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Abstract

The paper concerns subrecursive computability of real numbers. Cer-
tain significant real numbers are shown to be M2-computable, and the
set of the M2-computable real numbers is shown to be closed under the
elementary functions of calculus.
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1 Introduction

1.1 The subrecursive class M2

The class in question was implicitly introduced by Grzegorczyk in [4] when he
formulated the problem whether it is possible to define the class E2 by using
bounded least number operation instead of bounded primitive recursion.

Definition 1 The class M2 is the smallest class of total functions in N which
contains the projection functions, the constant 0 (as a function with no argu-
ments), the successor function, the function λxy.x � y, the multiplication func-
tion, and is closed under substitution and bounded least number operation.1

1There are different ways to define (µt ≤ y)[f(x, t) = 0] in the case when there is no t ≤ y
with f(x, t) = 0 , namely by using 0, y or y + 1 as the corresponding value. It does not matter
which of them is accepted, and the function λxy.x� y may be replaced with λxy.∣x− y∣ in the
above definition.
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All functions from M2 are lower elementary in Skolem’s sense, but it is an
open problem whether the converse is true (it would be true iff M2 was closed
under bounded summation).

The class M2 consists exactly of the total functions in N which are poly-
nomially bounded and have ∆0 definable graphs. Hence a relation in N is ∆0

definable iff its characteristic function belongs toM2. This interconnection be-
tweenM2 and ∆0 definability is especially useful in combination with the result
below due to Paris, Wilkie, Woods, Berarducci and D’Aquino (cf. [5, 1]).

Theorem 1 If N ∈ N, and the graph of a function f ∶ NN+1 → N is ∆0 defin-
able, then so are the graphs of the functions g(x, y) = ∑k≤log2(y+1) f(x, k) and
h(x, y) =∏k≤y f(x, k).
Corollary 1 If f ∶ NN+1 → N is inM2, and g, h are as above, then g ∈M2 and
λxyz.min(h(x, y), z) ∈M2.

Definition 2 We will call a convenient class any class of total functions in N
which contains M2 and is closed under substitution.

ClearlyM2 is the least convenient class. All good classes in the sense of [10]
are convenient, and all convenient classes are acceptable in the sense of [6].2

1.2 F-computability of real numbers

We will denote by Tk the set of all k-argument total functions from N to N.

Definition 3 Let f, g, h ∈ T1. We define a function ⟨f, g, h⟩ ∶ N→ Q by setting

⟨f, g, h⟩(n) = f(n) − g(n)
h(n) + 1

.

The triple (f, g, h) is called to name a real number ξ if ∣⟨f, g, h⟩(n) − ξ∣ < 1
n+1

for all n ∈ N.

The mappings of Tk
1 into T1 will be called k-ary operators.

Lemma 1 Let the ternary operator K be defined by

K(f, g, h)(n) = ⌊(n + 1)f(2n + 1) � g(2n + 1)
h(2n + 1) + 1

+

1
2
⌋ .

Then, whenever f, g, h ∈ T1 and n ∈ N, some of the numbers K(f, g, h)(n) and
K(g, f, h)(n) is 0, and if the triple (f, g, h) ∈ T3

1 names a real number ξ, then
the triple (K(f, g, h),K(g, f, h), idN) also names ξ.

2A good class is any class of total functions in N which contains the projection functions, the
constant 0, the successor function, the function λxy.x�y, and is closed under substitution and
bounded summation. An acceptable class is any class of total functions in N which contains
the projection functions, the constant 0, the successor function, the function λxy.∣x − y∣, the
multiplication function, and is closed under substitution (the constant 0 is missing in the
definition from [6], since only functions with arguments are considered there).
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Proof. We note that, for all x, y, z, r, s, t ∈ N, we have z(x � y) = zx � zy,

⌊r � s
t + 1

+

1
2
⌋ = 0 or ⌊s � r

t + 1
+

1
2
⌋ = 0, ∣(⌊r � s

t + 1
+

1
2
⌋ − ⌊s � r

t + 1
+

1
2
⌋) − r − s

t + 1
∣ ≤ 1

2
.

Let f, g, h ∈ T1. For any n ∈ N, the above observation yields K(f, g, h)(n) = 0 or
K(g, f, h)(n) = 0, ∣(K(f, g, h)(n) −K(g, f, h)(n)) − (n + 1)⟨f, g, h⟩(2n + 1)∣ ≤ 1

2
.

If (f, g, h) names a real number ξ then

∣⟨K(f, g, h),K(g, f, h), idN⟩(n) − ξ∣ ≤
∣⟨K(f, g, h),K(g, f, h), idN⟩(n) − ⟨f, g, h⟩(2n + 1)∣ + ∣⟨f, g, h⟩(2n + 1) − ξ∣

<
1

2(n + 1) +
1

2n + 2
=

1
n + 1

. ◻

Definition 4 Let F be a class of total functions in N. We will call an F-triple
any triple of elements of T1 ∩ F . The functions of the form ⟨f, g, h⟩, where
(f, g, h) is an F-triple, will be called F-expressible. A real number ξ will be
called F-computable if there exists an F-triple naming ξ. The set of the F-
computable real numbers will be denoted by RF .3

Remark 1 If F is the class of all recursive functions then RF is the set of all
computable real numbers.

The next theorem is proved in [6].

Theorem 2 Let F be an acceptable class of total functions in N. Then RF is
a field, and if F is closed under the bounded least number operation, then RF
is a real closed field.

Corollary 2 RM2 is a real closed field.

It seems that many significant concrete real numbers are M2-computable.
We showed that the numbers e and π, as well as Liouville’s transcendental
number L = 1/101!

+1/102!
+1/103!

+⋯ and several other mathematical constants
belong to the set RM2 and that RM2 is closed under the elementary functions
of calculus (we actually prove such a closedness of RF for any convenient class
F , thus strengthening a result of this kind from [10]). Unfortunately we do not
know whether the Euler-Mascheroni constant isM2-computable (we know it is
lower elementary computable).4

3In the papers [6, 8]) the definition of F-computability of a real number ξ uses a slightly
weaker requirement, namely the existence of one-argument functions f, g, h from F such that
(in the present notation) ∣⟨f, g, h⟩(n) − ξ∣ ≤ 1

n+1
for all n ∈ N. This requirement is equivalent

to the one imposed here (which is with < instead of ≤), whenever the class F contains the
successor function and is closed under substitution.

4The study of M2-computability of real numbers began in June 2008 when the second
author proved the M2-computability of the numbers e and L. He did this by improving an
approach used in [7] for showing the E2-computability of the numbers in question, namely
the construction of appropriate E2-expressible functions (regarded as sequences there) whose
values are partial sums of expansions of these numbers (an M2-computability proof of this
kind is given here in the next subsection). However, an accommodation of reasonings from [8]
was needed for other constants, and such an accommodation was done in the Master Thesis [3]
(defended in March 2009). The proof that RM2 is closed under the elementary functions of
calculus was completed in August 2009 and refined several weeks later.
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1.3 Proving M2-computability by using M2-expressible
functions whose values are partial sums

Theorem 3 Let ξ = ∑∞k=0 1
f(k) , where f ∶ N → N ∖ {0}, f(k) is a proper divisor

of f(k + 1) for any k ∈ N, and the graph of f is ∆0 definable. Then ξ ∈ RM2 .

Proof. Let σm = ∑m
k=0

1
f(k) for any m ∈ N. Then ∣σm − ξ∣ ≤ 2/f(m + 1)

for all m ∈ N. Let mn = min{m ∣ f(m + 1) > 2n + 2} for any n ∈ N. Then
∣σmn − ξ∣ < (n + 1)−1 for all n ∈ N. We will show that σmn is an M2-expressible
function of n. This will be done by using the equality σmn = f(mn)σmn/f(mn)
and proving that the functions λn.f(mn)σmn and λn.f(mn) belong to M2.
The second of them belongs to M2, since the equality l = f(mn) is equivalent
to (∃k ≤ l)(l = f(k)&(k = 0 ∨ l ≤ 2n + 2)&(∀j ≤ 2n + 2)(j ≠ f(k + 1))), and this
condition implies l ≤ 2n + f(0) + 1. To prove that λn.f(mn)σmn ∈M2, we note
that mn ≤ log2(2n + f(0) + 1) and hence

f(mn)σmn = ∑
k≤log2(2n+f(0)+1)

⌊f(mn) /min(f(k), f(mn) + 1)⌋ . ◻

Corollary 3 The numbers e and L are M2-computable.

