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Abstract

This paper gives two definability results in the local theory of the ω-enumeration
degrees. First we prove that the local structure of the enumeration degrees is
first order definable as a substructure of the ω-enumeration degrees. Our second
result is the definability of the the classes Hn and Ln of the highn and lown

ω-enumeration degrees. This allows us to deduce that the first order theory of
true arithmetic is interpretable in the local theory of the ω-enumeration degrees.

1. Introduction

One of the oldest and most widely used mathematical approaches to under-
standing a structure is placing it in a wider context. This approach has often
proved to be very effective, revealing properties of the structure that remain
hidden in the smaller context. For example study of the enumeration degrees
has been motivated largely (but not exclusively) by the fact that the structure
of the Turing degrees is embedded in it, a result due to Myhill [8]. Support
for this motivation has recently been given by Soskova and Cooper [14] who
apply a structural result of the Σ0

2 enumeration degrees to prove an extension
of Harrington’s non-splitting theorem for the Turing degrees.

The structure of the ω-enumeration degrees is a further attempt to widen
the degree theoretic context. This structure is introduced by Soskov [12] and
studied in the works of Soskov and Ganchev [4, 5, 13]. It is an upper semi-
lattice with jump operation, where the building blocks of the degrees are of a
higher type - sequences of sets of natural numbers. The main interest in this
structure arises from the result that Dω is itself an extension of the structure of
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the enumeration degrees De. There is mapping κ of De into Dω which preserves
the order, the least element, the least upper bound and the jump operation. In
this case however the known relationship between the two structures are much
stronger. Soskov and Ganchev [13] prove that the structure of the enumeration
degrees is first order definable in the structure of the ω-enumeration degrees and
furthermore the two structures have isomorphic automorphism groups.

In this article we will be mainly focused on the local structure of the ω-
enumeration degrees, Gω, and its connections to the local structure of the enu-
meration degrees, Ge. The local structure of the ω-enumeration degrees consists
of all ω-enumeration degrees that are below the first jump, 0′ω, of the least
ω-enumeration degree. Previous work by Soskov and Ganchev [13] reveals the
excessive information content of this structure. For instance for every natural
number n there is an embedding of the interval [0(n)

ω ,0(n+1)
ω ] of ω-enumeration

degrees, where 0(n)
ω denotes the n-th iteration of the jump on the least degree.

Our first result is a local analog of the above quoted relationship between
the structures of the ω-enumeration degrees and the enumeration degrees.

Theorem 1. The local structure of the enumeration degrees, viewed as a sub-
structure of the ω-enumeration degrees, is first order definable in the local struc-
ture of the ω-enumeration degrees.

Motivated by this connection we turn to the study of the high-low jump
hierarchy of ω-enumeration degrees. For every n we denote with Hn the class
of all ω-enumeration degrees in the local structure whose n-th jump is as high
as possible, namely 0(n+1)

ω and with Ln the class of all ω-enumeration degrees
in the local structure whose n-th jump is as low as possible, namely 0(n)

ω . Our
second result shows that these classes are also first order definable.

Theorem 2. For every natural number n the classes Hn and Ln are first order
definable in the local theory of the ω-enumeration degrees.

Wether or not the classes of all highn and all lown enumeration degrees are
definable in the local theory of the enumeration degrees is not known. As an
immediate corollary of these two results we can obtain however that they are
definable in the local theory of the ω-enumeration degrees.

A more significant application of Theorems 1 and 2 is the following result:

Theorem 3. The first order theory of true arithmetic is interpretable in the
local theory of the ω-enumeration degrees.

This result gives further proof of the complexity of the local structure of the
ω-enumeration degrees. It does not however characterize the strength of the
theory completely, as unlike the theory of the c.e. degrees or the local theory
of the enumeration degrees, it is not clear whether or not one can interpret the
local theory of the ω-enumeration degrees in first order arithmetic.

The proof techniques used in this article use extensively the notation of a
K-pair. This notion is introduced and used by Kalimullin [6] to prove that the
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enumeration jump is definable in the theory of the enumeration degrees. We
leave formal definitions for Section 6, but note here that K-pairs have very in-
teresting properties. For example every K-pair {a, b} of Σ0

2 enumeration degrees
is a low quasi-minimal minimal pair. In Section 6 we study the properties and
give a characterization of K-pairs in the local ω-enumeration degrees.

Additionally we use a structural property of the enumeration degrees. Re-
call that the total degrees are the images of the Turing degrees under Rogers’
embedding. Cooper, Sorbi and Yi [3] prove that every nonzero ∆0

2 enumeration
degree can be cupped to 0′e by a total incomplete ∆0

2 e-degree. Later Soskova
and Wu [15] show that every nonzero ∆0

2 enumeration degree can be cupped by
a non-total and low ∆0

2 enumeration degree. We give an alternative proof of
Soskova and Wu’s result, which we see as structurally more informative.

Theorem 4. For every non-zero ∆0
2 enumeration degree a there exists a half

of a nontrivial K-pair b, such that a ∨ b = 0′.

The proof of this theorem is rather technical and we will present it in the
last section of this article. We also show how this proof can be relativized to
prove the following.

Theorem 5. For every total enumeration degree g and every degree a, such
that g � a and a contains a set ∆0

2 relative to g, there is a degree b > g such
that b ∨ a = g′ = b′.

2. Preliminaries

We will use standard notation as can be found in [10] and [2]. We assume
that the reader is familiar with basic degree theoretic notions and refer to Cooper
[1] and Sorbi [11] for an extensive survey of result on both the global and local
theory of the enumeration degrees. For completeness we outline basic notions
used in this article.

Intuitively a set of natural numbers B is enumeration reducible (≤e) to a
set of natural numbers A if one can obtain an enumeration of the set B given
any enumeration of the set A. More formally:

Definition 1. B ≤e A if there exists a c.e. set W such that

B = {n | ∃u(〈x, u〉 ∈W ∧Du ⊂ A)},

where Du denotes the finite set with canonical index u.

The c.e. set W can be viewed as on operator on P(N) and will be referred
to as an enumeration operator or e-operator. The elements of the set W will be
called axioms. As each axiom consists of a natural number x and the code u of
a finite set Du, we will denote an axiom by 〈x,Du〉.

The relation ≤e is a preorder on the powerset of the natural numbers and
gives rise to a nontrivial equivalence relation ≡e. The equivalence classes under
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this relation are called enumeration degrees and the their collection is denoted
by De. The enumeration degree of a set A is denoted by de(A). Enumeration
reducibility between sets gives rise to a partial ordering ≤e on the enumeration
degrees, namely

de(A) ≤e de(B) ⇐⇒ A ≤e B.

We denote by De the partially ordered set (De,≤e). The enumeration degree
of ∅, 0e, is the least element in De. Furthermore, the enumeration degree of
A ⊕ B is the least upper bound of the degrees of A and B, so that De is an
upper semi-lattice with least element.

The enumeration jump of a set A is defined as A′e = L+
A, where LA = {〈x, i〉 |

x ∈ Wi(A)}. This jump operation preserves enumeration reducibility and we
can define de(A)′ = de(A′e). Furthermore, A �e A

′
e and hence for an arbitrary

enumeration degree a, a �e a′. Finally we note that the jump operation is
uniform in the sense that there exists a computable function g such that for
arbitrary set A and B if A = We(B) then A′ = Wg(e)(B′).

The standard embedding ι of the partially ordered set of Turing degrees
DT in De is defined by ι(dT (A)) = de(A+). It preserves the order, the least
element, the least upper bound and the jump operation. A set A is called total
if A ≡e A

+ and a enumeration degree a is total if it contains a total set. Hence
the range of ι consists exactly of the total enumeration degrees.

The jump operation gives rise to the local substructure, Ge, consisting of all
enumeration degrees below the jump, 0′e, of the least degree. Cooper [1] proves
that these are exactly the Σ0

2 enumeration degree, i.e. the enumeration degrees
of Σ0

2 sets.

3. The ω-enumeration degrees

Soskov [12] introduces a reducibility, ≤ω, between sequences of sets of natural
numbers. The original definition involves the so called jump set of a sequence
and can be found in [12]. We use an equivalent definition in terms of uniform e-
reducibility, which is more approachable. Before we define ω-reducibility we will
need to introduce one more notation. Let Sω denote the class of all sequences
of sets of natural numbers of length ω. With every member A ∈ Sω we connect
a jump sequence P (A).

Definition 2. Let A = {An}n<ω ∈ Sω. The jump sequence of the sequence A,
denoted by P (A) is the sequence {Pn(A)}n<ω defined inductively as follows:

• P0(A) = A0.

• Pn+1(A) = An+1⊕P ′n(A), where P ′n(A) denotes the enumeration jump of
the set Pn(A).

The jump sequence P (A) transforms a sequence A into a monotone sequence
of sets of natural numbers with respect to ≤e. Every member of the jump
sequence contains full information on previous members. The jump sequences
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of sequence of natural numbers will be the objects that we are interested in,
the building blocks of the ω-enumeration degrees. We define ω-reducibility
appropriately so that every sequence turns out to be equivalent to its jump
sequence.

Definition 3. Let A = {An}n<ω,B ∈ Sω. We shall say that A is ω-enumeration
reducible to B, denoted by A ≤ω B, if for every n we have An ≤e Pn(B) uni-
formly in n.

Clearly “≤ω” is a reflexive and transitive relation and defines a preorder
on Sω. The degree structure obtained from ≤ω by the standard method is
the structure of the ω-enumeration degrees, Dω. We define the relation ≤ω on
ω-enumeration degrees by

dω(A) ≤ω dω(B) ⇐⇒ A ≤ω B,

The degree 0ω of the sequence ∅ω, whose every member is the empty set, is the
least element in Dω with respect to ≤ω.

