beta_s| < |\beta| \), then \( \beta < L \beta_s \). Note that this observation does not apply to the tree construction of Theorem 5.20 where it may be the case that \( \beta_s \subseteq \delta_n \) for infinitely many \( s \). (In this case in the tree construction of Theorem 5.20 any such \( \beta_s \) is an \( N \) node and it is in fact the case that \( \delta_\infty(0) \subseteq \delta_n \).)
Proof. By induction on $n$. The case $n = 0$ is obvious. So suppose that $\alpha = \delta_n$ is defined and let $s_n$ be a stage such that $\beta_s \geq \alpha$ for all $s \geq s_n$. There are three cases to consider.

Case $\alpha \in \mathcal{R}$. By construction, at each $\alpha$-true stage $s$, $|\beta_s| > \alpha$. Hence, by the induction hypothesis $\beta^\wedge(i) \in \text{True}_{\infty,n+1}$ for some $i \in \{0, 1, 2\}$. Thus $\delta_{n+1}$ is defined.

Case $\alpha \in \mathcal{N}$. Inspection of the construction shows that, for any $\alpha$-true stage $s > 0$, if $m = z(s, |\alpha|)$ then either $m = s - 1$, or $m = x(\gamma, s - 1)$ for some $\alpha < \gamma$. Whereas, for all $t \geq s$, either $m = D_A[t]$ or $m = x(\beta, t)$ for some $\alpha \subseteq \beta$. It follows that for all $\alpha$-true stages $s_n < p < r$, $z(p, |\alpha|) \neq z(r, |\alpha|)$, and (in fact $z(p, |\alpha|) < z(r, |\alpha|)$). Hence at each $\alpha$-true stage $s$ (if $N(\alpha, s-1) = \emptyset$), Case 2.4. of the construction will apply, so that $x(\alpha, s) = z(s, |\alpha|)$. Moreover, clearly for all $t \geq s$, $x(\alpha, t) = x(\alpha, s)$. Notice also that Case 2.2 can apply at most once after stage $s$. In other words, there is a stage $s'$ such that at every $\alpha$ true stage $t \geq s'$, $|\beta_t| > |\alpha|$. Thus (as in the first case) $\delta_{n+1}$ is defined to be $\alpha^\wedge(i)$ for some $i \in \{0, 1\}$.

Case $\alpha \in \mathcal{P}$. Clearly Case 3.2 applies at most once after stage $s_n$. Thus, as above, $\delta_{n+1}$ is defined to be $\alpha^\wedge(i)$ for some $i \in \{0, 1\}$.

Note that to each case there corresponds a stage $s_{n+1}$ as in the induction hypothesis. Thus the latter is validated. This concludes the proof of the Lemma.

Corollary 5.12. For all $n \geq 0$, $S(\delta_n)$ is infinite.

Proof. It follows from Lemma 5.11 that, for all $n$ such that $\delta_n \in \mathcal{N}$, $x(\delta_n)$ is defined (with value in $\omega$). Moreover, a straightforward argument by induction using Lemma 5.4(2) implies that, for all such $p \neq m$, $x(\delta_p) \neq x(\delta_m)$. It now suffices to notice that $\{ x(\delta_m) \mid \delta_m \in \mathcal{N} \land m > n \} \subseteq S(\delta_n)$.

Lemma 5.13. The following statements are true.

1. $A = D_A \cup F_A$.
2. $F_A = I_A \cup O_A$ and $I_A \cap O_A = \emptyset$.
3. $D_A \cap F_A = \emptyset$.
4. $\omega = F_A \cup D_A$.
5. For any $\alpha \in \mathcal{T}$ such that $\alpha \subseteq \delta$,

$$F_A = S(\alpha) \cup \{ x(\gamma) \mid x(\gamma) \geq 0 \land \gamma < \alpha \}.$$ 

Proof. (1) and (2) are obvious by definition, whereas (3), (4) and (5) follow by application of Lemma 5.5 using induction over the stages of the construction.

Notation. For $G \in \{F, I, O\}$ and $\alpha \in \mathcal{T}$ we use the notation $G_A^{<\alpha}[s]$ to denote the set $G_A[s] \cap \{ x(\beta, s) \mid \beta < \alpha \}$.

