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Abstract

Intuitively, a real number is computable if there is an effective method for
constructing arbitrarily close rational approximations of that number. Accord-
ing to Church Thesis, this intuitive description has its mathematical counter-
part — the well-known and extensively studied notion of a recursive real number.
However, one could be possibly interested also in studying certain other notions
corresponding to more restricted interpretations of the term “effective method”
or to wider interpretations of “method” after dropping the adjective “effective”.
We present here a framework for such a kind of studies and prove some results
concerning the arising computability notions for real numbers.
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1 Introduction

Intuitively, a real number is computable if there is an effective method for construct-
ing arbitrarily close rational approximations of that number. According to Church
Thesis, this intuitive description has its mathematical counterpart — the well-known
and extensively studied notion of a recursive real number. However, one could be
possibly interested also in studying certain other notions corresponding to more re-
stricted interpretations of the term “effective method” or to wider interpretations of
“method” after dropping the adjective “effective”. We present here a framework for
such a kind of studies and prove some results concerning the arising computability
notions for real numbers.
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The approach we shall use can be described as follows. Given a class F of total
functions in the set of the natural numbers, as long as F satisfies certain closedness
conditions, a simple reasonable notion of expressibility through functions from F
is defined for functions from the natural numbers into the rational ones. Then we
consider the real numbers « satisfying the condition that for any natural number n a
rational approximation A(n) of « such that

1

n+1

can be found by means of an expressible function A. Of course the notion of a
recursive real number can be obtained in this way by taking F to be the class of all
recursive functions. If the narrower class of the primitive recursive functions is taken
as F, then we get the notion of a primitive recursive real number studied for example
in [11, 7, 8, 6, 4, 5, 2].1 The set of all real numbers corresponds to the case when F
contains all total functions in the set of the natural numbers. Some other choices of F
will be indicated in the present paper, for example F can be any of the Grzegorczyk
classes £ (introduced in [1]) with n > 2.
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2 The acceptable classes F and the corresponding
fields of real numbers

Let N, Q and R be the set of the non-negative integers, the set of the rational numbers
and the set of the real numbers, respectively. A class F of total functions in N will be
called acceptable if it is closed under substitution and contains the functions An.n+1,
Amn.m = n, Amn.mn (where m = n = max{m — n,0}), as well as the projection
functions Anj ...ng.n;, k =2,3,4,..., i =1,2,..., k. If F is an acceptable class of
total functions in N then a function A : N — Q will be called ezpressible through F
or shortly F-expressible if it can be represented in the form
u(n) —v(n)

2 Aln) = w(n) +1

where u, v, w are functions belonging to F (if all values of A are non-negative then
clearly u(n) — v(n) = u(n) = v(n) and, taking u(n) —v(n) as a new u(n), one may
use the representation (2) without the term —w(n)). Of course, one can treat quite
similarly also those Q-valued functions that depend on several natural arguments. A
real number a will be called computable through a given acceptable class F or shortly
F-computable if there is an F-expressible function A : N — Q that satisfies the
inequality (1) for all n in N. The set of all real numbers computable through an
acceptable class F will be denoted by Rr.

)

All classes F mentioned in Section 1 are acceptable in the sense of the above
definition. Other examples are the class of all functions recursive in a given total
function and the class of all functions primitive recursive in such a function.

IThe preliminary version of this paper presented on the CCA 2001 Seminar under the title ” Well
computable real numbers” actually has been restricted to this particular instance of the present
considerations (with some additions concerning topics specific for that case).



Remark 1. Obviously there is a smallest one among the acceptable classes
(it can be defined by using the conditions from the definition of the notion of an
acceptable class as an inductive definition). We note that each one-argument func-
tion belonging to that minimal class is almost a polynomial with integer coefficients,
namely the function coincides with such a polynomial for all sufficiently large values
of the argument (this can be shown by inductively proving the following statement:
whenever we substitute in a function from the mentioned class some functions from
N into N that are almost polynomials with integer coefficients, the function we get
is also one of this sort). Therefore the minimal acceptable class is different from the
ones listed above.