Proof. We take f(k) = k! for e and f(k) = 10(k+1)! for L. ◻

2 Stronger tools for proving M2-computability
of real numbers

2.1 F-computability of real-valued
functions with natural arguments

Definition 5 Let F be a class of total functions in N, and let N ∈ N. A partial
function θ from NN to R is called F-computable if there exist N + 1-argument
functions f, g, h ∈ F such that the triple (λn.f(x,n), λn.g(x,n), λn.h(x,n))
names the number θ(x) for any x ∈ dom(θ).
Example 1 A real number α is F-computable iff the argumentless function
with value α is F-computable.

Example 2 Let θ1 ∶ N2
×(N∖{0})→ Q and θ2 ∶ N×(N∖{0})→ R be defined by

θ1(x1, x2, x3) = x1 − x2

x3
, θ2(x1, x2) =

√
x1/x2 .

Then θ1 and θ2 are M2-computable.

Proof. Take f(x1, x2, x3, n) = x1, g(x1, x2, x3, n) = x2, h(x1, x2, x3, n) = x3�1
for θ1, and f(x1, x2, n) = min{y ∣ y = (n + 1)x1 ∨ (y + 1)2x2 > (n + 1)2x1},
g(x1, x2, n) = 0, h(x1, x2, n) = n for θ2. ◻
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Example 3 Let f0, g0 ∶ NN → N belong to M2, h0 be a partial function from
NN to N whose graph is ∆0 definable, and θ1 be as in Example 2. Then the
partial function λx.θ1(f0(x), g0(x), h0(x)) is M2-computable.

Proof. We may take f(x,n) = f0(x), g(x,n) = g0(x), and
h(x,n) =min{y ∣ y = (n + 1) ∣f0(x) − g0(x)∣ � 1 ∨ y + 1=h0(x)}. ◻

Obviously, any restriction of an F-computable function of the considered
type will be again F-computable. The next two statements are also obvious.

Lemma 2 Let F be an acceptable class, and θ be an F-computable real-valued
partial function with natural arguments. Then all substitutions of functions from
F into θ produce again F-computable functions. In particular, range(θ) ⊆ RF .

Lemma 3 If F is a convenient class then definition by cases using F-comput-
able real-valued partial functions with natural arguments and controlled by pred-
icates of the class F produces again a function of this kind.

In next three lemmas, N can be any natural number (including 0).

Lemma 4 Let F be a convenient class, and θ be an F-computable partial func-
tion from NN to R. Then there exist N + 1-argument functions f, g ∈ F such
that the triple (λn.f(x,n), λn.g(x,n), idN) names θ(x) for any x ∈ dom(θ).

Proof. By Lemma 1 and Proposition 1, making use of the fact that F is
closed under the operator K from Lemma 1. ◻

Lemma 5 Let a partial function θ from NN+1 to R be M2-computable. Then
so is the partial function defined by θΣ(x, y) = ∑k≤log2(y+1) θ(x, k).

Proof. By Lemma 4, N + 2-argument functions f, g, h ∈M2 exist such that
(λn.f(x, k, n), λn.g(x, k, n), idN) names θ(x, k) for any (x, k) ∈ dom(θ). Then,
for any (x, y) ∈ dom(θΣ), the triple of the functions

λn. ∑
k≤log2(y+1)

f(x, k, hΣ(x, y, n)), λn. ∑
k≤log2(y+1)

g(x, k, hΣ(x, y, n)),

λn.hΣ(x, y, n)),

where hΣ(x, y, n) = (n+ 1)(⌊log2(y + 1)⌋+ 1)− 1, names the number θΣ(x, y). ◻
Lemma 6 Let θ be an M2-computable partial function from NN+1 to R, and
σ be a partial function from NN to R such that dom(σ) × N ⊆ dom(θ) and,
for any x ∈ dom(σ), the equality σ(x) = ∑∞k=0 θ(x, k) holds. Let there exist an
N + 1-argument function p ∈M2 such that ∣∑k>log2(p(x,n)+1) θ(x, k)∣ ≤ 1

n+1
for

any x ∈ dom(σ) and any n ∈ N. Then σ is also M2-computable.
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Proof. Let θΣ be as in Lemma 5, and fΣ, gΣ, hΣ be N + 2-argument func-
tions from M2 such that (λn.fΣ(x, y, n), λn.gΣ(x, y, n), λn.hΣ(x, y, n)) names
θΣ(x, y) for any (x, y) ∈ dom(θΣ). Then the triple of the functions

λn.fΣ(x, p(x,2n + 1),2n + 1), λn.gΣ(x, p(x,2n + 1),2n + 1),
λn.hΣ(x, p(x,2n + 1),2n + 1)

names the number σ(x) for any x ∈ dom(σ). ◻
Example 4 The number π is M2-computable.

Proof. Since π = 4(arctan 1
2
+arctan 1

3
), it is sufficient to show that arctan 1

m
is in RM2 for any natural number m, greater than 1. Let m ∈ N and m > 1.
Then we can apply Lemma 6 to the expansion arctan 1

m
= ∑∞k=0 θ(k), where

θ(k) = (−1)k
(2k + 1)m2k+1

(the requirements of the lemma are satisfied by [1], Example 3, the equality
(−1)k = (k + 1) mod 2 − k mod 2 and the inequality ∣θ(k)∣ ≤ 1/22k+1). ◻

Example 5 Let σ ∶ N ∖ {0,1} → R be defined by σ(x) = − ln (1 − 1
x
). Then σ is

M2-computable.

Proof. For any x ∈ dom(σ), we have σ(x) = ∑∞k=0 θ(x, k) with

θ(x, k) = 1
(k + 1)xk+1

. ◻

Note. By application of Lemma 6 with N = 0 to appropriate expansions,
theM2-computability of the following constants is also shown in [3]: the Erdös-
Borwein constant E, the logarithm of the golden mean ϕ, the paper folding
constant σ. The expansions in question are

E =
∞

∑
k=1

1
2k
− 1

, 2(lnϕ)2 =
∞

∑
k=1

(−1)k+1
k2(2k

k
) , σ =

∞

∑
k=0

2−2
k (1 − 2−2

k+2)−1 .

2.2 Uniformly F-computable real functions

We are going to define a notion of uniform F-computability for real-valued
functions of real arguments in such a way that:

• in the situation considered in [10], the uniform F-computability of a func-
tion is equivalent to being uniformly in F (cf. Remark 4 for a proof of the
easier direction of this equivalence), and the uniformM2-computability of
partial functions from NN to R is equivalent to theirM2-computability;

• the elementary functions of calculus are uniformlyM2-computable at least
after restriction to compact subsets of their domains;
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• all uniformly M2-computable functions are computable in the sense of
[11], they preserve F-computability of real numbers for any convenient
class F , and the uniform M2-computability is preserved at substitution
and at restriction to arbitrary subsets of the domain of the function.

A class of operators needed for the definition will be introduced firstly.

Definition 6 Let F be a class of total functions in N. For any k ∈ N, some
k-ary operators will be called F-substitutional, the notion being introduced in-
ductively as follows:

1. The k-ary operator F , defined by the equality F (f1, . . . , fk)(n) = n, is
F-substitutional.

2. For any i ∈ {1, . . . , k}, if F0 is an F-substitutional k-ary operator, then so
is the operator F , defined by F (f1, . . . , fk)(n) = fi(F0(f1, . . . , fk)(n)).

3. For any natural number l, if f ∶ Nl → N belongs to F , and F1, . . . , Fl

are F-substitutional k-ary operators, then so is the operator F , defined by
F (f1, . . . , fk)(n) = f(F1(f1, . . . , fk)(n), . . . , Fl(f1, . . . , fk)(n)).

Intuitively, a k-ary operator F is F-substitutional iff there is an expres-
sion for F (f1, . . . , fk)(n) build from the variable n by using function symbols
f1, . . . , fk and function symbols for functions from F .

Example 6 The operator K from Lemma 1 is M2-substitutional.

Example 7 If i is some of the numbers 1, . . . , k then the k-ary operator F ,
defined by F (f1, . . . , fk) = fi , is F-substitutional.

The next propositions can be proved by induction on the construction of the
operator F .

Proposition 1 Let F contain the projection functions and be closed under
substitution, and let F be a k-ary F-substitutional operator. If m ∈ N and
f1, . . . , fk ∈ Tm+1 ∩F , then λsn.F (λt.f1(s, t), . . . , λt.fk(s, t))(n) ∈ F . In partic-
ular, if f1, . . . , fk ∈ T1 ∩F , then F (f1, . . . , fk) ∈ F .