Lemma 5.14. For $G \in \{F, I, O\}$, any $\alpha \subseteq \delta$ and stage $s_\alpha$ such that $\alpha \subseteq \beta_s$ for all $s \geq s_\alpha$, $G_A^{<\alpha}[s] = G_A^{<\alpha}[s_\alpha]$.

Proof. A straightforward induction over $s \geq s_\alpha$.

By definition of $\mathcal{T}$ and $\delta$, for any requirement $Q$ there is precisely one strategy $\alpha$ associated with $Q$ such that $\alpha \subseteq \delta$. Accordingly we consider each such $\alpha$ by cases.

\footnote{Note that $\alpha \subseteq \beta$ implies that $x(\alpha, t-1) \geq 0$, i.e. is already defined (see Lemma 5.6).}
Lemma 5.15. $\alpha \in R_{\Psi, \Omega, \Omega_1}$. If $A = \Psi_{\Omega_{i_0}}^{\alpha} \oplus \Omega_{i_1}^A$ and $A$ is not c.e. then $A \subseteq \Omega_{i_1}^A$ for some $i \in \{0, 1\}$.

Proof. Define $\Lambda = \{ (\alpha, \emptyset) \mid z \in D_A \}$. There are three cases to consider.

Case $\alpha^{-}(2) \subseteq \delta$. Consider $x \in S(\alpha^{-}(2))$. Clearly $x \notin A$. Indeed it cannot be the case that $x \in A \cap \Psi_{\Omega_{i_0}}^{\alpha} \oplus \Omega_{i_1}^A$ since then $x$ would have been removed from $\alpha^{-}(2)$’s stream via Case 1.2 of the construction. Moreover, if $x \in A \setminus \Psi_{\Omega_{i_0}}^{\alpha} \oplus \Omega_{i_1}^A$ then $A \neq \Psi_{\Omega_{i_0}}^{\alpha} \oplus \Omega_{i_1}^A$. A contradiction. We see therefore that $\alpha^{-}(2) \subseteq \delta$ implies that $A =^* D_A$, i.e. that $A$ is c.e. Hence $\alpha^{-}(2) \subseteq \delta$ cannot apply (under the assumptions of the Lemma).

Case $\alpha^{-}(1) \subseteq \delta$. Consider $x \in S(\alpha^{-}(1))$. By construction there exists a unique stage $s_x$ and, for $i \in \{0, 1\}$, a unique axiom $\langle x, F_{i,x} \rangle$, such that $F_{i,x} =_{\text{def}} \Omega_i^A[s_x]$ was enumerated into $\Gamma_i$ at stage $s_x + 1$ via Case 1.2 of the construction. Now, it follows from Lemma 5.8, Corollary 5.9 and the dumping activity at stage $s_x + 1$ that $\{ z \mid z > x \text{ and } z \in A[s_x] \} \subseteq D_A \subseteq A$. On the other hand we can also deduce from Lemma 5.14, Lemma 5.10 and the dumping activity at stage $s_x + 1$ that $\{ z \mid z < x \text{ and } z \in A[s_x] \} \subseteq A$. Notice now that these observations imply that, for each $i \in \{0, 1\}$,

$$F_{i,x} \subseteq \Omega_i^{A \cup \{x\}}$$

(5.2)

whereas the definition of Case 1.2 implies that

$$x \in \Psi_{\Omega_{i_0}, \Omega_{i_1}}^{F_{0,x} \oplus F_{i,x}}$$

(5.3)

- Suppose that $x \in A$. Then by (5.2), $F_{i,x} \subseteq \Omega_i^A$, and so $x \in \Gamma_i^{\Omega_i^A}$.
- Now suppose that $x \notin A$. Then $x \notin \Gamma_i^{\Omega_i^A}$. Indeed $x \in \Omega_i^{\Omega_i^A}$ would imply the transfer of $x$ from $\alpha^{-}(1)$’s stream to $\alpha^{-}(0)$’s stream at some stage $s > s_x$ (via Case 1.1).

