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Abstract. A computability notion for real functions which is in Grzegorczyk’s spirit is shown to be equivalent to one in the spirit
of Tent and Ziegler under some general assumptions.
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1. Introduction
A widely used approach to computability of real functions is the one in Grzegorczyk’s style originating from [1].
This approach uses computable transformations of infinitistic names of real numbers, as well as general quantifiers
over these names. Other approaches allow avoiding the use of such names at least in some cases. An approach of
this other kind is, for instance, the one of Tent and Ziegler from [6]. In the present paper, the equivalence of a certain
approach in Grzegorczyk’s spirit and one in the spirit of Tent and Ziegler is shown under some general assumptions.

2. Uniform Computability of a Real Function by Means of a Class of Total
Operators (a Notion in Grzegorczyk’s Spirit)

We will denote by Tm the class of all m-ary total functions in N. The mappings of T k
1 into T1 will be called k-ary

total operators, and the k-ary total operators for all k ∈ N will be generally called total operators (the adjective
“total” will be omitted sometimes).

Definition 2.1 (Of naming of a real number). A triple (f , g, h) ∈ T 3
1 will be said to name a real number ξ if∣∣∣∣ f (n)− g(n)

h(n) + 1
− ξ
∣∣∣∣ < 1

n + 1

for any n ∈ N.

Definition 2.2 (Of the notion of a computing system for a real function). Let N ∈ N and θ : D→ R, where
D ⊆ RN . We will call a computing system for θ any triple (F, G, H) of 3N-ary total operators such that, when-
ever (ξ1, . . . , ξN)∈D and the triples (f1, g1, h1), . . . , (fN , gN , hN) ∈ T 3

1 name ξ1, . . . , ξN , respectively, the 3N-tuple
(f1, g1, h1, . . . , fN , gN , hN) is transformed by the operators F, G, H into the components of a triple, which names
θ(ξ1, . . . , ξN).

Definition 2.3 (Of a computability notion for real functions). Let O be a class of total operators, N ∈ N and
θ : D→ R, where D ⊆ RN . The function θ will be said to be uniformly O-computable if there exists a computing
system (F, G, H) for θ such that F, G, H ∈ O.

Remark. If O is the class of all computable total operators then the uniform O-computability of a real function
coincides with its computability in the sense of [1] (naturally extended to functions of any number of variables).
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Let us note that this is not the most general effective computability of real functions. There are quite simple (not
everywhere defined) real functions effectively computable in a natural more general sense but not computable in the
sense of [1], since any function computable in the sense of [1] is uniformly continuous in the bounded subsets of its
domain. As is well-known (cf. [2]), one should also allow using partial operators (i.e. mappings of proper subclasses
of T k

1 into T1) in order to encompass such functions.1

3. Acceptability of a Pair of a Class of Functions in N and a Class of Total
Operators

Definition 3.1 (Of acceptability). Let F be a subclass of
⋃∞

m=1Tm, and O be a class of total operators. The pair
(F , O) will be called acceptable if the following conditions are satisfied:

(i) The projection functions in N, the successor function, the multiplication function, as well as the functions
λxy. x · y and λxy.

⌊
x

y + 1

⌋
belong to F .

(ii) The set F is closed under substitution.
(iii) For any k ∈ N, the k-ary operator F defined by F(f1, . . . , fk) = idN belongs to O.
(iv) Whenever i∈{1, . . . , k} and F0 is a k-ary operator belonging to O, the operator F defined by

F(f1, . . . , fk)(n) = fi(F0(f1, . . . , fk)(n))

also belongs to O.
(v) Whenever m∈N, f ∈Tm ∩ F , and F1, . . . , Fm are k-ary operators belonging to O, the operator F defined by

F(f1, . . . , fk)(n) = f (F1(f1, . . . , fk)(n), . . . , Fm(f1, . . . , fk)(n))

also belongs to O.
(vi) Whenever f1, . . . , fk ∈ Tl+1 ∩ F and F is a k-ary operator belonging to O, the function

λs1 . . . sln.F(λt.f1(t, s1, . . . , sl), . . . ,λt.fk(t, s1, . . . , sl))(n) (1)

belongs to F .
(vii) For any positive integer k and any k-ary operator F ∈ O, there exists a unary operator F∇∈ O such that

F(f1, . . . , fk)(e) = F(f ′1 , . . . , f ′k )(e), whenever f1, . . . , fk, f ′1 , . . . , f ′k ∈ T1, e ∈ N, g is a monotonically increasing
function from T1 dominating f1, . . . , fk, f ′1 , . . . , f ′k , and f1(t) = f ′1(t), . . . , fk(t) = f ′k (t) for any natural number
t ≤ F∇(g)(e).