For arbitrary sequences A = {Ak}k<ω and B = {Bk}k<ω we set

A⊕ B = {Ak ⊕ Bk}k<ω.

It is not difficult to see that dω(A⊕ B) is the least upper bound of dω(A) and
dω(B) and so the structure Dω = (Dω,≤ω) is an upper semilattice with least
element.

Denote by A ↑ ω the sequence (A, ∅, ∅, . . . ). It follows from the definition of
ω-enumeration reducibility and the uniformity of the enumeration jump opera-
tion that for every pair of sets of natural numbers A and B:

A ↑ ω ≤ω B ↑ ω ⇐⇒ A ≤e B, (3.1)

Using equivalence (3.1) we may define an embedding of the upper semilat-
tice of the enumeration degrees in the upper semilattice of the ω-enumeration
degrees. Indeed, consider the mapping κ : De → Dω defined by

κ(de(A)) = dω(A ↑ ω).

It follows from (3.1) that κ is correctly defined and that

∀a,b ∈ De[a ≤e b ⇐⇒ κ(a) ≤ω κ(b)],

which implies, that κ is order preserving and injective. Furthermore, note that
for arbitrary sets A and B we have (A⊕B) ↑ ω = (A ↑ ω)⊕ (B ↑ ω) and hence

κ(a ∨ b) = κ(a) ∨ κ(b).

Finally we have that ∅ω = ∅ ↑ ω, so that

κ(0e) = 0ω.
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We shall refer to κ as the natural embedding of the enumeration degrees in
the ω-enumeration degrees. We denote the range of κ by D1 and call it the
natural copy of the enumeration degrees.

In addition to embedding the enumeration degrees in Dω, we can define a
surjective order-preserving mapping from Dω onto De. Consider the mapping
λ : Dω → De acting by the rule

λ(dω(A)) = de(P0(A)).

By Definition 3 if A ≤ω B then P0(A) ≤e P0(B). From this it follows that λ
is correctly defined and order preserving. To see that the mapping λ is onto,
notice that for an arbitrary set A, we have that P0(A ↑ ω) = A and hence
A = λ(dω(A ↑ ω)). On the other hand, as for any sequence A we have that
P0(A) ↑ ω ≤ω A and therefore

∀a ∈ Dω[κ(λ(a)) ≤ω a].

Furthermore λ preserves least upper and greatest lower bounds (whenever
they exist). The first one follows directly from the fact P0(A ⊕ B) = P0(A) ⊕
P0(B). For the second one suppose that a,b, c ∈ Dω and a ∧ b = c. Fix
x ∈ De, such that x ≤e λ(a), λ(b). Then κ(x) ≤ω κ(λ(a)) ≤ω a and κ(x) ≤ω

κ(λ(b)) ≤ω b. From here κ(x) ≤ω c and therefore x = λ(κ(x)) ≤ω λ(c).
We summarize the properties of κ and λ described above in the following

proposition.

Proposition 1. The mappings κ and λ have the following properties:

(K1) ∀a,b ∈ De[a ≤e b ⇐⇒ κ(a) ≤ω κ(b)]

(K2) ∀a,b ∈ De[κ(a ∨ b) = κ(a) ∨ κ(b)]

(K3) κ(0e) = 0ω

(L1) ∀a,b ∈ Dω[a ≤ω b =⇒ λ(a) ≤ω λ(b)]

(L2) ∀a,b ∈ Dω[λ(a ∨ b) = λ(a) ∨ λ(b)]

(L3) ∀a,b, c ∈ Dω[a ∧ b = c =⇒ λ(a) ∧ λ(b) = λ(c)]

(KL1) ∀a ∈ De[λ(κ(a)) = a]

(KL2) ∀a ∈ Dω[κ(λ(a)) ≤ω a]

4. Jump operation and least jump invert

The jump operation in Dω is defined by Soskov and Ganchev [13].

Definition 4. Let A ∈ Sω be a sequence of sets of natural numbers. The ω-
enumeration jump of A is the sequence A′ = {P1+k(A)}k<ω.
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In other words, the jump of A is the jump sequence of A with deleted first
element. For an arbitrary sequence A the jump operation has the properties
A �ω A′, and A ≤ω B =⇒ A′ ≤ω B′, allowing to define a jump operation on
ω-enumeration degrees by

(dω(A))′ = dω(A′).

As a direct consequence of the definition we obtain

κ(a′) = κ(a)′. (4.1)

We define the iteration of the jump in the usual way, setting

A(0) = A and A(n+1) = (A(n))′.

Soskov [12] proves that for an arbitrary sequence A, Pk(A) ≡e Pk(P (A)) uni-
formly in k and hence

A(n) ≡ω {Pn+k(A)}k<ω. (4.2)

From here we obtain
λ(dω(A(n))) = de(Pn(A)). (4.3)

In particular
∀x ∈ Dω[λ(x)′ ≤e λ(x′)]. (4.4)

Furthermore (4.3) together with Definition 3 give us the following charac-
terization of the partial order ≤ω:

Proposition 2. Let a and b be arbitrary ω-enumeration degrees. For all n ∈ N

a ≤ω b ⇐⇒ ∀0 ≤ k < n
[
λ(a(k)) ≤e λ(b(k))

]
& a(n) ≤ω b(n).

Proof. The direction from left to right is clear. For the converse suppose that
∀0 ≤ k < n

[
λ(a(k)) ≤e λ(b(k))

]
and a(n) ≤ω b(n). Take A ∈ a and B ∈ b. The

inequality a(n) ≤ω b(n) yields A(n) ≤ω B(n). From here, applying (4.2) and
Definition 3, we obtain

∀k[Pn+k(A) ≤e Pn+k(B) uniformly in k]. (4.5)

The inequalities λ(a(k)) ≤e λ(b(k)) for 0 ≤ k < n together with (4.3) give us

∀0 ≤ k < n [Pk(A) ≤e Pk(B)] . (4.6)

Finally combining (4.5) and (4.6) we obtain A ≤ω B
�

The jump operation on the ω-enumeration degrees exhibits a property (Soskov,
Ganchev [13]), that neither the Turing nor the enumeration jump do. Namely,
if 0ω

(n) ≤ω a, then there exists a least solution to the equation

x(n) = a.
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We shall denote this solution by In(a). We can give an explicit representative
of In(a) by setting for arbitrary A ∈ Sω

In(A) = (∅, . . . , ∅︸ ︷︷ ︸
n

, A0, A1, . . .).

Then for all a ∈ Dω above 0ω
(n)

A ∈ a ⇐⇒ In(A) ∈ In(a). (4.7)

Lemma 1. Let n ∈ N and let a,b ∈ Dω be such that 0ω
(n) ≤ω a,b. Then:

(I0) ∀k < n[λ(In(a)(k)) = 0e
(k)].

(I1) a ≤ω b ⇐⇒ In(a) ≤ω I
n(b).

(I2) ∀x ∈ Dω[x ≤ω In(a) =⇒ In(x(n)) = x].

(I3) In(a ∨ b) = In(a) ∨ In(b).

(I4) a ∧ b = c =⇒ In(a) ∧ In(b) = In(c).

(I5) ∀x ∈ Dω∀k < n
[
λ
(
(x ∨ In(a))(k)

)
= λ(x(k))

]
.

(I6) ∀x ∈ Dω

[
(x ∨ In(a))(n) = x(n) ∨ a

]
.

Proof. (I0) is a direct corollary of (4.6).
(I1) For the left to right direction suppose that a ≤ω b. Then In(a)(n) =

a ≤ω b = In(b)(n). On the other hand, for k < n, λ(In(a)(k)) = λ(In(a)(k)) =
0e

(k), so that applying Lemma 2 we obtain In(a) ≤ω I
n(b).

For the other direction suppose that In(a) ≤ω In(b). From the fact, that the
jump operation is monotone, we obtain a = In(a)(n) ≤ω I

n(b)(n) = b.
(I2) Let x ≤ω I

n(a). According to Proposition 2 for k < n,

λ(x(k)) ≤e λ(In(a)(k)) = 0e
(k) = λ(In(x(n))(k)).

On the other hand x(n) = In(x(n)), so that applying again Proposition 2 we
obtain x ≤ω I

n(x(n)). Now the equality x = In(x(n)) is obvious.
(I3) is again a direct application of (I0) and Proposition 2.
(I4) Let a∧b = c and let x ≤ω I

n(a), In(b). According to (I2) x = In(x(n)).
Furthermore x(n) ≤ω a,b and hence x(n) ≤ω c. Thus from (I1) we obtain
x = In(x(n)) ≤ω I

n(c).
(I5) and (I6) follow from that whenever X ∈ x and A ∈ a, we have that

Pk(X ⊕ In(A)) ≡e Pk(X ) for k < n and Pn(X ⊕ In(A)) ≡e Pn(X )⊕ P0(A).
�

Claims (I3) and (I4) of Lemma 1 show that the least jump invert operation
preserves both least upper and greatest lower bounds in Dω. The first author
[4] proves that the jump operation on Dω preserves greatest lower bound, i.e.

a ∧ b = c =⇒ a′ ∧ b′ = c′. (4.8)
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On the other hand one can easily see that the jump operation does not
always preserve least upper bounds. Indeed, take a low splitting of 0ω

′, i.e.
ω-enumeration degrees a and b, such that a′ = b′ = a ∨ b = 0ω

′ (such a
splitting of 0ω

′ exists, since it exists in the case of enumeration degrees). Then
a′∨b′ = 0ω

′ < 0ω
′′ = (a∨b)′. We give a sufficient condition for the preservation

of the least upper bound.

Lemma 2. Let a,b ∈ Dω be such that (λ(a) ∨ λ(b))′ = λ(a)′ ∨ λ(b)′. Then
(a ∨ b)′ = a′ ∨ b′.