We see therefore that $\alpha^{-}(1) \subseteq \delta$ implies (by Lemma 5.13) that $A =^* \Phi_1^{\Omega_i^A}$ where $\Phi_1 =_{\text{def}} \Gamma_1 \cup \Lambda$.

Case $\alpha^{-}(0) \subseteq \delta$. Consider $x \in S(\alpha^{-}(0))$ and (for $i \in \{0, 1\}$) let $s_x$ and $F_{i,x}$ be defined as above. Also let $t_x + 1$ be the stage at which the application of Case 1.1 caused $x$ to be transferred from $\alpha^{-}(1)$’s stream to $\alpha^{-}(0)$’s stream. Note that, similarly to the argument used in the last case, it follows from Lemma 5.8, Corollary 5.9, Lemma 5.14, Lemma 5.10 and the dumping activity at stage $t_x + 1$ that

$$F_{i,x} \subseteq \Omega_i^A$$

(5.4)

(i.e. whether or not $x \in A$).

- Suppose that $x \in A$. Then by (5.2), $F_{0,x} \subseteq \Omega_0^A$, and so $x \in \Gamma_0^{\Omega_0^A}$.
- Now suppose that $x \notin A$. Then $x \notin \Gamma_0^{\Omega_0^A}$. Indeed, if $x \in \Gamma_0^{\Omega_0^A}$, then $F_{0,x} \subseteq \Omega_0^A$. However, by (5.4), $F_{1,x} \subseteq \Omega_1^A$ and by (5.3) $x \in \Psi_{\Omega_0, \Omega_1}^{F_{0,x} \oplus F_{1,x}}$. Thus $x \in \Psi_{\Omega_0}^{\alpha} \oplus \Omega_1^A \setminus A$. A contradiction.

We see therefore that $\alpha^{-}(0) \subseteq \delta$ implies (by Lemma 5.13) that $A =^* \Phi_0^{\Omega_0^A}$ where $\Phi_0 =_{\text{def}} \Gamma_0 \cup \Lambda$.

□

Lemma 5.16. $\alpha \in N_W$. Then $x(\alpha) \in A$ if and only if $x(\alpha) \notin W$. 
Proof. Inspection of the construction shows that if \( \alpha^\sim(1) \subseteq \delta \), then \( x(\alpha) \in A \setminus W \) whereas if \( \alpha^\sim(0) \subseteq \delta \) then \( x(\alpha) \in W \setminus A \). \( \square \)

Notation. For \( G \in \{F, I, O\} \) and \( \alpha \subseteq \delta \) we define (on the strength of Lemma 5.14) \( G^\sim_A^\alpha = \lim_{s \to \infty} G^\sim_A^\alpha[s] \).

Note that, for any \( \alpha \subseteq \delta \), \( O^\sim_A^\alpha \subseteq \overline{A} \).

Lemma 5.17. \( \alpha \in P W \). Let \( E = O^\sim_A^\alpha \). If there is no \( D \in W \) such that \( D \subseteq A \) then, for all \( D \in W \), \( D \cap E \neq \emptyset \).

Proof. Let \( s_\alpha \) be the least stage such that \( \beta_\alpha \geq \alpha \) for all \( s \geq s_\alpha \).

Case \( \alpha^\sim(0) \subseteq \delta \). Then Case 3.2 applied relative to \( \alpha \) at some stage \( s \geq s_\alpha \) and it follows by Lemma 5.14 and the dumping activity at stage \( s \) that there is a finite set \( D \in W \) such that \( D \subseteq A \).

Case \( \alpha^\sim(1) \subseteq \delta \). Then Case 3.2 applies at no stage \( s \geq s_\alpha \) and we can deduce from Lemmas 5.5 and 5.13 in conjunction with Lemma 5.14 that \( D \cap E \) for all \( D \in W \).

Lemma 5.18. All the requirements are satisfied.

Proof. For the \( N \) and \( P \) requirements this is immediate by Lemmas 5.16 and 5.17. Satisfaction of each \( R \) requirement follows from the conjunction of Lemma 5.15 with the fact that all the \( N \) requirements are satisfied (and hence \( A \) is not c.e.). \( \square \)

Lemma 5.19. \( A \) is low.

