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1. Introduction

One of the most basic measures of the complexity of a given partially ordered
structure is the quantity of partial orderings embeddable in this structure. In the
structure of the Turing degrees, DT , this problem is investigated in a series of re-
sults: Mostowski [15] proves that there is a computable partial ordering in which
every countable partial ordering can be embedded. Kleene and Post [10] introduce
the notion of a computably independent sequence of sets and prove the existence of
a countable computably independent sequence of sets {Ai}i<ω, so that the Turing
degree of every member Ai of this class is uniformly below 0′. Muchnik [16] proves
the existence of a computably independent sequence of computably enumerable
sets. Sacks [20] shows that one can embed any computable partial ordering using
a computably independent sequence of sets, and as a corollary of the previously
mentioned results obtains the embeddability of any countable partial ordering in
the structure of the computably enumerable degrees, R. Finally Robinson [19] gen-
eralizes Sacks’ Density Theorem [22] by showing that one can embed any countable
partial ordering in the computably enumerable degrees between any two given c.e.
degrees b < a. (See Odifreddi [17, 18] for an extensive survey of these results.)

The structure of the enumeration degrees De, which can be seen as an extension
of the structure of the Turing degrees DT , naturally inherits this complexity. Fur-
ther results on this topic are obtained by Case [2], who shows that any countable
partial ordering can be embedded in the enumeration degrees below the e-degree
of any given generic function, and Copestake [5], who shows that one can embed
any countable partial ordering in the e-degrees below any given 1-generic enumer-
ation degree. Lagemann [12] proves that the embedding of any countable partial
ordering can be obtained below any nonzero ∆0

2 enumeration degree. Finally the
density of the structure of the Σ0

2 enumeration degrees, G, proved by Cooper [3] is
strengthened by Bianchini [1] who shows that every countable partial ordering can
be embedded in any non-empty interval of Σ0

2 enumeration degrees; see also Sorbi
[24] for a published proof of Bianchini’s result.

In this article we study the embeddability problem further in the context of three
different structures. We start with a slight improvement on the above mentioned
embeddability results for the structure of the enumeration degrees. Then build onto
our first result to solve the embeddability of countable partial orderings problem
for the structure of the ω-enumeration degrees. Finally we apply our second result
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to prove the embeddability of countable partial orderings densely in the structure
of the ω-enumeration degrees modulo iterated jump.

Lachlan and Shore introduce in [11] the notion of a good approximation and and
use it to extend Cooper’s density result [3]. We shall call an enumeration degree
good if it contains a member which has a good approximation.

Theorem 1.1 (Lachlan and Shore [11]). If b < a are enumeration degrees such
that a is good, then there is an enumeration degree c such that b < c < a.

That every Σ0
2 set has a good approximation is proved by Jockusch [8]. Lachlan

and Shore [11] prove that furthermore all n-c.e.a. sets and all total sets have good
approximations, but also provide an example of a Π0

2 set which does not have a
good approximation.

In Section 3.2 we combine the embeddability method via independent sequences
together with the notion of a good approximation to prove our first result.

Theorem 1.2. If B <e A are sets of natural numbers such that A has a good
approximation, then there is an e-independent sequence of sets {Ci}i<ω such that
for every i B <e Ci <e A uniformly in i.

As an immediate corollary of this theorem we obtain a more general solution to
the embeddability problem for the structure of the enumeration degrees.

Corollary 1.1. If b < a are enumeration degrees such that a is good then there is
an embedding of every countable partial ordering in the interval [b,a].

In particular one can embed any partial ordering in any nonempty interval of Σ0
2

enumeration degrees, of n-c.e.a. enumeration degrees, or in any nonempty interval
with endpoint any total enumeration degree.

In Section 4 we turn our attention to the structure of the ω-enumeration degrees,
Dω. This structure is an upper semi-lattice with jump operation, where the building
blocks of the degrees are of a higher type - sequences of sets of natural numbers.
The structure is introduced by Soskov [25] and its properties are investigated in
the works of Ganchev and Soskov [6, 7, 26]. We leave various formal definitions for
Section 4.1. The main interest in this structure arises from the result that Dω is
itself an extension of the structure of the enumeration degrees De and furthermore
the two structures have isomorphic automorphism groups. Soskov [25] proves a
density results for the structure Gω of the Σ0

2 ω-enumeration degrees, the the degrees
bounded by the first jump 0′

ω of the least ω-enumeration degree. We extend the
method used in the proof of Theorem 1.2 further to obtain a generalization of
Soskov’s density theorem:

Theorem 1.3. Let b <ω a <ω 0′
ω be two Σ0

2 ω-enumeration degrees. There is an
embedding of every countable partial ordering in the interval [b,a].

In the last section of this article we consider the structure of the Σ0
2 ω-enumeration

degrees modulo iterated jump. The structure of the c.e. degrees modulo iterated
jump is introduced and studied by Jockusch, Lerman, Soare and Solovay [9] and
Lempp [13].

Definition 1.1 (Jockusch, Lerman, Soare and Solovay ). 1 Let a and b be com-
putably enumerable Turing degrees. a ∼∞ b iff there exists a natural number n
such that an = bn, where an denotes the n-th Turing jump of the degree a.

1The original definition is for a relation ∼ω between c.e. sets.
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This is obviously an equivalence relation on the c.e. Turing degrees and induces
a degree structure R/ ∼∞ with a reducibility relation defined by [a]∼∞ ≤ [b]∼∞ if
and only if there exists a natural number n such that an ≤T bn. This structure
has least element L =

∪
n<ω Ln, the collection of all lown c.e. degrees, and greatest

element H =
∪

n<ω Hn, the collection of all highn c.e. degrees. Jockusch, Lerman,
Soare and Solovay [9] prove that this is a dense structure. Lempp [13] proves
furthermore that there is a splitting of the highest ∞-degree and a minimal pair of
∞-degrees.

The method for obtaining a degree structure modulo iterated jump can be ap-
plied to any degree structure with jump operation. We can consider for example
the structure of all ∆0

2 Turing degrees modulo iterated jump. However combining
Shoenfield’s Jump Inversion Theorem [23] with Sacks’ Jump Inversion Theorem
[21] yields that the range of the jump operator restricted to the c.e. Turing degrees
coincides with the range of the jump operator restricted to the ∆0

2 Turing degrees.
It is namely the set of all Turing degrees c.e. in and above 0′. Thus the structure
of the the ∆0

2 Turing degrees modulo iterated jump is isomorphic to the structure
R/ ∼∞.

Next consider the structure of the Σ0
2 enumeration degrees modulo iterated enu-

meration jump, G/ ∼∞. As noted previously G can be seen as an extension of the
structure of the ∆0

2 Turing degrees, as there is an embedding ι of the DT in De

which preserves the order, the least upper bound and the jump operation. The
images of the c.e. Turing degrees under this embedding are exactly the Π0

1 enu-
meration degrees. McEvoy [14] proves that the range of the enumeration jump
operator restricted to the Σ0

2-enumeration degrees coincides with the range of the
enumeration jump operator restricted to the Π0

1 enumeration degrees. Thus the
structure G/ ∼∞ is as well isomorphic to the structure R/ ∼∞.

When we consider the structure of the Σ0
2 ω-enumeration degrees modulo iter-

ated jump, Gω/ ∼∞, however we obtain a proper extension of the structure R/ ∼∞.
Soskov [25] proves that the structure of the enumeration degrees De can be embed-
ded in the structure of the ω-enumeration degrees Dω preserving the order, the
least upper bound and the jump operation. From this we automatically get an em-
bedding of R/ ∼∞ as a partial ordering in the structure Gω/ ∼∞. That the image
of this embedding is a proper substructure of Gω/ ∼∞ can also be seen easily. In
Section 5 we define formally the structure Gω/ ∼∞ and study its properties. The
main result is an application of Theorem 1.3.

Theorem 1.4. If a and b are ω-enumeration degrees such that [b]∼∞ <ω [a]∼∞ ,
then there is an embedding of every countable partial ordering in the ∞-degrees
between [b]∼∞ and [a]∼∞

2. The embeddability method via independent sequences

In this section we will review the embeddability method via independent se-
quences of sets. Let M be a nonempty set of objects and let ≤ be a reflexive and
transitive relation on M . Suppose also that for every computable index set C and
every sequence {Ai}i<ω of elements in M the operation

⊕
k∈C Ak is defined and

has the following properties:

(1) If C is a computable index set and i ∈ C then Ai ≤
⊕

k∈C Ak;
(2) If C1 ⊆ C2 are two computable sets then

⊕
i∈C1

Ai ≤
⊕

i∈C2
Ai.
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Definition 2.1. A countable sequence {Ai}i<ω of elements in M is independent
with respect to ”≤”, if for every natural number i

Ai ̸≤
⊕
j ̸=i

Aj .

Propostion 2.1 (Sacks). Let {Ai}i<ω be an independent with respect to “≤” se-
quence of elements in M and let C = ⟨N,≼⟩ be a computable partial ordering.
There is an embedding of C in ⟨M,≤⟩. If furthermore A and B are elements of M
such that B is a lower bound for the sequence {Ai}i<ω and

⊕
i<ω Ai ≤ A then the

embedding is in the interval [B,A].

Proof. The embedding κ : N → M is defined as follows:

κ(i) =
⊕
k≼i

Ak.

Suppose first that i ≼ j. Then sets Ci = {k| k ≼ i} and Cj = {k| k ≼ j}
are computable and by transitivity of the relation “≼” we have that Ci ⊆ Cj . By
property (2) of the operation

⊕
it follows that κ(i) ≤ κ(j).

Suppose now that i � j. Then i /∈ Cj = {k| k ≼ j} and hence Cj ⊆ {k| k ̸= i}.
On the other hand by reflexivity of “≼” we have that i ∈ Ci = {k| k ≼ i}. Hence
assuming that κ(i) ≤ κ(j) leads to a contradiction with the independence of the
sequence as follows:

Ai ≤
⊕
k∈Ci

Ak = κ(i) ≤ κ(j) =
⊕
k∈Cj

Ak ≤
⊕
k ̸=i

Ak.