Proof. Note that for arbitrary x ∈ Dω we have

x = κ(λ(x)) ∨ I1(x′). (4.9)

Indeed, according to claims (I5) and (I6) of Lemma 1 we have

λ(κ(λ(x)) ∨ I1(x′)) = λ(κ(λ(x))) = λ(x)

and
(κ(λ(x)) ∨ I1(x′))′ = κ(λ(x))′ ∨ x′ = x′.

which together with Proposition 2 yield (4.9).
Let a,b ∈ Dω be such that (λ(a) ∨ λ(b))′ = λ(a)′ ∨ λ(b)′. Applying (4.9)

to a and b we obtain

a ∨ b = κ(λ(a)) ∨ I1(a′) ∨ κ(λ(b)) ∨ I1(b′) = κ(λ(a ∨ b)) ∨ I1(a′ ∨ b′).

From here using (I6), the properties of κ and λ, and (λ(a)∨λ(b))′ = λ(a)′∨λ(b)′

we obtain

(a ∨ b)′ = (κ(λ(a ∨ b)) ∨ I1(a′ ∨ b′))′ = κ(λ(a ∨ b))′ ∨ a′ ∨ b′ =

κ(λ(a∨b)′)∨ a′ ∨b′ = κ((λ(a)∨λ(b))′)∨ a′ ∨b′ = κ(λ(a)′ ∨λ(b)′)∨ a′ ∨b′ =

κ(λ(a))′ ∨ κ(λ(b))′ ∨ a′ ∨ b′ = a′ ∨ b′

�

5. The local theory of the ω-enumeration degrees.

The local theory of the ω-enumeration degrees is the theory of the degrees
that are in the interval with endpoints the least ω-enumeration degree and its
first jump. It is considered for the first time by Soskov and Ganchev [13], who
establish some basic properties of these degrees.

We shall denote by Gω the collection of the degrees below 0ω
′, i.e.,

Gω = {x ∈ Dω | x ≤ω 0ω
′}.
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First of all note that in contrast to local structures in the Turing degrees and
the enumeration degrees, there are degrees in Gω that can be explicitly defined.
Indeed, consider the n+ 1-st jump of 0ω for arbitrary natural number n. Set

on = In(0ω
(n+1)).

We have o(n)
n = 0ω

(n+1) = (0ω
′)(n) and hence on ≤ω 0ω

′, i.e., on ∈ Gω.
Since the operation In is first order definable in the structure Dω

′ (the partial
order of the ω-enumeration degrees augmented with the jump operation), the
degrees on are first order definable in Dω

′.
In addition we can show an explicit representative of on. We have

(∅(n+1)
e , ∅(n+2)

e , ∅(n+3)
e , . . .) ∈ 0ω

(n+1),

so applying (4.7) we obtain

(∅, . . . , ∅︸ ︷︷ ︸
n

, ∅(n+1)
e , ∅(n+2)

e , ∅(n+3)
e , . . .) ∈ on. (5.1)

Since on is the least n-th jump invert of 0ω
(n+1) and every degree in Gω is

bounded by 0ω
′, we may conclude that

∀x ∈ Gω[x(n) = 0ω
(n+1) ⇐⇒ on ≤ω x]. (5.2)

The degrees x ≤ω 0ω
′ having the property x(n) = 0ω

(n+1) are called highn,
since their n-th jump is as high as possible. We shall denote the collection of
the highn degrees by Hn. Thus

∀x ∈ Gω [x ∈ Hn ⇐⇒ on ≤ω x] . (5.3)

Conversely the lown degrees are the degrees from Gω with least possible n-th
jump. In other words, x ∈ Gω is lown if and only if x(n) = 0ω

(n). We denote
the collection of all lown degrees by Ln.

As in (5.3) we shall see that the degrees in Ln are exactly those satisfying
an algebraic property involving on. First we need to prove the following.

Proposition 3. Let x ∈ Gω. Then for every natural number n

x ∧ on = In(x(n)). (5.4)

Proof. Let x ∈ Gω and fix a natural number n. Since x ≤ω 0ω
′, we have

x(n) ≤ω 0ω
(n+1), so that using claim (I1) of Lemma 1 we obtain In(x(n)) ≤ω on.

On the other hand it is obvious, that In(x(n)) ≤ω x.
Now take y ∈ Gω such that y ≤ω x,on. From y ≤ω on and claim (I2) of

Lemma 1 we obtain
y = In(y(n)).

On the other hand y ≤ω x implies y(n) ≤ω x(n) from where we conclude

y = In(y(n)) ≤ω I
n(x(n)).
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�
As a corollary of Proposition 3 we obtain

∀x ∈ Gω[x ∈ Ln ⇐⇒ x ∧ on = 0ω]. (5.5)

Indeed, for arbitrary x ≤ω 0ω
′

x(n) = 0ω
(n) ⇐⇒ In(x(n)) = 0ω ⇐⇒ x ∧ on = 0ω.

Another corollary of Proposition 3 is that the degrees on form a strictly
descending sequence, i.e.,

0ω
′ = o0 > o1 > o2 > · · · > on > . . .

Indeed, on ∧ on+1 = In+1(o(n)
n ) = In+1(0ω

(n+1)) = on+1. Soskov and Ganchev
[13] prove that this sequence does not converge to 0ω, meaning there is a nonzero
degree x, such that

∀n[x ≤ω on]. (5.6)

The degrees that have the property (5.6) are called almost zero (a.z.). Their
representatives can be characterized by

∀ a.z. x
[
X ∈ x ⇐⇒ X ≤ω ∅ω ′ & ∀k[Pk(X ) ≡e ∅(k)

e ]
]

In other words

x is a.z. ⇐⇒ x ≤ω 0ω
′ & ∀k[λ(x(k)) = 0e

(k)].

Let us denote by H and L all the degrees in Gω that are respectively highn

and lown for some n. In [13] it is shown that the classes H and L can be
characterized using the a.z. degrees. Namely, for arbitrary a ≤ω 0ω

′

a ∈ H ⇐⇒ ∀ a.z. x[x ≤ω a],

a ∈ L ⇐⇒ ∀ a.z. x[x ≤ω a =⇒ x = 0ω].

From the second equivalence it follows that the only lown a.z. degree is 0ω.
On the other hand, according to (5.6) and (5.3) no a.z. degree is highn for
some n. Thus the a.z. degrees are intermediate, i.e., they belong to the class
I = Gω − (H ∪ L).

So far we have seen that I 6= ∅ and Hn+1 − Hn 6= ∅ for arbitrary n ≥ 1.
In order to prove that the high/low jump hierarchy of Gω does not collapse, it
remains to be shown that Ln+1 − Ln 6= ∅. To prove this we shall use that for
an arbitrary n there is an enumeration degree x, such that

0e
(n) �e x & x′ = 0e

(n+1). (5.7)

Fix a natural number n and an enumeration degree x satisfying (5.7). Note
that 0e

(n) �e x ≤e 0e
(n+1). Consider the ω-enumeration degree In(κ(x)). From

the properties of the mapping κ and the operation In we immediately conclude
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that In(κ(x)) ≤ω 0ω
′. Now, (In(κ(x)))(n) = κ(x) > 0ω

(n), so that In(κ(x)) 6∈
Ln. On the other hand (In(κ(x)))(n+1) = κ(x)′ = κ(x′) = κ(0e

(n+1)) = 0ω
(n+1)

and hence In(κ(x)) ∈ Ln+1. Thus Ln+1 − Ln 6= ∅.
The equivalences (5.3) and (5.5) give a first order definition of the classes Hn

and Ln using as parameter the degree on. Thus if the degree on is first order
definable in (Gω,≤ω), the classes Hn and Ln shall be also first order definable
in (Gω,≤ω). Besides, the next lemma shows that the first order definability of
o1 in Gω, leads to first order definability of the class D1 ∩ Gω.

Lemma 3. Let x ∈ Gω. Then

x ∈ D1 ⇐⇒ ∀y ∈ Gω [y ∨ o1 = x ∨ o1 =⇒ x ≤ω y] .

Proof. Let x ∈ Gω and suppose that x ∈ D1. Let y ∈ Gω be a degree for which
y ∨ o1 = x ∨ o1. From claim (I5) of Lemma 1 we obtain

λ(y) = λ(y ∨ o1) = λ(x ∨ o1) = λ(x). (5.8)

Since x ∈ D1, we have x′ = κ(λ(x)′), so that (5.8) together with (4.1), (4.4)
and (KL2) from Proposition 1 yield

x′ = κ(λ(x)′) = κ(λ(y)′) ≤ω κ(λ(y′)) ≤ω y′. (5.9)

Now the inequality x ≤ω y follows from (5.8), (5.9) and Proposition 2.
For the converse suppose that for all y ∈ Gω the implication

y ∨ o1 = x ∨ o1 =⇒ x ≤ω y

holds. Consider the degree κ(λ(x)). According to claim (KL2) of Proposition 1
κ(λ(x)) ≤ω x and hence κ(λ(x)) ∈ Gω. Applying claims (KL1) of Proposition
1 and (I5) from Lemma 1 we obtain

λ(κ(λ(x)) ∨ o1) = λ(κ(λ(x))) = λ(x) = λ(x ∨ o1) (5.10)

On the other hand κ(λ(x))′ ≤ω x′ ≤ω 0ω
′′, so that claim (I6) of Lemma 1 gives

us

(κ(λ(x)) ∨ o1)′ = κ(λ(x))′ ∨ 0ω
′′ = 0ω

′′ = x′ ∨ 0ω
′′ = (x ∨ o1)′. (5.11)

Applying Lemma 2 to (5.10) and (5.11) we obtain κ(λ(x))∨o1 = x∨o1 and
therefore x ≤ω κ(λ(x)). Thus x = κ(λ(x)) and hence x ∈ D1.