Proof. Consider \( n \in \omega \). Notice that by construction \( n \) can only be extracted from \( A \) by \( N \) strategies of length \( \leq n \) and moreover that each such strategy extracts \( n \) at most once. It follows that \( n \) can be extracted from \( A \) at most \( 2^n + 1 \) times. Since this is true for all \( n \in \omega \), the construction defines a \( \Delta_2^0 \) approximation to \( A \). Since \( A \) is also enumeration 1-generic, \( A \) is low (by Corollary 3.11).

This concludes the proof of Theorem 5.3. \( \square \)

Theorem 5.20. There exists a properly \( \Sigma_2^0 \) enumeration 1-generic nonsplittable degree.

Proof. We proceed as in the proof of Theorem 5.3 but replacing requirements \( N_W \) by requirements of the form

\[ N_{B, \Phi, \Psi} : B = \Phi^A & A = \Psi^B \Rightarrow (\exists x \in B)[\lim_{s \to \infty} B_s(x) \uparrow] \]

where \( (B, \Phi, \Psi) \in \{(B_c, \Phi_c, \Psi_c)\}_{c \in \omega} \) where the latter is a standard listing of triples of \( \Sigma_2^0 \) sets and enumeration operators with associated uniform approximations (\( \Sigma_2^0 \) for the sets \( B_c \) and c.e. for the \( \Phi \) and \( \Psi \) operators) under the standard proviso that, for every \( \Delta_2^0 \) set \( C \) there is an index \( i \) such that \( \{B_{i,s}\}_{s \in \omega} \) is a \( \Delta_2^0 \) approximation to \( C \).

Strategy for node \( \alpha \in N_{B, \Phi, \Psi} \). [CC88].

In the following outline we use \( z \) for the momentary value of the floating witness passed to \( \alpha \) (so that the value of \( z \) in (1) below is different to its value in (2)) and \( S(\alpha) \) for the momentary value of \( \alpha \)'s stream etc. Each strategy \( \alpha \) will have two parameters whose roles are as a witness \( x(\alpha) \) and an oracle witness \( F(\alpha) \).

1. Set \( x(\alpha) = z \) and put \( x(\alpha) \) in \( A \).
(2) Wait for a minimal finite set $F$ such that 
\[ \langle x(\alpha), F \rangle \in \Psi \text{ and } F \subseteq B \cap \Phi^{A \cup S(\alpha) \cup \{z\}}. \]

(3) Set $F(\alpha) = D$ and dump\(^{12}\) \((S(\alpha) \setminus \{x(\alpha)\}) \cup \{z\}) \text{ into } A.

(4) Remove $x(\alpha)$ from $A$.

(5) Wait for $x(\alpha) \notin \Psi^B$.

(6) Put $x(\alpha)$ into $A$.

(7) Wait for $F(\alpha) \subseteq B$.

(8) Go back to Step 4.

**Finitary Outcomes.** There are three finitary outcomes to the strategy, each corresponding to either $A \neq \Psi^B$ or $B \neq \Phi^A$:

(i) The strategy gets stuck at Step 2. In this case $x(\alpha) \in A$ and either $x(\alpha) \notin \Psi^B$ (so that $x(\alpha) \in A \setminus \Psi^B$) or otherwise $x(\alpha) \in \Psi^B$ but for every finite set $F$ such that $(x(\alpha), F) \in \Psi$ and $F \subseteq B$, $F \not\in \Phi^A$ (so that, for some $d, d \in B \setminus \Phi^A$).

(ii) The strategy gets stuck at Step 5. In this case $x(\alpha) \in \Psi^B \setminus A$.

(iii) The strategy gets stuck at Step 7. In this case $F(\alpha) \subseteq \Phi^A$, so there is some $d \in F(\alpha)$ such that $d \in \Phi^A \setminus B$.

**Infinitary Outcome.** There is one infinitary outcome as follows.

(iv) The strategy loops through Step 4 via Step 8 infinitely often. In this case, during each loop the passage from Step 5 to 6 corresponds to some $x \in F(\alpha)$ having left $B$ and the passage from Step 7 to 8 to $x$ having reentered $B$. Thus there is some $x \in D(\alpha)$ such that $\lim_{s \to \infty} B_s(x) \uparrow$.

