Uniform computability of real functions

Dimiter Skordev Sofia University "St. Kliment Ohridski" Faculty of Mathematics and Informatics skordev@fmi.uni-sofia.bg

Some aspects of certain notions introduced in the paper [1] are studied more systematically in the present one.

1 \mathcal{F} -substitutional operators

We will denote by \mathbb{T}_m the set of the *m*-ary total functions in \mathbb{N} . The mappings of \mathbb{T}_1^k into \mathbb{T}_1 will be called *k*-ary operators. Let $\mathcal{F} \subseteq \bigcup_{m \in \mathbb{N}} \mathbb{T}_m$.

Definition 1 (of the notion of \mathcal{F} -substitutional k-ary operator)

- 1. The operator F defined by $F(f_1, \ldots, f_k)(n) = n$ is \mathcal{F} -substitutional.
- 2. For any $i \in \{1, ..., k\}$, if F_0 is a \mathcal{F} -substitutional k-ary operator, then so is the operator F defined by $F(f_1, ..., f_k)(n) = f_i(F_0(f_1, ..., f_k)(n))$.
- 3. For any $m \in \mathbb{N}$ and any $f \in \mathbb{T}_m \cap \mathcal{F}$, if F_1, \ldots, F_m are \mathcal{F} -substituitional k-ary operators, then so is the operator F defined by $F(f_1, \ldots, f_k)(n) = f(F_1(f_1, \ldots, f_k)(n), \ldots, F_m(f_1, \ldots, f_k)(n)).$

The next five lemmas can be proved by induction on the construction of the operator F.

Lemma 1 (about composition of the obtained functions) If F and G are \mathcal{F} -substitutional k-ary operators, then so is the operator H, defined by $H(f_1, \ldots, f_k)(n) = F(f_1, \ldots, f_k)(G(f_1, \ldots, f_k)(n)).$

Lemma 2 (about substitution in \mathcal{F} -substitutional operators) Let F be an \mathcal{F} -substitutional k-ary operator. If $l \in \mathbb{N}$ and G_1, \ldots, G_k are \mathcal{F} -substitutional *l*-ary operators, then so is the operator H, defined by $H(g_1, \ldots, g_l) = F(G_1(g_1, \ldots, g_l), \ldots, G_k(g_1, \ldots, g_l)).$

Lemma 3 (about application to functions from \mathcal{F}) Let the class \mathcal{F} contain the projection functions in \mathbb{N} and be closed under substitution, and F be an \mathcal{F} -substitutional k-ary operator. If $m \in \mathbb{N}$ and $f_1, \ldots, f_k \in \mathbb{T}_{m+1} \cap \mathcal{F}$, then

 $\lambda s_1 \dots s_m n. F(\lambda t. f_1(s_1, \dots, s_m, t), \dots, \lambda t. f_k(s_1, \dots, s_m, t))(n) \in \mathcal{F}.$ In particular, if $f_1, \dots, f_k \in \mathbb{T}_1 \cap \mathcal{F}$, then $F(f_1, \dots, f_k) \in \mathcal{F}.$

Lemma 4 (Domination Lemma) Let the following conditions be satisfied:

- 1. The class \mathcal{F} contains the projection functions in \mathbb{N} and is closed under substitution.
- 2. For any $m \in \mathbb{N}$ and any function $f \in \mathbb{T}_m \cap \mathcal{F}$ there exists a function from $\mathbb{T}_m \cap \mathcal{F}$, which dominates f and is monotonically increasing with respect to any of its arguments.

Let F be an \mathcal{F} -substitutional k-ary operator and a function $g \in \mathbb{T}_2 \cap \mathcal{F}$ be given. Then there exists a function $h \in \mathbb{T}_2 \cap \mathcal{F}$ such that $F(f_1, \ldots, f_k)$ is dominated by $\lambda n.h(a, n)$, whenever $a \in \mathbb{N}$ and $f_1, \ldots, f_k \in \mathbb{T}_1$ are dominated by $\lambda n.g(a, n)$.