Remark 2. Let F be an acceptable class. Then clearly all constants from N
belong to F. Thanks to the equalitiesn = (n+1)—1, m+n = (m+1)(n+1)—(mn+1),
Im—n| = (m-=n)+(n-=m),sg(n) = 1-+n, sg(n) = 5g(sg(n), min(m,n) = m=(m-=n),
max(m,n) = m+(n-=m), the functions An.n, Amn.m+n, Amn.Jm—n/|, 5g, sg, min and
max also belong to F. Of course F contains as well all polynomials with coefficients
from N.

If F is an arbitrary acceptable class then all constant functions from N into Q are
F-expressible, therefore QQ C Rr. For some acceptable classes F there are no other
F-computable real numbers except for the rational ones. Such is the case for example
when F is the minimal acceptable class.

For any two functions from N into Q that are expressible through an acceptable
class F their sum and their product can be easily shown to be also F-expressible.
If all values of a function A from N into QQ are distinct from 0 and A is expressible
through an acceptable class F, then the function An.1/A(n) is also F-expressible. In
fact, if A has the representation (2), where u, v, w belong to F, then we have the
equality
(w(n) + Du(n) — (w(n) + 1)v(n)

[fa(n) —o@)P — 1+ 1

Of course, all these statements can be immediately carried over to JF-expressible
functions of several arguments.

1/A(n) =

If F is an acceptable class and A is an F-expressible function from N into QQ then
(thanks to the closedness of F under substitution) the function Am.A(f(m)) is also
F-expressible for any one-argument function f belonging to F (and quite similarly
for functions from F and functions A depending on a greater number of arguments).

Remark 3. Let F be an acceptable class, a be a real number and A be an
F-expressible function from N into Q such that n|A(n) — a| remains bounded when
n ranges over N. Then a € Rr. To see this, it is sufficient to take a positive integer
¢ which is an upper bound of n|A(n) — a| and to observe that for all n in N

A —al < .
|A(en + ¢) oz|_n+1

Since the number —1 belongs to Rx for any acceptable class F, the next statement
implies that Rx is a field for any such class.
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Proposition 1. Let F be an acceptable class. Then for any two numbers
a and B from Ry the numbers o + B and af also belong to Rr. For any non-zero
number « from Rx the number 1/a also belongs to R .

Proof. Let a and 3 belong to Rx, and let A and B be F-expressible functions
from N into QQ such that

1
n+1

|A(n) —af < , |B(n) =6 <

n+1
for all n in N. Then

|(A(n) + B(n)) — (a + B)] |A(n

|A(n)B(n) —apBl < |A(n

|B(

2
— Bn) — 8| < —=—
)= al +B() ~ Bl < —— |
) = al[B(n)| +|a||B(n) - 5|
|+ laf _ 1+ 18]+ o

n+l — n+1l '

Since An.(A(n) + B(n)) and An.A(n)B(n) are F-expressible, the above inequalities
and Remark 3 lead to the conclusion that a + 8 and af belong to Rx. Additionally
suppose now that @ # 0. Let ¢ be a number from N such that (¢ + 1)|a| > 2, and
consider any n in N satisfying the inequality n > ¢. Then

2 1 1
A > —|la—A > — >
Am)] 2 Jal = o= Am)] 2 =5 ——5 > — .

IN

S

IN

hence A(n) # 0 and

1 1 |a—A(n)| < h
A(n)  al  JAm)||la] T n+1
with h = (¢ + 1)?/2. Now define a function C from N into Q as follows
1
Cm) = Tt
Then C is F-expressible and
1 h
) D G
‘C(m) al " m+k+1

for all m in N, hence 1/a € Ry.

It is known [9, 5] that the fields of the recursive real numbers and of the primitive
recursive ones have the property to contain the real roots of the one-argument poly-
nomials with coefficients from these fields.? We shall present now a generalization of
this.

An acceptable class F will be called closed under bounded p-operation if, whenever
fis a k + l-argument function from F, the class F contains also the function
(3) Ang .. ngngyr-min{m € N| f(ny,...,ng,m) =0V m =ng41 }.

We note that all above-mentioned concrete acceptable classes except for the one con-
sidered in Remark 1 satisfy this condition.

2The proof in [5] (concerning the field of the primitive recursive real numbers) has a gap, since it
supposes that not only the first derivative of the given polynomial is distinct from 0 for the considered
root, but also the second one. This gap can be filled by multiplying the polynomial by a suitable
linear function.