�

6. K-pairs in Gω

The goal of this section is to prove that the degrees on are first order definable
in Gω for arbitrary n and thus conclude the proof of Theorem 1 and Theorem
2. This shall be done using the notion of K-pairs.
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Definition 5. Let D = (D,≤) be a partial order. We say that {a,b} is a K-
pair (strictly) over u for D, if a,b,u ∈ D, u ≤ a,b (u � a,b) and for all
x ∈ D such that u ≤ x, the least upper bounds x ∨ a, x ∨ b and the greatest
lower bound (x ∨ a) ∧ (x ∨ b) exist, and the following equality holds:

x = (x ∨ a) ∧ (x ∨ b). (6.1)

If (D,≤) is a partially ordered set and u,v ∈ D we shall use the notation [u,v]
for the set {x ∈ D | u ≤ x ≤ v} together with the partial order inherited from
(D,≤). Note that if {a,b} is a K-pair (strictly) over u for D, and a,b ≤ v ∈ D,
then {a,b} is a K-pair (strictly) over u for [u,v].

The following two theorems of Kalimullin give important properties of K-
pairs in the enumeration degrees, which we shall use.

Theorem 6 (Kalimullin [6]). Let A,B and U be sets of natural numbers.

(i) If for some W ≤e U , we have A × B ⊆ W and A × B ⊆ W , then
{de(A⊕ U),de(B ⊕ U)} is a K-pair over de(U) for De. If in addition

de(U) �e de(A⊕ U),de(B ⊕ U) ≤e de(U)′,

then de(A⊕ U)′ = de(B ⊕ U)′ = de(U)′

(ii) If for no W ≤e U , A × B ⊆ W and A × B ⊆ W , then there is a set
X ≤e U

′ ⊕A+ ⊕B+ such that

de(X) 6= (de(X) ∨ de(A)) ∧ (de(X) ∨ de(B)).

In particular if A,B,A,B ≤e U
′, then X ≤e U

′.

Theorem 7 (Kalimullin [6]). For every u ∈ De there is a K-pair {a,b}
strictly over u for De, such that

a ∨ b = u′ and a′ = b′ = u′.

A useful corollary of Theorem 6 is the following.

Corollary 1. Let u,a and b be enumeration degrees, such that u ≤e a,b ≤e u′

and a′ = b′ = u′. If furthermore {a,b} is a K-pair over u for [u,u′], then for
all u ≤e x ≤e u′

x �e x ∨ a, x ∨ b =⇒ (x ∨ a)′ = (x ∨ b)′ = x′.

Proof. Let u, a and b satisfy the conditions of the theorem, i.e., u ≤e a,b ≤e

u′, a′ = b′ = u′ and for all u ≤e x ≤e u′

x = (x ∨ a) ∧ (x ∨ b).

Fix U ∈ u, A ∈ a and B ∈ b. From A′ ≡e B
′ ≡e U

′ we conclude A,B,A,B ≤e

U ′ and hence from claim (ii) of Theorem 6 we obtain A×B ⊆W and A×B ⊆W
for some W ≤e U (from here it follows that {a,b} is a K-pair over u for De).
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Now fix u ≤e x ≤e u′, such that x �e x ∨ a, x ∨ b and let X ∈ x. Since
W ≤e U ≤e X we conclude that {x ∨ a,x ∨ b} is a K-pair above x for De.
Furthermore we have

u ≤e x �e x ∨ a, x ∨ b ≤e u′ ≤e x′.

From here and claim (i) of Theorem 6 we obtain

(x ∨ a)′ = (x ∨ b)′ = x′.

�
Our first goal is to characterize the K-pairs in Gω. We start with two lemmas

showing that the jump and least jump invert operations preserve the K-pair
property.

Lemma 4. Let n ∈ N and let a,b ∈ Dω be such that {a,b} is a K-pair
over 0ω

(n) for [0ω
(n),0ω

(n+1)]. Then {a′,b′} is a K-pair over 0ω
(n+1) for

[0ω
(n+1),0ω

(n+2)]. In particular if {a,b} is a K-pair over 0ω for Gω, then
{a(k),b(k)} is a K-pair over 0ω

(k) for [0ω
(k),0ω

(k+1)].

Proof. Suppose {a,b} is a K-pair above 0ω
(n), i.e. 0ω

(n) ≤ω a, b and

∀0ω
(n) ≤ω x ≤ω 0ω

(n+1) [x = (x ∨ a) ∧ (x ∨ b)]. (6.2)

Consider 0ω
(n+1) ≤ω x ≤ω 0ω

(n+2) and let y ≤ω x∨a′, x∨b′. From claims
(I1) and (I3) of Lemma 1 we obtain

I1(y) ≤ω I
1(x) ∨ I1(a), I1(x) ∨ I1(b),

and hence

I1(y) ∨ 0ω
(n) ≤ω (I1(x) ∨ 0ω

(n)) ∨ I1(a′), (I1(x) ∨ 0ω
(n)) ∨ I1(b′). (6.3)

Since 0ω
(n+1) ≤ω x ≤ω 0ω

(n+2), we have 0ω
(n) ≤ω I1(x) ∨ 0ω

(n) ≤ω 0ω
(n+1).

On the other hand I1(a′) ≤ω a and I1(b′) ≤ω b, so that from (6.2) and (6.3)
we obtain

I1(y) ∨ 0ω
(n) ≤ω I

1(x) ∨ 0ω
(n).

Now applying claim (I6) of Lemma 1 we get

y = 0ω
(n+1) ∨ y = (0ω

(n) ∨ I1(y))′ ≤ω (0ω
(n) ∨ I1(x))′ = 0ω

(n+1) ∨ x = x.

�

Lemma 5. Let {a,b} be a K-pair over 0ω
(n) for [0ω

(n),0ω
(n+1)]. Then the

pair {In(a), In(b)} is a K-pair over 0ω for Gω.
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Proof. Suppose that a and b satisfy the condition of the lemma. It is clear
that In(a), In(b) ∈ Gω. Fix x,y ∈ Gω, such that y ≤ω x ∨ In(a), x ∨ In(b).
Then applying (I5) and (I6) of Lemma 1 we obtain

∀k < n[λ(y(k)) ≤e λ(x(k))] (6.4)

y(n) ≤ω x(n) ∨ a, x(n) ∨ b. (6.5)

From (6.5) we conclude y(n) ≤ω x(n), which together with (6.4) and Lemma
2 implies y ≤ω x.

�
The next two lemmas show that the mapping λ preserves the K-pair property

for intervals with endpoints a degree u and its first jump, whereas the embedding
κ preserves it in some special cases.

Lemma 6. Let a, b and u be ω-enumeration degrees, such that {a,b} is a
K-pair over u for the interval [u,u′]. Then for all λ(u) ≤e x ≤e λ(u)′ we have

x = (x ∨ λ(a)) ∧ (x ∨ λ(b)).

In particular, if u ∈ D1, then {λ(a), λ(b)} is a K-pair over λ(u) for [λ(u), λ(u)′].

Proof. Let {a,b} be K-pair above u for the interval [u,u′] and consider the
degrees λ(a), λ(b) and λ(u). Note that since a,b ∈ [u,u′], we have λ(a), λ(b) ∈
[λ(u), λ(u′)]. Fix λ(u) ≤e x ≤e λ(u)′ and suppose that y ≤e x∨λ(a), x∨λ(b).
From claim (K1), (K2) and (KL2) of Proposition 1 we get

κ(y) ≤ω κ(x) ∨ κ(λ(a)) ≤ω κ(x) ∨ a,

κ(y) ≤ω κ(x) ∨ κ(λ(b)) ≤ω κ(x) ∨ b.

From here
u ∨ κ(y) ≤ω (u ∨ κ(x)) ∨ a, (u ∨ κ(x)) ∨ b. (6.6)

Since λ(u)′ ≤e λ(u), and x and y satisfy the inequalities

x,y ≤e λ(u′),

we have
u ≤ω u ∨ κ(x),u ∨ κ(y) ≤ω κ(λ(u′)) ≤ω u′.

From here, (6.6) and {a,b} being a K-pair over u for [u,u′], we conclude

u ∨ κ(y) ≤ω u ∨ κ(x).

Applying again Proposition 1 we finally obtain

y ≤e λ(u) ∨ y = λ(u ∨ κ(y)) ≤e λ(u ∨ κ(x)) = λ(u) ∨ x = x.

�
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Lemma 7. Let a, b and u be enumeration degrees, such that {a,b} is a K-
pair strictly over u for [u,u′] and a′ = b′ = u′. Then {κ(a), κ(b)} is a K-pair
strictly over κ(u) for [κ(u), κ(u)′].

Proof. Let {a,b} be a K-pair strictly over u for [u,u′], i.e., u �e a, b ≤ω u′

and
∀u ≤e x ≤e u′ [x = (x ∨ a) ∧ (x ∨ b)] .

Consider κ(a), κ(b) and κ(u). It is clear that κ(u) �ω κ(a), κ(b) ≤ω κ(u)′.
Let κ(u) ≤ω x ≤ω κ(u) and fix ỹ ≤ω x ∨ κ(a), x ∨ κ(b). Consider the degree
y = ỹ ∨ κ(u). Since κ(u) ≤ω x, κ(a), κ(b), we have

ỹ ≤ω y ≤ω x ∨ κ(a), x ∨ κ(b).