Lemma 5 (Uniformity Lemma) Let the conditions 1 and 2 of the Domination Lemma be satisfied, and let there exists a function $j \in \mathbb{T}_2 \cap \mathcal{F}$ such that $j(x,y) \geq x$ and $j(x,y) \geq y$ for all $x, y \in \mathbb{N}$. Let F be an \mathcal{F} -substitutional kary operator, and a function $g \in \mathbb{T}_2 \cap \mathcal{F}$ be given. Then there exists a function $u \in \mathbb{T}_2 \cap \mathcal{F}$ such that

$$F(f_1,...,f_k)(e) = F(f'_1,...,f'_k)(e),$$

whenever $f_1, \ldots, f_k, f'_1, \ldots, f'_k \in \mathbb{T}_1$, $e \in \mathbb{N}$ and for some $a \in \mathbb{N}$ any of the functions f_i and f'_i , $i = 1, \ldots, k$, is dominated by the function $\lambda n.g(a, n)$, and $f_1(n) = f'_1(n), \ldots, f_k(n) = f'_k(n)$ for any natural number $n \leq u(a, e)$.

Obviously if $\mathcal{F} \subseteq \mathcal{F}' \subseteq \bigcup_{m \in \mathbb{N}} \mathbb{T}_m$, then all \mathcal{F} -substitutional operators are \mathcal{F}' -substitutional. The next lemma indicates an important case when both classes of operators coincide.

Lemma 6 (about the saturation of \mathcal{F}) Let \mathcal{F}' be the least class of total functions in \mathbb{N} which is closed under substitution and contains the functions from \mathcal{F} and the projection functions in \mathbb{N} . Then any \mathcal{F}' -substitutional operator is \mathcal{F} -substitutional.

The proof of this lemma is based on the fact that the replacement of $\mathbb{T}_m \cap \mathcal{F}$ with $\mathbb{T}_m \cap \mathcal{F}'$ in the third clause of Definition 1 produces a correct statement. The lemma shows that no essential loss of generality would arise if the class \mathcal{F} was required from the very beginning to contain the projection functions in \mathbb{N} and to be closed under substitution.

2 Uniform *F*-computability of real functions

Definition 2 (of naming of a real number) For any $f, g, h \in \mathbb{T}_1$, we define a function $\langle f, g, h \rangle : \mathbb{N} \to \mathbb{Q}$ by setting

$$\langle f, g, h \rangle(n) = \frac{f(n) - g(n)}{h(n) + 1}$$

A triple $(f, g, h) \in \mathbb{T}_1^3$ will be called to name a real number ξ if

$$|\langle f,g,h\rangle(n)-\xi|<\frac{1}{n+1}$$

for any $n \in \mathbb{N}$.

Remark. Let the ternary operator *K* be defined as follows:

$$K(f,g,h)(n) = \left\lfloor (n+1)\frac{f(2n+1) - g(2n+1)}{h(2n+1) + 1} + \frac{1}{2} \right\rfloor$$

Then, for any $f, g, h \in \mathbb{T}_1$ and $n \in \mathbb{N}$ some of the numbers K(f, g, h)(n) and K(g, f, h)(n) is 0 and the inequality

$$|\langle K(f,g,h), K(g,f,h), \mathrm{id}_{\mathbb{N}}\rangle(n) - \langle f,g,h\rangle(2n+1)| \le \frac{1}{2(n+1)}$$

holds. Thanks to this inequality, if the triple (f, g, h) names a real number then this number is named also by the triple $(K(f, g, h), K(g, f, h), id_{\mathbb{N}})$.

Definition 3 (of the notion of computing system for a real function) Let $N \in \mathbb{N}$ and $\theta: D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^N$. We will call a computing system for θ any triple (F, G, H) of 3N-ary operators such that, whenever $(\xi_1, \ldots, \xi_N) \in D$ and the triples $(f_1, g_1, h_1), \ldots, (f_N, g_N, h_N) \in \mathbb{T}_1^3$ name ξ_1, \ldots, ξ_N , respectively, the operators F, G, H transform the 3N-tuple $(f_1, g_1, h_1, \ldots, f_N, g_N, h_N)$ into the components of a triple, which names $\theta(\xi_1, \ldots, \xi_N)$.