Theorem 1. Let F be an acceptable class closed under bounded p-operation,
and let ag, a1, ..., a1, ag, where ag # 0, belong to Rr. Then all real roots of the
polynomial

P(z) = apz® + ap2* L + .. 4+ ap 17+ ag

also belong to Rr.

Proof. Let £ be a real root of the polynomial in question. Without loss of
generality (at least non-constructively), we may assume that P'(§) # 0. Then there
are rational numbers a, b, ¢ and d such that a < £ < b, 0 < ¢ < d and

clz =& < [P(x)] < d|lz - ¢
whenever a < x < b. Making use of the computability through F of the numbers «y,
i, ..., Qp_1, O, let us consider F-expressible functions Ag, A1, ..., Ax_1, Ar from
N into QQ such that

1

i) - ai] £ .

i=0,1,...,k—1,k n=0,1,23,...

Consider now the polynomials
Py(x) = Ag(n)a® + Ay(n)z* =t + ...+ Aj_1(n)x + Ax(n), n=0,1,2,3,...
Clearly there is a rational constant h such that

\P(z) — P(2)] < nLH n=0,1,2,3,...
whenever a < x < b. We shall define now a function X from N into Q. Given any n
in N, let us divide the interval between a and b into n + 1 equally long subintervals.
Let M, be the set of the middle points of these subintervals. There is at least one
number z in M, satisfying the inequality
d(b—a) + 2h

2(n+1)
In fact, there is some x in M,, such that

@) |Pa(e)] <

b—a
< — "
and for any such x we have the inequalities
h b—a h d(b—a) +2h
P, <|P < = .
Fu(@) < | (I)|+n+1_d2(n+1) n+1 2(n+1)

We set X (n) to be the leftmost « in M, satisfying the inequality (4). Then

h _d(b—a)+4h

X(m) = €] < IPX )] < [PX ()] + g < S

Therefore the product n|X(n) — | remains bounded when n ranges over N, and,
having in mind Remark 3, it is sufficient to show the expressibilty of the function X
through F. For that purpose we shall use the fact that

6)  Xm=a+@-a Lt

’



where g(n) is the least m € {0,1,2,...,n} such that (4) is satisfied by

2m+1
2n+2

z=a+(b—a)
Thus we have

2 1 n
g(n):min{m€{0,1,2,...,n}‘Pn<a+(b—a) 27;3:2> o SO} )

where h' = d(b—a)/2 + h. Since

Pn<a+(b—a)2m+1> :gAi(n)<a+(b—a)22m+1>k_i ,

2n + 2 n+ 2

it is not difficult to see that the function

!
Anm.P, <a—|—(b—a)2m+1> h

2n+2) n+1
is expressible through F. Hence this function can be represented in the form

.u(n,m) —v(n,m)

A
o w(n,m) +1

’

where u, v, w are some functions from F. If we set f(n,m) = u(n,m) = v(n,m), then
f € F and we shall have g(n) = go(n,n), where the function go is defined by means
of the equality go(n1,n2) = min{m € N|f(ny,m) =0Vm = ny}. The closedness of F
under bounded p-operation allows us to conclude that go € F and hence g € F. This,
together with the equality (5), shows the expressibility of the function X through F.

Remark 4. It is natural to consider also complex numbers that are comput-
able through a given acceptable class F, i.e. such ones both components of which
are F-computable. Theorem 1 remains valid after replacing ”real” by ”complex”
in its formulation. This can be shown by means of certain natural changes in the
above proof (one replaces intervals by squares, divides the initial square into (n + 1)2
ones and so on). Another way to see the validity of the mentioned generalization
of Theorem 1 has been indicated to the author by Alex Simpson. Namely he noted
that, once such a theorem is proved, its generalization to complex numbers can be
immediately obtained by applying results from [12].

The following remark and the proposition after it will be useful later.

Remark 5. Ifan acceptable class F is closed under bounded p-operation then
the functions '
i

kE+1

belong to F thanks to the equalities

Aik. [ ] , Atk.imod (k+1)

{k—ll—l] =min{m € N| f(i,k,m) =0Vm =i}, imod (k+1) =i— {ﬁ] (k+1) ,

where f(i,k,m) =5g((m +1)(k + 1) - i).



