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A randomized computation is a computation

that makes use of some random number gen-

erators. Mathematically, a random number

generator can be regarded as an in�nite se-

quence of real numbers p0; p1; p2; : : : such that

0 � pk < 1 for all k in N = f0;1;2; : : :g, and

1X
k=0

pk = 1

(pk being the probability of generating the num-

ber k). Examples:
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Using two di�erent random number generators

p0; p1; p2; : : : and q0; q1; q2; : : : can be replaced

by using a generator r0; r1; r2; : : : de�ned as fol-

lows: we take a computable bijection J of N 2

onto N and set rJ(m;n) = pmqn for all m;n 2 N .
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A probabilistic program is a program for ran-

domized computations. Without loss of gen-

erality, we may assume that only one random

number generator is used by the program. The

course of the computations according such a

program usually depends not only on the in-

put data (if any), but also on the numbers

generated by the random number generator at

certain stages of the computation. The out-

put of a probabilistic program has, in general,

some probabilistic distribution, and in the case

of input data the distribution may depend on

them.

Example (simulation �a la von Neumann of an

unbiased coin). Let an arbitrary random num-

ber generator be given, and let random be the

result produced by it. Then the output of the

program on the next slide is 0 or 1, and each

of these two numbers has the probability 1
2
to

occur.
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In the case of a probabilistic program with in-

put, the dependence of the output on the input

can be represented by a random function. If D

is a set (the data set) then a random function

in D is a non-negative real-valued function �

such that dom(�) = D2 and

1X
y=0

�(x; y) � 1

for any x in D (the number �(x; y) is the prob-

ability of returning y as output when x is given

as input).
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The random functions that correspond to prob-

abilistic programs will be called computable.

Of course their class may depend on the con-

sidered class of programs and on the random

number generator used at their execution.

A way via probabilistic Turing machines is of-

ten used for the investigation of the class of

the computable random functions. This can

be done if D is N or some other set of con-

structive objects, and D is considered with the

usual algorithmic operations on it. However,

such an approach is not directly applicable in

the case of abstract data structures.

In the present talk another approach will be

indicated that has a close connection to works

of Yiannis Moschovakis. It uses a further gen-

eralization of a part of the theory developed in

his path-breaking paper \Abstract �rst order

computability" (published in 1969).
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Our generalization works with certain kinds

of function-like objects instead of functions,

namely with elements of so-called iterative com-

binatory spaces. The idea about using such

kinds of objects arose in 1974 under the in-

uence of the unprejudiced way of operating

with multiple-valued functions in the above-

mentioned paper.

The generalization was presented in a series

of papers (the �rst one published in 1976), as

well as in two books { the �rst one in Russian

and the second one in English (they appeared

in 1980 and in 1992, respectively).

Besides the notions of prime and search com-

putability introduced in Moschovakis' paper,

computability notions for many other cases are

captured by that generalization, and some of

the cases are of a probabilistic nature.
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One probabilistic example was examined more

thoroughly, namely the case of randomized com-

putability in the set N with the random num-

ber generator 1
2
; 1
2
;0;0;0; : : : . The function-

like objects considered in that particular case

are random functions in N , and the comput-

able ones among them turned out to be ex-

actly those random functions � for which the

set �
(m;n; x; y) 2 N

4
���� m

n+1
< �(x; y)

�

is recursively enumerable.

One can see from this result that any ran-

dom number generator which is a computable

sequence of computable real numbers can be

simulated by some probabilistic program using

the random number generator 1
2
; 1
2
;0;0;0; : : :

or even any other one.
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The idea of the generalization can be explained

by giving a characterization of the Moskovakis'

prime computable functions in the functional

programming style propounded by Backus in

his 1978 lecture.

Let B be a set, o =2 B, BÆ = B [ fog. Assum-

ing ordered pairs hx; yi are de�ned so that no

element of BÆ is an ordered pair, a set B? (the

Moschovakis extension of B) is de�ned by in-

duction:

(i) if z 2 BÆ then z 2 B?;

(ii) if x 2 B? and y 2 B?, then hx; yi 2 B?.

Let I; L;R;O : B? ! B? be de�ned as follows:

I(z) = z, O(z) = o for all z 2 B?, L(hx; yi) = x,

R(hx; yi) = y for all x; y 2 B?, L(o) = R(o) = o,

L(z) = R(z) = ho; oi for all z 2 B.