Definition 4 (of uniform \mathcal{F}-computability of a real function) A triple of operators will be called \mathcal{F} -substitutional if its components are \mathcal{F} -substitutional. A function $\theta : D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^N$, will be called uniformly \mathcal{F} -computable if there exists an \mathcal{F} -substitutional computing system for θ .

Example 1. The projection functions in \mathbb{R} and the function $\lambda \xi$. $-\xi$ are uniformly \emptyset -computable. For any $N \in \mathbb{N}$, the constant 0, regarded as a function from \mathbb{R}^N to \mathbb{R} , is also uniformly \emptyset -computable.

Example 2. Let the class \mathcal{F} be closed under substitution and contain the successor and the addition functions in \mathbb{N} . Let $k \in \mathbb{Q}$. Then the function $\lambda \xi . k \xi$ in \mathbb{R} is uniformly \mathcal{F} -computable.

Example 3. Let the class \mathcal{F} satisfy the assumptions of Example 2, and let \mathcal{F} contain also the multiplication function in \mathbb{N} . Then the functions $\lambda \xi_1 \xi_2 . \xi_1 + \xi_2$, $\lambda \xi_1 \xi_2 . \xi_1 - \xi_2$ and $\lambda \xi_1 \xi_2 . \xi_1 \xi_2$ in \mathbb{R} are uniformly \mathcal{F} -computable.

Example 4. As seen from [1], if a class \mathcal{F} satisfying the assumptions of Example 3 contains also the function $\lambda xy.x \doteq y$ and is closed under the bounded least number operation, then the functions $\lambda \xi. \arctan \xi, \lambda \xi. \arcsin \xi, \lambda \xi. \arccos \xi, \lambda \xi. \sin \xi$ and $\lambda \xi. \cos \xi$ are uniformly \mathcal{F} -computable.

Clearly the restriction of functions preserves uniform \mathcal{F} -computability.

Theorem 1 (about substitution in \mathcal{F} **-computable functions)** Let the partial N-ary function θ in \mathbb{R} be defined by an equality of the form

 $\theta(\xi_1,\ldots,\xi_N)=\theta_0(\theta_1(\xi_1,\ldots,\xi_N),\ldots,\theta_M(\xi_1,\ldots,\xi_N)),$

where $\theta_0, \theta_1, \ldots, \theta_M$ are uniformly \mathcal{F} -computable partial functions in \mathbb{R} with the appropriate number of arguments. Then θ is also uniformly \mathcal{F} -computable.

The proof of this theorem is by applying the lemma about substitution in \mathcal{F} -substitutional operators.

Theorem 2 (Local Boundedness Theorem) Let the class \mathcal{F} satisfy the conditions 1 and 2 of the Domination Lemma and contain the successor and the multiplication functions in \mathbb{N} . Let $\theta : D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^N$, be uniformly \mathcal{F} -computable. Then there exists a function $b \in \mathbb{T}_1 \cap \mathcal{F}$ such that, whenever $a \in \mathbb{N}$, $(\xi_1, \ldots, \xi_N) \in D$ and $\max(|\xi_1|, \ldots, |\xi_N|) \leq a$, the inequality $|\theta(\xi_1, \ldots, \xi_N)| \leq b(a)$ holds.