We shall consider two cases. First suppose that a ≤e λ(x) (or respectively
b ≤e λ(x)). From claim (LK2) of Proposition 1 we obtain

κ(a) ≤ω κ(λ(x)) ≤ω x,

so that a ∨ x = x and hence ỹ ≤ω y ≤ω x ∨ κ(a) = x.
Now suppose that a,b 6≤e λ(x). From claims (L1), (L2) and (KL1) of

Proposition 1 we obtain

u ≤e λ(x), λ(y) ≤e u′,

λ(y) ≤e λ(x ∨ κ(a)) = λ(x) ∨ a,

λ(y) ≤e λ(x ∨ κ(a)) = λ(x) ∨ a.

Now, since {a,b} is a K-pair strictly above u for the interval ([u,u′],≤e), we
get

λ(y) ≤e λ(x). (6.7)

Now to prove that y ≤ω x it suffices to prove that y′ ≤ω x′. From a,b 6≤e

λ(x), the equalities a′ = b′ = u′ and Corollary 1 we conclude

(λ(x) ∨ a)′ = (λ(x) ∨ b)′ = λ(x)′.

In particular (λ(x)∨a)′ = λ(x)′ ∨a′ and (λ(x)∨b)′ = λ(x)′ ∨b′. Thus Lemma
2 yields

(x ∨ κ(a))′ = x′ ∨ κ(a)′ = x′ ∨ u′ = x′.

But y ≤ω x ∨ κ(a) and hence
y′ ≤ω x′. (6.8)

Now Lemma 2, (6.7) and (6.8) imply

y ≤ω x.

�
At this point we will need to use the structural result of the enumeration

degrees announced in the introduction. Recall that Theorem 5 states that for
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every total degree u and every ∆0
2(u) degree a 
e u there is a low over u degree

b such that a ∨ b = u′. Here a degree a is ∆0
2(u) if a contains a set which is

∆0
2 relative to a representative of u. In particular every total degree x in the

interval [u,u′] is ∆0
2(u). As a corollary of this result we prove that a K-pair for

an interval [u,u′] is also quasi-minimal over u.

Corollary 2. Let a, b and u be enumeration degrees, such that {a,b} is a K-
pair over u for [u,u′]. If furthermore u is total and there is a total degree x,
such that u �e x ≤e a, then b = u.

Proof. Let a, b, u and x satisfy the conditions of the corollary. Since x is total
and u �e x, Theorem 5 implies that x ∨ y = u′ for some enumeration degree
u ≤e y, having the property y′ = u′. Note that, since x ≤e a ≤e u′, we have
a ∨ y = u′. Thus we obtain

y = (y ∨ a) ∧ (y ∨ b) = u′ ∧ (y ∨ b) = y ∨ b.

Therefore b ≤e y. From here we obtain u′ ≤e b′ ≤e y′ ≤e u′, i.e., b′ = u′.
Now we can apply Theorem 5 to b and reasoning as above we obtain a′ = u′

from where we may conclude that x′ = u′.
Note that since u ≤e x ≤e a, the pair {x,b} is also a K-pair above u for the

interval [u,u′]. Applying Theorem 6 to x, b and u we obtain X ∈ x, B ∈ b
and W ≤e U ∈ u, such that X is total and

X ×B ⊆W, X ×B ⊆W. (6.9)

Kalimullin [6] proves that (6.9) implies B ≤e W ⊕ X. But X ≡e X, so that
B ≤e X. Thus b ≤e x and hence b = u.

�

Corollary 3. Let {a,b} be a K-pair over 0ω for Gω and let for some n ≥ 0,
0e

(n) �e λ(a(n)) and λ(a(n))′ = 0e
(n+1). Then b ∈ Ln+1.

Proof. Suppose that the degrees a,b ∈ Gω satisfy the conditions of the corollary.
Since 0e

(n) ≤e λ(a(n)) ≤e 0e
(n+1), the equality λ(a(n))′ = 0e

(n+1) together with
Theorem 5 yield

λ(a(n)) ∨ x = x′ = 0e
(n+1)

for some 0e
(n) �e x ≤e 0e

(n+1). Consider the ω-enumeration degree κ(x). We
have κ(x) ∈ [0ω

(n),0ω
(n+1)], so that In(κ(x)) ∈ Gω. Therefore

In(κ(x)) = (In(κ(x)) ∨ a) ∧ (In(κ(x)) ∨ b),

from where, Lemma 1, and (4.8) we obtain

κ(x) = (κ(x) ∨ a(n)) ∧ (κ(x) ∨ b(n)).

By the choice of x we have a(n)∨κ(x) = 0ω
(n+1), so that we may conclude that

b(n) ≤ω κ(x). But κ(x)′ = 0ω
(n+1) and hence b(n+1) = 0ω

(n+1).
�

Now we are ready to characterize the K-pairs in Gω.
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Theorem 8. Let {a,b} be K-pair strictly over 0ω for Gω. Then exactly one of
the following assertions holds:

(i) Both a and b are a.z..

(ii) There is a natural number n and a K-pair of enumeration degrees {ã, b̃}
for the interval [0e

(n),0e
(n+1)] with the property ã′ = b̃′ = 0e

(n+1), such
that

a = In(κ(ã)) and b = In(κ(b̃)).

Proof. Let {a,b} be a K-pair strictly over 0ω for (Gω,≤ω) and suppose that
at least one of the degrees a, b is not a.z.. Then, without loss of generality, we
may fix a natural number n such that

0e
(n) �e λ(a(n)) & ∀k < n[λ(a(k)) = λ(b(k)) = 0e

(k)]. (6.10)

First we shall prove that λ(a(n))′ = 0e
(n+1). Towards a contradiction

assume that 0e
(n+1) � λ(a(n))′. According to Lemma 4 and Lemma 5 the

pair {λ(a(n+1)), λ(b(n+1))} is a K-pair over 0e
(n+1) for [0e

(n+1),0e
(n+2)]. But

0ω
(n+1) �e λ(a(n))′ ≤e λ(a(n+1)), so that Corollary 2 and Corollary 3 imply

that
λ(b(n+1)) = 0e

(n+1) & b(n+2) = 0ω
(n+2). (6.11)

From here we conclude that λ(b(n))′ = 0e
(n+1). Now, if 0e

(n) �e λ(b(n))
applying Corollary 3 we would obtain a(n+1) = 0ω

(n+1), which is not the case
and hence λ(b(n)) = 0e

(n). From here, (6.10), (6.11) and Lemma 2 we obtain
that b = 0ω. A contradiction.

Thus indeed λ(a(n))′ = 0e
(n+1) and hence (6.10) and Corollary 3 imply

b(n+1) = 0ω
(n+1). But b 6= 0ω and hence it should be the case

0e
(n) �e λ(b(n)) & λ(b(n))′ = 0e

(n+1).

Thus Corollary 3 yields a(n+1) = 0ω
(n+1) and hence

a = In(κ(λ(a(n)))) and b = In(κ(λ(b(n)))).

�

Corollary 4. Let {a,b} be a K-pair strictly above 0ω for Gω. Then for every
natural number n

∀x �ω on[a ∨ x � on] ⇐⇒ a,b ≤ω on+1.

Proof. An obvious application of Theorem 8 and Theorem 5.
�

Finally we have the necessary tools sufficient to give us a first order definition
of on in (Gω,≤ω) for every n and thus by Lemma 3 and the equivalences (5.3)
and (5.5) we conclude the proofs of Theorem 1 and Theorem 2.

18



Theorem 9. For arbitrary n ≥ 0, on+1 is the greatest degree which is the least
upper bound of a K-pair {a,b} strictly above 0ω for Gω, such that

∀x � on[a ∨ x �ω on].

Proof. Theorem 7, Lemma 7 and Lemma 5 give us a K-pair {a,b} for Gω, such
that 0ω � a, b and a ∨ b = on+1. Now the theorem follows from Corollary 4.

�

7. The first order theory of Gω

In this section we apply the results from the previous section to prove The-
orem 3. We give an interpretation of true arithmetic in (Gω,≤ω).

Consider the class

R1 = {a ∧ o1 | a ∈ D1 ∩ Gω}.

According to Theorem 9 and Theorem 1 R1, is first order definable in Gω.
Furthermore, using Proposition 3 we obtain

x ∈ R1 ⇐⇒ ∃a ∈ D1 ∩ Gω[x = I1(a′)]. (7.1)

From here we obtain the following.

Proposition 4. The partially ordered set of the Π0
2 enumeration degrees greater

or equal 0e
′ is isomorphic to (R1,≤ω).

Proof. Denote by Π2 the set of all enumeration degrees above or equal to 0e
′,

which contain a Π0
2 set. According to McEvoy [7]

x ∈ Π2 ⇐⇒ ∃a ≤e 0e
′[x = a′]. (7.2)

Let the mapping ϕ : Π2 → Gω act by the rule

ϕ(x) = I1(κ(x)).

The equivalences (7.1) and (7.2) give us

Range(ϕ) = R1.

On the other hand claim (K1) of Proposition 1 and claim (I1) of Lemma 1 yield

∀x,y ∈ Π2[x ≤e y ⇐⇒ ϕ(x) ≤ω ϕ(y)],

and hence ϕ is the isomorphism we are looking for.
�

The class Π2 consists exactly of the enumeration degrees, which are images,
under the standard embedding ι of DT into De, of the Turing degrees c.e. in
and above 0T

′. In other words

Π2 = ι[R0T
′ ],
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where R0T
′ = {dT (X) | ∅′T ≤T X & X is c.e. in ∅′T }. Thus Proposition 4

implies
(R0T

′ ,≤T ) ∼= (R1,≤ω).

Nies, Shore and Slaman [9] prove that first order true arithmetic is interpretable
in (R0T

′ ,≤T ), so that we obtain an interpretation of the first order theory of
true arithmetic in (Gω,≤ω) and conclude the proof of Theorem 3.