Proposition 2 Let F and G be k-ary F-substitutional operators. Then so is
the operator H defined by H(f1, . . . , fk)(n) = F (f1, . . . , fk)(G(f1, . . . , fk)(n)).
Proposition 3 Let F be a k-ary F-substitutional operator. If l ∈ N, and
G1, . . . , Gk are l-ary F-substitutional operators then so is the operator H, de-
fined by H(g1, . . . , gl) = F (G1(g1, . . . , gl), . . . ,Gk(g1, . . . , gl)).
Proposition 4 Let all functions from F be dominated by polynomials, and let
F be a k-ary F-substitutional operator. Then, for any two-argument polyno-
mial P , there exists a two-argument polynomial Q such that, whenever α is a
non-negative real number and f1, . . . , fk are functions from T1 dominated by
λn.P (α,n), the function F (f1, . . . , fk) is dominated by λn.Q(α,n).
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Remark 2 The class of the F-substitutional operators increases monotonically
in F (with respect to inclusion).

Definition 7 Let N ∈ N, and θ ∶ D → R, where D ⊆ RN . We will call a
3,3-computing system for θ any triple (F,G,H) of 3N -ary operators such that,
whenever (ξ1, . . . , ξN) ∈ D and (f1, g1, h1), . . . , (fN , gN , hN) are triples from T3

1

naming ξ1, . . . , ξN , respectively, the triple (f̃ , g̃, h̃), where

f̃ = F (f1, g1, h1, . . . , fN , gN , hN), g̃ = G(f1, g1, h1, . . . , fN , gN , hN),
h̃ =H(f1, g1, h1, . . . , fN , gN , hN),

names θ(ξ1, . . . , ξN).
Definition 8 Let F be a class of total functions in N. A tuple of operators will
be called F-substitutional if all its components are F-substitutional. A function
θ ∶D → R, where D ⊆ RN , will be called uniformly F-computable if there exists
an F-substitutional 3,3-computing system for θ.

Example 8 Let N ∈ N, i ∈ {1, . . . ,N}, and θ ∶ RN → R be defined by the equality
θ(ξ1, . . . , ξN) = ξi. Then θ is uniformly M2-computable.

Example 9 The functions λξ. − ξ and λξ.∣ξ∣ are uniformly M2-computable.

Example 10 Let F be a convenient class, and α be an F-computable real num-
ber. Let N ∈ N. Then the function θ ∶ RN → R, defined by θ(ξ1, . . . , ξN) = α, is
uniformly F-computable.

Example 11 Let θ ∶ R→ [0,∞) be defined by θ(ξ) =
√
∣ξ∣. Then θ is uniformly

M2-computable.

Proof. By the proof for Example 2, there exists a three-argument function
a ∈M2 such that

∣a(x1, x2, n)
n + 1

−

√
x1

x2
∣ < 1

n + 1
for all x2 ∈ N ∖ {0} and all x1, n ∈ N. Let the ternary operators F,G,H be
defined by

F (f, g, h)(n) = a(m1,m2,2n + 1), G(f, g, h)(n) = 0, H(f, g, h)(n) = 2n + 1,

where m1 = ∣f((2n + 2)2 − 1) − g((2n + 2)2 − 1)∣, m2 = h((2n + 2)2 − 1) + 1.
These operators are M2-substitutional. Suppose f, g, h ∈ T1 are such that the
triple (f, g, h) names a real number ξ. We will show that the corresponding
triple (F (f, g, h),G(f, g, h),H(f, g, h)) names the number θ(ξ). Let n ∈ N, and
m1,m2 be defined as above. Then

∣⟨F (f, g, h),G(f, g, h),H(f, g, h)⟩(n) − θ(ξ)∣ = ∣a(m1,m2,2n + 1)
2n + 2

−

√
∣ξ∣∣ ≤

∣a(m1,m2,2n + 1)
2n + 2

−

√
m1

m2
∣ + ∣
√

m1

m2
−

√
∣ξ∣∣ < 1

2n + 2
+

√
∣m1

m2
− ∣ξ∣∣ ≤

1
2n + 2

+

√
∣⟨f, g, h⟩((2n + 2)2 − 1) − ξ∣ < 1

2n + 2
+

1
2n + 2

=
1

n + 1
. ◻
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Proposition 4 allows proving that the absolute value of any uniformly M2-
computable function is bounded by some polynomial (hence the function is
bounded on each bounded subset of its domain). This can be done by using the
fact that any real number ξ is named by some triple (f, g, idN) such that, for
any n ∈ N, some of the numbers f(n) and g(n) is 0, and therefore they both are
less than (n + 1)∣ξ∣ + 1.

Let F be a convenient class. Definitions 7 and 8 obviously imply that
all restrictions of a uniformly F-computable function are also uniformly F-
computable. By Remark 2, all uniformly M2-computable functions are uni-
formly F-computable. Making use of the last statement in Proposition 1, we see
that, whenever a function θ ∶D → R, where D ⊆ RN , is uniformly F-computable,
and ξ1, . . . , ξN are F-computable real numbers such that (ξ1, . . . , ξN) ∈ D, the
real number θ(ξ1, . . . , ξN) is also F-computable. Proposition 3 shows that the
class of the uniformly F-computable functions is closed under substitution.

Remark 3 If F is a convenient class whose elements are recursive functions,
then all uniformly F-computable functions are computable in the sense of [11].

Proof. All F-substitutional operators will be recursive ones. ◻

Remark 4 Let F be a good class in the sense of the paper [10], and the function
θ ∶D → R, where D is an open subset of RN , be uniformly in F in the sense of
that paper. Then θ is uniformly F-computable.

Proof. By the assumption that θ is uniformly in F , there exist a one-
argument function d ∈ F and 3N + 1-argument functions f, g, h ∈ F such that,
whenever (ξ1, . . . , ξN) ∈D, p1, q1, r1, . . . , pN , qN , rN ,m ∈ N, and the inequalities

∣ξk ∣ ≤m + 1, ∣pk − qk
rk + 1

− ξk∣ < 1
d(m) + 1

, k = 1, . . . ,N, (1)

hold, the numbers

p = f(p1, q1, r1, . . . , pN , qN .rN ,m), q = g(p1, q1, r1, . . . , pN , qN .rN ,m), (2)
r = h(p1, q1, r1, . . . , pN , qN .rN ,m) (3)

satisfy the inequality

∣p − q
r + 1

− θ(ξ1, . . . , ξN)∣ < 1
m + 1

.

Let us define 3N -ary operators F,G,H by setting

F (f1, g1, h1, . . . , fN , gN , hN)(n) = p, G(f1, g1, h1, . . . , fN , gN , hN)(n) = q,
H(f1, g1, h1, . . . , fN , gN , hN)(n) = r,

where the numbers p, q, r are defined by means of the equalities (2–3) with

m =max (⌈∣⟨f1, g1, h1⟩(0)∣⌉ , . . . , ⌈∣⟨fN , gN , hN ⟩(0)∣⌉ , n) ,
pk = fk(d(m)), qk = gk(d(m)), rk = hk(d(m)) for k = 1, . . . ,N.

9



These operators are F-substitutional, and if an element (ξ1, . . . , ξN) of D and
functions f1, g1, h1, . . . , fN , gN , hN ∈ T1 are given such that (fk, gk, hk) names
ξk for k = 1, . . . ,N , then, for any n ∈ N, the above numbers m,p1, q1, r1, . . . ,
pN , qN , rN will satisfy the inequalities (1) and the inequality m ≥ n, hence the
corresponding numbers p, q, r will satisfy the inequality

∣p − q
r + 1

− θ(ξ1, . . . , ξN)∣ < 1
n + 1

. ◻

Definition 9 Let N ∈ N, and θ ∶D → R, where D ⊆ RN . Then we will call a 2,3-
computing system for θ any triple (F,G,H) of 2N -ary operators F,G,H such
that, whenever (ξ1, . . . , ξN) ∈ D and (f1, g1, idN), . . . , (fN , gN , idN) are triples
from T3

1 naming ξ1, . . . , ξN , respectively, the triple (f̃ , g̃, h̃), where

f̃ = F (f1, g1, . . . , fN , gN), g̃ = G(f1, g1, . . . , fN , gN),
h̃ =H(f1, g1, . . . , fN , gN),

names θ(ξ1, . . . , ξN).
Proposition 5 Let F be a convenient class, and let θ ∶D → R, where D ⊆ RN .
Then θ is uniformly F-computable iff there exists an F-substitutional 2,3-compu-
tational system for θ.