In the **Tree of Strategies** (see page 13), for $\alpha \in N$, we define $\alpha^\sim(n) \in T$ for all $n \in \{0, 1, 2\}$.

The strategy $\alpha \in N_{B, \Psi, \Phi}$ has several local parameters as follows. $N(\alpha, s) \in \{0, 1, 2, \text{void}\}$ is the outcome parameter, $x(\alpha, s) \in \{-1\} \cup \omega$ is the witness and $F(\alpha, s) \in \{-1\} \cup \mathcal{F}$ the oracle witness parameter associated with $\alpha$. Strategy $\alpha$ also has a pause switch parameter $p(\alpha, s) \in \{\text{continue}, \text{pause}\}$. When $\alpha$ is in its initialised state, $N(\alpha, s) = \text{void}$, $x(\alpha, s) = D(\alpha, s) = -1$ and $p(\alpha, s) = \text{continue}$. Strategy $\alpha$ works with its own relativised approximation $\{B[\alpha, s]\}_{s \in \omega}$ defined precisely as in (??) on page ?? with $B$ replacing $A$. Likewise $\Psi^B[\alpha, s]$ is defined in a similar way to $\Phi^A[\alpha, s]$.

At stage $t + 1$ of stage $s + 1$ of the construction **Case 2** of the construction on page 16 is replaced by the following.

**Case 2.** $\alpha \in N_{B, \Psi, \Phi}$. Process the first of the following cases applicable.

**For clarity notes are added below following each case. In these notes we use the shorthand $x(\alpha)$ to denote $x(\alpha, s + 1)$ provided that $x(\alpha, s + 1) = x(\alpha)$ and $z$ to denote $z(s + 1, t + 1)$ provided that $z(s + 1, t + 1) = z(s + 1, t)$. Moreover for $0 \leq n \leq 8$, “Step $n$” refers to the strategy for $\alpha$ described above.**

**Case 2.1.** $N(\alpha, s) = 0, p(\alpha, s) = \text{continue}$, and $x(\alpha, s) \in \Psi^B[\alpha, s + 1]$.

Set $z(s + 1, t + 1) = z(s + 1, t), D(s + 1, t + 1) = D(s + 1, t)$. For $q \in \{N, p, x, F\}$ reset $q(\alpha, s + 1) = q(\alpha, s)$.

**Thus strategy $\alpha^\sim(0)$ is eligible to act at stage $t + 2$ and floating witness $z$ is**

\(^{12}\)Note that in the construction $S(\alpha^\sim(2)) = S(\alpha) \setminus \{x(\alpha)\}$. 

Thus strategy $\alpha$ is passed to $\alpha$. Set

$$\text{In this case} \ A \ z \ \text{and for} \ q \in \{\alpha, s\} \ \text{set} \ \alpha, s + 1 = q, $\alpha, s.$

Thus strategy $\alpha$ is eligible to act at stage $t + 2$ and floating witness $z$ is passed to $\alpha$. $N(\alpha, s) = 0$ and $N(\alpha, s + 1) = 1$ means that $x(\alpha)$ is put back into $A$. This case corresponds to waiting from Step 5 to Step 7.

Case 2.3. $N(\alpha, s) = 0$ and $p(\alpha, s) = \text{pause}.$

Set $z(s + 1, t + 1) = z(s + 1, t), D(s + 1, t + 1) = D(s + 1, t).$ Set $p(\alpha, s + 1) = \text{continue}$ and for $q \in \{\alpha, s\} \ \text{reset} q(\alpha, s + 1) = q(\alpha, s).

Thus strategy $\alpha$ is eligible to act at stage $t + 2$ and floating witness $z$ is passed to $\alpha$. $N(\alpha, s + 1) = N(\alpha, s) = 0$ means that $x(\alpha)$ remains outside $A$. In this case $\alpha$'s strategy was paused at Step 4 at the previous $\alpha$-true stage but now resumes and moves to Step 5.