8. Proof of Theorem 4

In this section we present the construction for the simple case of Theorem 5,
as stated in Theorem 4. For every nonzero ∆0

2 degree a we construct a K-pair
strictly over 0e, {b, c} such that a ∨ b = 0′e. In the next section we describe a
method for relativizing the presented construction above any total degree u.

As we will be dealing with sets and not degrees, to simplify notation we shall
say that {A,B} is a K-pair over U if {de(A), de(B)} form a K-pair in De over
de(U). When U is a c.e. set we shall say that {A,B} is a K-pair.

We need a dynamic characterization of the Σ0
2 K-pairs of sets given by the

following lemma:

Lemma 8 (Kalimullin[6]). Let B and C be two Σ0
2 sets. B and C form a

K-pair if and only if there are Σ0
2 approximations {B{s}}s<ω and {C{s}}s<ω

to B and C respectively such that for every stage s we have that B{s} ⊆ B or
C{s} ⊆ C.

Of course as every nontrivial K-pair of Σ0
2 sets consists of low sets it follows

that if B and C are not c.e. then they are ∆0
2. With this characterization in

mind we proceed to describe the proof of Theorem 4.
Fix a ∆0

2 representative A of the given nonzero degree a. We will construct
∆0

2 approximations to sets B and C so that the following three types of require-
ments are satisfied:

1. First we want to ensure the cupping property. We will construct an enu-
meration operator Γ so that

S : Γ(A,B) = K.

Here Γ(A,B) is considered as being enumerated relative to two sources.
We write Γ(A,B), instead of Γ(A⊕B). Naturally we will assume that an
axiom of the operator Γ has the structure 〈n,DA, DB〉 and that it is valid
if an only if DA ⊆ A and DB ⊆ B. K is any Π0

1 representative of the
degree 0′e.

2. To ensure that the set B is not complete it will be enough to prove that C
is not c.e. and that {B,C} form a K-pair. Fix a computable enumeration
of all c.e. sets {We}e<ω. For every e we have a requirements:

Ne : We 6= C.
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3. Finally we ensure the K-pair property. For every s we have the following
requirement:

Ks : B{s} ⊆ B ∨ C{s} ⊆ C.

Intuitive description of the strategies. Fix a ∆0
2 approximation {A{s}}s<ω

to the given set A and a Π0
1 approximation {K{s}}s<ω to the set K. Every

c.e. set We will be approximated by its standard c.e. approximation. The
construction will run in stages. At every stage s we construct C{s} and B{s}

from their previous values at stage s − 1, by activating certain strategies. An
activated strategy will perform actions (e.g. modify the approximation to the
constructed sets or the value of parameters) needed in order to satisfy its cor-
responding requirement. We start by describing the intuition behind each such
strategy.

The S-strategy. The global S-strategy constructs the enumeration operator
Γ so that ultimately we have Γ(A,B). At every stage s it ensures that for
every element n ≤ s we have Γ(A,B){s}(n) = K

{s}
(n). Every element n will

be assigned a current A-marker a(n) and current B-marker b(n) by the N -
strategies. If the element n ∈ K then the strategy enumerates in Γ an axiom of
the form 〈n,A{s} � a(n) + 1, B{s} � b(n) + 1〉. If later on the element exits the
approximation to K the strategy invalidates the previously enumerated axioms
by extracting the current B-marker from the set B.

The N -strategies. To ensure that C 6= We we use the standard strategy.
When first activated at stage s the strategy chooses a witness xe and enumerates
it in the set C{s}. If this witness never enters the approximation to We then
the requirement is satisfied and no further actions are needed. If at stage s+

the witness xe does enter the approximation to the set We the strategy extracts
the witness xe from the set C{s

+}, and in this case as well succeeds to satisfy
the requirement.

Incorporating the K-requirements. There will be no explicit strategy acti-
vated during the construction to ensure that K-requirements are satisfied. In-
stead it will be incorporated in the the Ne-strategies. If a witness is enumerated
at stage s and then extracted at stage s+ then for all t in the interval [s, s+)
the approximation to the set C is wrong, namely C{t} * C. To ensure that
the K-requirements for such stages are respected, we must therefore ensure that
B{t} ⊆ B. So any B-marker that appears in the set B{t} must remain in B.
This might obstruct the global S-strategy as it might require the extraction of
such a B-marker in order to keep Γ rectified.

To resolve this conflict the Ne-strategies must be modified. Before a witness
xe is extracted from the set C, the construction must ensure that restraining
certain elements in the set B will not affect the operator Γ. As every axiom in
Γ is composed of two parts: a finite set DA and a finite set DB , to invalidate
an axiom while at the same time restraining DB ⊆ B would be possible if there
is a useful extraction from the set A. Every Ne strategy shall therefore try to
force such an extraction.
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To every Ne strategy we assign a threshold de - the e-th element of K. The
threshold de marks the point whereNe takes control over the axioms enumerated
in Γ. Of course we do not know initially which is the e-th element of K but after
finitely many wrong guesses we will eventually find the right one. The strategy
then assigns current A and B-markers to the threshold de. Through a priority
ordering and initialization of the N -strategies we ensure that all axioms for
n ≥ de are extensions of an axiom for de in Γ. Thus invalidating the axioms for
de will have the effect of invalidating all axioms for elements n ≥ d and moving
the activity of the S strategy above any pre-fixed restraint. Ne will select a
witness xe and try to diagonalize with it against We. If the witness xe enters
We then the strategy shall not immediately extract it from C, instead it shall
try to force a change in A by initiating the construction of a c.e. approximation
to A and starting a new cycle with a new witness. If this process is repeated
infinitely often with no useful extraction from A then we can argue that the set
A is c.e. Thus after finitely many unsuccessful attempts at diagonalization the
strategy will eventually be successful.

Construction. We order the N -requirements linearly:
N0 < N1 < N2 < . . .

and assign a strategy to every requirement. Next we will define when a strategy
requires attention and the actions that it makes if it is activated.

The S-strategy. The global S-strategy requires attention at every stage. If
activated as stage s, the S-strategy operates as follows:

For every element n ≤ s perform the following actions:

S.1 If n ∈ Γ(A,B){s} \K{s} then find all valid axioms for n in Γ{s}. For each
such axiom, 〈n,An, Bn〉, the finite set Bn ends in an old B-marker b(n)
defined at a previous stage. Extract b(n) from B{s}.

S.2 If n ∈ K
{s}

and the current A and B markers for n are defined then
enumerate in Γ{s} the axiom 〈n,A{s} � a(n) + 1, B{s} � b(n) + 1〉.

The N -strategies. Fix an N -strategy Ne. The strategy Ne is equipped with
the parameters listed below. Whenever a parameter is cancelled, it gets its
initial value.

• A threshold de, defined as the e-th element of K
{s}

. Important attributes
of the threshold will be its first B-marker which will be denoted by b0(de)
and its current B-marker denoted by b(de). The threshold and its at-
tributes are initially undefined.

• A current witness xe - the witness from the current cycle, and an old
witness ye - the witness from the previous cycle. These witnesses are
initially undefined. Whenever a witness is cancelled it is enumerated back
in the current approximation to C.

• Finally the strategy keeps a parameter Ge, which is meant to approximate
the set A and is referred to as the current guess. Initially Ge = ∅.
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We list the cases in which Ne requires attention and the actions it makes.

N .0 The strategy is in initial state or the threshold de /∈ K.
Action: Define the threshold de ∈ K

{s}
as the e-th member of K

{s}
.

Define its first current B-marker b(de) = b0(de) and its current A-marker
a(de)- as fresh numbers, numbers that have not appeared in the construc-
tion so far. Enumerate b(de) in the set B{s}. All other parameters: xe, ye

and Ge, are cancelled.
N .1 A B-marker for an element n < de has been extracted from B at stage s.

Action: Extract from the set B{s} all B-markers for the threshold de

that are greater than or equal to b0(de) and have been defined until stage
s. Define the current marker b(de) as a fresh number and enumerate it in
the set B{s}. All other parameters: xe, ye and Ge, are cancelled.

N .2 Ge ⊆ A{s} and ye ↓/∈ C{s}.
Action: Extract from the set B{s} all B-markers for the threshold de that
are greater than or equal to b0(de) and have been defined until stage s.
Enumerate ye in C{s}. Cancel the current witness xe. Define the current
marker b(de) as a fresh number and enumerate it in the set B{s}.

N .3 Ge * A{s} and ye ↓∈ C{s}.
Action: Let sstart(ye) be the first stage at which ye is enumerated in the
approximation to the set C. For every stage t, such that sstart(ye) ≤ t ≤ s
and ye ∈ C{t} enumerate all n ∈ B{t} such that n ≥ b0(de) in the set B{s}.
Extract ye from C{s}. Cancel the current witness xe. Define the current
marker b(de) as a fresh number and enumerate it in the set B{s}.

N .4 ye ↑ or ye ↓∈ C{s}, and Ge ⊆ A{s} and the witness xe is not defined.
Define the witness xe as a fresh number and enumerate it in C{s}. Extract
from the set B{s} all B-markers for the threshold de that are greater than
or equal to b0(de) and have been defined until stage s. Define the current
marker b(d) as a fresh number and enumerate it in the set B{s}.

N .5 ye ↑ or ye ↓∈ C{s}, and Ge ⊆ A{s} and xe ∈W {s}e .
Action: Let sstart be the first stage at which xe is enumerated in the ap-
proximation to the set C. Set the guess Ge to be the set

⋂
sstart≤t≤sA

{t} �
a(de). Set ye = xe and cancel xe, i.e. the current witness becomes the
old witness and the value of the current witness is cancelled. Extract all
B-markers for the threshold de that are greater than or equal to b0(de)
and have been defined until stage s from the set B{s}. Redefine the the
current A-marker a(de) of the threshold as a new fresh number. Define
the current marker b(de) as a fresh number and enumerate it in B{s}.