Proof. We make use of Lemma 1, Example 6 and Proposition 3 (clause 1 of
Definition 6 is also used). ◻.

Proposition 6 Let F be a convenient class. Let θ ∶ D → R, where D ⊆ NN for
some N ∈ N. The function θ is uniformly F-computable iff θ is F-computable
in the sense of Definition 5.

Proof. For the “if”-part of the proof, suppose f, g, h are such functions as in
Definition 5. Let the 2N -ary operators F,G,H be defined as follows:

F (f1, g1, . . . , fN , gN)(n) = f(f1(0) � g1(0), . . . , fN(0) � gN(0), n),
G(f1, g1, . . . , fN , gN)(n) = g(f1(0) � g1(0), . . . , fN(0) � gN(0), n),
H(f1, g1, . . . , fN , gN)(n) = h(f1(0) � g1(0), . . . , fN(0) � gN(0), n).

Then F,G,H are F-substitutional, and whenever x ∈ D, f1, g1, . . . , fN , gN ∈ T1

and the triples (f1, g1, idN), . . . , (fN , gN , idN) name x, respectively, the triple
(f̃ , g̃, h̃), defined as in the first clause of Definition 9, names θ(x) thanks to
the equalities f̃(n) = f(x,n), g̃(n) = g(x,n), h̃(n) = h(x,n). For the “only if”
part, suppose the function θ is uniformly F-computable. Let (F,G,H) be an
F-substitutional 3,3-computing system for θ, and let us set

f(x,n) = F (λt.x1, λt.0, λt.0, . . . , λt.xN , λt.0, λt.0)(n),
g(x,n) = G(λt.x1, λt.0, λt.0, . . . , λt.xN , λt.0, λt.0)(n),
h(x,n) =H(λt.x1, λt.0, λt.0, . . . , λt.xN , λt.0, λt.0)(n).

By Proposition 1, the functions f, g, h belong to F . Since (λt.x, λt.0, λt.0) names
x for any x ∈ N, the functions f, g, h satisfy the condition from Definition 5. ◻
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Corollary 4 If F is a convenient class then all functions from it are uniformly
F-computable.

Proposition 5 facilitates giving some more examples to Definition 8.

Example 12 Let θ ∶ R2 → R be defined by θ(ξ1, ξ2) = ξ1+ξ2. Then θ is uniformly
M2-computable.

Proof. We can build a 2,3-computing system (F,G,H) for θ by setting

F (f1, g1, f2, g2)(n) = f1(2n + 1) + f2(2n + 1),
G(f1, g1, f2, g2)(n) = g1(2n + 1) + g2(2n + 1),
H(f1, g1, f2, g2)(n) = 2n + 1. ◻

Corollary 5 The function λξ1ξ2.ξ1 − ξ2 is uniformly M2-computable.

Example 13 Let θ ∶ R2 → R be defined by θ(ξ1, ξ2) = ξ1ξ2. Then θ is uniformly
M2-computable.

Proof. Let the operators F,G,H be defined by

F (f1, g1, f2, g2)(n) = f1(m)f2(m) + g1(m)g2(m),
G(f1, g1, f2, g2)(n) = f1(m)g2(m) + g1(m)f2(m),
H(f1, g1, f2, g2)(n) = (m + 1)2 − 1,

where m = (∣f1(0) − g1(0)∣ + ∣f2(0) − g2(0)∣ + 3)(n + 1) − 1. Then (F,G,H) is
a 2,3-computing system for θ (to prove this, one makes use of the fact that,
whenever ξ1, ξ2 ∈ R, f1, g1, f2, g2 ∈ T1, (f1, g1, idN) names ξ1, and (f2, g2, idN)
names ξ2, the inequalities ∣ξi∣ ≤ ∣fi(0) − gi(0)∣ + 1, i = 1,2, hold). ◻

The function λξ.1/ξ, is not uniformly M2-computable, but some functions
related to it are uniformlyM2-computable.

Example 14 Let D = {(ξ1, ξ2) ∈ R2 ∣ ∣ξ1ξ2∣ ≥ 1}, and let θ ∶D → R be defined by
θ(ξ1, ξ2) = 1/ξ1. Then θ is uniformly M2-computable.

Proof. We consider the quaternary operators F,G,H defined by

F (f1, g1, f2, g2)(n) = (m + 1)f1(m), G(f1, g1, f2, g2)(n) = (m + 1)g1(m),
H(f1, g1, f2, g2)(n) = (f1(m) − g1(m))2 � 1,

where m = (n + 1)l2 + l − 1 with l = ∣f2(0) − g2(0)∣ + 1. These operators areM2-
substitutional. Suppose that (ξ1, ξ2) ∈ D, f1, g1, f2, g2 ∈ T1, and (fk, gk, idN)
names ξk for k = 1,2. Then ∣ξ2∣ < l, hence ∣ξ1∣ > 1

l
. Let n ∈ N, and let us set

ρ =
f1(m) − g1(m)

m + 1
,

11



where m is as in the definition of F,G,H. Then ∣ρ − ξ1∣ < 1
m+1

, hence

∣ρ∣ > ∣ξ1∣ − 1
m + 1

>
1
l
−

1
m + 1

=
(n + 1)l
m + 1

.

Therefore

∣⟨F (f1, g1, f2, g2),G(f1, g1, f2, g2),H(f1, g1, f2, g2)⟩(n) − θ(ξ1)∣ =
∣1
ρ
−

1
ξ1
∣ = ∣ξ1−ρ∣∣ρ∣∣ξ1∣ <

1
n + 1

. ◻

Corollary 6 Let F be a convenient class. Let ϕ ∶D → R, where D ⊆ RN , be uni-
formly F-computable, and let some uniformly F-computable function ψ defined
everywhere in D satisfy ϕ(ξ1, . . . , ξN)ψ(ξ1, . . . , ξN) ≥ 1 for all (ξ1, . . . , ξN) in D.
Then the function λξ1 . . . , ξN .1/ϕ(ξ1, . . . , ξN) is also uniformly F-computable
(in particular, the restriction of λξ.1/ξ to the complement of a neighbourhood
of 0 is uniformly M2-computable).

Proof. If θ is the function from Example 14, and (ξ1, . . . , ξN) ∈D, then

1/ϕ(ξ1, . . . , ξN) = θ(ϕ(ξ1, . . . , ξN), ψ(ξ1, . . . , ξN)). ◻

3 Uniform M2-computability of certain
functions related to the logarithmic
and to the exponential ones

We will strengthen here some results from [9] by showing that certain two-
argument functions related to the logarithmic and to the exponential one, re-
spectively, are uniformly M2-computable.

3.1 A formula for the logarithms of the positive integers

Theorem 4 For any x ∈ N ∖ {0}, the following equality holds:

x = 2⌊log2 x⌋ ∏
k<⌊log2 x⌋

⌊x/2k⌋
⌊x/2k⌋ − ⌊x/2k⌋mod2

.

Proof. Let x ∈ N ∖ {0}, and let us set m = ⌊log2 x⌋. Since ⌊x/20⌋ = x,
⌊x/2m⌋ = 1, ⌊x/2k+1⌋ ≥ 1 for any k < m, and ⌊x/2k⌋ = 2 ⌊x/2k+1⌋ + ⌊x/2k⌋mod2
for any k ∈ N, we have

x = ∏
k<m

⌊x/2k⌋
⌊x/2k+1⌋ = 2m ∏

k<m

⌊x/2k⌋
⌊x/2k⌋ − ⌊x/2k⌋mod2

. ◻

Corollary 7 For any x ∈ N ∖ {0}, the following equality holds:

lnx = ⌊log2 x⌋ ln 2 − ∑
k<⌊log2 x⌋

(⌊x/2k⌋mod2) ln(1 − 1
⌊x/2k⌋) .

12



3.2 M2-computability of the logarithmic function
on the positive integers

Theorem 5 The function Λ ∶ N ∖ {0} → R defined by Λ(x) = lnx is M2-
computable.

Proof. The statement follows from Lemma 5, since, by Corollary 7,

Λ(x) = ⌊log2 x⌋σ(2) + ∑
k<⌊log2 x⌋

(⌊x/2k⌋mod2)σ (⌊x/2k⌋) = ∑
k≤log2 x

θ(x, k),

where σ is as the function from Example 5, and θ is defined by the equalities

θ(x,0) = ⌊log2 x⌋σ(2) θ(x, k + 1) = (⌊x/2k⌋mod2)σ (⌊x/2k⌋) ◻

Corollary 8 There exist three-argument functions a, b ∈M2 such that

∣a(x, y, n) − b(x, y, n)
n + 1

− ln
x

y
∣ < 1

n + 1

for all x, y ∈ N ∖ {0} and all n ∈ N.