To prove the second part of the proposition we note that for every i we have
that B ≤ Ai ≤ κ(i) ≤

⊕
i<ω Ai ≤ A.

�

Combining Proposition 2.1 with Mostowski’s result [15] we obtain a sufficient
condition for the embeddability of any countable partial ordering in any pre-order
⟨M,≤⟩.

We can transform the preorder ⟨M,≤⟩ into a degree structure as follows:

(1) First we define the equivalence relation ≡ by setting A ≡ B if and only if
A ≤ B and B ≤ A for any elements A,B ∈ M .

(2) The equivalence class of A under the relation ≡, denoted by d(A), is called
the degree of the element A. We define a reducibility relation “≤” between
degrees by setting d(A) ≤ d(B) if and only if A ≤ B.

(3) Let D = ⟨M/ ≡,≤⟩ be the set of all degrees of elements in M with the
induced reducibility relation. This structure is a partial ordering.

Finally we note that the existence of an independent sequence in M is a sufficient
condition for the embeddability of any countable partial ordering in the degree
structure D. We just modify the embedding κ to κ′ : N → D, by setting κ′(i) =
d(κ(i)).

3. Embedding results in the enumeration degrees

3.1. Preliminaries. We assume that the reader is familiar with the notion of enu-
meration reducibility, and refer to Cooper [4] for a survey of basic results for the
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structure of the enumeration degrees. For completeness we will nevertheless outline
here basic definitions and properties of the enumeration degrees used in this article.

Intuitively a set of natural numbers B is enumeration reducible (≤e) to a set
of natural numbers A if one can obtain an enumeration of the set B given any
enumeration of the set A. More formally:

Definition 3.1. B ≤e A if there exists a c.e. set W such that B = {n | ∃u(⟨x, u⟩ ∈
W ∧Du ⊂ A)}, where Du denotes the finite set with canonical index u.

The c.e. set W can be viewed as on operator on P(N) and will be referred to as
an enumeration operator or e-operator. The elements of the set W will be called
axioms. As each axiom consists of a natural number x and the code u of a finite
set Du, we will denote an axiom by ⟨x,Du⟩.

The relation ≤e defines a preorder on the powerset of N. The degree structure De

is obtained from ⟨P(N),≤e⟩ using the method described in Section 2. Furthermore
we have a definition of the join operation:

Definition 3.2. Let C be a computable set and {Ai}i∈C be a class of sets of natural
numbers. Then

⊕
i∈C Ai = {⟨i, x⟩ | i ∈ C ∧ x ∈ Ai}.

This operation obviously has the two required properties, needed to apply the
embeddability method via independent sequences. In order to construct an inde-
pendent sequence we will need to use the notion of a good approximation.

Definition 3.3 (Lachlan, Shore [11]). Let {A{s}}s<ω be a uniformly computable
sequence of finite sets. We say that {A{s}}s<ω is a good approximation to the set
A if it has the following two properties:

G1: (∀n)(∃s)[ A � n ⊆ A{s} ⊆ A ] and
G2: (∀n)(∃s)(∀t > s)[ A{t} ⊆ A ⇒ A � n ⊆ A{t} ].

Stages s at which A{s} ⊆ A are called good stages. The set of good stages will be
denoted by GA.

It is convenient to use the following notion of a correct approximation to a set
B with respect to a given good approximation to a set A. Intuitively a correct
approximation behaves like a good approximation at good stages s ∈ GA of the
given one, but might have more good stages t /∈ GA at which we cannot guarantee
the property G2.

Definition 3.4. Let A = {A{s}}s<ω be a good approximation to A. A uniformly
computable sequence of finite sets {B{s}}s<ω is a correct approximation to B with
respect to A if :

C1: (∀s)[A{s} ⊆ A ⇒ B{s} ⊆ B] and
C2: (∀n)(∃s)(∀t > s)[ A{t} ⊆ A ⇒ B � n ⊆ B{t} ].

This definition arises naturally when we approximate a set enumeration reducible
to a given set with a good approximation. We prove a slightly more general state-
ment:

Lemma 3.1. Let A = {A{s}}s<ω be a good approximation to A. Let {Γ{s}}s<ω

be a Σ0
1-approximation to the enumeration operator Γ and let B = {B{s}}s<ω be a

correct with respect to A approximation to B. Then {Γ{s}(B{s})}s<ω is a correct
approximation to Γ(B) with respect to A.
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Proof. C1: Let s be a stage such that A{s} ⊆ A. Then by C1 for B we have
B{s} ⊆ B and by the properties of a Σ0

1 approximation we have that Γ{s} ⊆ Γ.
Hence Γ{s}(B{s}) ⊆ Γ(B).

C2: If x ∈ Γ(B) then there is a valid axiom ⟨x,D⟩ ∈ Γ. It follows from property
C2 of the approximation B for the element max(D) and the properties of a Σ0

1

approximation that there is a stage s such that at all stages t > s if t ∈ GA then
D ⊂ B{t} and ⟨x,D⟩ ∈ Γ{t} and hence x ∈ Γ{t}(B{t}). If on the other hand
x /∈ Γ(B) then at all stages t ∈ GA, x /∈ Γ{t}(B{t}). �

Lemma 3.2. Let A = {A{s}}s<ω be a good approximation to A. Let {B{s}}s<ω and
{C{s}}s<ω be two correct with respect to A approximations to B and C respectively.
Then {B{s} ⊕ C{s}}s<ω is a correct approximation to B ⊕ C with respect to A.

Proof. C1: Let s be a stage such that A{s} ⊆ A. Then by C1 we have B{s} ⊆ B
and C{s} ⊆ C, hence B{s} ⊕ C{s} ⊆ B ⊕ C.

C2: Fix n. Let sB be a stage such that at all good stages t > sB we have
B � n ⊆ B{s} and similarly let sC be such that at all good stages t > sC we
have C � n ⊆ C{s}. Then at all good stages t > max{sB , sC} we have that
B⊕C � n = (B � n⊕C � n) � n = (B{s} � n⊕C{s} � n) � n = B{s} ⊕C{s} � n. �

We will use the notion of a length of agreement function in the constructions
and a basic property of this notion.

Definition 3.5. The length of agreement between two sets A and B measured at
stage s is l(A,B, s) = max{u ≤ s | ∀x < u[A(x) = B(x)]}.

Lemma 3.3. Let A = {A{s}}s<ω be a good approximation to the set A and
{B{s}}s<ω and {C{s}}s<ω be two correct with respect to A approximations to sets
B and C. Denote by ls = l(B{s}, C{s}, s).

(1) If ls grows unboundedly at good stages s ∈ GA, i.e. for every n there is a
stage s ∈ GA such that ls > n, then B = C.

(2) If B = C then lims∈GA ls = ∞, i.e. for every n there is a stage s such that
at all good stages t > s, t ∈ GA we have lt > n.

Proof. Fix x. Let sB be a stage such that ∀t > sB(t ∈ GA ⇒ B � x+1 ⊆ B{t} ⊆ B)
and sC be a stage such that ∀t > sC(t ∈ GA ⇒ C � x+ 1 ⊆ C{t} ⊆ C).

To prove (1) suppose that ls grows unboundedly at good stages s ∈ GA. Let
s > sB , sC be a stage such that s ∈ GA and ls > x. Then B(x) = B{s}(x) =
C{s}(x) = C(x).

For (2) suppose that B = C. Then at all good stages s > sB , sC , x, such that
s ∈ GA we have that B{s} � x + 1 = B � x + 1 = C � x + 1 = C{s} � x + 1 and
hence ls > x.

�

Finally we introduce one more notation:

Definition 3.6. Let A be a set of natural numbers and i be a natural number:

(1) A[i] = {⟨i, x⟩ | ⟨i, x⟩ ∈ A};
(2) For R ∈ {≤, <,≥, >} we set A[Ri] = {⟨j, x⟩ | ⟨j, x⟩ ∈ A ∧ (jRi)}.
(3) A[i] = {x | ⟨i, x⟩ ∈ A}.
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3.2. Proof of theorem 1.2. Fix two sets of natural numbers B <e A, such that
A has a good approximation A = {A{s}}s<ω. As B <e A it follows that that there
is an operator Γ such that B = Γ(A). Denote by B{s} = Γ{s}(A{s}). Then by
Lemma 3.1 B = {B{s}}s<ω is a correct approximation to B with respect to A.

We will construct an enumeration operator V , and define Ai = V (A)[i]. We will
ensure that for every i we have that B ⊕ Ai �e

⊕
j ̸=i B ⊕ Aj . Then by setting

Ci = B⊕Ai we will obtain the required e-independent sequence of sets. Indeed for
every i we have that Ai ≤e A uniformly in i, hence B ≤e Ci ≤e A uniformly in i.
Furthermore it follows from the independence property that the sequence {Ci}i<ω

is an antichain with respect to e-reducibility, and hence we have strong inequalities:
B <e Ci <e A.

To simplify the requirements one step further we note that
⊕

j ̸=i B⊕Aj ≡e B⊕⊕
j ̸=i Aj and that it is sufficient to prove that Ai �e B⊕

⊕
j ̸=i Aj as Ai ≤e B⊕Ai.

Thus our requirements can be stated as follows:

Pe,i : Ai ̸= We(B ⊕
⊕
j ̸=n

Aj),

for every pair of natural numbers e, i.
Fix some computable linear ordering R0 < R1 < . . . of the requirements Pe,n.

As usual we say that requirements which appear in earlier positions in this ordering
have higher priority.

Approximations and conventions We will construct a Σ0
1 approximation

{V {s}}s<ω to the set V .

For every i and s let A
{s}
i = V {s}(A{s})[i]. Note that Ai = Vi(A), where Vi =

{⟨x,D⟩ | ⟨⟨i, x⟩, D⟩ ∈ V } andA
{s}
i = V

{s}
i (A{s}), where V

{s}
i = {⟨x,D⟩ | ⟨⟨i, x⟩, D⟩ ∈

V {s}}. As {V {s}
i }s<ω is a Σ0

1 approximation to Vi, it follows from Lemma 3.1 that

{A{s}
i }s<ω is a correct with respect to A approximation to Ai.
To keep notation simple we will introduce a convention, an abbreviation of a

certain action that will be used in the construction.