Proposition 2. Let F be an acceptable class closed under bounded u-
operation, f be a k + 1-argument function belonging to F, and the functions f, and
fn from N¥*L into N be defined by means of the equalities

fu(na,...,ng,npyr) = max{f(ni,...,ng,m)|meN,m < ngy1},
Ay, ..o ng,ngpr) = min{ f(ny,...,ng,m) |m e Nm < ngyq}.
Then fy and fa also belong to F.

Proof. We shall carry out the proof only for the function fy (for the other one
it would be very similar). Let the functions hy and h; from Nf12 into N be defined
as follows:

ho(l,ny,...,ng, i) =min{m € N| (I + 1) = f(ny,...,ng, m) =0V m =i},

hl(nla s 7nk7nk+17j) = (nk-‘rl + ]‘) - ho(.f(n17' - 7nk7j)7n17' coy Mg, N1 + ]‘)
Then hy € F and for all [,ny,...,ng,i € N the equality i = ho(l,n1,...,n,7) =0 is
equivalent to the condition ! to be an upper bound of { f(ny,...,ng,m)|m € Nym < i}.
Therefore hy also belongs to F and, whenever ni,...,ng,ngt1,J € Nand j < ngqq,
we have the equivalence
hl(nla"'ankank-‘rl:j) - 0 = f(nla"'ankaj) = fV(nla"'ankank+l) -
Thus if we set
g(ni,...,nk,ney1) = min{j € N{hy(n1,...,np,np41,5)) =0V j = ngqr }
then g € F and
fV(nla' . '7nk7nk+1) = f(nla s 7nkag(n17 s 7nk7nk+1))7
hence fy € F.

3 JF-convergence

Let F be an acceptable class. An infinite sequence g, ay, @z, . . . of real numbers will
be called F-convergent if there is an one-argument function f € F such that for any
nin N

(6) la; — o] <

whenever j > i > f(n). The sequence ag, a1, @z, ... will be called computable through
F or shortly F-computable if there is an F-expressible function A : N> — Q such
that

(7) |A(m,n) — a;,| < m,n=0,1,2,3,...

n+1’
Clearly any F-convergent infinite sequence of real numbers has a limit, and the mem-
bers of an F-computable infinite sequence of real numbers always belong to Rr. We
note also the F-computability of the sequence of the values of any F-expressible
function from N into Q.

Proposition 3. Let ap,a1,Qs,... be an F-convergent infinite sequence of
real numbers that is F-computable. Then limy, oo ayn € Re.

7



Proof. Let @ =lim;,—o ap- If fis a function with the properties from the
definition of F-convergence, and A is a function with the properties from the other
definition above, then

2
n+1

|A(f(n),n) — af <[A(f(n),n) = aym| + lapm) —al <

for any n in N, and the function An.A(f(n),n) is F-expressible, hence Remark 3 is
applicable.

The notion of F-convergence is transferred in a natural way to infinite series,
namely an infinite series of real numbers will be called F-convergent if the sequence
of its partial sums is F-convergent.

Next two propositions show that certain often used tools of calculus for showing the
convergence of infinite series always or usually establish in fact their F-convergence.

Proposition 4. Let 19,71,72,... be an infinite sequence of real numbers
such that the series

® D Iml
k=0

is convergent by D’Alembert’s, Cauchy’s or Raabe’s test. Then the series

o0
©® D
k=0
1s F-convergent.

Proof. Let us set

U= T, m=0,1,23,...

k<m

To show the F-convergence of (9) in the case when the series (8) is convergent by
D’Alembert’s or Cauchy’s test, we consider a number 7 such that 0 < v < 1 and for
all sufficiently large k in N the inequality |7%| < 7* holds. If i,j € N, j > i and i is
suffiently large then

i i
i =y < Y ml < Y 7k=71_7 <17_
i<k<j i<k<j v v

Since (i + 1)7* tends to 0 when 4 tends to infinity,

i
1

7 < -

1—v i+1

for all sufficiently large ¢ in N. Hence there is a number ¢ € N such that

1
o —aj| < —
e il 1+ 1



whenever i,7 € N and j > i > ¢. By setting f(n) = max(n,c) we get a function
f € F such that (6) holds whenever j > i > f(n). Suppose now that the series (8)
is convergent by Raabe’s test. This implies the existence of a positive integer a such
that for all sufficiently large k in N the inequality |7x| < (k + 1)~/ — (k 4 2) /¢
holds. Let ¢ be such a number from N that the above inequality holds whenever & > c.
Ifi,j € Nand j > i > ¢ then |a; — aj| < (i + 1)7/% — (j+ 1)~V < (i +1)~/e,
Thus by setting f(n) = max((n+1)* — 1, ¢) we shall again get a function f € F such
that (6) holds whenever j > i > f(n).