Proof. By the equality ln x
y
= lnx − ln y and Lemma 4. ◻

3.3 Uniform M2-computability of a function
related to the logarithmic one

Theorem 6 Let D = {(ξ1, ξ2) ∈ R2 ∣ ξ1 > 0, ξ1ξ2 ≥ 1}. Let θ ∶ D → R be defined
by θ(ξ1, ξ2) = ln ξ1. Then θ is uniformly M2-computable.

Proof. We define quaternary operators F,G,H by setting

F (f1, g1, f2, g2)(n) = a(p, q,2n + 1), G(f1, g1, f2, g2)(n) = b(p, q,2n + 1),
H(f1, g1, f2, g2)(n) = 2n + 1,

where a and b are as in Corollary 8, q = 3(n + 1)l with l = (f2(0) � g2(0)) + 1,
p = f1(q − 1)� g1(q − 1). The operators F,G,H areM2-substitutional. Suppose
now that (ξ1, ξ2) ∈ D, f1, g1, f2, g2 ∈ T1, and (fk, gk, idN) names ξk for k = 1,2.
The inequalities ξ1 > 0, ξ1ξ2 ≥ 1, ξ2 < l imply that ξ1 > 1

l
. Let n ∈ N. Then

∣p
q
− ξ1∣ ≤ ∣f1(q − 1) − g1(q − 1)

q
− ξ1∣ < 1

q
=

1
3(n + 1)l ≤

1
3l
,

hence p
q
> ξ1 −

1
3l
>

2
3l

(thus both p and q are greater than 2
3l

). Therefore

∣⟨F (f1, g1, f2, g2),G(f1, g1, f2, g2),H(f1, g1, f2, g2)⟩(n) − θ(ξ1, ξ2)∣ ≤

∣a(p, q,2n + 1) − b(p, q,2n + 1)
2n + 1

− ln
p

q
∣ + ∣ln p

q
− ln ξ1∣ < 1

2n + 2
+

3l
2
∣p
q
− ξ1∣ <

1
2n + 2

+

1
2(n + 1) =

1
n + 1

. ◻
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Corollary 9 Let F be a convenient class. Then

1. For any positive ξ ∈ RF , the number ln ξ is also F-computable.

2. If ϕ ∶ D → (0,∞), where D ⊆ RN , is a uniformly F-computable function,
such that some uniformly F-computable function ψ defined everywhere in
D satisfies the inequality ϕ(ξ1, . . . , ξN)ψ(ξ1, . . . , ξN) ≥ 1 for any element
(ξ1, . . . , ξN) of D, then the function λξ1 . . . , ξN . lnϕ(ξ1, . . . , ξN) is also
uniformly F-computable (in particular, the restriction of λξ. ln ξ to the
numbers, greater than a positive one, is uniformly M2-computable).

Proof. Let θ be the function from the above theorem. Then, for any positive
real number ξ, we have ln ξ = θ(ξ, k) if k is a natural number satisfying the
inequality ξk ≥ 1. Under the assumptions of item 2 of the corollary, we have the
equality lnϕ(ξ1, . . . , ξN) = θ(ϕ(ξ1, . . . , ξN), ψ(ξ1, . . . , ξN)). ◻

3.4 Uniform M2-computability of a function
related to the exponential one

Let the function θ ∶ R2 → R be defined by θ(ξ, η) = min(exp(ξ), η). We will
prove that θ is uniformlyM2-computable.

Lemma 7 There exists a five-argument function c ∈M2 such that

∣c(r, s, t, u, n)
n + 1

− θ (r − s
t + 1

,
u + 1
n + 1

)∣ ≤ 1
n + 1

(4)

for all r, s, t, u, n ∈ N.

Proof. Let a and b be such functions as in Corollary 8. For any u,n, k ∈ N
we set

ξn,k =
k + 1
n + 1

, ηu,n,k =
a(k + 1, n + 1,2u + 1) − b(k + 1, n + 1,2u + 1)

2u + 2
,

thus we will have ∣ηu,n,k − ln ξn,k ∣ < 1
2u+2

. Given any r, s, t, u, n ∈ N, we set

c(r, s, t, u, n) =min{k ∣ k = u ∨ ηu,n,k ≥
r − s

t + 1
+

1
2u + 2

} .

Then c ∈M2, and we will show that the inequality (4) holds.
Let us set j = c(r, s, t, u, n) for short. Of course

c(r, s, t, u, n)
n + 1

=
j

n + 1
= ξn,j −

1
n + 1

,

θ (r − s
t + 1

,
u + 1
n + 1

) =min(exp(r − s
t + 1

) , u + 1
n + 1

) .
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We will prove that

ξn,j ≥ θ (r − s
t + 1

,
u + 1
n + 1

) .
This is clear in the case of j = u, and otherwise it follows from the fact that

ln ξn,j > ηu,n,j −
1

2u + 2
≥
r − s

t + 1
,

hence
ξn,j > exp(r − s

t + 1
) .

Thus surely
j

n + 1
≥ θ (r − s

t + 1
,
u + 1
n + 1

) − 1
n + 1

.

To complete the proof, we have to prove that

j

n + 1
≤ θ (r − s

t + 1
,
u + 1
n + 1

) + 1
n + 1

,

This inequality is obvious in the case of j ≤ 1. Suppose now that j > 1. Then
the inequality is equivalent to

ξn,j−2 ≤min(exp(r − s
t + 1

) , u + 1
n + 1

) ,

and we may reason as follows. By the minimality of j, we have

j ≤ u, ηu,n,j−1 <
r − s

t + 1
+

1
2u + 2

,

Thus
ξn,j−2 < ξn,j−1 <

u + 1
n + 1

and

ln ξn,j−2 < ln ξn,j−1 −
n + 1
u + 1

(ξn,j−1 − ξn,j−2) = ln ξn,j−1 −
1

u + 1

< ηu,n,j−1 −
1

2u + 2
<
r − s

t + 1
,

therefore
ξn,j−2 < exp

r − s

t + 1
. ◻

Lemma 8 For any ξ1, ξ2 ∈ R and any positive real number η, we have

∣θ(ξ1, η) − θ(ξ2, η)∣ ≤ η∣ξ1 − ξ2∣.
Proof. Let us set ξ = lnη. Then
∣θ(ξ1, η) − θ(ξ2, η)∣ = ∣min(exp(ξ1), exp(ξ)) −min(exp(ξ2), exp(ξ))∣ =

∣ exp(min(ξ1, ξ))−exp(min(ξ2, ξ))∣ ≤ exp(ξ)∣min(ξ1, ξ)−min(ξ2, ξ)∣ ≤ η∣ξ1−ξ2∣. ◻
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Theorem 7 The function θ is uniformly M2-computable.

Proof. Let the function c be as in Lemma 7. We set

C(f1, g1, f2, g2)(n) = c(r, s, t, u,3n + 2),
where

t = ((f2(0) � g2(0)) + 2)(3n + 3) − 1, r = f1(t), s = g1(t),
u = f2(3n + 2) � (g2(3n + 2) + 1).

Then we define quaternary operators F,G,H as follows:

F (f1, g1, f2, g2)(n) = { C(f1, g1, f2, g2)(n) if f2(3n + 2) > g2(3n + 2),
f2(3n + 2) otherwise,

G(f1, g1, f2, g2)(n) = { 0 if f2(3n + 2) > g2(3n + 2),
g2(3n + 2) otherwise,

H(f1, g1, f2, g2)(n) = 3n + 2.

The operators F,G,H are M2-substitutional. Suppose now that (ξ1, ξ2) ∈ R,
f1, g1, f2, g2 ∈ T1, (f1, g1, idN) names ξ1 and (f2, g2, idN) names ξ2.