Case 2.4. $N(\alpha, s) = 1$ and $F(\alpha, s) \subseteq B[\alpha, s + 1].$

Set $z(s + 1, t + 1) = \text{break and}$

$$D(s + 1, t + 1) = D(s + 1, t) \cup S(\alpha(2), s) \cup \{z(s + 1, t)\}.$$

(Note that $S(\alpha(2), s) = \emptyset$ in this case.) Set $N(\alpha, s + 1) = 0, p(\alpha, s + 1) = \text{pause}$ and, for $q \in \{x, F\} \ \text{reset} q(\alpha, s + 1) = q(\alpha, s).

Thus strategy $\alpha = \beta_{s+1}$ and $\{S(\alpha(1), s) \cup \{z(s + 1, t)\} \}$ is dumped into $A$. $N(\alpha, s) = 1$ and $N(\alpha, s + 1) = 0$ means that $x(\alpha)$ is removed from $A$. In this case $\alpha$'s strategy moved from Step 7 via Step 8 to Step 4 and its processing is paused.

Case 2.5. $N(\alpha, s) = 1$ and $F(\alpha, s) \not\subseteq B[\alpha, s + 1].$

Set $z(s + 1, t + 1) = z(s + 1, t), D(s + 1, t + 1) = D(s + 1, t).$ For $q \in \{N, p, x, F\} \ \text{reset} q(\alpha, s + 1) = q(\alpha, s).

Thus strategy $\alpha$ is eligible to act at stage $t + 2$ and floating witness $z$ is passed to $\alpha$. $N(\alpha, s + 1) = N(\alpha, s) = 1$ means that $x(\alpha)$ remains inside $A$. This case corresponds to waiting at Step 7.

Notation. For the sake of Cases 2.6 and 2.7 we use the notation

$$\Omega_{\alpha, s + 1} = \{x(\beta, s) | x(\beta, s) \geq 0 \ & N(\beta, s) \geq 1 \ & \beta < L \ \alpha \} \ \cup \ \{x(\beta, s + 1) | x(\beta, s + 1) \geq 0 \ & N(\beta, s + 1) \geq 1 \ & \beta \subseteq \alpha \}.

(Note that $N(\beta, s + 1) = i$ and $\beta \subseteq \alpha$ implies that $\beta(\alpha) \subseteq \alpha$.)

Case 2.6. $N(\alpha, s) = 2$ and for some finite set $F, \langle x(\alpha, s), F \rangle \in \Psi[s]$ and

$$F \subseteq B[\alpha, s + 1] \cap \{\Phi[s] \}_{\Omega_{\alpha, s + 1} \cup D[s] \cup D(s + 1, t) \cup \{z(s + 1, t)\} \cup S(\alpha(2), s)}.$$

Set $z(s + 1, t + 1) = \text{break and}$

$$D(s + 1, t + 1) = D(s + 1, t) \cup \{z(s + 1, t)\} \cup S(\alpha(2), s).$$

Set $N(\alpha, s + 1) = 0$ and $F(\alpha, s + 1) = F$ for the least $F$ satisfying (5.5). For $q \in \{p, x\} \ \text{reset} q(\alpha, s + 1) = q(\alpha, s).

Thus strategy $\alpha = \beta_{s+1}$ and $\{z(s + 1, t)\} \cup S(\alpha(2), s)$ is dumped into $A$. $N(\alpha, s) = \ldots$
2 and $N(\alpha, s + 1) = 0$ means that $x(\alpha)$ is removed from $A$. This case corresponds to moving from Step 2 to Step 5.

**Case 2.7.** $N(\alpha, s) = 2$ but there is no such finite set $F$.

Set $z(s + 1, t + 1) = z(s + 1, t)$, $D(s + 1, t + 1) = D(s + 1, t)$. For $q \in \{N, p, x, F\}$ reset $q(\alpha, s + 1) = q(\alpha, s)$. (Note that $F(\alpha, s) = -1$ in this case.)

Thus strategy $\alpha^\wedge(2)$ is eligible to act at stage $t + 2$ and floating witness $z$ is passed to $\alpha^\wedge(2)$. $N(\alpha, s + 1) = N(\alpha, s) = 2$ means that $x(\alpha)$ remains inside $A$. This case corresponds to waiting at Step 2.