Corollary 1. Each power series with a non-zero radius of convergence is
F-convergent at any point inside its convergence interval.

Proposition 5. Letty,m,72,... be a monotonically decreasing infinite se-
quence of real numbers that is F-convergent with limit 0. Then the infinite series

o0

Y (=1)fm

k=0

is F-convergent.

Proof. If weset

Qm = Z(—l)kﬂc , m=0,1,2,3,...
k<m

then, as it is well-known, |a; — ;| < 7; whenever i,j € N, j > i.

4 Strongly acceptable classes

Let F be an acceptable class. The class F will be called strongly acceptable if F con-
tains the function An.2"™ and F is closed under bounded primitive recursion, i.e. under
such primitive recursion that produces a function bounded by some function from F.
All above-mentioned acceptable classes except for £2 and the one from Remark 1 are
in fact strongly acceptable.

Rem ark 6. Making use of the inequalities m™ < 2™" n! < 2”2, as well as of
the primitive recursive equations for the functions Amn.m"™ and An.n!, we see that
these functions belong to any strongly acceptable class.

Proposition 6. Any strongly acceptable class is closed under bounded pi-
operation.

Proof. Let F be a strongly acceptable class, f be a k 4+ 1l-argument function
belonging to F, and g be the corresponding function (3). Then g € F thanks to
the inequality g(ni,...,nk,ng+1) < ng+1 and the equalities g(ng,...,ng,0) = 0,
gny, .. ng,ngr1 +1) =glng, . ng, nge1) +sg(f(na, -« ne, g(na, -« Mg, Ngt1)))-

Remark 7. The converse statement to Proposition 6 is not true. For example
the class of the functions in N that are bounded by polynomials is an acceptable class
closed under bounded p-operation, but it does not contain the function An.2".
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Proposition 7. LetF be a strongly acceptable class, f be a k+ 1-argument
function belonging to F, and the functions fs and fri from N*+1 into N be defined by
means of the equalities

folny,ompmen) = Y flna,.mgm)
m<Ng41

fulny, ... ng,ngyr1) = H flna, ... ng,m) .
m<Ng41

Then fs and fro also belong to F.

Proof. Let the function f, be defined as in Proposition 2. By that proposition
and Proposition 6 fy € F. Therefore we may use the primitive recursive equations
for the functions fs; and fij, as well as the inequalities

fz(nla"'ankank+1) S fV(nla"'ankank+1 - ]‘) Ng+1,
fulna, .o e, negr) < fo(na, . e, npggn = 1)

Proposition 7 has its analogue for F-expressible Q-valued functions. We shall
formulate and prove here only the part concerning summation.

Proposition 8. Let F be a strongly acceptable class, A : N*t1 — Q be
F-expressible, and the function Ay from NFL into Q be defined by means of the
equality

As(ny,. - ng, Mg1) = Z A(ny,...,ng,m) .

m<Ng41

Then As is also F-expressible.

Proof. Let A has the representation

U’(nla"';nkam) _v(nla"'ankam)

A(ny,...,ng,m) = ,

w(nl,...,nk,m)+1

where the functions u, v and w belong to F. After setting

h(nla"'ankank+l): H (W(n1,...,nk,m)+1)

m<Ng41
we have
@(na, ey Mgy Mpg1) — (N1, ooy Tk, Tot1)
As(ni,...,ng,n =
n(, - s k1) W(ny, ..., Nk, Ner1) + 1 ’
where @(ny, ...k, ne41) = h(ng, .. ne, negr) = 1,
i h(ni,...,ng, Mgt
(N1, ey Mgy 1) = Z w(ng,...,ng,m) (( LR R, L )++)1
e w(ny,...,ng,m
and similarly for v(n1, ..., ng, ngr1)-