Let n ∈ N. If f2(3n + 2) > g2(3n + 2) then we get

∣⟨F (f1, g1, f2, g2),G(f1, g1, f2, g2),H(f1, g1, f2, g2)⟩(n) − θ(ξ1, ξ2)∣ =

∣c(r, s, t, u,3n + 2)
3n + 3

− θ(ξ1, ξ2)∣ ≤

∣c(r, s, t, u,3n + 2)
3n + 3

− θ (r − s
t + 1

,
u + 1
3n + 3

)∣ + ∣θ (r − s
t + 1

,
u + 1
3n + 3

) − θ(ξ1, ξ2)∣ ≤
1

3n + 3
+ ∣θ (r − s

t + 1
,
u + 1
3n + 3

) − θ (ξ1, u + 1
3n + 3

)∣ + ∣θ (ξ1, u + 1
3n + 3

) − θ(ξ1, ξ2)∣ ≤
1

3n + 3
+

u + 1
3n + 3

∣r − s
t + 1

− ξ1∣ + ∣ u + 1
3n + 3

− ξ2∣ < 1
3n + 3

+

u + 1
3n + 3

1
t + 1

+

1
3n + 3

<
1

n + 1
,

making use of Lemma 8 and of the fact that

u + 1
3n + 3

< ξ2 +
1

3n + 3
< f2(0) − g2(0) + 2 ≤ (f2(0) � g2(0)) + 2 =

t + 1
3n + 3

.

Suppose now that f2(3n + 2) ≤ g2(3n + 2). Then

⟨F (f1, g1, f2, g2),G(f1, g1, f2, g2),H(f1, g1, f2, g2)⟩(n) = ⟨f2, g2, idN⟩(3n + 2),
and

∣⟨f2, g2, idN⟩(3n + 2) − θ(ξ1, ξ2)∣ < 1
3n + 3

<
1

n + 1
,

since we have the inequality

⟨f2, g2, idN⟩(3n + 2) − 1
3n + 3

< θ(ξ1, ξ2)
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(because its left-hand side is less than each of the numbers exp(ξ1) and ξ2 in
this case), whereas always

θ(ξ1, ξ2) ≤ ξ2 < ⟨f2, g2, idN⟩(3n + 2) + 1
3n + 3

. ◻

Corollary 10 Let F be a convenient class. Then

1. For any ξ ∈ RF the number exp(ξ) is also F-computable.

2. If ϕ ∶ D → R, where D ⊆ RN , is a uniformly F-computable function,
such that some uniformly F-computable function ψ defined everywhere
in D satisfies exp(ϕ(ξ1, . . . , ξN)) ≤ ψ(ξ1, . . . , ξN) for all (ξ1, . . . , ξN) in
D, then the function λξ1 . . . , ξN . exp(ϕ(ξ1, . . . , ξN)) is also uniformly F-
computable (in particular, the restriction of the exponential function to the
numbers less than a fixed one is uniformly M2-computable).

Proof. Let θ be the function from the above theorem. Then, for any real
number ξ, we have exp(ξ) = θ(ξ, k) if k is a natural number satisfying the
inequality k ≥ exp(ξ). Under the assumptions of item 2 of the corollary, we
have the equality exp(ϕ(ξ1, . . . , ξN)) = θ(ϕ(ξ1, . . . , ξN), ψ(ξ1, . . . , ξN)). ◻

4 The function arctan is uniformlyM2-computable

The proof of the uniformM2-computability of the function arctan will be based
on the fact that arctan y

x
, where x ∈ N∖{0}, y ∈ N, isM2-computable as a func-

tion of x and y. This fact will be proved by using the interconnection between
complex logarithms and the arctan function. As well-known, the domain of the
main branch of the complex logarithmic function consists of all complex num-
bers except the zero and the negative reals. For any ζ in this set, let ln ζ denote
the corresponding value of the branch in question, i.e. ln ζ be the unique com-
plex number ζ ′ which satisfies the conditions exp(ζ ′) = ζ, ∣Im(ζ ′)∣ < π. Then,
in particular, ln(ξ + ηi) = 1

2
ln(ξ2 + η2) + iarctan η

ξ
for any positive real number

ξ and any η ∈ R. Thanks to this equality, any computational algorithm for the
logarithms of the Gaussian integers in the first quadrant yields also a compu-
tational algorithm for the values of the arctan function on the positive rational
numbers. Of course, we will look for an algorithm that can be performed by
means of functions of the class M2.

4.1 A formula for logarithms of Gaussian integers
in the first quadrant

For any natural number t, let t○ denote the greatest even number not exceeding t,
i.e. t○ = t − t mod2. If z = x + yi, where x, y ∈ N, we set z○ = x○ + y○i. We set
also ⌊x + yi⌋ = ⌊x⌋ + ⌊y⌋i for all x, y ∈ R.
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Theorem 8 Let z = x + yi ≠ 0, where x, y ∈ N, and let m = ⌊log2 max(x, y)⌋.
Then

z = 2m⌊z/2m⌋ ∏
k<m

⌊z/2k⌋
⌊z/2k⌋○ . (5)

Proof. For any k < m, we have ⌊z/2k+1⌋ ≠ 0 thanks to the inequalities
2k+1

≤ 2m
≤max(x, y). Therefore

z = ⌊z/2m⌋ ∏
k<m

⌊z/2k⌋
⌊z/2k+1⌋ .

For any l, k ∈ N, the equality ⌊l/2k⌋ = 2 ⌊l/2k+1⌋ + ⌊l/2k⌋ mod 2 holds, hence
⌊l/2k+1⌋ = 1

2
⌊l/2k⌋○. Therefore

∏
k<m

⌊z/2k⌋
⌊z/2k+1⌋ = ∏k<m

⌊z/2k⌋
1
2
⌊z/2k⌋○ = 2m ∏

k<m

⌊z/2k⌋
⌊z/2k⌋○ . ◻

Note. Under the assumptions of Theorem 8, ⌊z/2m⌋ = 1 in the case of
2m
> y, ⌊z/2m⌋ = i in the case of 2m

> x, and ⌊z/2m⌋ = 1 + i otherwise (this
follows from the inequalities 2m

≤max(x, y) < 2m+1).

By formal application of the equality ln(ζ1ζ2) = ln ζ1+ln ζ2 to the equality (5)
we could get the following one:

ln z =m ln 2 + ln⌊z/2m⌋ + ∑
k<m

ln
⌊z/2k⌋
⌊z/2k⌋○ . (6)

Both sides of this equality make sense, but its validity would not be certain
without some additional reasoning, since unfortunately ln(ζ1ζ2) = ln ζ1 + ln ζ2
does not always hold (one could take ζ1 = ζ2 = −1 + i as a counter-example).

Lemma 9 Let ζ1 and ζ2 be numbers from the domain of the main branch of the
complex logarithmic function, and let ζ2 and ζ1ζ2 have non-negative real parts.
Then ln(ζ1ζ2) = ln ζ1 + ln ζ2.

Proof. Let ζ1ζ2 = ζ. Since ζ ≠ 0 and Re(ζ) ≥ 0, ln ζ is also defined. Let
ln ζ1 = ζ ′1, ln ζ2 = ζ ′2, ln ζ = ζ ′. Then exp(ζ ′1) = ζ1, ∣Im(ζ ′1)∣ < π, exp(ζ ′2) = ζ2,
∣Im(ζ ′2)∣ ≤ π

2
, exp(ζ ′) = ζ, ∣Im(ζ ′)∣ ≤ π

2
. We get from here that

exp(ζ ′1 + ζ ′2) = exp(ζ ′), ∣Im(ζ ′1 + ζ ′2) − Im(ζ ′)∣ < π + π
2
+

π

2
= 2π,

hence ζ ′1 + ζ
′

2 = ζ
′. ◻

Lemma 10 If ζ1 is a positive real number then ln(ζ1ζ2) = ln ζ1 + ln ζ2 for any
ζ2 from the domain of the main branch of the complex logarithmic function.

Proof. Rather easy. ◻
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Theorem 9 Let z = x + yi ≠ 0, where x, y ∈ N, and let m = ⌊log2 max(x, y)⌋.
Then the equality (6) holds.

Proof. By means of induction downwards from m to 0, we will show that

ln⌊z/2l⌋ = (m − l) ln 2 + ln⌊z/2m⌋ + ∑
l≤k<m

ln
⌊z/2k⌋
⌊z/2k⌋○ . (7)

for any natural number l ≤ m, and of course (6) is the case l = 0 of (7). The
equality (7) is trivially valid if l =m. Suppose now that l <m and

ln⌊z/2l+1⌋ = (m − l − 1) ln 2 + ln⌊z/2m⌋ + ∑
l+1≤k<m

ln
⌊z/2k⌋
⌊z/2k⌋○ .

Making use of the equality

⌊z/2l⌋ = ⌊z/2
l⌋

⌊z/2l+1⌋ ⌊z/2
l+1⌋ ,

of the inequalities Re(⌊z/2l+1⌋) ≥ 0, Re(⌊z/2l⌋) ≥ 0 and of Lemma 9, we get

ln⌊z/2l⌋ = ln
⌊z/2l⌋
⌊z/2l+1⌋ + ln⌊z/2l+1⌋ .