Let Fp be the set of all partial one-argument

functions in B?. For any two functions ' and

 from Fp we de�ne their composition ' and

their combination (';  ) as �z:'( (z)) and

�z:h'(z);  (z)i, respectively.
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For any �; ';  from Fp we de�ne the function

(�! '; ) (the branching to ' and  controlled

by �) as follows: (�! '; )(x) = y i�

either x 2 H1 and '(x) = y;

or x 2 H2 and  (x) = y;

where H1 = ��1(B? nBÆ), H2 = ��1(BÆ).

If � and � are functions from Fp then the iter-

ation of � controlled by � is, by de�nition, the

least solution � of the equation

� = (�! ��; I);

where Fp is considered with the usual par-

tial ordering. A more explicit description of

this � reads as follows: �(x) = y i� there

are a non-negative integer k and a sequence

(z0; z1; : : : ; zk) of elements of B
? such that z0 = x,

zk = y 2 H2, zi 2 H1 and zi+1 = �(zi) for i =

0;1; : : : ; k�1, where H1 and H2 are the same as

in the de�nition of branching. This description

shows the intuitive meaning of iteration.
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Characterization of the prime computable

functions. Let A be any subset of B?, and

';  1; : : : ;  l be some functions from Fp. Then

' 2 PC(A; 1; : : : ;  l) i� ' can be obtained by

means of composition, combination, branching

and iteration from the functions I, L, R, O,

 1; : : : ;  l and some constant total functions

from Fp whose values belong to A.

Let us now consider random functions in B?

instead of ordinary partial functions. We shall

embed the set Fp into the set Fr of the random

functions in B? by replacing any function from

Fp with the characteristic function of its graph

(for example, we shall admit that I(x; y) = 1

if y = x, and I(x; y) = 0 otherwise). Under

this embedding the partial ordering of random

functions as real-valued functions extends in an

intuitively acceptable way the partial ordering

in Fp. The operations of composition, combin-

ation and branching also have intuitively ac-

ceptable extensions in Fr (the extensions are

shown on the next slide).
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' = �xy:
X
t2B?

'(t; y) (x; t);

(';  )(x; y) =

(
'(x; u) (x; v) if y = hu; vi,

0 if y 2 BÆ,

(�! '; ) = �xy:H1(x)'(x; y) +H2(x) (x; y);

where

H1(x) =
X

t2B?nBÆ

�(x; t); H2(x) =
X
t2BÆ

�(x; t):

For any � and � in Fr the equation

� = (�! ��; I)

again has a least solution, and it will be called

again the iteration of ' controlled by �. The

iteration operation de�ned in this way is an ex-

tension of the iteration operation de�ned be-

fore in Fp. Again a more explicit description of

the iteration showing its intuitive acceptability

can be written (this description is on the next

slide).
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If � is the iteration of � controlled by � then

� = �0+ �1+ �2+ � � � , where

�k(x; y) = H2(y)
X

�z2Sk;x;y

k�1Y
i=0

H1(zi)�(zi; zi+1);

H1 and H2 are the same as in the de�nition of

branching, and Sk;x;y is the set of all sequences

�z = (z0; z1; : : : ; zk) of elements of B
? such that

z0 = x and zk = y.

The introduced operations on random func-

tions in B? can be used to de�ne a notion of

relative computability for such functions. Sup-

pose 	 is some subset of Fr. An element '

of Fr will be called computable in 	 if ' can

be obtained by means of composition, com-

bination, branching and iteration from some

elements of the set fI; L;R;Og [ 	. The in-

tuitive acceptability of this notion can be seen

from the intuitive acceptability of the opera-

tions mentioned in its de�nition.
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An arguments in favour of the generality and

the convenience of the introduced notion of

computability: it is an instance of the comput-

ability notion of the theory of iterative combin-

atory spaces, and in that theory, for example,

the �rst recursion theorem and a normal form

theorem hold.

The natural numbers will have the represent-

ation in B? chosen by Moschovakis, namely

the number 0 will bs identi�ed with the ele-

ment o, and k+1 will be identi�ed with hk; oi.

A random number generator p0; p1; p2; : : : will

be represented by the random function � such

that �(x; y) = py if y is a natural number, and

�(x; y) = 0 otherwise (clearly � does not de-

pend on its �rst argument).