Proof. Let (F, G, H) be an \mathcal{F} -substitutional computing system for θ . By applying the Domination Lemma, we can find a function $h \in \mathbb{T}_2 \cap \mathcal{F}$ such that the functions $F(f_1, g_1, h_1, \ldots, f_N, g_N, h_N)$ and $G(f_1, g_1, h_1, \ldots, f_N, g_N, h_N)$ are dominated by $\lambda n.h(a, n)$, whenever $a \in \mathbb{N}$ and $f_1, g_1, h_1, \ldots, f_N, g_N, h_N \in \mathbb{T}_1$ are dominated by $\lambda n.a(n+1)+1$. We set b(s) = h(s, s)+1. Let $a \in \mathbb{N}$, $(\xi_1, \ldots, \xi_N) \in D$ and $\max(|\xi_1|, \ldots, |\xi_N|) \leq a$. Then there exist $f_1, g_1, h_1, \ldots, f_N, g_N, h_N \in \mathbb{T}_1$ dominated by $\lambda n.a(n+1) + 1$ such that (f_i, g_i, h_i) names ξ_i for $i = 1, \ldots, N$, and therefore $|\theta(\xi_1, \ldots, \xi_N)|$ is less than

 $\max(F(f_1, g_1, h_1, \dots, f_N, g_N, h_N)(a), G(f_1, g_1, h_1, \dots, f_N, g_N, h_N)(a)) + 1,$ hence $|\theta(\xi_1, \dots, \xi_N)| < b(a)$.

The next theorem gives a characterization of the uniformly \mathcal{F} -computable functions which is in the spirit of the definition in [2] of the notion of a real function uniformly in \mathcal{F} . It follows from the theorem that the uniformly \mathcal{F} -computable functions coincide with the ones uniformly in \mathcal{F} in the case considered in [2].

Theorem 3 (Characterization Theorem) Let \mathcal{F} satisfy the assumptions of the Local Boundedness Theorem and contain also the functions $\lambda xy.x \doteq y$ and $\lambda xy. \left\lfloor \frac{x}{y+1} \right\rfloor$. Let $\theta : D \rightarrow \mathbb{R}$, where $D \subseteq \mathbb{R}^N$. The function θ is uniformly \mathcal{F} computable if and only if there exist $d \in \mathbb{T}_1 \cap \mathcal{F}$ and $f, g, h \in \mathbb{T}_{3N+1} \cap \mathcal{F}$ such that, whenever $(\xi_1, \ldots, \xi_N) \in D$, $p_1, q_1, r_1, \ldots, p_N, q_N, r_N, e \in \mathbb{N}$ and

$$|\xi_i| \le e+1, \quad \left|\frac{p_i - q_i}{r_i + 1} - \xi_i\right| < \frac{1}{d(e) + 1} \quad (i = 1, \dots, N),$$
 (1)

the numbers

$$p = f(p_1, q_1, r_1, \dots, p_N, q_N, r_N, e), \quad q = g(p_1, q_1, r_1, \dots, p_N, q_N, r_N, e), \tag{2}$$

$$= h(p_1, q_1, r_1, \dots, p_N, q_N, r_N, e)$$
(3)

satisfy the inequality

r

$$\left|\frac{p-q}{r+1} - \theta(\xi_1, \dots, \xi_N)\right| < \frac{1}{e+1}.$$
(4)

Proof. For the "if"-part, let us suppose that d, f, g, h are functions satisfying the above condition. We define 3N-ary operators F, G, H by setting

$$F(f_1, g_1, h_1, \dots, f_N, g_N, h_N)(n) = p, \quad G(f_1, g_1, h_1, \dots, f_N, g_N, h_N)(n) = q,$$

$$H(f_1, g_1, h_1, \dots, f_N, g_N, h_N)(n) = r,$$

where the numbers p, q, r are defined by means of the equalities (2–3) with

$$e = \max(f_1(0), g_1(0), \dots, f_N(0), g_N(0), n),$$

$$p_i = f_i(d(e)), \quad q_i = g_i(d(e)), \quad r_i = h_i(d(e)) \quad \text{for } i = 1, \dots, N.$$