Since the equality
⌊z/2l⌋
⌊z/2l+1⌋ = 2

⌊z/2l⌋
⌊z/2l⌋○

and Lemma 10 yield

ln
⌊z/2l⌋
⌊z/2l+1⌋ = ln 2 + ln

⌊z/2l⌋
⌊z/2l⌋○ ,

we thus get (7) for the considered l. ◻

Corollary 11 Let z = x+yi, where x, y ∈ N, x ≠ 0, and let m = ⌊log2 max(x, y)⌋.
Then

arctan
y

x
= Im (ln⌊z/2m⌋) + ∑

k<m

Im(ln ⌊z/2
k⌋

⌊z/2k⌋○ ) .

Remark 5 Under the assumptions of Theorem 9, either ⌊z/2m⌋ = 1, ln⌊z/2m⌋ = 0,
or ⌊z/2m⌋ = i, ln⌊z/2m⌋ = π

2
i, or ⌊z/2m⌋ = 1 + i, ln⌊z/2m⌋ = 1

2
ln 2 + π

4
i.

Let us define a partial function ι from N2 to R by means of the equality

ι(s, t) = Im(ln s + ti

s○ + t○i
)

(dom(ι) consists of the pairs (s, t) ∈ N2 such that max(s, t) ≥ 2). Then, under
the assumptions of the above corollary,

Im(ln ⌊z/2
k⌋

⌊z/2k⌋○ ) = ι (⌊x/2
k⌋, ⌊y/2k⌋) .

Therefore it would be important to prove that ι is M2-computable. This will
be done in the next section.
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4.2 M2-computability of the function ι

Let (s, t) ∈ dom(ι), and let z = s + ti, δ(z) = s mod 2 + (t mod 2)i. Since
∣δ(z)∣ ≤√2 < 2 ≤ ∣z∣ < ∣2z∣, the following transformation can be done:

ln
z

z○
= ln

z

z − δ(z) = ln
1 + δ(z)

2z−δ(z)
1 − δ(z)

2z−δ(z)
.

If at least one of the numbers s and t is odd, then

δ(z) ≠ 0,
δ(z)

2z − δ(z) =
1

2z/δ(z) − 1
,

and

2z/δ(z) − 1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2s − 1 + 2t i if s is odd and t is even,
2t − 1 − 2s i if s is even and t is odd,
t + s − 1 + (t − s) i if both s and t are odd.

(8)

Since max(s, t) ≥ 2, it is easy to see that ∣2z/δ(z) − 1∣ ≥ √17 in the first two
of the above three cases, and ∣2z/δ(z) − 1∣ ≥ √13 in the third one. Taking into
account that δ(z) = 0 if both s and t are even, we conclude that always

∣ δ(z)
2z − δ(z) ∣ ≤

1√
13
< 1,

hence 1+ δ(z)
2z−δ(z) and 1− δ(z)

2z−δ(z) have positive real parts. From here and Lemma 7,
we conclude that

ln
1 + δ(z)

2z−δ(z)
1 − δ(z)

2z−δ(z)
= ln(1 + δ(z)

2z − δ(z)) − ln(1 − δ(z)
2z − δ(z)) ,

and therefore

ln
z

z○
= 2

∞

∑
j=0

1
2j + 1

( δ(z)
2z − δ(z))

2j+1

.

Hence ι(s, t) = 2∑∞j=0 θ(s, t, j), where

θ(s, t, j) = 1
2j + 1

Im
⎛
⎝(

δ(z)
2z − δ(z))

2j+1⎞
⎠ ,

We will use the above representation of the function ι for applying Lemma 6.
Since ∣θ(s, t, j)∣ ≤ (1/√13)2j+1, it would be sufficient to prove the M2-comput-
ability of the partial function θ, and actually it would be enough to prove that
the partial function

χ(s, t, j) = Im
⎛
⎝(

δ(z)
2z − δ(z))

2j+1⎞
⎠
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is M2-computable.
If both numbers s and t are even then χ(s, t, j) = 0 else

χ(s, t, j) = Im( 1
(2z/δ(z) − 1)2j+1

) .

Having in mind the equality (8), let us consider now the function ψ ∶ N4 → R
defined by

ψ(u, v,w, k) = Im( 1
(u + 1 + (v −w)i)k ) .

Then, whenever (s, t, j) ∈ dom(χ),

χ(s, t, j) =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ψ(0,0,0,0) if both s and t are even,
ψ(2s � 2,2t,0,2j + 1) if s is odd and t is even,
ψ(2t � 2,0,2s,2j + 1) if s is even and t is odd,
ψ((t + s) � 2, t, s,2j + 1) if both s and t are odd.

Therefore we can be sure that ι is M2-computable if we succeed to prove the
M2-computability of the function ψ.

Since
1

(u + 1 + (v −w)i)k =
(u + 1 − (v −w)i)k
((u + 1)2 + (v −w)2)k ,

we have the equality

ψ(u, v,w, k) = (v −w)f0(u, v,w, k) − g0(u, v,w, k)((u + 1)2 + (v −w)2)k ,

where

f0(u, v,w, k) = ∑
j≤ k−3

4

( k

4j + 3
)(u + 1)k−4j−3(v −w)4j+2,

g0(u, v,w, k) = ∑
j≤ k−1

4

( k

4j + 1
)(u + 1)k−4j−1(v −w)4j .

Let us set

f(u, v,w, k, n) = (v �w)f0(u, v,w, k) + (w � v)g0(u, v,w, k),
g(u, v,w, k, n) = (w � v)f0(u, v,w, k) + (v �w)g0(u, v,w, k),
h(u, v,w, k, n) = ((u + 1)2 + (v −w)2)k − 1

if ((u + 1)2 + (v −w)2)k ≤ (n + 1)2, and

f(u, v,w, k, n) = g(u, v,w, k, n) = h(u, v,w, k, n) = 0

otherwise. Then f, g, h ∶ N5 → N and, since

∣ψ(u, v,w, k)∣ ≤ ∣ 1
((u + 1 + (v −w)i)k ∣ =

1√
((u + 1)2 + (v −w)2)k

,
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we have

∣f(u, v,w, k, n) − g(u, v,w, k, n)
h(u, v,w, k, n) + 1

− ψ(u, v,w, k)∣ < 1
n + 1

for all u, v,w, k, n ∈ N. It remains to show that f, g, h ∈M2.
If u, v,w, k, n satisfy the inequalities ((u+1)2+(v−w)2)k ≤ (n+1)2, v −w ≠ 0,

then k ≤ 2 log2(n+1), therefore the summation for computing the corresponding
values of f0(u, v,w, k) and g0(u, v,w, k) will be logarithmically bounded for such
u, v,w, k, n. This, together with results from [1, 2, 5], allows proving that each
of the functions f, g, h has a ∆0 definable graph. On the other hand, for any
u, v,w, k, n ∈ N the corresponding values of these functions are less than (n+1)2.
This is obvious for the function h, and to get the same conclusion for f and g,
we may use the fact that

∣v−w∣f0(u, v,w, k)+ ∣v−w∣g0(u, v,w, k) < (u+1+ ∣v−w∣)k ≤ ((u+1)2+(v−w)2)k.
Thus each of the functions f, g, h is dominated by a polynomial and therefore
belongs toM2.

4.3 The main result

Theorem 10 The function θ(ξ) = arctan ξ is uniformly M2-computable.

Proof. After we proved the M2-computability of the function ι, we can use
Corollary 11 and Remark 5 to show that arctan y

x
, where x ∈ N ∖ {0}, y ∈ N,

is M2-computable as a function of x and y. This can be done be writing the
equality from Corollary 11 in the form

arctan
y

x
= ∑

k ≤ log2 max(x,y)
υ((⌊x/2k⌋, ⌊y/2k⌋) ,

where the function υ ∶ N2 → R is defined as follows:

υ(s, t) = { ι(s, t) if max(s, t) ≥ 2,
(2t � s)π

4
otherwise.