**Case 2.8.** $N(\alpha, s) = \text{void}$.

Set $z(s + 1, t + 1) = \text{break}$, $D(s + 1, t + 1) = D(s + 1, t)$. Set $N(\alpha, s) = 2$, $x(\alpha, s + 1) = z(s + 1, t)$ and, for $q \in \{p, F\}$, reset $q(\alpha, s + 1) = q(\alpha, s)$.

Thus strategy $\alpha = \beta_{s+1}$ and $\alpha$ appropriates the floating witness $z(s + 1, t)$ as its local witness $x(\alpha, s + 1)$. $N(\alpha, s + 1) = 2$ means that this new witness $x(\alpha, s + 1)$ is put into $A$. This case corresponds to application of Step 1 and moving to Step 2.

End of Stage $s + 1$ is the same as in the proof of Theorem 5.3 with two small adjustments.

The first involves modifying the set of strategies initialised. Indeed, in the present context, letting $\alpha = \beta_{s+1}$ it is the set $\tilde{G} = \{ \beta \mid \alpha^\wedge(0) <_L \beta \}$ that is initialised. Note that when $\alpha$ is a $P$ node then the initialisation defined here has the same effect as initialising the set $G = \{ \beta \mid \alpha < \beta \}$ (since any $\alpha^\wedge(0) \subseteq \beta$ is in its initial state anyway in this case). Likewise the same can be said if $\alpha$ is an $N$ node and Case 2.6 or 2.8 is applied (at the last substage $|\alpha| + 1$). However in Case 2.4 the effect of restricting initialisation to the set $G'$ means that the subtree $\{ \gamma \mid \alpha^\wedge(0) \subseteq \gamma \}$ is protected against initialisation. This is important as the proof may need to construct an infinite path through this subtree in order to define its true path $\delta$.

The second adjustment relates to the fact that in the present construction, for any $N$ node $\alpha$ and stage $s$ such that $x(\alpha, s) \geq 0$, $x(\alpha, s) \in A[s]$ if and only if $N(\alpha, s) \in \{1, 2\}$ (and not just $N(\alpha, s) = 1$). Hence the construction defines

$$ I_A[s] = \{ x(\beta, s + 1) \mid x(\beta, s + 1) \geq 0 \ & N(\beta, s + 1) \geq 1 \} . $$

**Verification.** Checking that $N_{B, \Phi, \Psi}$ is satisfied is carried out by making the assumption that there exists $\alpha \subseteq \delta$ such that $\alpha \in N_{B, \Phi, \Psi}$ and considering the outcomes of the strategy for $\alpha$. This involves a straightforward argument which can be derived from the description of the steps of the strategy for $\alpha$ in conjunction with the specification of how strategy $\alpha$ is processed (i.e. via Cases 2.1-2.8 above), by taking into account the notes added to each case. Notice however that the assumption that $\alpha \subseteq \delta$ exists requires us to also prove that, for some $i \in \{0, 1, 2\}$, $\alpha^\wedge(i) \subseteq \delta$, i.e. implicitly that $\delta$ is infinite (which we do directly via Lemma 5.11 in the proof of Theorem 5.3).