The complete construction. At stage 0 we set Γ{0} = C{0} = B{0} = ∅, all
markers and parameters are undefined. At stage s > 0 let Ne be the highest
priority N -strategy which requires attention. The strategy requires attention
at stage s under the least step which applies.

Case 1: Ne requires attention under step N .3. Then Ne receives attention.

Case 2: Otherwise the global strategy S receives attention and executes its
actions. This may cause a higher priority N -strategy to require attention under
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step N .1. Let Nj be the highest priority strategy which requires attention after
the action of the global S-strategy. Nj receives attention.

In both cases all N -strategies with lower priority than the N -strategy which
receives attention are initialized. All of their parameters are cancelled. B{s}

and C{s} are the final values of the constructed sets at the end of stage s.

This completes the construction.

Below we prove that the construction produces the desired sets B and C.
The proof is divided into a series of simple propositions. We start with a very
simple property of the construction.

Proposition 5. The global strategy S receives attention at infinitely many stages.

Proof. Towards a contradiction assume that there is a stage s such that at all
t ≥ s the strategy S does not receive attention. Then at each stage t ≥ s an N -
strategy requires and receives attention under step N .3. Let Ne be the highest
priority strategy which requires attention at a stage t > s. By construction
Ne receives attention, and performs action that ensure that it does not require
attention under step N .3 at the next stage t+1, e.g. enumerates its old witness
ye in the set C{t}. All lower priority strategies are initialized at stage t and
require attention under N .1 at the next stage. It follows that at stage t + 1
no strategy will require attention under step N .3 and S will receive attention
contradicting our assumption. �

Fix anN -strategyNe and assume that no higher priorityN -strategy requires
attention after stage si(e). We will prove that there is a stage sf (e) such that
Ne does not require attention at stages t > sf (e) and that the requirement
Ne satisfies its requirement. We will do this in three steps, incorporating the
inductive proof that the S strategy succeeds as well.

Proposition 6. There is a least stage s1(e) such that Ne does not require at-
tention under steps N .0 and N .1 at stages t > s1(e).

Proof. As Ne is not initialized after stage si(e), whenever Ne requires at-
tention, it receives attention and no other strategy can cancel the values of its
parameters.

At stage si(e) + 1 the strategy Ne requires attention under step N .0 and
assigns to de the e-th element of the approximation to K. The set K is infinite
and approximated by a Π0

1 approximation. There will be a least stage s0(e) ≥
si(e) such that K

{t}
correctly approximates K on all numbers less than or equal

to its e-th member at all stages t ≥ s0(e). At stage s0(e) the strategyNe requires
attention for the last time under step N .0. At all further stages the value of its
threshold de together with its first B-marker b0(de) do not change. All lower
priority strategies are initialized.

There are finitely many numbers n < de which do not belong to the set
K and for each such element finitely many axioms are enumerated in Γ. All
of these axioms are enumerated before stage s0(e), as after stage s0(e) the
approximation to K � de + 1 does not change. Hence each such axiom ends
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in a B-marker b(n) < b0(de). Thus if an axiom for an element n < de is
invalidated by the global S strategy at a stage t > s0(e), a marker b(n) < b0(de)
is extracted from the set B{t}. This marker will not be re-enumerated in the set
B by any N -strategy at any further stage, as higher priority N -strategies are
not activate, Ne and lower priority strategies enumerate elements only under
step N .3, hence elements that are larger than the current value of the first
marker of their threshold, defined after stage s0(e), hence larger than b(n).

It follows that there is a last stage s1(e) at which the global strategy S
extracts a B-marker for an element n < d. After this stage Ne does not require
attention under step N .1. �

From this point on we will not indicate a stage when talking about the value
of the threshold de and its first B-marker b0(de) as by Proposition 6 the value
of these parameters do not change after stage s0(e).

Corollary 5. At stages t > s1(e), B{t} � b0(d0) = B � b0(d). The operator Γ
is correct on all numbers n < d0.

Proof. The first part of this lemma is straightforward. After stage s1(e) the
global strategy does not modify the approximation to the set B � b0(d) and it
follows from the proof of Proposition 6 than no N -strategy does either.

If n /∈ K, as the global strategy receives attention at infinitely many stages
by Proposition 5, it will ensure that all axioms in Γ for n are invalid at infinitely
many stages, hence n /∈ Γ(A,B). If n ∈ K then n is a threshold of a higher
priority strategy Nk, k < e. By construction Nk always ensures that the current
A- and B-markers of its threshold are defined and is the only strategy which can
modify their values. After stage si(e) the strategyNk does not require attention,
hence the values of a(n){t} and b(n){t} are defined at all t > si(e) and do not
change. Denote their final values by a(n) and b(n). The approximation to
A � a(n) + 1 will eventually settle down and there will be a stage sn ≥ si(e)
such that (∀t ≥ sn)(A{t} � a(n) + 1 = A � a(n) + 1). At stage sn the global
strategy enumerates the axiom 〈n,A{sn} � a(n) + 1, B{sn} � b(n) + 1〉 which is
valid at all further stages. �

Lemma 9. The set Ge =
⋃

t≥s1(e)
G
{t}
e is computably enumerable.

Proof. We will prove that G{t}e ⊆ G
{t+1}
e for all t ≥ s1(e). Let s be a stage

such that G{s}e 6= G{s+1}. Then at stage s+ 1 the value of the guess is changed,
hence Ne executes step N .5.

Denote the previous value of the guess, G{s}e , by G−e and the previous value
of the old witness, y{s}e by y−e . Let s− ≥ s1(e) be the stage at which these values
are assigned to the guess. At all stages t in the interval [s−, s], G{t}e = G−e and
y
{t}
e = y−e .

At stage s + 1 the strategy Ne has a current witness x{s}e defined at stage
sstart(xe) > s− and sets G{s+1}

e =
⋂

sstart(xe)≤t≤s+1A
{t} � a(de). We will prove

that G−e = G
{t}
e ⊆ A{t} � a(de) for all t in the interval [sstart(xe), s + 1]. First
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we note that maximal element of G−e is less than a(de){s+1} as every time a new
value of the guess is defined the value of the marker a(de) is shifted to a greater
number.

Secondly note that every time step N .3 or N .2 are executed the value of
the current witness is cancelled. It follows that these steps are not executed
at any stage t in the interval [sstart(xe), s + 1]. At stage sstart(xe) step N .4
is executed, hence the old witness y−e is in the approximation to the set C.
The old witness can only be extracted under step N.3, hence at all stages t in
the interval [sstart(xe), s + 1], y−e ∈ C{t}. Again by the fact that Ne does not
require attention under N .0, N .1, N .2 and N .3 and y−e ∈ C{t} at all stages t
in the interval [sstart(xe),≤ s+ 1], it follows that G−e = G

{t}
e ⊆ A{t} and hence

G
{s}
e ⊆ G{s+1}

e .
�

Corollary 6. There is a least stage s5(e) ≥ s1(e) such that Ne does not require
attention under step N .5 at any stage t > s5(e).

Proof. Assume towards a contradiction that Ne requires attention under step
N .5 at infinitely many stages. Then at infinitely many stages t we have that
G
{t}
e ⊆ A{t} and the value of the guess is redefined. We will prove that A = Ge =⋃
t≥s1(e)

G
{t}
e . Fix n and let tn be a stage such that (∀t ≥ tn)(A{t}(n) = A(n)).

If n ∈ A then let t2 > t1 > tn be two stages at which Ne executes N .5.
At stage t1 the current witness is cancelled and the marker a(de) is redefined
to a fresh number larger than any that has appeared in the construction so
far, hence larger than n. The current witness at stage t2 is defined at stage
sstart(x) > t1 > tn. Since n ∈ A{t} at all t ≥ sstart(x) and a(de){t2} > n, the
element n enters the approximation to the guess Ge at stage t2. If n /∈ A and
we assume that n ∈ G{t0}e at some stage t0 > tn then at all t > t0 G

{t}
e * A{t},

contradicting the assumption that Ne executes N .5 at infinitely many stages.
However by Lemma 9 Ge = A is a c.e. set, and we have reached the desired
contradiction. �

We are ready for the final third step in the proof of the satisfaction of the
N -requirements.

Lemma 10. There is a least stage sf (e) ≥ s5 after which the strategy Ne does
not require attention. The requirement Ne is satisfied.

Proof. Let Ge = G
{s5(e)}
e be the final value of the guess and ye = y

{s5(e)}
e be

the final value of the old witness (if defined). We have two cases depending on
whether Ge is a subset of A or not.

Suppose that Ge ⊆ A and let s3(e) ≥ s5(e) be the least stage such that
Ge ⊆ A{t} at all t ≥ s3(e). Then at stages t ≥ s3(e) the strategy does not
require attention under step N .3. If at stage s3(e) the old witness ye ↓/∈ C{s3(e)}

the strategy will require attention once under step N .2 and enumerate ye ∈ C{s}
permanently. Hence after a least stage s2(e) ≥ s3(e) the strategy will not require
attention under step N.2. In all cases at stage s2(e) ≥ s3(e) ≥ s5(e) the current
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witness is not defined as it is cancelled at steps N .1, N .2, N .3 and N .5. At
stage s2(e) the strategy Ne requires attention once under step N .4, defines the
final value of the witness current xe and enumerates it in C{s2(e)} and after this
the strategy does not require attention under N .4. Hence Ne does not require
attention at any stage t > sf (e) = s2(e). Furthermore the final witness xe never
enters the approximation to We, or else Ne would require attention under step
N .5. Hence xe ∈ C \We.