Grzegorczyk’s paper [1] suggests the following example of an acceptable pair (F , O): the class F consists of
all computable functions from

⋃∞
m=1Tm, and the class O consists of all computable total operators. In particular,

the conditions (vi) and (vii) are satisfied in this case due to Property 8 in § 2 of [1] and to the Uniformity Theorem
proved in that paper.2

Two other examples of acceptable pairs (F , O) can be obtained by using the subrecursive versions of Grzegor-
czyk’s Uniformity Theorem proved in [3]. In the first of them, F is the class of all primitive recursive functions
from

⋃∞
m=1Tm, and O is the class of all primitive recursive operators (i.e. the class of all total operators F such that

λf1 . . . fkn.F(f1, . . . , fk)(n), where k is the arity of F, is a primitive recursive functional). In the second one, F is the

1In the case of N-argument real functions, the wider computability notion obtained this way is equivalent to (ρN , ρ)-computability in
the sense of [7], hence this wider notion can be regarded as the most general natural computability notion for such functions.

2The property and the theorem in question concern computable functionals, but there is a straightforward reduction of the notion
of computable total operator to the notion of computable functional. Namely, a k-ary total operator F is computable if and only if
λf1 . . . fkn.F(f1, . . . , fk)(n) is a computable functional in the sense of [1].
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class of all functions from
⋃∞

m=1Tm which are elementary in Kalmár’s sense, and O is the class of all elementary
recursive operators (i.e. the class of all total operators F such that λf1 . . . fkn.F(f1, . . . , fk)(n), where k is the arity of
F, is an elementary recursive functional). In both cases, condition (vi) can be shown to be satisfied by inductively
proving that

λs1 . . . sln1 . . . nm.Φ(λt.f1(t, s1, . . . , sl), . . . ,λt.fk(t, s1, . . . , sl), n1, . . . , nm) ∈ F ,

whenever Φ is a functional of the corresponding kind with k function arguments and m number arguments, and
f1, . . . , fk ∈ Tl+1 ∩ F .

As mentioned in [3], similar versions of the Uniformity Theorem can be proved for many other subrecursive
classes of functionals. Examples of acceptable pairs can also be obtained in a natural way from such versions –
for instance, from the version for lower elementary functionals.3 The next theorem yields a family of somewhat
different examples which have the additional feature that the second term of the pair is the least possible for the first
one. The theorem makes use of the notion of F-substitutional operator which was defined in [5]. By its definition,
whenever F ⊆

⋃∞
m=1Tm, the F-substitutional operators form the least class of total operators satisfying conditions

(iii)–(v) of Definition 3.1. We will denote the class of the F-substitutional operators by OF .

Theorem 3.2. Let F be a subclass of
⋃∞

m=1Tm satisfying conditions (i) and (ii) of Definition 3.1, as well as the
following condition:

(a) Whenever f ∈ Tm ∩ F , there exists a function from Tm ∩ F , which dominates f and is monotonically increasing
with respect to any of its arguments.

Then (F , OF ) is an acceptable pair.

Proof. Let O = OF . Then, of course, the conditions (i)–(v) of Definition 3.1 are satisfied. The remaining two
conditions (vi), (vii) will be shown to hold by induction on the construction of the F-substitutional operator F (i.e.
by using the minimality of OF among the classes satisfying (iii)–(v)).

For the case of (vi), suppose f1, . . . , fk are arbitrary functions from Tl+1 ∩ F . If F has the form from condition
(iii) then

F(λt.f1(t, s1, . . . , sl), . . . ,λt.fk(t, s1, . . . , sl))(n) = n

for all s1, . . . , sl, n ∈ N, hence (1) is a projection function in N, and therefore belongs to F . If F has the form from
condition (iv), and the function

λs1 . . . sln.F0(λt.f1(t, s1, . . . , sl), . . . ,λt.fk(t, s1, . . . , sl))(n)

belongs to F then the function (1) also belongs to F , since the value of this function at an arbitrary (l + 1)-tuple
(s1, . . . , sl, n) of natural numbers equals

fi(F0(λt.f1(t, s1, . . . , sl), . . . ,λt.fk(t, s1, . . . , sl))(n), s1, . . . , sl).

