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The Moschovakis extension of a set B is the set B∗ defined in [Mo69]. Assuming without
loss of generality that no element of the set B is an ordered pair, one builds B∗ as the closure
of B ∪ {o} under formation of ordered pairs, where o (denoted by 0 in [Mo69]) is some object
which does not belong to B and also is not an ordered pair. Certain relative computability
notions for functions in B∗ are introduced and studied in the mentioned paper. The functions
considered there are, in general, multi-valued. In the case of single-valued functions, one of these
notions, namely absolute prime computability, seems to be able to cover any reasonable kind of
deterministic computability by means of programs using some given functions.

In [Sk18], a certain link between computability of the above-mentioned kind and TTE com-
putability is indicated in the case when some representation of the set B is given. An appropriate
related representation of B∗ is used for that purpose. The present paper generalizes to the case
of multi-representations some of the results from [Sk18] and extends them. Two kinds of TTE
computability are considered. The first of them is the usual computability via realizations, with
the restriction that only single-valued realizations may be used. The other computability we con-
sider is a Brattka style one – it is in the sense of [Br03, Definition 7.1], appropriately generalized
for the case of multi-representations.1 We establish some statements which are in the same vein
as [Br96, Theorem 31], [We00, Theorems 3.1.6 and 3.1.7], [Br03, Theorem 8.3] and the results
in [We08]. For single-valued functions, we prove the TTE computability of any function which
is absolutely prime computable in some TTE computable functions. A similar result holds for
multi-valued functions, but with an analog of absolute prime computability.

Let γ be a multi-representation of the set B. We construct a multi-representation γ∗ of the
set B∗ with the following properties, where the mentioned computability is the usual one:
• the identity function of B is both (γ, γ∗)- and (γ∗, γ)-computable;
• the ordered pair operation in B∗ is (γ∗, γ∗, γ∗)-computable;
• the two unary partial functions in B∗ which transform ordered pairs into their first and

their second components are (γ∗, γ∗)-computable;
• the element o is γ∗-computable, and so is the mapping of B∗ into N which maps o, the

elements of B and all other elements of B∗ into 0, 1 and 2, respectively.
We prove that any two multi-representations of the set B∗ with these properties are equivalent.

When considering functions in B∗, it is not an essential restriction to confine oneself to
unary ones. Let F be the set of all unary partial multi-valued functions in B∗ (the set of the

1The corresponding definition reads as follows: if γ and γ′ are multi-representations of X and X′, respectively,
and ϕ is a partial multi-valued function from X to X′ then ϕ is said to be Brattka style (γ, γ′)-computable if
a computable partial mapping β of dom(γ) × NN into dom(γ′) exists such that the following holds whenever
p ∈ dom(γ) and x ∈ γ(p) ∩ dom(ϕ):
• (p, q) ∈ dom(β) and γ′(β(p, q)) ∩ ϕ(x) 6= ∅ for all q ∈ NN;
• ϕ(x) ⊆

⋃{
γ′(β(p, q))

∣∣ q ∈ NN }.



single-valued ones can be regarded as a subset of F). It is shown in [Sk92] that a function
ϕ ∈ F is absolutely prime computable in some given functions ψ1, . . . , ψl ∈ F iff ϕ can be
obtained from ψ1, . . . , ψl and the functions π and δ from [Mo69] by finitely many applications
of three natural operations, namely the usual composition in F and the following two ones:
θ1, θ2 7→ λx.θ1(x) × θ2(x) (this operation is called combination in [Sk92] and juxtaposition in
[Br96, Br03, We08]) and θ1, θ2 7→ ι, where y ∈ ι(x) iff a finite sequence z0, z1, . . . , zn of elements
of B∗ exists such that z0 = x, zn = y,

zi ∈ dom(θ1) ∩ dom(θ2) & θ2(zi) \ (B ∪ {o}) 6= ∅ & zi+1 ∈ θ1(zi) (1)

for all i < n, and zn ∈ dom(θ2), θ2(zn)∩(B∪{o}) 6= ∅ (the function ι is called the iteration of θ1
controlled by θ2 in [Sk92]). Making use of this characterization of absolute prime computability,
we prove the (γ∗, γ∗)-computability of any function from F which is absolutely prime computable
in some single-valued (γ∗, γ∗)-computable functions from F .

To get a similar result for arbitrary functions in F , we consider a new triple of operations,
namely we replace the first and the last of the above three operations with certain modifications of
them, the results of applying the modified operations being appropriate restrictions of the results
of applying the original ones. The modified composition is one used in [Br96, We00, Br03, We08],
and the modified iteration operation is θ1, θ2 7→ ι�E, where ι is the same as above, and E is the
set of the elements x of B∗ such that

• no infinite sequence z0, z1, z2, . . . of elements of B∗ exists with z0 = x and (1) holding for
all i;

• zn ∈ dom(θ2) &
(
θ2(zn)\ (B∪{o}) 6= ∅⇒ zn ∈ dom(θ1)

)
whenever z0, z1, . . . , zn is a finite

sequence of elements of B∗ with z0 = x and (1) holding for all i < n.

It turns out that (γ∗, γ∗)-computability (including the Brattka style one) is preserved by each of
the operations from the new triple.

Remark. A natural ternary operation of branching is omitted in both lists because it is
expressible through the three listed operations.

The First Recursion Theorem from [Sk92] can be used to show the (γ∗, γ∗)-computability of
certain least fixed points.
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