Convention 1: At stage s we will use the phrase “Enumerate z in Ai” as
an abbreviation of the action “ Enumerate the axiom ⟨⟨i, z⟩, A{s}⟩ in the operator
V {s+1}”.

The discussion above shows that the effect of the abbreviated action is exactly
its abbreviation, provided that the stage s is good.

Furthermore for every i we have that
⊕

j ̸=i Aj = Ui(A), where Ui = {⟨⟨j, x⟩, D⟩ | j ̸=
i ∧ ⟨⟨j, x⟩, D⟩ ∈ V }. It follows that for every s

⊕
j ̸=i A

{s}
j = U

{s}
i (A{s}), where

U
{s}
i = {⟨⟨j, x⟩, D⟩ | j ̸= i∧⟨⟨j, x⟩, D⟩ ∈ V {s}} and hence by Lemma 3.1 {

⊕
j ̸=i A

{s}
j }s<ω

is as well a correct with respect to A approximation to
⊕

j ̸=i Aj .

Finally we note that for every i by Lemma 3.2 we get that {B{s}⊕
⊕

j ̸=i A
{s}
j }s<ω

is a correct with respect to A approximation to B ⊕
⊕

j ̸=i Aj . For every e by

Lemma 3.1 it follows that {W {s}
e (B{s} ⊕

⊕
j ̸=i A

{s}
j )}s<ω is a correct with respect

to A approximation to We(B ⊕
⊕

j ̸=i Aj).
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Construction. The construction is in stages. Let V {0} = ∅. At stage s ≥ 0 we
construct V {s+1} from its value constructed at the previous stage, V {s}, by allowing
certain requirements to enumerate new axioms.

We consider all requirements Rk, where k < s and for each in order of priority
we make the following actions:

Let Rk = Pe,i. Define l
{s}
k = l(W

{s}
e (B{s} ⊕

⊕
j ̸=i A

{s}
j ), A

{s}
i , s). For every

x < l
{s}
k :

• If x ∈ A{s} but ⟨k, x⟩ /∈ A
{s}
i then enumerate ⟨k, x⟩ in Ai.

• If x /∈ W
{s}
e (B{s} ⊕

⊕
j ̸=i A

{s}
j ) and there is a finite set L = LB ⊕

⊕
j ̸=i Lj

such that ⟨x, L⟩ ∈ W
{s}
e , LB ⊆ B{s} and for every j ̸= i we have L

[≤k]
j ⊆

A
{s}
j then for every j ̸= i and every y ∈ L

[>k]
j enumerate y in Aj .

This completes the construction.

Lemma 3.4. For every k < ω:

(1) Rk is satisfied.
(2) The actions for Rk enumerate finitely many axioms in V at good stages of

the construction.

Proof. We will prove both statements of the lemma simultaneously by induction.
Assume that both statements of the lemma are true for j < k and consider Rk =
Pe,i. Towards a contradiction assume that We(B⊕

⊕
j ̸=i Aj) = Ai. As established

we are dealing with correct with respect to A approximations to We(B⊕
⊕

j ̸=i Aj)

and Ai, so by Lemma 3.3 we have that lims∈GA
l
{s}
k = ∞. We will prove that in

this case A ≤e Ai and We(B ⊕
⊕

j ̸=i Aj) ≤e B. This would yield a contradiction

as A ≤e Ai = We(B ⊕
⊕

j ̸=n Vj(A)) ≤e B and by assumption A �e B.

Claim 3.4.1. A ≤e Ai

Proof. We will prove that A =∗ Ai[k]. The only requirements other than Rk

that can enumerate elements ⟨k, x⟩ in Ai, i.e. enumerate axioms of the form
⟨⟨i, ⟨k, x⟩⟩, A{s}⟩ in V {s+1} at good stages s ∈ GA are Rj where j < k. By the
induction hypothesis each such requirement enumerates only finitely many axioms
in V at good stages s ∈ GA. Hence the set F of elements ⟨k, x⟩ ∈ Ai, which were
not enumerated in Ai by Rk is a finite.

Fix x ∈ A. There is a stage s ∈ GA such that x < l
{s}
k and x ∈ A{s}. If ⟨k, x⟩ ∈

A
{s}
i then ⟨k, x⟩ ∈ Ai by property C1 of the correct approximation {A{s}

i }s<ω. If

⟨k, x⟩ /∈ A
{s}
i then the actions of Rk at stage s would enumerate ⟨k, x⟩ in Ai, i.e.

would enumerate the axiom ⟨⟨i, ⟨k, x⟩⟩, A{s}⟩ in V {s+1} and as A{s} ⊆ A we will
have that ⟨i, ⟨k, x⟩⟩ ∈ V (A), hence ⟨k, x⟩ ∈ V (A)[i] = Ai. Thus A ⊆ Ai[k].

For the converse side fix x such that ⟨k, x⟩ ∈ Ai \ F . It follows that ⟨k, x⟩ is
enumerated in Ai by Rk at a good stage s. By construction this is possible only if
x ∈ A{s} ⊆ A. Thus (Ai \ F )[k] ⊆ A which proves the claim.

�
Claim 3.4.2. We(B ⊕

⊕
j ̸=i Aj) ≤e B.

Proof. We will prove that there is a finite set F such that We(B ⊕
⊕

j ̸=i Aj) =

We(B ⊕ (F ∪
⊕

j ̸=i N[>k])). As F ∪
⊕

j ̸=i N[>k] is a computable set it follows that

We(B ⊕ (F ∪
⊕

j ̸=i N[>k])) ≤e B.
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Let F =
⊕

j ̸=i A
[≤k]
j . If ⟨j, x⟩ ∈ F then j ̸= i, x ∈ A

[≤k]
j and x was enumerated

in Aj at a good stage t ∈ GA. The only requirements that may enumerate elements

y ∈ N[≤k] in Aj are Rl where l < k. Indeed Rk enumerates in Aj only axioms for

elements y ∈ N[>k] and every lower priority requirement Rm, m > k enumerates in
Aj only elements y ∈ N[≥m]. By the induction hypothesis F is finite.

Note that
⊕

j ̸=i Aj =
⊕

j ̸=i A
[≤k]
j ∪

⊕
j ̸=i A

[>k]
j . Thus B ⊕

⊕
j ̸=i Aj ⊆ B ⊕

(F ∪
⊕

j ̸=i N[>k]). Hence by the monotonicity of the enumeration operators we

get automatically the first inclusion, namely We(B ⊕
⊕

j ̸=i Aj) ⊆ We(B ⊕ (F ∪⊕
j ̸=i N[>k])).

Let x ∈ We(B ⊕ (F ∪
⊕

j ̸=i N[>k])). Then there is an axiom ⟨x,M⟩ ∈ We such

that M = MB ⊕
⊕

j ̸=n Mj , MB ⊆ B and for every j, M
[≤k]
j ⊆ F . Consider a stage

s ∈ GA such that:

• s > k;

• ⟨x,M⟩ ∈ W
{s}
e ;

• B � maxMB + 1 ⊆ B{s};

•
⊕

j ̸=i Aj � maxF + 1 ⊆
⊕

j ̸=i A
{s}
j (the choice of s is possible by property

C2 of the correct approximation {
⊕

j ̸=i A
{s}
j }s<ω);

• x < l
{s}
k .

Now consider the actions of Rk at stage s. If x ∈ W
{s}
e (B{s} ⊕

⊕
j ̸=i A

{s}
j )

then x ∈ We(B ⊕
⊕

j ̸=i Aj) because s ∈ GA and by property C1 of the correct

approximation {W {s}
e (B{s} ⊕

⊕
j ̸=i A

{s}
j )}s<ω.

If x /∈ W
{s}
e (B{s} ⊕

⊕
j ̸=i A

{s}
j ) then there is an axiom ⟨x, L⟩ in W

{s}
e such that

L = LB ⊕
⊕

j ̸=i Lj , LB ⊆ B{s} and for every j we have L
[≤k]
j ⊆ A

{s}
j , namely

⟨x,M⟩. The actions of Rk will select such an axiom, say ⟨x, L⟩ and will enumerate

in Aj every y ∈ L
[>k]
j , making the axiom ⟨x, L⟩ valid. Ultimately we get that

x ∈ We(B ⊕
⊕

j ̸=i Aj) and establish the second inclusion. �

The assumption that We(B⊕
⊕

j ̸=i Aj) = Ai leads to a contradiction and hence
is wrong. This establishes the first statement of the lemma. From this and by
Lemma 3.3 it follows that there is a natural number l a such that for all s, s ∈ GA

we have l
{s}
k ≤ l.

Suppose Rk enumerates in V {s+1} an axiom for an element z at a good stage s.
If this action is performed under the first point in the construction, then z =

⟨i, k, x⟩, where x < l. Furthermore as the stage is good ⟨k, x⟩ ∈ Ai. By property C2

of the correct approximation to Ai there will be a stage s1 such that ⟨k, x⟩ ∈ A
{t}
i

at all good stages t > s1, and Rk will not enumerate any more axioms for z in
V . There are finitely many possible choices for z, hence finitely many axioms are
enumerated in V at good stages s ∈ GA under the first point of the construction.

If the axiom is enumerated under the second point of the construction then this

is on account of some x < l such that x /∈ W
{s}
e (B{s}⊕

⊕
j ̸=i A

{s}
j ), for which there

is an appropriate axiom. The actions of Rk then enumerate finitely many axioms in

the operator V {s+1}, enumerating the element x in W
{s}
e (B{s} ⊕

⊕
j ̸=i A

{s+1}
j ) ⊆

We(B⊕
⊕

j ̸=i Aj). By the properties of a correct approximation there is a stage s1
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such that at all good stages t > s1 we have that x ∈ W
{t}
e (B{t} ⊕

⊕
j ̸=i A

{t}
j ) and

no further axioms will be enumerated in V an account of x.
Thus altogether Rk enumerates finitely many axioms in V at good stages of the

approximation A.
�

4. Embedding results in the ω-enumeration degrees

4.1. Preliminaries. Soskov [25] introduces a reducibility, ≤ω, between sequences
of sets of natural numbers. The original definition involves the so called jump set
of a sequence and can be found in [25]. We use an equivalent definition in terms of
operators which is more approachable, as it resembles the definition of e-reducibility.
Before we define ω-reducibility we will need to introduce two more notations. Let
S denote the class of all sequences of sets of natural numbers of length ω. With
every member A ∈ S we connect a jump sequence P (A).