Suppose now F has the form from condition (v), and the functions

λs1 . . . sln.Fi(λt.f1(t, s1, . . . , sl), . . . ,λt.fk(t, s1, . . . , sl))(n), i = 1, . . . , m,

belong to F . Then (1) is the result of the substitution of these functions into f , hence (1) again belongs to F .
Before going to the case of (vii), we will first prove the following auxiliary statement: for any k-ary F-

substitutional operator F, there exists a unary F-substitutional operator F4 such that F(f1, . . . , fk) is dominated

3The notion of lower elementary functional can be defined by means of the definition used in [3] for the notion of elementary recursive
functional, but with omitted bounded multiplication.
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by F4(g), whenever f1, . . . , fk ∈ T1 and g is a monotonically increasing function from T1 dominating f1, . . . , fk. We
will proceed by induction on the construction of F. If F has the form from condition (iii) then we may set

F4(g) = idN.

If F has the form from condition (iv), and F40 is such that F40 (g) dominates F0(f1, . . . , fk), whenever g is a mono-
tonically increasing function from T1 dominating f1, . . . , fk, we may define F4 by setting

F4(g)(n) = g(F40 (g)(n)).

Suppose now F has the form from condition (v), and the F-substitutional unary operators F41 , . . . , F4m are such
that, for i = 1, . . . , m, F4i (g) dominates Fi(f1, . . . , fk), whenever g is a monotonically increasing function from T1
dominating f1, . . . , fk. Then we may define F4 by setting

F4(g)(n) = f̃ (F41 (g)(n), . . . , F4m (g)(n)),

where f̃ is a function from Tm ∩ F dominating f and monotonically increasing with respect to any of its arguments.
We mention also the equalities

0 = n · n, n1 + n2 = (n1 + 1)(n2 + 1) · (n1n2 + 1), max(n1, n2) = n1 + (n2
· n1),

max(n1, . . . , nl, nl+1) = max(max(n1, . . . , nl), nl+1).

By these equalities and properties (i) and (ii) of F , the constant 0, the addition function and the maximum function
of any number of arguments belong to F .

Now the statement of condition (vii) will be proved as follows. If F has the form from condition (iii) then we
may set

F∇(g)(e) = 0.

Let F have the form from condition (iv), and the F-substitutional unary operator F∇0 be such that

F0(f1, . . . , fk)(e) = F0(f ′1 , . . . , f ′k )(e),

whenever f1, . . . , fk, f ′1 , . . . , f ′k ∈ T1, e ∈ N, g is a monotonically increasing function from T1 dominating
f1, . . . , fk, f ′1 , . . . , f ′k , and f1(t) = f ′1(t), . . . , fk(t) = f ′k (t) for any natural number t ≤ F∇0 (g)(e). Then we may define
F∇ by setting

F∇(g)(e) = max(F∇0 (g)(e), F40 (g)(e)),

where F40 is the F-substitutional unary operator corresponding to F0 according to the auxiliary statement. Finally,
let F have the form from condition (v), and the F-substitutional unary operators F∇1 , . . . , F∇m be such that, for
i = 1, . . . , m, Fi(f1, . . . , fk)(e) = Fi(f ′1 , . . . , f ′k )(e), whenever f1, . . . , fk, f ′1 , . . . , f ′k ∈ T1, e ∈ N, g is a monotonically
increasing function from T1 dominating f1, . . . , fk, f ′1 , . . . , f ′k , and f1(t) = f ′1(t), . . . , fk(t) = f ′k (t) for any natural num-
ber t ≤ F∇i (g)(e). Then we may define F∇ by setting