This is the reason for the introduction of a pause mechanism, i.e. the use of the pause parameter $p(\alpha, s)$, since it forces $\delta$ to be infinite. To see this we first consider the role of Case 2.4 by supposing that it is applied to $\alpha$ at stage $s + 1$. We also assume that $\alpha$ is on the true path and that our work is subsequent to a stage $s_\alpha$ after which $\alpha$ is never in its initial state so that, in particular $x(\alpha, s)$ has already stabilised at its final value. We denote (as usual) this value as $x(\alpha)$. Notice firstly that, for any $P$ strategy $\beta$ and outcome $i \in \{0, 1, 2\}$ such that $\beta^\wedge(i) \subseteq \alpha$,
\( x(\alpha) \in S(\beta^\sim(\bar{i}), s) \), and that every \( z \in S(\alpha^\sim(1), s) \) except at most one number (via Case 2.2) entered stream \( \beta^\sim(\bar{i}) \)'s stream (and \( \alpha^\sim(1) \)'s stream) at some stage \( t < s \) when \( x(\alpha) \) was already in \( \beta^\sim(\bar{i}) \)'s stream as well as already being in \( A \). Thus the removal of \( x(\alpha) \) from \( A \) by Case 2.4 would violate \( \beta \)'s strategy unless all such \( z \) are dumped into \( A \). Likewise the floating witness \( z = z(s + 1, t) \) (with \( t = |\alpha| \)) was processed (perhaps trivially) by \( \beta \) earlier in the stage under the assumption that \( x(\alpha) \in A \), and so it also cannot enter \( \beta^\sim(\bar{i}) \)'s stream at this stage without violating \( \beta \)'s strategy. Thus we see that the dumping of all of \( S(\alpha^\sim(1), s) \cup \{z(s + 1, t)\} \) by Case 2.4 is fundamental to the preservation of \( \beta \)'s strategy. Moreover, since there is now no floating witness left to pass to the strategy \( \alpha^\sim(0) \) the inherent role attributed to the floating witness by the construction dictates that the stage must be broken at this point. (There is also a principle of simplicity underlying this approach.)

Suppose now that the pause mechanism is absent, so that in effect \( p(\alpha, s) = \) continue for all \( s \). This means that Case 2.3 will never apply. Notice also that outcome (iv) of \( \alpha \)'s strategy entails that Case 2.2 and Case 2.4 each apply to \( \alpha \) at infinitely many \( \alpha \)-true stages. Moreover this outcome does not exclude the situation in which there is some stage \( s^* \) such that every instance of Case 2.4 being applied to \( \alpha \) is followed, at the next \( \alpha \)-true stage, by an instance of Case 2.2 being applied to \( \alpha \). Observe that, under these conditions, the true path \( \delta = \alpha \), i.e. is finite. However, if we now reintroduce the pause mechanism we see that Case 2.3 applies subsequent to each instance of Case 2.4 (over the set of \( \alpha \)-true stages) meaning that, not only is \( \alpha^\sim(0) \subseteq \beta_i \) for infinitely many \( s \) (assuming that Case 2.4 applies infinitely often) but also that at each such stage a different floating witness is passed to \( \alpha^\sim(0) \) (and so into its stream/the subtree below it). Moreover when Case 2.3 applies, \( x(\alpha) \notin A \) and so the floating witness \( z \) that Case 2.3 passes to \( \alpha^\sim(0) \) can safely enter \( \alpha^\sim(0) \)'s stream without violating the strategy of any \( N \) node \( \beta \) such that \( \beta^\sim(i) \subseteq \alpha \) since any such \( \beta \) processed \( z \) under the assumption that \( x(\alpha) \notin A \). (Remember here that \( \alpha^\sim(0) \)'s stream is a subset of \( \beta^\sim(\bar{i}) \)'s stream.)

We conclude from this discussion that the pause mechanism enables us to apply Lemma 5.11 in the present context and so deduce that \( \delta \) is infinite. We are then able to prove that all the requirements are satisfied in a similar manner to that undertaken in Lemmas 5.15-5.18. Note that in particular for any \( \alpha \in \mathcal{N}_{B, \Phi, \Psi} \) such that \( \alpha \subseteq \delta \) the pause mechanism does not affect the outcome of \( \alpha \)'s strategy. Indeed we find that \( \alpha^\sim(2) \subseteq \delta \) corresponds to outcome (i) of \( \alpha \)'s strategy and \( \alpha^\sim(1) \subseteq \delta \) corresponds to outcome (iii), whereas \( \alpha^\sim(0) \subseteq \delta \) corresponds to (finitary) outcome (i) or (infinitary) outcome (iv).

**Corollary 5.21.** There exist both a low and a properly \( \Sigma^0_2 \) enumeration \( 1 \)-generic degree \( 0_e < \alpha < 0'_e \) that is not \( 1 \)-generic.

**Proof.** Apply Theorem 5.3 and Theorem 5.20 with the fact that every \( 1 \)-generic enumeration degree is splittable.

**References**


E-mail address: lilianabsmath@gmail.com, harris.charles@gmail.com, msoskova@gmail.com