Finite sequences of elements of B? (in particu-

lar �nite sequences of natural numbers) will be

encoded as follows: the empty sequence " has

code o, and whenever a sequence has code u,

then the new sequence obtained by appending

t as a last term has code hu; ti.
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If we are interested in random functions in B?

that are computable with using a random num-

ber generator p0; p1; p2; : : : then it is appropri-

ate to consider a probabilistic analog of the

functions from Fp belonging to PC(A; 1; : : : ;  l),

namely the elements of Fr that are comput-

able in the set consisting of  1; : : : ;  l, of the

total constant functions from Fp with values

in A and of the random function representing

the generator. We shall call these elements

of Fr probabilistically computable from A in

 1; : : : ;  l with using the generator p0; p1; p2; : : :

No straightforward analog of the result con-

cerning randomized computability in N holds

for these random functions without some addi-

tional assumption. However, they will be char-

acterized in another way, namely in terms of

prime computability of the function value on

the base of the value of the argument and cer-

tain �nite sequences of natural numbers.

13



Let Æ be a mapping of (B?)2 into the power

set of the set of all �nite sequences of nat-

ural numbers, and let Æ have the property that,

whenever a sequence from Æ(x; y1) is a be-

ginning of some sequence from Æ(x; y2), then

y1 = y2 and the two sequences coincide. We

shall call any such mapping Æ a variants dia-

gram. A way of constructing certain variants

diagrams will be described on the next slide.
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Let � be a function from Fp, and x be an

element of B?. A �nite sequence of natural

numbers will be called admissible for x ac-

cording to � if the pair hx; ui, where u is the

code of the sequence, belongs to ��1(BÆ), and

any pair hx; vi, where v is the code of some

proper beginning of the sequence, belongs to

��1(B? n BÆ). Clearly no proper beginning of

a sequence admisible for x according to � can

be also admissible for x according to � .

Let � be also a function from Fp, and y be also

an element of B?. Then a �nite sequence of

natural numbers will be called admissible for

returning y on x according to � and � if this

sequence is admiissible for x according to � ,

and the equality �(hx; ui) = y, where u is the

code of the sequence, holds. We shall denote

by Adm�;�(x; y) the set of all such �nite se-

quences. It is easy to see that the mapping

�xy:Adm�;�(x; y) is a variants diagram.
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Suppose now that a random number generator

p0; p1; p2; : : : is given. The probability P(�k) of

a �nite sequence �k = (k0; k1; : : : ; km�1) of nat-

ural numbers will be de�ned by setting

P(�k) = pk0pk1 : : : pkm�1:

Then for any variants diagram Æ a correspond-

ing random function in B? can be constructed,

namely

�xy:
X

�k2Æ(x;y)

P(�k):

In particular, if for any x and y in B? we set

��;�(x; y) =
X

�k2Adm�;�(x;y)

P(�k)

then ��;� will be a random function in B?.

Theorem. A random function in B? is probab-

ilistically computable from A in  1; : : : ;  l with

using the generator p0; p1; p2; : : : i� it can be

represented in the form ��;� with � and � be-

longing to Fp \ PC(A; 1; : : : ;  l).
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Proof of the \if"-part. Let � be the random

function representing the generator p0; p1; p2; : : : ,

and � be the iteration of the random function

(I; �) controlled by � . Then ��;� = ��(I;O),

hence ��;� is probabilistically computable from

A in  1; : : : ;  l with using the given generator,

whenever �; � 2 Fp \ PC(A; 1; : : : ;  l).

The proof of the \only if"-part is by induc-

tion that follows the construction of the ran-

dom functions in B? that are probabilistically

computable from A in  1; : : : ;  l with using the

given generator. If � is some of the functions

I; L;R;O;  1; : : : ;  l or some total constant func-

tion with value in A then � = ��;� with � = R,

� = �L. If � is the random function represent-

ing the generator p0; p1; p2; : : : , then � = ��;�

with � = (R ! LR; (R;R)), � = R2. The in-

ductive steps are by constructing representa-

tions in the needed form for the composition,

the combination, the branching and the itera-

tion of random functions in B? on the base of

their representations in this form.
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Remark. If p0 and p1 are the only non-zero

terms of the generator p0; p1; p2; : : : then one

can use a smaller set than Adm�;�(x; y) in the

de�nition of ��;�. Namely the set of the se-

quences in Adm�;�(x; y) consisting only of 0's

and 1's is suÆcient in this case, since any

other sequence in Adm�;�(x; y) will have prob-

ability 0. Of course, in the particular case of

p0 = p1 = 1
2

the probability of any m-term

sequence of 0's and 1's will be 2�m.