F∇(g)(e) = max(F∇1 (g)(e), . . . , F∇m(g)(e)). �

In the examples of acceptable pairs (F , O) indicated above except for the ones whose construction makes use of
Theorem 3.2, the class O is larger than the class OF . This can be seen, for instance, by inductively proving the fol-
lowing statement: for any k-aryF-substitutional operator F, there exists a natural number j (the number of the occur-
rences of the symbols f1, . . . , fk in the expression for F(f1, . . . , fk)(n)) with the property that, for any f1, . . . , fk ∈ T1
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and any n ∈ N, there exists a set A of at most j natural numbers such that F(f1, . . . , fk)(n) = F(f ′1 , . . . , f ′k )(n), when-
ever f ′1 , . . . , f ′k ∈ T1 and f1(t) = f ′1(t), . . . , fk(t) = f ′k (t) for all t ∈ A. On the other hand, the class F in any of these
examples satisfies the condition (a) from Theorem 3.2, hence (F , OF ) is also an acceptable pair. Therefore the class
F from any of these examples is the first term of at least two different acceptable pairs.

Remark. It is not possible for two different acceptable pairs to have one and the same second term. This follows
from the fact that, whenever (F , O) is an acceptable pair, k is a positive integer and f ∈ Tk, the function f belongs
to F if and only if there exists a k-ary operator F from O such that

F(λt.n1, . . . ,λt.nk) = λt.f (n1, . . . , nk)

for any n1, . . . , nk ∈ N.

4. A Characterization Theorem
The next definition introduces a notion of computability of real functions which is in the spirit of the notion of a real
function uniformly in F introduced by Tent and Ziegler in [6].

Definition 4.1 (Of TZ-style uniform computability). Let F be a subclass of
⋃∞

m=1Tm, and let θ : D→ R,
where D ⊆ RN . The function θ will be called TZ-style uniformly F-computable if there exist d ∈ T1 ∩ F and
f , g, h ∈ T3N+1 ∩ F such that, whenever (ξ1, . . . , ξN) ∈ D, p1, q1, r1, . . . , pN , qN , rN , e ∈ N and

|ξi| ≤ e + 1,
∣∣∣∣pi − qi

ri + 1
− ξi

∣∣∣∣ < 1
d(e) + 1

(i = 1, . . . , N), (2)

the numbers

p = f (p1, q1, r1, . . . , pN , qN , rN , e), q = g(p1, q1, r1, . . . , pN , qN , rN , e), (3)
r = h(p1, q1, r1, . . . , pN , qN , rN , e) (4)

satisfy the inequality ∣∣∣∣p− q
r + 1

− θ(ξ1, . . . , ξN)

∣∣∣∣ < 1
e + 1

. (5)

Remark. Under the assumption that F is a good class in the sense of [6] and θ : D→ R, where D is an open
subset of RN , the function θ is TZ-style uniformly F-computable if and only if θ is uniformly in F .

Theorem 4.2 (Characterization Theorem). Let (F , O) be an acceptable pair, and let θ : D→ R, where D ⊆ RN .
The function θ is uniformly O-computable if and only if θ is TZ-style uniformly F-computable.

Proof. As in the proof of Theorem 3.2, we see that the constant 0, the addition function and the maximum function
of any number of arguments belong to F . For the “if”-part, let us suppose that d, f , g, h are functions satisfying the
condition from Definition 4.1. We define 3N-ary total operators F, G, H by setting

F(f1, g1, h1, . . . , fN , gN , hN)(n) = p, G(f1, g1, h1, . . . , fN , gN , hN)(n) = q,
H(f1, g1, h1, . . . , fN , gN , hN)(n) = r,

where the numbers p, q, r are defined by means of the equalities (3–4) with

e = max(f1(0), g1(0), . . . , fN(0), gN(0), n),
pi = fi(d(e)), qi = gi(d(e)), ri = hi(d(e)) for i = 1, . . . , N.
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By conditions (i)–(v) from Definition 3.1, the operators F, G, H belong to O. Clearly, if an element (ξ1, . . . , ξN) of
D and functions f1, g1, h1, . . . , fN , gN , hN from T1 are given such that (fi, gi, hi) names ξi for i = 1, . . . , N, then, for
any n ∈ N, the above numbers p1, q1, r1, . . . , pN , qN , rN , e will satisfy the inequalities (2) and the inequality e ≥ n,
hence the corresponding numbers p, q, r will satisfy the inequality∣∣∣∣p− q

r + 1
− θ(ξ1, . . . , ξN)

∣∣∣∣ < 1
n + 1

.