10



The presented results enable us to show for many concrete real numbers playing a
role in analysis that they belong to Rr for any strongly acceptable class F. This can
be done by using appropriate representations as sums of infinite series with rational
terms and applying the case k = 0 of Proposition 8 together with some of the suffi-
cient conditions from Section 3 for F-convergence of infinite series. For example the
representation In2 =1-1/2+1/3—1/4+... can be used in this way in combination
with Proposition 5 for showing that In2 € Rr. For doing similar things in the case of
infinite series with not necessarily rational terms, the following statement can be often
helpful (in fact, this statement and Taylor series for the basic elementary functions
of analysis can be used to show that all values of such functions for F-computable
values of the argument are also F-computable).

Proposition 9. Let F be a strongly acceptable class, and 19,71,72,... be
an F-computable infinite sequence of real numbers. Let

am = T, m=0,1,23,...

k<m

Then the sequence oy, a1, s, ... is also F-computable.

Proof. Let A be an F-expressible function from N? into Q satisfying the
condition (7). Then

> A(kn) =Y

k<m k<m

m
n+1

<3 JAlkin) =l <

k<m

for all m and n in N. Hence by setting

B(m,n) = 3 Alk,m(n+1))
k<m
we get an F-computable function B from N into QQ such that

< m < 1
“mn+1)+1 " n+1°

B(man)_ Z Tk

k<m

For any strongly acceptable class F we shall prove a characterization of the real
numbers in Rx by means of infinite signed-digit binary fractions. The characterization
will be obtained as a corollary from the next statement.

Lemma 1. Let the class F be strongly acceptable, and let o € R, 0 < a < 4.
Then the following two conditions are equivalent:

1. The number a belongs to Ry .
2. There is an one-argument function f in F with values in {0,1,2} such that

(10) azzf(f).

11



P roof. First suppose condition 2 is satisfied. We have to show that condition 1
is also satisfied. Let

Am) =Y f(f) , n=0,1,23,...
i<n
The function A is F-expressible by Proposition 8. Since

4 4
< )
2" T 41

— f()
A —al =3 I <
i=n
the product n|A(n) — a| is bounded, and the implication from condition 2 to con-
dition 1 is thus proved. To prove the converse implication, suppose condition 1 is
satisfied. Let A be an F-expressible function from N into Q satisfying for any n in N
the inequality (1). By setting A = /\n.A(~2"+1 — 1) we get an F-expressible function
A N — Q satisfying the inequality |A(n) — | < 27771 for all n in N. For any
rational number r let p(r) =2 if r > 5/2, o(r) = 1if 5/2 > r > 3/2, and ¢(r) =0
otherwise. We define a function « : N — N in the following recursive way:
u(0) = 0, u(n + 1) = 2u(n) + (2" A(n) — 2u(n)).
By setting f = An.u(n+1) —2u(n) we get a function f from N into {0, 1,2}. We shall
prove that equality (10) holds and f belongs to F. For proving (10) it is sufficient to
prove that for any n in N the equality
(1) u(n) =) f@2
i<n
holds, as well as the inequalities 0 < 2"a — 2u(n) < 4, since these statements imply

the inequalities
0<a— Z f (Z)

i<n

4
< o
The proof of (11) is by an easy induction using the equality «(0) = 0 and the definition
of f. The proof of the inequalities 0 < 2"« — 2u(n) < 4 is also by induction. These
inequalities hold for n = 0 since 0 < a < 4. Now suppose that they hold for a certain
n in N. Then we set r = 2" A(n) — 2u(n) and note that |2"a —2u(n) —r| < 1/2, hence
max{r —1/2,0} < 2"a — 2u(n) < min{r + 1/2,4}. Consequently
max{r — 1/2,0} — o(r) < 2"a —u(n + 1) < min{r + 1/2,4} — p(r).