These operators are \mathcal{F} -substitutional, and if an element (ξ_1, \ldots, ξ_N) of D and functions $f_1, g_1, h_1, \ldots, f_N, g_N, h_N \in \mathbb{T}_1$ are given such that (f_i, g_i, h_i) names ξ_i for $i = 1, \ldots, N$, then, for any $n \in \mathbb{N}$, the above numbers $p_1, q_1, r_1, \ldots, p_N, q_N, r_N, e$ will satisfy the inequalities (1) and the inequality $e \ge n$, hence the corresponding numbers p, q, r will satisfy the inequality

$$\left|\frac{p-q}{r+1}-\theta(\xi_1,\ldots,\xi_N)\right|<\frac{1}{n+1}.$$

For the proof of the "only if"-part, suppose (F, G, H) is an \mathcal{F} -substitutional computing system for θ . By applying the Uniformity Lemma, we can find a function $u \in \mathbb{T}_2 \cap \mathcal{F}$ such that, whenever $a \in \mathbb{N}$, the functions

$$f_1, g_1, h_1, \dots, f_N, g_N, h_N, f'_1, g'_1, h'_1, \dots, f'_N, g'_N, h'_N \in \mathbb{T}_1$$

are dominated by $\lambda n.(a + 2)(n + 1)$ and for a certain $e \in \mathbb{N}$ the functions $f_1, g_1, h_1, \ldots, f_N, g_N, h_N$ coincide, respectively, with the functions $f'_1, g'_1, h'_1, \ldots, f'_N, g'_N, h'_N$ at the numbers not exceeding u(a, e), each of the operators F, G, H transforms $(f_1, g_1, h_1, \ldots, f_N, g_N, h_N)$ and $(f'_1, g'_1, h'_1, \ldots, f'_N, g'_N, h'_N)$ into two functions coinciding at the number e. To define the functions d, f, g, h, we set d(e) = 2u(e, e) + 1, and we take as values of the functions f, g, h at $(p_1, q_1, r_1, \ldots, p_N, q_N, r_N, e)$ the values at e, respectively, of the results of applying the operators F, G, H to the 3N-tuple $(f_1, g_1, \mathrm{id}_N, \ldots, f_N, g_N, \mathrm{id}_N)$, where

$$f_{i} = \lambda n. \left[(n+1)\frac{p_{i} - q_{i}}{r_{i} + 1} + \frac{1}{2} \right], \quad g_{i} = \lambda n. \left[(n+1)\frac{q_{i} - p_{i}}{r_{i} + 1} + \frac{1}{2} \right]$$
(5)

for i = 1, ..., N. Suppose now $(\xi_1, ..., \xi_N) \in D$, $p_1, q_1, r_1, ..., p_N, q_N, r_N, e \in \mathbb{N}$, and the inequalities (1) hold. Let the numbers p, q, r be defined by the equalities (2–3). Besides the functions $f_1, g_1, ..., f_N, g_N$ defined by (5), we consider functions $f'_1, g'_1, ..., f'_N, g'_N \in \mathbb{T}_1$ coinciding, respectively, with them at the numbers not exceeding u(e, e) and such that, for all x > u(e, e),

$$\left|\frac{f'_i(x) - g'_i(x)}{x+1} - \xi_i\right| < \frac{1}{x+1}, \quad f'_i(x) = 0 \lor g'_i(x) = 0.$$
(6)

Making use of (1) and (5), one sees that the conditions (6) will be satisfied also in the case of $x \leq u(e, e)$, hence the triple $(f'_i, g'_i, \operatorname{id}_{\mathbb{N}})$ names ξ_i for $i = 1, \ldots, N$. Since the functions $f_i, g_i, f'_i, g'_i, \operatorname{id}_{\mathbb{N}}$ are dominated by $\lambda n.(e+2)(n+1)$, the values at e of the results of applying the operators F, G, H to the 3N-tuple $(f'_1, g'_1, \operatorname{id}_{\mathbb{N}}, \ldots, f'_N, g'_N, \operatorname{id}_{\mathbb{N}})$ are equal, respectively, to the numbers p, q, r, and therefore these numbers satisfy the inequality (4). \Box

References

- Skordev, D., Weiermann, A., Georgiev, I., M²-computable real numbers, J. Logic and Computation (to appear).
- Tent, K., Ziegler, M., Computable functions of reals, arXiv:0903. 1384v4 [math.LO], March 2009 (Last updated: July 24, 2009) http://arxiv.org/abs/0903.1384