Definition 4.1. Let A = {An}n<ω ∈ S. The jump sequence of the sequence A,
denoted by P (A) is the sequence {Pn(A)}n<ω defined inductively as follows:

• P0(A) = A0.
• Pn+1(A) = An+1 ⊕ P ′

n(A), where P ′
n(A) denotes the enumeration jump of

the set Pn(A).

The jump sequence P (A) transforms a sequence A into a monotone sequence of
sets of natural numbers with respect to ≤e. Every member of the jump sequence
contains full information on previous members.

Next we extend the notion of an e-operator so that it can be applied to members
of S.

Definition 4.2. Let A = {An}n<ω be a sequence of sets natural numbers and
V be an e-operator. The result of applying the enumeration operator V to the
sequence A, denoted by V (A), is the sequence {V [n](An)}n<ω. We say that V (A)
is enumeration reducible (≤e) to the sequence A.

Intuitively enumeration reducibility extended to S combines two notions. The
first one is enumeration reducibility between members of the sequence: the n-th
member of the sequence V (A) is enumeration reducible to the n-th member of A
via an enumeration operator Vn. The second notion is uniformity: the sequence of
enumeration operators {Vn}n<ω is uniform.

The motivation behind the definition of ω-reducibility is an attempt to capture
the information content of a set of natural numbers together with all of its enu-
meration jumps. It turns out that e-reducibility between sequences of sets is too
strong for this purpose.

Definition 4.3. Let A,B ∈ S. We shall say that B is ω-enumeration reducible to
A, denoted by B ≤ω A, if B ≤e P (A).

Clearly “≤ω” is a reflexive and transitive relation and defines a preorder on S.
The degree structure obtained from≤ω by the standard method described in Section
2 is the structure of the ω-enumeration degrees, Dω = ⟨{dω(A) | A ∈ S},≤ω⟩. This
is a partial ordering with least element 0ω the degree of the sequence ∅ω, where
all members of the sequence ∅ω are equal to ∅ or equivalently the degree of the
sequence {∅n}n<ω.
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Given two sequencesA = {An}n<ω and B = {Bn}n<ω letA⊕B = {An⊕Bn}n<ω.
Is it easy to see that dω(A⊕ B) is the least upper bound of dω(A) and dω(B) and
hence Dω is an upper semi-lattice. The operation ⊕ can be extended as in Definition
3.2 to any computable class of sequences of sets as follows.

Definition 4.4. Let C be a computable set and {Ai}i∈C be a class of sequences of
set, where for every i ∈ C, Ai = {Ai,n}n<ω. Then⊕

i∈C

Ai = {
⊕
i∈C

Ai,n}n<ω.

Finally we define a jump operation: for every sequence A, let dω(A)′ = dω(A′),
where A′ = {Pn+1(A)}n<ω.

The structure of the ω-enumeration degrees as an upper semilattice with jump
operation, ⟨Dω,≤ω,∨,′ ⟩, can be seen as an extension of the structure of the enu-
meration degrees ⟨De,≤e,∨,′ ⟩. Let A be any set of natural numbers and let
A = {An}n<ω be the sequence defined by A0 = A and An+1 = ∅. Then define

κ(de(A)) = A.

The embedding κ preserves the order, the least upper bound and the jump op-
eration. The images of the enumeration degrees under the embedding κ forms a
substructure of the ω-enumeration degrees, which we will denote by D1. In [26]
Soskov and Ganchev prove that the structure D1 is first order definable in Dω.

The jump operation gives rise to the local structure of the ω-enumeration degrees
Gω, consisting of all ω-enumeration degrees below the first jump of the least degree.
We will call these degrees Σ0

2 ω-enumeration degrees. It is not difficult to check
that every degree a ≤ 0′

ω contains a member A = {An}n<ω, such that for every n
the set An is Σ0

2(∅n). This structure is itself an extension of the local structure of
the Σ0

2 enumeration degrees, G.
In [25] Soskov proves that Gω is a dense structure and that its elements admit

a generalized notion of a good approximation, which we will use in the proof of
Theorem 3.2.

Definition 4.5. Let {A{s}
n }n,s<ω be a uniformly computable matrix of finite sets.

We say that {A{s}
n }s<ω is a good approximation to the sequence A = {An}n<ω if:

GS0: (∀s)(∀k)[A{s}
k ⊆ Ak ⇒ (∀m ≤ k)[A

{s}
m ⊆ Am]];

GS1: (∀n)(∀k)(∃s)(∀m ≤ k)[ Am � n ⊆ A
{s}
m ⊆ Am ] and

GS2: (∀n)(∀k)(∃s)(∀t > s)[A
{t}
k ⊆ Ak ⇒ (∀m ≤ k)[Am � n ⊆ A

{t}
m ]].

Stages s at which A
{s}
k ⊆ Ak are called k-good stages.

This definition essentially says that we have a good approximation to every
set in the given sequences, which are coordinated in a certain way, namely it is
straightforward to check that the following holds:

Propostion 4.1. Let A = {A{s}
i }i,s<ω be a uniformly computable matrix of finite

sets and for every i denote by Ai = {A{s}
i }s<ω. Then A is a good approximation to

the sequence A = {An}n<ω if and only if:

(1) For every i the sequence Ai is a good approximation to the set Ai.
(2) For every i < j we have that Ai is a correct approximation to Ai with

respect to the approximation Aj
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We have the corresponding notion of a correct approximation to a sequence with
respect to a given good approximation:

Definition 4.6. Let A = {Ai}i<ω and B = {Bi}i<ω be sequences of sets of natural

numbers and let A = {A{s}
i }i,s<ω be a good approximation to A. A uniform matrix

{B{s}
i }i,s<ω of finite sets is a correct (with respect to A) approximation to B if the

following two conditions hold:

CS1: (∀s, k)[A{s}
k ⊆ Ak ⇒ (∀m ≤ k)B

{s}
m ⊆ Bm] and

CS2: (∀n, k)(∃s)(∀t > s)[A
{s}
k ⊆ Ak ⇒ (∀m ≤ k)[Bm � n ⊆ B

{t}
m ]] .

Here as well we can restate this definition in a more approachable form:

Propostion 4.2. Let A = {An}n<ω and B = {Bn}n<ω be two sequences of sets

of natural numbers. Let A = {A{s}
n }n,s<ω be a good approximation to A and let

B = {Bn,s}n,s<ω be a uniform matrix of finite sets. Then B is correct with respect

to A if and only if for every n the sequence Bn = {B{s}
n }s<ω is correct with respect

to the good approximation An = {A{s}
n }s<ω.

The proof of this fact is also straightforward, but rather technical and we omit
it. We can use it to transfer certain properties of the good approximations of sets
to the setting of sequences of sets as follows.

Lemma 4.1. Let A = {A{s}
n }n,s<ω be a good approximation to the sequence A =

{An}n<ω. Let {Γ{s}}s<ω be a Σ0
1-approximation to the enumeration operator Γ and

let B = {B{s}
n }n,s<ω be a correct with respect to A approximation to the sequence

B = {Bn}n<ω. Then {Γ[n]{s}(B{s}
n )}n,s<ω is a correct approximation to Γ(B) with

respect to A.

Proof. This follows immediately from Lemma 3.1 using the equivalent notion of
a correct approximation given in Proposition 4.2. Namely by Lemma 3.1 have

that that for every n {Γ[n]{s}(B{s}
n )}s<ω is a correct approximation with respect

to {A{s}
n }s<ω to the set Γ[n](Bn) which in turn gives us by Proposition 4.2 that

{Γ[n]{s}(B{s}
n )}n,s<ω is a correct approximation to {Γ[n](Bn)}n<ω = Γ(B) with

respect to A.
�

Lemma 4.2. Let A = {A{s}
n }n,s<ω be a good approximation to the sequence A =

{An}n<ω. Let B = {B{s}
n }n,s<ω and C = {C{s}

n }n,s<ω be correct with respect to
A approximations to the sequences B = {Bn}n<ω and C = {Cn}n<ω respectively.

Then {B{s}
n ⊕ C

{s}
n }n,s<ω is a correct approximation to B ⊕ C with respect to A.

Proof. Follows immediately from Lemma 3.2 using the equivalent notion of a correct
approximation given in Proposition 4.2. �

We can also transfer the notion of a length of agreement function to the setting
of sequences of sets.

Definition 4.7. Let A = {An}n<ω and B = {Bn}n<ω be two sequences of sets
of natural numbers. We define the length of agreement function at stage s as
l(A,B, s) = max{⟨n, x⟩ < s | (∀m ≤ n)(∀y ≤ x)(Am(y) = Bm(y))}.
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Lemma 4.3. Let A be a good approximation to the sequence A and let B =

{B{s}
n }s,n<ω and C = {C{s}

n }n,s<ω be two correct with respect to A approximations
the sequences B and C.

Let Gk
A denote the set of k-good stages in the approximation A and let l{s} =

l(B{s}, C{s}, s), where B{s} = {B{s}
n }s<ω and C{s} = {C{s}

n }s<ω. Then

(1) For every k if l{s} grows unboundedly at k-good stages s ∈ Gk
A then Bk =

Ck.
(2) If l{s} grows unboundedly at k-good stages s of the approximation for every

k then B = C.
(3) If B = C then lims∈Gk

A
l{s} = ∞ for every k < ω.

Proof. Part (1) follows from Lemma 3.3, as for every k and every x if ⟨k, x⟩ ≤
l(B{s}, C{s}, s) then x ≤ l(B

{s}
k , C

{s}
k , s) and on the other hand {B{s}

k }s<ω and

{C{s}
k }s<ω are both correct with respect to the good approximation {A{s}

k }s<ω.