By counsidering separately the three cases in the definition of ¢(r) it is easy to check
that always 0 < max{r —1/2,0} — ¢(r) and min{r + 1/2,4} — p(r) < 2. Therefore
0 <2"a—u(n+1) <2, hence 0 < 2"l — 2u(n + 1) < 4. Thus the proof of the
equality (10) is completed and it remains only to prove that f € F. For doing this it is
sufficient to show that u € F. Since u(n) < 2"t —2 for all n in N, it would be enough
to prove that Anm.2m + ©(2"A(n) — 2m) belongs to F. For that purpose we first
note that Anm.2"A(n) —2m is an F-expressible function, i.e. there are two-argument
functions @, ¥ and @ in F such that

a(n,m) —v(n,m)
w(n,m) +1

2"A(n) — 2m =
for all n and m in N. But it is not difficult to see that the above equality implies
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(p(2nA(n) - 2m) = h(a(na m): ’[}(na m): ’II)(H, m)):
where h(i, j, k) =sg(2i = (25 + 5k +5)) +sg(2i = (2 + 3k + 3)), and this completes
the proof of the lemma.
The mentioned characterization by means of infinite signed-digit binary fractions
reads as follows.

Theorem 2. Let F be a strongly acceptable class, a be a real number, and k
be an integer such that 28%1 > |a|. Then the following two conditions are equivalent:

1. The number « belongs to Rr.
2. There is an one-argument function f in F with values in {0,1,2} such that

(12) a= 2’“%% :
=0

Proof. Let o' =2 %a+2. Then 0 < o < 4, and a € Ry iff o' € Ry.
On the other hand, for any one-argument function f in F with values in {0, 1,2} the
equality (12) is equivalent to the equality

Sy
i=0

Thus it is sufficient to apply Lemma 2 to the number «'.

Remark 8. Inthe case of non-negative @ one could be interested in replacing
the signed-digit binary fractions in the above theorem by ordinary binary fractions.
In general, such a replacement is not possible (although it is possible for example if
F is the class of all recursive functions). The impossibility in question can be seen by
taking as F the class of the primitive recursive functions and using the existence of a
primitive recursive number not representable as a primitive recursive infinite binary
fraction. The existence of such a number is clear from the generalization in [2] of the
example in [11] of a primitive recursive real number not representable as a primitive
recursive infinite decimal fraction.?

Remark 9. If F is a strongly acceptable class, and ag,a1,as,... is an F-
computable sequence of real numbers then there is some F-computable real number
that is distinct from all members of the given sequence. To prove this, one can take
an interval with rational end points and use a refined version of the classical diagonal
procedure to construct an F-computable number belonging to the chosen interval and

31t is also possible to proceed by means of a slight modification of the mentioned example. Namely
one may consider infinite hexadecimal fractions instead of decimal ones and set

— B(k)
= —_—,
kz::o 16%

where the primitive recursive function ¢ is defined as in [11], but with values 1, 5, 9 instead of 1,
3, 5, respectively. Then « is a primitive recursive real number, hence 3« is also primitive recursive.
Nevertheless, a reasoning similar to the one in [11] shows that 3a cannot be represented in the form
of a primitive recursive infinite hexadecimal fraction, hence 3« is not representable also in the form
of a primitive recursive infinite binary fraction.
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distinct from all members of the sequence in question (cf. the proof of Theorem 4.2.6
in [13] for a similar construction in the case when the considered computability is
recursiveness). Intuitively, the construction can be described as follows. We divide the
given interval into three equally long subintervals and find a rational approximation
of the number «q sufficiently close to it for enabling either the conclusion that ag
does not belong to the leftmost of the three subintervals or the conclusion that aqg
does not belong to the rightmost of them (it would be enough if the distance between
this approximation and ay is less than 1/6 of the length of the given interval). Then
we take such one among the leftmost and the rightmost subintervals that does not
contain agp, and we proceed with it and a; in the same way to find a three times
shorter subinterval with rational end points that does not contain a;. By continuing
this ad infinitum we get a sequence of nested intervals with a real number « belonging
to all of them and therefore distinct from all members of the sequence ay, a1, @2, . ..
It is a routine task to transform this intuitive description into a precise mathematical
definition of the number a and to prove that « is F-computable (of course by making
use of the F-computability of the sequence ag, a1, as,...).2

Remark 10. For some strongly acceptable class F it may happen that a larger
strongly acceptable class F' contains a two-argument function w that is universal for
the one-argument functions in F, i.e. the functions obtainable by substitution of
constants from N for the first argument of w are exactly the one-argument functions
from F (a well-known example of such a situation is the case when F is the class of
the primitive recursive functions, and F' is the class of the recursive functions). If
such F, F' and w are given then let us define an infinite sequence g, a1, as,... of
real numbers by setting

o, — 9elmo) i min(w(m, i + 1),2) -1

5 , m=0,1,2,...