By the M2-computability of λxy.arctan y
x

and Lemma 4, there exist three-
argument functions a, b ∈M2 such that (λn.a(x, y, n), λn.b(x, y, n), idN) names
arctan y

x
for all x ∈ N∖ {0} and all y ∈ N, and we may assume that b(x, y, n) = 0

by taking a(x, y, n) � b(x, y, n) as a new a(x, y, n). Then a(x,0, n) = 0 for any
x ∈ N ∖ {0} due to the inequality ∣a(x,0, n)∣ < 1, and therefore

∣a(x, r � s, n) − a(x, s � r, n)
n + 1

− arctan
r − s

x
∣ < 1

n + 1

for all x ∈ N∖{0} and all r, s, n ∈ N. Let the binary operators F,G,H be defined
as follows:

F (f, g)(n) = a(2n + 2, f(2n + 1) � g(2n + 1),2n + 1),
G(f, g)(n) = a(2n + 2, g(2n + 1) � f(2n + 1),2n + 1),
H(f, g)(n) = 2n + 1.
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These operators are M2-substitutional. Suppose now that ξ ∈ R, f, g ∈ T1, and
(f, g, idN) names ξ. Let n ∈ N. Then

∣⟨F (f, g),G(f, g),H(f, g)⟩(n) − θ(ξ)∣ ≤
∣⟨F (f, g),G(f, g),H(f, g)⟩(n) − arctan⟨f, g, idN⟩(2n + 1)∣+

∣arctan⟨f, g, idN⟩(2n + 1) − arctan ξ∣ ≤ 1
2n + 2

+ ∣⟨f, g, idN⟩(2n + 1) − ξ∣ < 1
n + 1

◻

Corollary 12 The functions arcsin and arccos are also uniformlyM2-computable.

Proof. This follows from the equalities

arcsin ξ = 2arctan
ξ

1 +
√

1 − ξ2
, arccos ξ = 2arctan1 − arcsin ξ

by Examples 11, 12, 13 and Corollaries 5, 6. ◻

Corollary 13 Let F be a convenient class. Then arctan ξ ∈ RF for any ξ ∈ RF ,
and arcsin ξ, arccos ξ ∈ RF for any ξ ∈ RF with ∣ξ∣ ≤ 1.

5 The sine and cosine functions are uniformly
M2-computable

We will firstly prove the following statement.

Lemma 11 There exists a three-argument function c ∈M2 such that

∣c(s, t, n) − (n + 1)
n + 1

− cos
s

t + 1
∣ ≤ 1

n + 1
(9)

for all s, t ∈ N satisfying the inequality s < (t + 1)π and all n ∈ N.

Proof. By Example 2, Proposition 6 and theM2-computability of the func-
tion arccos, the value of

arccos
p − q

r + 1
,

where p, q, r ∈ N, ∣p − q∣ ≤ r + 1, is an M2-computable function of p, q, r. There-
fore (by Lemma 4 and the non-negativeness of this value) there exists a four-
argument function a ∈M2 such that

∣a(p, q, r, n)
n + 1

− arccos
p − q

r + 1
∣ < 1

n + 1

for any p, q, r ∈ N with ∣p − q∣ ≤ r + 1 and all n ∈ N.
For any n, k ∈ N, let us set

ξn,k =
k − n

n + 1
, ηn,k =

a(k,n,n,2n + 1)
2n + 2

.
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Then −1 < ξn,k ≤ 1, ∣ηn,k − arccos ξn,k ∣ ≤ 1
2n+2

, whenever k ≤ 2n + 1. Given any
s, t, n ∈ N, we set

c(s, t, n) =min{k ∣ k = 2n + 1 ∨ ηn,k +
1

2n + 2
≤

s

t + 1
} .

Then c ∈M2, and we will show that (9) holds, whenever s < (t + 1)π.
Let the natural numbers s and t satisfy the inequality s < (t+1)π. Of course

c(s, t, n) − (n + 1)
n + 1

= ξn,c(s,t,n) −
1

n + 1
.

We shall prove that
ξn,c(s,t,n) ≥ cos

s

t + 1
.

This is clear if c(s, t, n) = 2n+1, since then ξn,c(s,t,n) = 1, and otherwise it follows
from the fact that

arccos ξn,c(s,t,n) ≤ ηn,c(s,t,n) +
1

2n + 2
≤

s

t + 1
.

Thus surely
c(s, t, n) − (n + 1)

n + 1
≥ cos

s

t + 1
−

1
n + 1

.

To complete the proof, we have to prove that

c(s, t, n) − (n + 1)
n + 1

≤ cos
s

t + 1
+

1
n + 1

,

i.e. that
ξn,c(s,t,n) −

2
n + 1

≤ cos
s

t + 1
.

This inequality is obvious in the case of c(s, t, n) ≤ 1, since then the left-hand
side does not exceed −1. Suppose now that c(s, t, n) > 1. Then we may reason
as follows. By the minimality of c(s, t, n), we have

ηn,c(s,t,n)−1 +
1

2n + 2
>

s

t + 1
,

hence

s

t + 1
< arccos ξn,c(s,t,n)−1 +

1
2n + 2

+

1
2n + 2

= arccos ξn,c(s,t,n)−1 +
1

n + 1
= arccos ξn,c(s,t,n)−1 + (ξn,c(s,t,n)−1 − ξn,c(s,t,n)−2)
≤ arccos ξn,c(s,t,n)−1 + (arccos ξn,c(s,t,n)−2 − arccos ξn,c(s,t,n)−1)
= arccos ξn,c(s,t,n)−2 .

Therefore
cos

s

t + 1
> ξn,c(s,t,n)−2 = ξn,c(s,t,n) −

2
n + 1

. ◻
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Lemma 12 Let θ0 be the restriction of the cosine function to the interval [0, π].
Then θ0 is uniformly M2-computable.

Proof. Let the binary operators F,G,H be defined as follows:

F (f, g)(n) = c(s, t,2n + 1), G(f, g)(n) = 2n + 2, H(f, g)(n) = 2n + 1,

where t = 4n + 3, s = f(t) � (g(t) + 1), and the function c is as in the above
lemma. These operators are M2-substitutional. Suppose now that ξ ∈ [0, π],
f, g ∈ T1 and the triple (f, g, idN) names ξ. Let n ∈ N. Then

∣⟨F (f, g),G(f, g),H(f, g)⟩(n) − θ0(ξ)∣ ≤ ∣c(s, t,2n + 1) − (2n + 2)
2n + 2

− cos
s

t + 1
∣+

∣cos
s

t + 1
− cos ξ∣ ≤ ∣c(s, t,2n + 1) − (2n + 2)

2n + 2
− cos

s

t + 1
∣ + ∣ s

t + 1
− ξ∣ .

The inequalities

ξ −
1

t + 1
< ⟨f, g, idN⟩(t) < ξ + 1

t + 1
imply

ξ −
2

t + 1
<
f(t) − (g(t) + 1)

t + 1
< ξ.

hence
s

t + 1
< π, ξ −

2
t + 1

<
s

t + 1
≤ ξ.

Therefore

∣c(s, t,2n + 1) − (2n + 2)
2n + 2

− cos
s

t + 1
∣ ≤ 1

2n + 2
, ∣ s

t + 1
− ξ∣ < 2

t + 1
=

1
2n + 2

. ◻

Lemma 13 Let θ1 ∶ R → [0, π] be defined by θ1(ξ) = arccos(cos ξ). Then θ1 is
uniformly M2-computable.

Proof. For any ξ ∈ R, we have θ1(ξ) = 2π dist ( ξ
2π
,Z) = 2π dist (∣ ξ

2π
∣ ,N),

thus it would be sufficient to prove that the function λξ.dist(∣ξ∣,N) is uniformly
M2-computable. Let the binary operators F,G,H be defined as follows:

F (f, g)(n) = ∣m − (n + 1) ⌊ m

n + 1
+

1
2
⌋ ∣ , G(f, g)(n) = 0, H(f, g)(n) = n,

where m = ∣f(n)− g(n)∣. They areM2-substitutional. Suppose now that ξ ∈ R,
f, g ∈ T1 and the triple (f, g, idN) names ξ. Let n ∈ N. Then

∣⟨F (f, g),G(f, g),H(f, g)⟩(n) − dist(∣ξ∣,N)∣ = ∣dist( m

n + 1
,N) − dist(∣ξ∣,N)∣ ≤

∣ m
n + 1

− ∣ξ∣∣ ≤ ∣⟨f, g, idN⟩(n) − ξ∣ < 1
n + 1

. ◻
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Theorem 11 The sine and cosine functions are uniformly M2-computable.

Proof. We may use the equality cos ξ = θ0(θ1(ξ)), where θ0 and θ1 are as in
the above lemmas, and the equality sin ξ = cos(2arctan1 − ξ). ◻
Corollary 14 Let F be a convenient class, and let ξ ∈ RF . Then sin ξ and cos ξ
also belong to RF (hence if cos ξ ≠ 0 then tan ξ ∈ RF too).
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