Hence if l{s} grows unboundedly at k-good stages s ∈ Gk
A then l(C

{s}
k , B

{s}
k , s) also

grows unboundedly at good stages s ∈ GAk
of the good approximation {A{s}

k }s<ω

and hence Ck = Bk.
If (1) is true for every k < ω then by the first part of the proposition we have

that for every k, Ck = Bk and hence B = C, proving part (2).
Now suppose that B = C. Fix k and a natural number N = ⟨n, x⟩. Let M =

max(k, n). By properties CS1 and CS2 there exists a stage sB such that at all M -

good stages t > sB we have that for all m ≤ M , Bm � x+1 ⊂ B
{s}
m ⊆ Bm. Similarly

there is a stage sC such that at allM -good stages t > sC we have that for allm ≤ M ,

Cm � x+1 ⊂ C
{s}
m ⊆ Cm. Then at everyM -good stage t > max(sB , sC) we will have

that for every m ≤ M that B
{t}
m � x+ 1 = Bm � x+ 1 = Cm � x+ 1 = C

{t}
m � x+ 1

and hence l{t} ≥ N . Then as every M -good stage is a k-good stage we will have
that lims∈Gk

A
l{s} > N . The numbers N and k are arbitrary, we can conclude that

lims∈Gk
A
l{s} = ∞ for every k. �

Note! If B ≠ C then there will be a number k such that l{s} is bounded at k-
good stages s ∈ Gk

A. In fact the length of agreement will be bounded at all m-good
stages for m ≥ k as every m-good stage is also k-good. But it is still possible that
for some n < k the length of agreement is not bounded as there are “more” n-good
stages than k-good stages. However it will then follow that Cn = Bn.

4.2. Proof of Theorem 1.3. Let b <ω a ≤ω 0′
ω be two given ω-enumeration

degrees. In [25] it is shown that every ω-enumeration degree a ≤ω 0′
ω contains a

member A, such that A ≡e P (A) and such that A has a good approximation. Let

A = {An}n<ω be such a member of the given degree a and let A = {A{s}
n }s<ω be

a good approximation to A. Now we turn to b. Select a member B = {Bn}n<ω of
the ω-enumeration degree b, such that B ≡e P (B). There is an e-operator Γ such

that B = Γ(A) and hence {B{s}
n }s,n<ω, where B

{s}
n = Γ[n]{s}(A

{s}
n ) is a correct

approximation to B with respect to A by Proposition 4.1.
The method described in Section 2 can be applied in the context of ω-enumeration

degrees as well. The operation
⊕

has the required properties: let {Ai}i<ω be a
sequence of sequences of sets of natural numbers. For every i and computable
set C, with i ∈ C, we have even that Ai ≤e

⊕
j∈C Aj via the operator V =
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{⟨n, x, {⟨n, i, x⟩}⟩| n, x < ω}. If C1 ⊆ C2 are computable sets then
⊕

i∈C1
Ai ≤e⊕

i∈C2
Ai via the operator U = {⟨n, i, x, {⟨n, i, x⟩}⟩| n, x < ω ∧ i ∈ C1}. Hence

the embeddability of every countable partial ordering in the interval [b,a] can be
reduced to the existence of an ω-independent sequence {Ci}i<ω, such that for every
i B ≤ω Ci ≤ω A uniformly in i.

Definition 4.8. A sequence of sequences of sets {Ci}i<ω is called ω-independent if
for every i

Ci �ω

⊕
j ̸=i

Cj .

4.2.1. Easy case. First we will examine the relationship between A and B. We
know that B ≤ω A and hence for every k, as Ak ≡e Pk(A), we have that Bk ≤e Ak.
Suppose that there is some k such that Bk <e Ak. By Proposition 4.1 we have

that {A{s}
k }s<ω is a good approximation to Ak hence we may apply Theorem 1.2

to obtain an e-independent sequence {Ci}i<ω such that for every i we have that
Bk <e Ci <e Ak uniformly in i. Now consider the sequences Ci = {Ci,n}n<ω, where
Ci,n = Bn for n ̸= k and Ci,k = Ci.

It is easy to see that for every i we have B ≤ω Ci ≤ω A. Indeed, B = V (Ci), where
V is the enumeration operator such that V [n] for n ̸= k is the identity operator and
V [k] is the enumeration operator witnessing Bk <e Ci. For the second inequality
we modify the operator Γ, for which B = Γ(A) by setting set V [n] = Γ[n] for n ̸= k
and V [k] to be the operator witnessing Ci <e Ak. Then Ci = V (A).

We observe that the sequence {Ci}i<ω is ω-independent as follows: fix i. First
note that

⊕
j ̸=i Cj ≡e Fi, where Fi,n = Bn for n ̸= k and Fi,k =

⊕
i ̸=j Cj . This

follows from the fact that every set B is uniformly e-reducible to
⊕

R B, for any
computable set R. If we assume that Ci ≤ω

⊕
j ̸=i Cj then Ci ≤ω Fi and in particular

Ci ≤e Pk(Fi). Now Pk(Fi) = Pk−1(Fi)
′⊕Fi,k = Pk−1(B)′⊕

⊕
i ̸=j Cj . By the choice

of B as e-equivalent to its jump sequence we have that Pk−1(B)′ ≤e Bk ≤e

⊕
i ̸=j Cj

and hence Ci ≤e Pk(Fi) ≤e

⊕
i̸=j Cj , contradicting the e-independence of the

family {Ci}i<ω.
Now we can easily deduce that for every i we have strong inequalities: B <ω

Ci <ω A. Ci ≤ω B leads to Ci ≤ω Cj for every j and hence Ci ≤ω

⊕
i ̸=j Cj ,

contradicting the just proved ω-independence. On the other hand A ≤ω Ci yields
for any j ̸= i the inequality Cj ≤ω Ci ≤ω

⊕
l ̸=j Cl, again contradicting the ω-

independence.

4.2.2. Complicated case. The more technically complex case is when for every k we
have that Ak ≡e Bk. In this case we will not be able to deduce the statement of
Theorem 1.3 from the structural properties of the enumeration degrees, as we did
in the previous case. We will have to give a direct construction.

We will construct an operator V and define Ai = {V [n](An)[i]}n<ω. The con-
structed operator will satisfy the following list of requirements:

Pi,e : We(P (B ⊕
⊕
j ̸=i

Aj)) ̸= Ai,

for every pair of natural numbers i, e.
Then by setting Ci = Ai⊕B we will obtain the required ω-independent sequence

of sequences. Indeed for every i we have that Ai ≤ω A and B ≤ω A, hence
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B ≤ω Ai ⊕ B = Ci ≤ω A. On the other hand if we assume that Ci ≤ω ⊕i ̸=jCj ,
then Ai ≤ω Ci ≤ω

⊕
i ̸=j(Aj ⊕ B) ≡ω B ⊕

⊕
i ̸=j Aj , hence there is some operator

We such that Ai = We(P (B⊕
⊕

j ̸=i Aj)), contradicting the requirement Pi,e. This

establishes the ω-independence of {Ci}i<ω, which as in the previous section yields
the strong inequalities B <ω Ci <ω A.

Approximations and conventions
We start with a convention, which will simplify notation in the construction. At

any given stage s, whenever we enumerate an axiom in the constructed operator
V =

⊕
n<ω V [n], the axiom has a fixed structure. Thus we will use the following

convention:

Convention 1: If at stage s we wish to enumerate an axiom in the operator

V [n]{s+1} for some number z, then the axiom we enumerate in V {s+1} is ⟨n, z,A{s}
n ⟩.

Now we turn to the issue of finding correct approximations to the various sets
involved in the construction.

To find a correct approximation to Ai = {(V [n](An))[i]}n<ω we observe the
following. Consider the operator Vi = {⟨n, x,D⟩|⟨n, i, x,D⟩ ∈ V }. It is straight-
forward to check that Ai = Vi(A). During the construction we define a Σ1-
approximation {V {s}}s<ω to the c.e. set V . Denote by

V
{s}
i = {⟨n, x,D⟩ | ⟨n, i, x,D⟩ ∈ V {s}},

then {V {s}
i } is a Σ0

1 approximation to Vi and by Lemma 4.1 we have that

{A{s}
i,n = Vi[n]

{s}(A{s}
n )}s,n<ω

is a correct with respect to A approximation to the sequence Ai.
This allows us to introduce one further convention that will simplify the notation

in the construction. Say at stage s we want to enumerate an axiom for x in A{s+1}
i,n .

By the discussion above this can be achieved by enumerating an axiom for ⟨n, i, x⟩
in V {s+1}. Thus we will have the following:

Convention 2: In the construction the action “ Enumerate the element z in
Ai,n” performed at stage s will be an abbreviation for the action “ Enumerate

an axiom for the element ⟨i, x⟩ in V
{s+1}
n ” and by Convention 1 this translates to

“Enumerate the axiom ⟨n, i, x,A{s}
n ⟩ in V {s+1}”.

The second type of sequence that we will need to approximate correctly is P (B⊕⊕
i ̸=j Aj). We will do this in three steps. First for every i consider the operator

Ui = {⟨n, j, , x⟩| i ̸= j ∧ ⟨n, j, x⟩ ∈ V }. Again it is straightforward to check that⊕
j ̸=i Aj = Ui(A). On the other hand note that there is a connection between the

operator Ui and the operators Vj , for j ̸= i, namely Ui(A) =
⊕

j ̸=i Vj(A). This
allows us to define a correct with respect to A approximation

{Ui[n]
{s}(A{s}

n ) =
⊕
i ̸=j

A{s}
j,n }n,s<ω

to the sequence
⊕

i ̸=j Aj .

Secondly we note that {B{s}
n ⊕

⊕
i ̸=j A

{s}
j,n }s,n<ω is a correct approximation to

B ⊕
⊕

i̸=j Aj by Lemma 4.2.
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The final step is a bit more difficult. The technique we use is introduced in the
proof of the Density theorem for the local ω-enumeration degrees and can be found
in [25]. By the Recursion theorem we may assume that we know in advance the
index of the constructed c.e. set V . Recall that the monotonicity of the enumeration
jump is effective, i.e. there is a computable function ρ such that if A = We(B) then
A′ = Wρ(e)(B

′).
We obtain a correct with respect to A approximation to P (B⊕Ui(A)) as follows:

• P0(B⊕Ui(A)) = B0⊕Ui[0](A0) we approximate via the correct with respect

to A0 approximation {B{s}
0 ⊕ Ui[0]

{s}(A
{s}
0 )}s<ω. Using the index of the

operator V , from which we immediately obtain an index of the operator
Ui[0] we can effectively obtain an index of an operator Wai,0 such that
P0(B ⊕ Ui(A)) = Wai,0(A0).