=0

By Theorem 2, the set of the members of this sequence is exactly Rx, and, on the
other hand, it can be shown that the sequence ap, ay, @y, ... is F'-computable.® As
a particular instance of this we get the conclusion that the primitive recursive real
numbers can be effectively enumerated — a thing that is not obvious from the definition
of the notion of such a number. By Remark 9, the sequence ap, a;, s, ... constructed
above can be used to show that Rr is a proper subset of Re in the considered
situation.5

There is another way of proving the existence of a number in Rz \ Re in the
situation considered in Remark 10. Namely, if w is a two-argument function from

4Some of the details will be similar to ones in the proof of Lemma 1, but powers of 3 will play a
role now instead of powers of 2.
5To satisfy the requirement of the corresponding definition, one could set

n+w(m,0) . .
1),2) —1
A(m,n) = 2¢(m0) Z min(w(m, i + ),2) , mn=0,1,2,...
=0 2

6The existence of recursive numbers that are not primitive recursive (proved in [11]) will be a
particular instance of this result.
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F' universal for the one-argument functions in F, then the one-argument function
Xi.5g(w(i,i)) belongs to F' \ F and all its values belong to the set {0,1}. We shall
show now that the existence of such a function is sufficient for the existence of a
number in Rz \ R, even without an assumption that F C F'.7

Theorem 3. Let F and F' be strongly acceptable classes, f : N — {0,1} be
a function belonging to F'\ F, and let

1

=0

Then o € Ry \ Rr.

Proof. Toshow that a € Ry, let us set

A(n):Z%, n=0,1,2,3,...

i<n

The function A is F'-expressible (by Proposition 8), and the product n|A(n) — «|
is bounded, hence @ € Rx. We shall indicate now a specific way of computing the
values of f on the base of arbitrary sufficiently close rational approximations of a.
Namely, whenever i € N, r € Q and

(13)  |r—al<3772,

we shall see that 3'r + 1/9 is non-negative and the following equality holds:

(14)  f(i) =[3"7 +1/9] mod 3 .

In fact, the definition of « implies that [3'a] mod 3 = f(i), 3'a < [3'a] + 1/2. On
the other hand, the inequality (13) implies that 3ia < 3ir +1/9 < 3ia + 2/9, hence
[3%a] < 3'r +1/9 < [3%a] + 1/2 + 2/9 < [3'a] + 1. Therefore [3'a] = [3'r + 1/9],
and from here the equality (14) follows. Suppose now a € Ry, i.e. some function
A : N — Q expressible through F satisfies the inequality (1) for any n in N. Then
we can satisfy (13) by taking r = A(3"72 — 1), but the equality (14) with this choice
of r easily leads to the contradictory conclusion that f € F (one may use Remark 5

and the fact that Ai.3?A(3"72 — 1) +1/9 is a non-negative function expressible through
F). Hence o ¢ Rr.

Remark 11. Theorem 3 generalizes a variation of an example given in [10].
Up to denotations, the mentioned example concerns a real number « defined as in the
theorem, but with 4% in the denominator instead of 3¢. It is shown in the example that
such a number is recursive, but not primitive recursive, if f : N — {0, 1} is recursive,
but not primitive recursive.® The replacement of 4! by 3! became possible thanks to
a simplification in [3] of the reasoning in the case considered in [10] (if F and F'

"We did not explicitly used this assumption in the situation considered above, but anyway the
existence of the universal function w implies the mentioned inclusion.

8Unfortunately, at the time of writing [10] the author did not know that the same statement
(presented in a slightly more complicated form) has been proved in [5] (cf. the proof of Theorem 1.27
there).
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are the class of the primitive recursive functions and the class of the recursive ones,
respectively, the above proof can be regarded as a straightforward adaptation of the
simplified reasoning given in [3]). Let us note that a replacement of the denominator
by 2% is not possible in general (cf. Remark 8).
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