We can construct an iterative combinatory space,

where the variant diagrams are the function-

like objects.
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The general de�nition of combinatory space.

A combinatory space is a 9-tuple

(F ; I; C;�; L;R;�; T; F);

where F is a partially ordered semigroup, I is

its identity, C � F, � : F2 ! F, � : F3 ! F,

L;R; T; F 2 F, and the following conditions are

identically satis�ed, when '; ; �; � range over

F, and c; d range over C:

8c('c �  c) ) ' �  ,

�(c; d) 2 C, L�(c; d) = c, R�(c; d) = d,

�(';  )c = �('c;  c),

�(I;  c)� = �(�;  c), �(c; I)� = �(c; �),

T 6= F , Tc 2 C, Fc 2 C,

�(T; ';  ) = ', �(F;';  ) =  ,

��(�; ';  ) = �(�; �'; � ),

�(�; ';  )c = �(�c; 'c;  c),

�(I; 'c;  c)� = �(�; 'c;  c),

' �  ; � � � ) �(I; '; �) � �(I;  ; �).

The de�nition implies that multrplication, �

and � are monotonically increasing operations.
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Example (the combinatory space of the vari-

ants diagrams). Let F consist of all variants

diagrams. Let ' �  mean that '(x; y) �  (x; y)

for all x; y 2 B?, and let

' = �xy:
[

t2B?

'(t; y) (x; t):

The set Fp is embedded into F by replacing

any function from Fp with the mapping � such

that �(x; y) = f"g if y is the function value at

x, and �(x; y) = ; otherwise. In particular, the

functions I, L, R will be regarded as elements

of F. Let the set C consist of all total constant

functions from Fp. We set also

�(';  )(x; y) =

(
'(x; u) (x; v) if y = hu; vi,

; if y 2 BÆ,

T = �(O;O); F = O;

�(�; ';  ) = �xy:H1(x)'(x; y) [H2(x) (x; y);

where

H1(x) =
[

t2B?nBÆ

�(x; t); H2(x) =
[

t2BÆ

�(x; t):
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If in a combinatory space the equation

� = �(�; ��; I)

has a least solution � for any � and �, and this

solution has certain additional nice properties,

then the combinatory space is called iterative,

and the least solution in question is called the

iteration of � controlled by �.

A suÆcient condition for iterativeness of a com-

binatory space is the existence in its semigroup

of a zero element that is its least element, the

existence of a least upper bound of any mono-

tonically increasing sequence, and the continu-

ity of the three operations from the de�ni-

tion with respect to such least upper bounds.

This condition is satis�ed for the combinatory

spaces explicitly or implicitly mentioned in the

present talk.
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In the combinatory space of the variants dia-

grams, if � is the iteration of � controlled by �

then � = �0 [ �1 [ �2 [ : : : , where

�k(x; y) = H2(y)
[

�z2Sk;x;y

k�1Y
i=0

H1(zi)�(zi; zi+1);

H1 and H2 are the same as in the de�nition of

�, and Sk;x;y is the same set as in the expres-

sion for the iteration in Fr.

Suppose again that a random number gen-

erator p0; p1; p2; : : : is given. Then we can

consider a homomorphism of the combinatory

space of the variants diagrams into the com-

binatory space of the random functions in B?,

namely the mapping that transforms any vari-

ants diagram into the random function corres-

ponding to it. This homomorphism preserves

also iterations.

22



Also a homomorphism of the combinatory space

of the random functions in B? into the com-

binatory space of the partial multiple-valued

mappings of B? into B? deserves attention. It

can be obtained by considering for any random

function � in B? the corresponding mapping

�x: fy j �(x; y) > 0g:

This homomorphism also preserves iterations.

Let the random number generator p0; p1; p2; : : :

be such that the set fk j pk > 0g is recursively

enumerable. Then the random functions in

B? that are probabilistically computable from

A in  1; : : : ;  l with using this generator go

through the above-mentioned homomorphism

into partial multiple-valued functions belonging

to PC(A; 1; : : : ;  l; �x: N ). (The last kind of

relative computability of multiple-valued func-

tions is, roughly speaking, equivalent to the

Friedman-Shepherdson one.)
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