• Suppose we have constructed the correct with respect to An approximation
to Pn(B ⊕ Ui(A)) and we have effectively obtained an index ai,n of an
operator which reduces Pn(B ⊕ Ui(A)) to An.

Pn+1(B ⊕ Ui(A)) = Pn(B ⊕ Ui(A))′ ⊕ Bn+1 ⊕ Ui[n + 1](An+1). We
use the effective monotonicity of the jump to get Wρ(ai,n)(A

′
n) = Pn(B ⊕

Ui(A))′. Now using the fact that A ≡e P (A) we can effectively obtain an
index µ(i, ai,n) such that Wµ(i,ai,n)(An+1) = Pn(B ⊕ Ui(A))′. From this
we immediately get effectively an index ai,n+1 such that Wai,n+1

(An+1) =
Pn+1(B ⊕ Ui(A)) and a correct with respect to An+1 approximation to
Pn+1(B ⊕ Ui(A)) namely

{W {s}
µ(i,ai,n)

(A
{s}
n+1)⊕B

{s}
n+1 ⊕ Ui[n+ 1]{s}(A

{s}
n+1)}s<ω.

By Proposition 4.2 this inductive procedure defines a correct with respect to A
approximation to P (B ⊕ Ui(A)).

LetQi be the sequence defined by Qi,0 = B0 and Qi,n+1 = Pn(B⊕Ui(A))′⊕Bn+1

for every n > 0. It follows that P (B ⊕ Ui(A)) = Qi ⊕ Ui(A) and that we have
a correct with respect to A approximation to this sequence as well, defined by

Q
{s}
i,0 = B

{s}
0 and for n > 0 let Q

{s}
i,n = W

{s}
µ(i,ai,n−1)

(A
{s}
n ) ⊕ B

{s}
n . For every i we

have that {Q{s}
i,n ⊕ Ui[n]

{s}(A
{s}
n )}n,s<ω or equivalently

{Q{s}
i,n ⊕

⊕
j ̸=i

A
{s}
j,n )}n,s<ω

is a correct with respect to A approximation to P (B ⊕
⊕

i ̸=j Aj).

Construction. Fix a computable priority ordering R0 < R1 . . . of all require-
ments Pe,i. The construction proceeds in stages. Let V {0} = ∅. At stage s ≥ 0 we

construct V {s+1} from it value at the previous stage. We examine all requirements
Rk with k < s and perform the following actions for each in order of priority.

SupposeRk = Pi,e. We define l
{s}
k = l(W

{s}
e ({Q{s}

i,n ⊕
⊕

j ̸=i A
{s}
j,n }n<ω), {A{s}

i,n }n<ω).

For every ⟨n, x⟩ < l
{s}
k :

• If x ∈ A
{s}
n and ⟨k, x⟩ /∈ A

{s}
i,n then enumerate ⟨k, x⟩ in Ai,n. (Recall Con-

vention 2.)
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• If x /∈ We[n]
{s}(Q

{s}
i,n ⊕

⊕
j ̸=i A

{s}
j,n ) and there is a finite set L = Lq⊕

⊕
j ̸=i Lj

such that ⟨x, L⟩ ∈ We[n]
{s}, Lq ⊆ Q

{s}
i,n and for every j we have L

[≤k]
j ⊆ A

{s}
j,n

then for every j ̸= i and every y ∈ L
[>k]
j enumerate y in Aj,n.

This completes the construction.

Lemma 4.4. Fore every k < ω:

(1) The requirement Rk is satisfied.
(2) There exists a number rk such that for all n ≥ rk the actions for Rk do not

enumerate any axioms in V [n] at n-good stages of the approximation A.

Proof. We prove both statements of the lemma simultaneously by induction. As-
sume that they are true for every m < k and let Rk = Pi,e for some e, i ∈ N. By
the induction hypothesis for every m < k there is a number rm such that for all
n ≥ rm the strategy for Rm does not enumerate any axioms in V [n] at n-good
stages of the approximation.

First we will prove that if there is a natural number r ≥ maxm<k{rm} such that
the length of agreement:

l
{s}
k = l(W {s}

e ({Q{s}
i,n ⊕

⊕
j ̸=i

A
{s}
j,n }n<ω), {A{s}

i,n })

is bounded by some number L at all r-good stages s then the two conditions of the
lemma for Rk are true. Indeed let r be such a number and suppose that the length

of agreement l
{s}
k is bounded by L. Using the fact that {Q{s}

i,n ⊕
⊕

j ̸=i A
{s}
j,n }s,n<ω

is a correct with respect to A approximation to P (B ⊕
⊕

j ̸=i Aj) and Lemma 4.1

we get that {We[n]
{s}(Q

{s}
i,n ⊕

⊕
j ̸=i A

{s}
j,n )}s,n<ω is a correct approximation with

respect to A to We(P (B⊕
⊕

j ̸=i Aj)). As {A{s}
i,n }s,n<ω is also a correct with respect

to A approximation to Ai we can apply Lemma 4.3 and prove the first statement,
namely that Ai ̸= We(P (B⊕

⊕
j ̸=i Aj)) and hence the requirement Rk is satisfied.

The requirement Rk enumerates axioms in V [n] at stage s only if there is an

element ⟨n, x⟩ < l
{s}
k with certain properties listed in the two cases of the construc-

tion. As the length of agreement is bounded by L at r-good stages and for every
n ≥ r if a stage is n-good then it is r-good, there are only finitely many numbers n
such that for some x ⟨n, x⟩ < L. Let rk be such that L < ⟨rk, x⟩ for every x < ω.
Such a number rk exists by the properties of the pairing function ⟨−,−⟩. Then Rk

will not enumerate any axioms in Vn for n ≥ rk at any n-good stage.
Thus the only thing that remains to be shown is that the length of agreement is

indeed bounded at all r-good stages for some natural number r. Towards a contra-
diction assume that this is not the case, i.e. for every r the length of agreement is un-
bounded at r-good stages. By Lemma 4.3 it follows thatAi = We(P (B⊕

⊕
j ̸=i Aj)).

Fix r = maxm<k{rm}. First we observe the following:

Claim 4.4.1. For every n > r, An ≤e Ai,n uniformly in n.

Proof. Fix n > r. We will show that An = {x | ⟨k, x⟩ ∈ Ai,n}.
Let x ∈ An. Let s be an n-good stage such that ⟨n, x⟩ < l

{s}
k . Then by construc-

tion at stage s either ⟨k, n⟩ ∈ A
{s}
i,n and hence there is an axiom ⟨n, i, ⟨k, x⟩, D⟩ ∈
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V {s} such that D ⊆ A
{s}
n ⊆ An or the strategy enumerates ⟨k, x⟩ in Ai,n, i.e. enu-

merates the axiom ⟨n, i, ⟨k, x⟩, A{s}
n ⟩ in V {s+1}. In both cases this axiom will turn

out valid an ⟨k, x⟩ ∈ Ai,n.
On the other hand suppose ⟨k, x⟩ ∈ Ai,n. As n > r this element was enumerated

in Ai,n through the actions ofRk. Indeed by the choice of r higher priority strategies
Rm, m < k, do not enumerate any axioms in Vn at n-good stages and hence cannot
enumerate an element in Ai,n. Lower priority strategiesRl for l > k only enumerate
axioms for elements z ∈ N≥l in any set Aj,n, j < ω. Hence Rk enumerates an axiom
for the element ⟨k, x⟩ at an n-good stage s. But by construction the strategy must

have seen x ∈ A
{s}
n ⊆ An and hence x ∈ An. �

We will use this to prove that our assumption leads to a contradiction - namely
that A ≤ω B.

Recall that we are proving the case of Theorem 1.3 where for every n we have
that An ≤e Bn, via some operator say Wen . The reason that B <ω A is the lack
of uniformity in the sequence {en}n<ω. We will obtain the desired contradiction
by constructing an algorithm to obtain en+1 from en, . . . e0. More precisely we
construct a computable function λ such that An = Wλ(n)(Bn).

For n ≤ r set λ(n) = en. Suppose we have defined λ(m) for all m ≤ n, where
n ≥ r. Then An+1 = {x | ⟨k, x⟩ ∈ Ai,n+1} by Claim 1. On the other hand
Ai,n+1 = We[n+ 1](Pn+1(B ⊕

⊕
i ̸=j Aj)) by our assumption. Thus we will be able

to effectively obtain the value of λ(n+ 1) if we find an index of an operator which
reduces We[n+ 1](Pn+1(B ⊕

⊕
i̸=j Aj)) to Bn+1.

Recall the algorithm which we used to obtain the correct approximation to P (B⊕⊕
i ̸=j Aj). We defined an effective sequence {ai,n}n<ω such that Pn(B⊕

⊕
i ̸=j Aj) =

Wai,n(An) and the sequence Qi so that P (B ⊕
⊕

i̸=j Aj) = Qi ⊕
⊕

i ̸=j Aj . Using

ai,n, the values of λ(m) for m ≤ n and the effective monotonicity of the jump we
can obtain effectively an index c such that Wc(Bn+1) = Pn(B⊕

⊕
j ̸=i Aj)

′⊕Bn+1 =
Qi,n+1.

Now Pn+1(B ⊕
⊕

i ̸=j Aj)) = Qi,n+1 ⊕
⊕

j ̸=i Aj,n+1 = Wc(Bn+1)⊕
⊕

j ̸=i Aj,n+1.

We will show that We[n+1](Wc(Bn+1)⊕
⊕

j ̸=i Aj,n+1) = We[n+1](Wc(Bn+1)⊕⊕
j ̸=i N>k).