For the proof of the “only if”-part, suppose (F, G, H) is a computing system for θ such that F, G, H ∈ O. Let
F∇, G∇, H∇ be unary operators from O related to F, G, H, respectively, in the way from condition (vii). Let the
function v ∈ T2 be defined as follows:

v(s, e) = max(F∇(λt.u(t, s))(e), G∇(λt.u(t, s))(e), H∇(λt.u(t, s))(e)),

where u(t, s) = (t + 1)(s + 2). By applying conditions (i), (ii) and (vi), we see that v ∈ F . Clearly, when-
ever f1, g1, h1, . . . , fN , gN , hN , f ′1 , g′1, h′1, . . . , f ′N , g′N , h′N are functions from T1 dominated by a function of the form
λt.(t + 1)(s + 2), and for a certain natural number e the functions f1, g1, h1, . . . , fN , gN , hN coincide, respectively,
with the functions f ′1 , g′1, h′1, . . ., f ′N , g′N , h′N at the numbers not exceeding v(s, e), each of the operators F, G, H trans-
forms the 3N-tuples (f1, g1, h1, . . . , fN , gN , hN) and (f ′1 , g′1, h′1, . . . , f ′N , g′N , h′N) into two functions coinciding at the
number e. To define the functions d, f , g, h, we set d(e) = 2v(e, e) + 1, and we take as values of the functions f , g, h
at the (3N + 1)-tuple (p1, q1, r1, . . ., pN , qN , rN , e) the values at e, respectively, of the results of applying the operators
F, G, H to the 3N-tuple (f1, g1, idN, . . . , fN , gN , idN), where

fi = λt.
⌊

(t + 1)
pi
· qi

ri + 1
+

1
2

⌋
, gi = λt.

⌊
(t + 1)

qi
· pi

ri + 1
+

1
2

⌋
for i = 1, . . . , N. The functions d, f , g, h belong to F due to conditions (i), (ii) and (vi). Suppose now
(ξ1, . . . , ξN) ∈ D, p1, q1, r1, . . . , pN , qN , rN , e ∈ N, and the inequalities (2) hold. Let the numbers p, q, r be
defined by the equalities (3–4). Besides the functions f1, g1, . . . , fN , gN defined above, let us consider functions
f ′1 , g′1, . . . , f ′N , g′N ∈ T1 which coincide, respectively, with them at the numbers not exceeding v(e, e) and which sat-
isfy for all t > v(e, e) the conditions∣∣∣∣ f ′i (t)− g′i(t)

t + 1
− ξi

∣∣∣∣ < 1
t + 1

, f ′i (t) = 0 ∨ g′i(t) = 0. (6)

Making use of (2) and of the fact that always∣∣∣∣ fi(t)− gi(t)
t + 1

− pi − qi

ri + 1

∣∣∣∣ ≤ 1
2(t + 1)

, fi(t) = 0 ∨ gi(t) = 0 , (7)

one sees that conditions (6) will be satisfied also in the case of t ≤ v(e, e). The validity of (6) and (7) for all t ∈ N
shows that the triple (f ′i , g′i , idN) names ξi for i = 1, . . . , N, and allows concluding that fi, gi, f ′i , g′i , idN are domi-
nated by λt.(t + 1)(e + 2). Hence the values at e of the results of applying the operators F, G, H to the 3N-tuple
(f ′1 , g′1, idN, . . . , f ′N , g′N , idN) are equal, respectively, to the numbers p, q, r, and therefore these numbers satisfy the
inequality (5). �

Corollary 4.3. A real function is computable in the sense of [1] if and only if it is TZ-style uniformly C-computable,
where C is the class of all computable functions from

⋃∞
m=1Tm. Thus a real function with an open domain is com-

putable in the sense of [1] if and only if it is uniformly in C.

Corollary 4.4 (The Characterization Theorem from [4]). Under the assumptions of Theorem 3.2, a real function
is uniformly OF -computable if and only if it is TZ-style uniformly F-computable.
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Corollary 4.5. Under the assumptions of Theorem 4.2, if F satisfies the condition (a) of Theorem 3.2 then the
following three conditions are equivalent:

1. θ is uniformly O-computable;
2. θ is uniformly OF -computable;
3. θ is TZ-style uniformly F-computable.

Let us mention that the uniformly OF -computable real functions are actually the uniformly F-computable
functions considered in [5].
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