The second case is Ge * A. In this case Ge 6= ∅ hence at stage s5(e) the
strategy executes step N .5, assigns as the final value of the old witness ye an
element which belongs to the set We. Let sf (e) > s5(e) be the least stage such
that Ge * A{t} at all t ≥ sf (e). At sf (e) the strategy Ne requires attention
under step N .3 and extracts the old witness ye from the set C{sf (e)}. The
strategy does not require attention at stages t > sf (e) and hence ye ∈We \ C.

�
So far we have proved that the S- and N -requirements are satisfied. To con-

clude the proof we need to show that the K-requirements are as well respected.
For this we shall need to following.

Lemma 11. Suppose Ne does not require attention after stage sf (e). Let b(de)
be the current marker of the threshold at stage sf (e). The approximation to
B � b(de) + 1 does not change at stages t > sf (e).

Proof. At stages t > sf (e) higher priority strategies than Ne do not re-
quire attention. Lower priority strategies are initialized at stage sf (e) and their
parameters are cancelled. At further stages they modify B only on elements
larger than the first marker of their threshold, defined after stage sf (e) and
larger than b(de).

This leaves the global S-strategy which may modify the approximation to
B at stage t > sf (e) in order to invalidate an axiom for an element n /∈ K{t}.

Suppose that this is the case. It follows that n > de (otherwise Ne would
require attention under step N .0 or N .1 at sage t > sf (e)) and that this axiom
is enumerated in Γ{s} at stage s ≤ sf (e) as it ends in a B-marker for n which is
less than b(de). By Corollary 5 the approximation to B � b0(de) does not change
at stages t > s1(e) hence this marker is larger than b0(d) and s0(e) ≤ s ≤ sf (e),
where s0(e) is the last stage at which Ne executes N .0.

After stage s0(e) the current A and B-markers of the threshold de are always
defined. Hence at stage s an axiom is enumerated in Γ for the threshold de as
well. Let that be 〈de, Ade , Bde〉, ending in the current B-marker for de at stage s,
say bs(de) ≥ b0(de). We will show that the axiom 〈de, Ade

, Bde
〉 is invalid at all

stages t ≥ sf (e). As the axiom for n enumerated at stage s is an extension of this
axiom we will reach the desired contradiction. There are two cases depending
on the outcome of Ne.

If Ne is satisfied by C * We by Lemma 10 at stage sf (e) the strategy
executes N .4 and extracts permanently all B-markers for the threshold defined
after the first one, including bs(de). It follows that the axiom 〈de, Ade

, Bde
〉 is

invalid at all stages t ≥ sf (e).
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If Ne is satisfied by We * C then the strategy has a final old witness ye,
defined at stage ssart(y) and a defined final value of the guess Ge, such that
Ge * A{t} at all stages t ≥ sf (e).

The marker bs(de) is the current marker for the threshold de at stages in
the interval [s1, s2] where s1 and s2 are two consecutive visits of the strategy
Ne and s1 < s ≤ s2. If s1 < sstart(y) then bs(de) is permanently extracted
at stage sstart(y) ≥ s2 under the actions of N .4. Suppose sstart(y) ≤ s1. If
ye /∈ C{s1} then at stage s2 the strategy Ne executes a step different from N .3
and the marker bs(de) is as well permanently extracted from the set B. Finally
if ye ∈ C{s1} then at stage s the guess Ge ⊆ A{s}, otherwise Ne would require
and receive attention under N .3 and S would not be activated. In this case
however Ge ⊆ Ade and again the axiom is invalid at all stages t > sf (e).

�
Finally we can conclude the proof of the theorem

Corollary 7. All N -requirements are satisfied. Γ(A,B) = K. The sets B and
C form a K-pair.

Proof. That all N -requirements are satisfied follows by an induction on their
priority. Suppose that all requirements of higher priority than Ne are satisfied
and their corresponding strategies do not require attention after stage si. .
Then by Lemma 10 Ne satisfies its requirement and does not require attention
after stage sf (e).

To prove that Γ(A,B) = K fix a number n and select an N -strategy Nk

with permanent threshold dk > n. By Corollary 5 the operator Γ is correct on
the element n.

Finally to prove that B and C form a K-pair we will show that for every
stage s if C{s} * C then B{s} ⊆ B.

Fix s such that C{s} * C and assume towards a contradiction thatB{s} * B.
Let y ∈ C{s}\C. Then y is the old witness of an N -strategy Ne, which is defined
at stage sstart(y) ≤ s, never cancelled and eventually permanently extracted
from the set C at stage sf (e) > s.

As s > s1(e) by Corollary 5 B{s} � b0(de) ⊆ B. On the other hand by
Lemma 10 at stage sf (e) the strategy Ne executes step N .3 and enumerates in
the set B{sf (e)} all elements n ∈ B{s} such that n ≥ b0(de) and then sets the
final value of the B-marker for the threshold b(de) to a fresh number larger than
maxB{s}. Finally by Lemma 11 the approximation to B � b(d) + 1 does not
change at stages t > sf (e), hence B{s} ⊆ B. �

9. Proof of Theorem 5

Theorem 5 is a relativized version of Theorem 4. In order to prove it we will
first show some basic concepts that will allow us to carry out the construction
described in the previous section above any total enumeration degree.

Let G be a total representative of a total enumeration degree g. We can
define a Σ0

2(G) approximation to a set A to be a uniformly computable from
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G sequence of finite sets {A{s}}s<ω such that n ∈ A if and only if (∃s)(∀t >
s)(n ∈ A{s}). A Σ0

1(G) approximation to a set A is a Σ0
2(G) approximation

{A{s}}s<ω with the additional property that for every s the A{s} ⊆ A{s+1}. A
Π0

1(G) approximation to a set A is a Σ0
2(G) approximation {A{s}}s<ω with the

additional property that for every s and n if n ∈ A{s} \ A{s+1} then n /∈ A{t}
at all t ≥ s + 1. A ∆0

2(G) approximation to a set A is a Σ0
2(G) approximation

{A{s}}s<ω with the additional property that for every n the limit lim sA
{s}(n)

exists. These are natural definitions motivated by the fact that a set A is Σ0
2(G)

(Σ0
1(G), Π0

1(G) or ∆0
2(G)) if and only if it has a Σ0

2(G)(Σ0
1(G), Π0

1(G) or ∆0
2(G))

approximation.
The following lemma is true of any set G, not necessarily a total set G.

Lemma 12. A set Y is enumeration reducible to G⊕X if and only if there is
a set W ≤e G such that Y = W (X) = {n | (∃〈n,D〉 ∈W )(D ⊆ X)}.

Proof. Suppose Y = Γ(G,X) where Γ is an e-operator, i.e. a c.e. set. Then
consider the set W = {〈n,Dx〉|〈n,Dg, Dx〉 ∈ Γ ∧Dg ⊆ G}. Then W ≤e G and
Y = W (X).

On the other hand if Y = W (X) and W = Λ(G), where Λ is an e-operator,
then let Γ = {〈n,Dg, Dx〉|〈〈n,Dx〉, Dg〉 ∈ Λ}. Then Y = Γ(G,X).

�
Thus, as our set G is total, it follows that the set Y is enumeration reducible

to the set G ⊕ X if and only if there is a set W which is c.e. in G, such that
Y = W (X). Of course a set W is c.e. in G if an only if it is Σ0

1(G) if and only
if it has a Σ0

1(G) approximation.
Finally we turn to K-pairs with respect to G.

Lemma 13 (Relativized K-pair approximation property). Let B and C
be Σ0

2(G) sets with Σ0
2(G) approximations {B{s}}s<ω and {C{s}}s<ω such that

for every s either B{s} ⊆ B or C{s} ⊆ C. Then B and C form a K-pair over
G.

Proof. Let W =
⋃

s<ω A
{s} ×B{s}. Then W is c.e. in G, hence enumeration

reducible to G. Furthermore for every pair (b, c) ∈ B ×C then there are stages
sb and sc such that (∀t ≥ sb)(b ∈ B{t}) and (∀t ≥ sc)(c ∈ C{t}), hence at stage
s = max(sb, sc) we have (b, c) ∈ B{s} × C{s} ⊆ W , hence B × C ⊆ W . Now
fix (b, c) ∈ B × C. If b ∈ B{s} then B{s} * B and hence by the property of
the approximations C{s} ⊆ C. But in this case c /∈ C{s}. As this is true for
every stage s it follows that (b, c) /∈ W and hence B × C ⊆ W . Now applying
Theorem 6 we get that B and C form a K-pair over G. �

These properties are sufficient to prove the desired relativization. Fix A such
that A is ∆0

2(G) and A �e G. Let KG be a Π0
1(G) representative of the degree

g′. We construct ∆0
2(G) sets B and C and a c.e. in G set Γ so that the following

requirements are satisfied:

S : Γ(A,B) = KG.

29



This will ensure that A ⊕ B ⊕ G = KG hence the degree of A is cupped to g′

by the degree of B ⊕G.
Fix a computable enumeration of all c.e. in G sets {WG

e }e<ω. For every e
we have a requirements:

Ne : WG
e 6= C.

Finally we ensure the K-pair property. For every s we have the following
requirement:

Ks : B{s} ⊆ B ∨ C{s} ⊆ C.

To satisfy these requirements we carry out precisely the same construction as
in the previous section but relative to the oracle G. Finally we set b = de(B⊕G)
and c = de(C⊕G). Then from the S-requirement we get that b∨a = g′. Hence
b > g. From the N -requirements we get that c > g, as C �e G. From the
K-requirement we get that b and c is a K-pair. Indeed {B{s} ⊕ G � s} and
{C{s} ⊕ G � s} are ∆0

2(G) approximations to the sets B ⊕ G and C ⊕ G with
the relativized K-approximation property. Finally as b and c are K-pairs over
g it follows that both b and c are low over g and hence b < g′.
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