Having this equality and noting that
⊕

j ̸=i N>k is a computable set, it is now

straightforward to obtain the value of λ(n+ 1) so that An+1 = Wλ(n+1)(Bn+1).
We turn to the proof of the last claim in this proof:

Claim 4.4.2. We[n + 1](Wc(Bn+1) ⊕
⊕

j ̸=i Aj,n+1) = We[n + 1](Wc(Bn+1) ⊕⊕
j ̸=i N>k).

Proof. As n+ 1 > r for every j we have that A
[≤k]
j,n+1 = ∅. Hence

Wc(Bn+1)⊕
⊕
j ̸=i

Aj,n+1 ⊆ Wc(Bn+1)⊕
⊕
j ̸=i

N>k

and by the monotonicity of the e-operators we get the first inclusion

We[n+ 1](Wc(Bn+1)⊕
⊕
j ̸=i

Aj,n+1) ⊆ We[n+ 1](Wc(Bn+1)⊕
⊕
j ̸=i

N>k).

Suppose that x ∈ We[n + 1](Wc(Bn+1) ⊕
⊕

j ̸=i N>k). Then there is a valid

axiom ⟨x, L⟩ ∈ We[n + 1] such that L = Lq ⊕
⊕

j ̸=i Lj and Lq ⊆ Wc(Bn+1) and
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for every j, L≤k
j = ∅. As {Q{s}

i,n+1} is a correct approximation to the set Qi,n+1

we know that there will be a stage s such that at all n + 1-good stages t > s,

Lq ⊆ Q
{t}
i,n+1. Let t > s be an n + 1-good stage such that ⟨n + 1, x⟩ < l

{t}
k and

⟨x, L⟩ ∈ We[n+ 1]{t}. Then by construction the strategy Rk will enumerate Lj in
Aj,n+1 for every j ̸= i at stage t and as the stage is n+1-good we can conclude that
L ⊆ Wc(Bn+1)⊕

⊕
j ̸=i Aj,n+1 and hence x ∈ We[n+1](Wc(Bn+1)⊕

⊕
j ̸=i Aj,n+1).

This proves the second inclusion and concludes the proof of the theorem.
�
�

5. Embedding results in the ω-enumeration degrees modulo iterated
jump

5.1. Preliminaries. In this section we will define the relation ≤∞ for the ω-
enumeration degrees, obtain from it the degree structure of Σ0

2 ω-enumeration
degrees modulo iterated jump, Gω/ ∼∞, and discuss certain basic properties of
this structure.

Recall that the jump of an ω-enumeration degree a is defined as the degree of
the sequence A′ = {Pn+1(A)}n<ω, where A is some representative of a. We can
iterate this definition to obtain the n-th jump of a for every natural number n.
Namely we set a0 = a and for every n ≥ 0, a(n+1) = (an)′. This definition gives
rise to the following reducibility relation between ω-enumeration degrees.

Definition 5.1. Let a and b be two Σ0
2 ω-enumeration degrees. Then a ≤∞ b if

and only if there is a natural number n such that an ≤ω bn, where an denotes the
n-th ω-enumeration jump of the degree a.

The relation ≤∞ is reflexive and transitive and induces an equivalence relation
∼∞, where a ∼∞ b if both a ≤∞ b and b ≤∞ a. When we factorize Gω on the
equivalence relation ∼∞ we obtain the degree structure ⟨Gω/ ∼∞,≤⟩ with domain,
the set of all equivalence classes {[a]∼∞ | a ∈ Gω} and the relation ≤ defined by
[a]∼∞ ≤ [b]∼∞ if and only if a ≤∞ b. This is a partial ordering with least element
[0ω]∼∞ and greatest element [0′

ω]∼∞ . The least element [0ω]∼∞ , denoted also
as L, is exactly the union of the classes Ln = {a | an = 0n

ω} of the lown Σ0
2 ω-

enumeration degrees. The greatest element [0′
ω]∼∞ , denoted also as H, is exactly

the union of the classes Hn = {a | an = 0
(n+1)
ω } of the highn Σ0

2 ω-enumeration
degrees. Every intermediate degree in Gω/ ∼∞ is therefore made up of members of
the class I = Gω \ (L∪H), the class of all intermediate Σ0

2 ω-enumeration degrees.
Note that the embedding ι of the Turing degrees into the enumeration degrees,

combined with the embedding κ of the enumeration degrees into the ω-enumeration
degrees, both of which preserve the order and the jump operation, gives an embed-
ding σ of the the structure R/ ∼∞ into the structure Gω/ ∼∞. Hence the structure
Gω/ ∼∞ is nontrivial as it contains elements different from the least degree L and
the greatest degree H, namely σ(I), where I = [i]∼∞ is the iterated Turing jump
degree of any intermediate c.e. Turing degree i .

Some basic relationships between the relation ≤ω and ≤∞ are given in the fol-
lowing proposition.

Propostion 5.1. Let a and b be two Σ0
2 ω-enumeration degrees.

(1) If a ≤ω b then [a]∼∞ ≤ [b]∼∞ .
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(2) If [a]∼∞ ≤ [b]∼∞ then there is a representative c ∈ [a]∼∞ such that c ≤ω b.

Proof. Part (1) follows directly from the definition of the relation ≤∞ and the
monotonicity of the ω-enumeration jump. Part (2) follows from the existence of a

least n-th jump invert for every ω-enumeration degree above 0
(n)
ω , proved in [26].

Let A = {An}n<ω be a representative of a. Consider the sequence I = {Ik}k<ω

defined by Ik = ∅ for k < n and Ik = Pk(A) for k ≥ n. Then the degree of I is
the least ω-enumeration degree whose n-th jump is equal to an and is denoted by
In(a).

Now if [a]∼∞ ≤ [b]∼∞ then there is some natural number n such that an ≤ω bn.
Let c = In(a). Then c ∈ [a]∼∞ and c ≤ω b.

�
To understand the structure Gω/ ∼∞ we will need to introduce a special class

of ω-enumeration degrees related to a given degree b, the almost-b enumeration
degrees. The class of the almost zero ω-enumeration degrees was defined and studied
by Soskov and Ganchev in [26].

Definition 5.2. Let B be a sequence of sets of natural numbers. We shall say that
the sequence A is almost-B if for every n we have that Pn(B) ≡e Pn(A).

If A is almost-B then we shall say that dω(A) is almost-dω(B).
The following proposition summarizes the properties of the almost-b degrees and

their relation to the structure Gω/ ∼∞.

Propostion 5.2. Let b ≤ 0′ω be an ω-enumeration degree.

(1) If a is almost-b and B ∈ b then every A ∈ a is almost-B.
(2) The class of almost-b degrees is closed under least upper bound.
(3) If b ≤ω c ≤ω a and a is almost-b then c is almost-b.
(4) If b ∈ D1 then b is the least almost-b Σ0

2 ω-enumeration degree.
(5) If a and c are almost-b Σ0

2 ω-enumeration degrees then [a]∼∞ ≤ [c]∼∞ if
and only if a ≤ω c.

Proof. (1) Let a be almost-b. Then there are representatives B ∈ b and A ∈ a
such that Pn(B) ≡e Pn(A) for every n < ω. Let A1 ∈ a and B1 ∈ b be two
other representatives. Then for every n we have that Pn(A1) ≡e Pn(A) ≡e

Pn(B) ≡e Pn(B1).
(2) Let a, c be almost-b. Fix A ∈ a, C ∈ c and B ∈ b. Then for every n we

have that Pn(A) ≡e Pn(B) ≡e Pn(C).
It is straightforward to check that for every n we have that Pn(B) ≤e

Pn(C) ≤e Pn(A ⊕ C). We will prove by induction on n that for every
n we have that Pn(A ⊕ C) ≤e Pn(B). For n = 0 we have that P0(A ⊕
C) = A0 ⊕ C0 = P0(A) ⊕ P0(C) ≡e P0(B). Suppose we have proved that
Pn(A⊕ C) ≤e Pn(B). Then by the monotonicity of the enumeration jump
we have that Pn(A⊕C)′ ≤e P

′
n(B) ≤e Pn+1(B). On the other hand An+1⊕

Cn+1 ≤e Pn+1(A) ⊕ Pn+1(C) ≤e Pn+1(B). Combining these together we
get that Pn+1(A⊕ C) = Pn(A⊕ C)′ ⊕ (An+1 ⊕ Cn+1) ≡e Pn+1(B).

(3) Let b ≤ω c ≤ω a be Σ0
2 ω-enumeration degrees and let a be almost-b. Fix

representatives B ∈ b, C ∈ c and A ∈ a. Then for every n we have that
Pn(B) ≤e Pn(C) ≤e Pn(A) ≡e Pn(B).

(4) Let b ∈ D1. There is a representative B = {Bn}n<ω of b, such that for
every n > 0 Bn = ∅. Suppose that a is almost-b and A ∈ a. Then
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B0 = Γ(P0(A)) for some enumeration operator Γ and hence B ≤ω A via
the operator V = {0} × Γ. Thus b ≤ω a.

(5) Let a and c be almost-b degrees. Fix A ∈ a and C ∈ c. Then for every k we
have that Pk(A) = Vk(Pk(C)), for some enumeration operator Vk. Suppose
[a]∼∞ ≤ [c]∼∞ . Then a ≤∞ c, i.e. there is a natural number n such
that an ≤ω cn and hence An = {Pk+n(A)} is uniformly reducible to the
sequence Cn = {Pk+n(C)}. Let V be an operator such that V [k](Pn+k(C)) =
Pn+k(A). NowA ≤ω C can be seen via the operator U , defined by U [k] = Vk

for k < n, and U [n+ k] = V [n+ k] for k ≥ 0. Hence a ≤ω c.
That a ≤ω c yields [a]∼∞ ≤ [c]∼∞ follows from Proposition 5.1.

�

The almost zero Σ0
2 ω-enumeration degrees turn out to have a very important

relationship with the jump classes H and L. Soskov and Ganchev in [26] prove
that the class L consists of exactly those elements of Gω, which do not bound
any nonzero Σ0

2 almost zero degree and that the class H consists of exactly those
elements of Gω that bound every Σ0

2 almost zero ω-enumeration degree. We prove
a slight generalization of the above mentioned characterization of the class L:

Theorem 5.1. Let b <ω a ≤ω 0′
ω be two ω-enumeration degrees. There exists an

almost-b degree z such that b <ω z ≤ω a if and only if b <∞ a.

We will leave the rather technical proof of this property for Section 5.2. We end
this section with two of its corollaries.

Firstly we can finally establish that the structure Gω/ ∼∞ is dense and properly
extends the structure R/ ∼∞ as a partial ordering.

Corollary 5.1. Let [b]∼∞ < [a]∼∞ be two members of Gω/ ∼∞. There exists a
Σ0

2 ω-enumeration degree z such that [b]∼∞ < [z]∼∞ < [a]∼∞ . Furthermore z is an
almost-b degree and [z]∼∞ is not the image of any element in R/ ∼∞ under the
embedding σ.

Proof. Fix [b]∼∞ < [a]∼∞ ∈ Gω/ ∼∞. By Proposition 5.1 without loss of generality
we may assume that b <ω a.

We apply Theorem 5.1 to obtain an almost-b degree x such that b <ω x ≤ω a
and then the density theorem for Gω to obtain z such that b <ω z <ω x ≤ω a. By
Part 3 of Proposition 5.2 the degree z is almost-b. Now, as b, z and x are all almost-
b degrees it follows by Part 5 of Proposition 5.2 that [b]∼∞ < [z]∼∞ < [x]∼∞ . By
Proposition 5.1 we have that [x]∼∞ ≤ [a]∼∞ . Hence by transitivity of the relation
“≤” we have that [b]∼∞ < [z]∼∞ < [x]∼∞ ≤ [a]∼∞ .

That [z]∼∞ is not the image of any element in R/ ∼∞ under the embedding ι can
be seen as follows. Assume towards a contradiction that [z]∼∞ is the image of an
element in R/ ∼∞. Then there is an element c ∈ D1 ∩ [z]∼∞ . Fix representatives
Z ∈ z, B ∈ b and C ∈ c, such that C = {Ck}k<ω and Ck+1 = ∅ for every k < ω. It
is easy to check that for every n Pn(C) ≡e Cn

0 uniformly in n. Now from c ∼∞ z
it follows that there is a natural number n such that cn = zn, hence Cn ≡ω Zn

and in particular Cn
0 ≡e Pn(C) ≡e Pn(Z). On the other hand as z is almost-b

it follows that Cn
0 ≡e Pn(Z) ≡e Pn(B). Now we apply the effectiveness of the

monotonicity of the enumeration jump to prove that for every k < ω we have
that Cn+k

0 ≤e Pn+k(B) uniformly in k and hence cn ≤ω bn. This yields that
[z]∼∞ = [c]∼∞ ≤ [b]∼∞ contradicting the fact that [b]∼∞ < [z]∼∞ .
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�

Secondly we give the proof of Theorem 1.4:
Proof of Theorem 1.4. Let b and a be Σ0

2 ω-enumeration degrees such that
[b]∼∞ < [a]∼∞ . Without loss of generality we may assume that b <ω a. By
Theorem 5.1 there is an almost-b ω-enumeration degree z such that b <ω z ≤ω a.
By Proposition 5.2 the interval [b, z] in Gω, which is entirely made up of almost-
b degrees, and the interval [[b]∼∞ , [z]∼∞ ] in Gω/ ∼∞ are isomorphic as partial
orderings. By Theorem 1.3 every countable partial ordering can be embedded in
the interval [b, z], and hence every countable partial ordering can be embedded in
the interval [[b]∼∞ , [z]∼∞ ] ⊆ [[b]∼∞ , [a]∼∞ ]

5.2. Proof of Theorem 5.1. Let b <ω a <ω 0′
ω be two Σ0

2 enumeration degrees.
It follows from Proposition 5.1 that [b]∼∞ ≤ [a]∼∞ .

Suppose that [b]∼∞ = [a]∼∞ . If we assume that there is an almost-b degree z
such that b <ω z ≤ω a then by Proposition 5.2 it follows that [b]∼∞ < [z]∼∞ ≤
[a]∼∞ , contradicting [b]∼∞ = [a]∼∞ .

Now assume that [b]∼∞ < [a]∼∞ . Let A = {An}n<ω be a representative of a,

such that P (A) ≡e A and such that A has a good approximation, A = {A{s}
n }n,s<ω.

Fix a representative B = {Bn}n<ω of b such that B ≡e P (B) and a correct with

respect to A approximation to B, {B{s}
n }n,s<ω. We will construct an enumeration

operator V such that for every n, V [n](An) ≤e Bn and V (A) �ω B. Then by setting
z = dω(B ⊕ V (A)) we obtain the required almost-b ω-enumeration degree. It is
straightforward to check that for every n: Pn(B) ≡e Bn ≡e Pn(B ⊕ V (A)). One
side follows from Bn ≤e Pn(B⊕V (A)) = Pn−1(B⊕V (A))′⊕ (Bn⊕V [n](An)). The
other side is proved by induction: P0(B ⊕ V (A)) = B0 ⊕ V [0](A0) ≤e B0. Now
assuming Pn(B ⊕ V (A)) ≤e Bn we get Pn(B ⊕ V (A))′ ≤e Pn(B)′ ≤e Bn+1 and
hence Pn+1(B ⊕ V (A)) = Pn(B ⊕ V (A))′ ⊕ (Bn+1 ⊕ V [n+ 1](An+1)) ≤e Bn+1.

For every sequence C = {Ck}k<ω denote by C(i∗) the sequence {Ci+k}k<ω. Note

that if C ≡e P (C) then C(i∗) ≡e Ci. If C = {C{s}
k }s,k<ω is an approximation to the

sequence C, then by C(i∗) we shall denote the approximation {C{s}
i+k}s,k<ω to C(i∗).

To ensure that V (A) �ω B, the constructed set V will satisfy the following list
of requirements, where i ranges over the natural numbers:

Ri : Wi(B(i∗)) ̸= V (A)(i∗)

To see that the satisfaction of this list of requirements guarantees V (A) �ω B,
assume the contrary: suppose that the constructed set satisfies all requirements, but
we still have V (A) = We(B) for some e-operator We. There is a computable func-
tion g such that the sequence V (A)(i∗) = Wg(i)(B(i∗)). By the recursion theorem
there will be an index i such that Wi = Wg(i), contradicting that the requirement
Ri is satisfied.

Construction. The construction is in stages. Set V {0} = ∅. At stage s ≥ 0 we
construct V {s+1} from its value at the previous stage. We examine all requirements
Ri with i < s and perform the following actions for each in order of priority.

Fix Ri. We define l
{s}
i = l(W

{s}
i ({B{s}

i+k}k<ω), {V [i+ k]{s}(A
{s}
i+k)}k<ω, s).

For every ⟨k, x⟩ < l
{s}
i if x ∈ A

{s}
i+k and ⟨i, x⟩ /∈ V [i + k]{s}(Ai+k)

{s} then enu-

merate the axiom ⟨⟨i, x⟩, A{s}
i+k⟩ in V [i+ k]{s+1}.

This completes the construction.
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Lemma 5.1. Fore every i < ω the requirement Ri is satisfied.

Proof. The proof is by induction. Fix i and assume that the statement is true for
j < i. Towards a contradiction assume that Wi(B(i∗)) = V (A)(i∗). By Lemma 4.1

W
{s}
i ({B{s}

i+k}s,k<ω) and {V [i+ k]{s}(A
{s}
i+k)}s,k<ω are correct with respect to A(i∗)

approximations to Wi(B(i∗)) and V (A)(i∗) respectively. By Lemma 4.3 we have

that lims∈Gi+k
l
{s}
i = ∞ for all k ≥ 0. We will prove that in this case A(i∗) ≤ω

V (A)(i∗). As A(i∗) ≡ω Ai and B(i∗) ≡ω Bi this would yield Ai ≤ω Bi contradicting
[b]∼∞ < [a]∼∞ .

Claim 5.1.1. A(i∗) ≤ω V (A)(i∗).

Proof. We show that for every k ≥ 0 we have Ai+k = {x | ⟨i, x⟩ ∈ V [i+ k](Ai+k)}.
Fix k ≥ 0 and let x ∈ Ai+k. Let s be an (i+k)-good stage such that ⟨k, x⟩ < l

{s}
i .

Then by construction at stage s either ⟨i, x⟩ ∈ V [i+k]{s}(Ai+k)
{s} ⊆ V [i+k](Ai+k)

or the strategy enumerates ⟨i, x⟩ in V [i + k](Ai+k), i.e. enumerates the axiom

⟨i+ k, i, x, A
{s}
i+k⟩ in V {s+1}. In both cases ⟨i, x⟩ ∈ V [i+ k](Ai+k).

On the other hand suppose ⟨i, x⟩ ∈ V [i+ k](Ai+k). The only requirement which
enumerates axioms for elements of the form ⟨i, x⟩ in V [i+ k] is Ri. Such an axiom
must be enumerated at an (i + k)-good stage s of the construction in order for it

to be valid. But by construction the strategy must have seen x ∈ A
{s}
i+k ⊆ Ai+k and

hence x ∈ Ai+k. �

�

Lemma 5.2. For every n, the set V [n](An) ≤e Bn.

Proof. Fix n. There are finitely many requirements, which enumerate axioms in
the set V [n], namely the requirements Ri, where i ≤ n.

For every i ≤ n consider the length of agreement measured at stage s:

l
{s}
i,n = l(Wi[n− i]{s}(B{s}

n ), V [n]{s}(A{s}
n ), s).

If for every i ≤ n the set {l{s}i,n | A{s}
n ⊆ An} is bounded, then for every i V [n](An)

[i]

is finite, hence V [n](An) is finite and reducible to Bn.

Otherwise let i be such that the set {l{s}i,n | A
{s}
n ⊆ An} is unbounded. By

Lemma 3.1 {Wi[n]
{s}(B

{s}
n )}s<ω is a correct with respect to An approximation to

Wi[n− i](Bn) and {V [n]{s}(A
{s}
n )}s<ω is a correct with respect to A approximation

to V [n](An). We can apply Lemma 3.3 and obtain Wi[n − i](Bn) = V [n](An),
hence V [n](An) is in this case as well reducible to Bn.

This completes the proof of Theorem 5.1. �
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