
Uniform computability of real functions

Dimiter Skordev
Sofia University “St. Kliment Ohridski”
Faculty of Mathematics and Informatics

skordev@fmi.uni-sofia.bg

Some aspects of certain notions introduced in the paper [1] are studied more
systematically in the present one.

1 F-substitutional operators

We will denote by Tm the set of the m-ary total functions in N. The mappings
of Tk

1 into T1 will be called k-ary operators. Let F ⊆ ⋃m∈N Tm .

Definition 1 (of the notion of F-substitutional k-ary operator)

1. The operator F defined by F (f1, . . . , fk)(n) = n is F-substitutional.

2. For any i ∈ {1, . . . , k}, if F0 is a F-substitutional k-ary operator, then so
is the operator F defined by F (f1, . . . , fk)(n) = fi(F0(f1, . . . , fk)(n)).

3. For any m ∈ N and any f ∈ Tm ∩ F , if F1, . . . , Fm are F-substituitional
k-ary operators, then so is the operator F defined by

F (f1, . . . , fk)(n) = f(F1(f1, . . . , fk)(n), . . . , Fm(f1, . . . , fk)(n)).

The next five lemmas can be proved by induction on the construction of the
operator F .

Lemma 1 (about composition of the obtained functions) If F and G are
F-substitutional k-ary operators, then so is the operator H, defined by

H(f1, . . . , fk)(n) = F (f1, . . . , fk)(G(f1, . . . , fk)(n)).
Lemma 2 (about substitution in F-substitutional operators) Let F be
an F-substitutional k-ary operator. If l ∈ N and G1, . . . , Gk are F-substitutional
l-ary operators, then so is the operator H, defined by

H(g1, . . . , gl) = F (G1(g1, . . . , gl), . . . ,Gk(g1, . . . , gl)).
Lemma 3 (about application to functions from F) Let the class F con-
tain the projection functions in N and be closed under substitution, and F be an
F-substitutional k-ary operator. If m ∈ N and f1, . . . , fk ∈ Tm+1 ∩F , then

λs1 . . . smn.F (λt.f1(s1, . . . , sm, t), . . . , λt.fk(s1, . . . , sm, t))(n) ∈ F .

In particular, if f1, . . . , fk ∈ T1 ∩F , then F (f1, . . . , fk) ∈ F .
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Lemma 4 (Domination Lemma) Let the following conditions be satisfied:

1. The class F contains the projection functions in N and is closed under
substitution.

2. For any m ∈ N and any function f ∈ Tm ∩F there exists a function from
Tm ∩ F , which dominates f and is monotonically increasing with respect
to any of its arguments.

Let F be an F-substitutional k-ary operator and a function g ∈ T2 ∩F be given.
Then there exists a function h ∈ T2 ∩F such that F (f1, . . . , fk) is dominated by
λn.h(a,n), whenever a ∈ N and f1, . . . , fk ∈ T1 are dominated by λn.g(a,n).
Lemma 5 (Uniformity Lemma) Let the conditions 1 and 2 of the Domina-
tion Lemma be satisfied, and let there exists a function j ∈ T2 ∩ F such that
j(x, y) ≥ x and j(x, y) ≥ y for all x, y ∈ N. Let F be an F-substitutional k-
ary operator, and a function g ∈ T2 ∩F be given. Then there exists a function
u ∈ T2 ∩F such that

F (f1, . . . , fk)(e) = F (f ′1, . . . , f ′k)(e),
whenever f1, . . . , fk, f ′1, . . . , f

′

k ∈ T1, e ∈ N and for some a ∈ N any of the func-
tions fi and f ′i , i = 1, . . . , k, is dominated by the function λn.g(a,n), and
f1(n) = f ′1(n), . . . , fk(n) = f ′k(n) for any natural number n ≤ u(a, e).

Obviously if F ⊆ F ′ ⊆ ⋃m∈N Tm, then all F-substitutional operators are F ′-
substitutional. The next lemma indicates an important case when both classes
of operators coincide.

Lemma 6 (about the saturation of F) Let F ′ be the least class of total
functions in N which is closed under substitution and contains the functions
from F and the projection functions in N. Then any F ′-substitutional operator
is F-substitutional.

The proof of this lemma is based on the fact that the replacement of Tm∩F
with Tm ∩ F ′ in the third clause of Definition 1 produces a correct statement.
The lemma shows that no essential loss of generality would arise if the class F
was required from the very beginning to contain the projection functions in N
and to be closed under substitution.

2 Uniform F-computability of real functions

Definition 2 (of naming of a real number) For any f, g, h ∈ T1, we define
a function ⟨f, g, h⟩ ∶ N→ Q by setting

⟨f, g, h⟩(n) = f(n) − g(n)
h(n) + 1

.

A triple (f, g, h) ∈ T3
1 will be called to name a real number ξ if

∣⟨f, g, h⟩(n) − ξ∣ < 1
n + 1

for any n ∈ N.
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Remark. Let the ternary operator K be defined as follows:

K(f, g, h)(n) = ⌊(n + 1)f(2n + 1) � g(2n + 1)
h(2n + 1) + 1

+

1
2
⌋ .

Then, for any f, g, h ∈ T1 and n ∈ N some of the numbers K(f, g, h)(n) and
K(g, f, h)(n) is 0 and the inequality

∣⟨K(f, g, h),K(g, f, h), idN⟩(n) − ⟨f, g, h⟩(2n + 1)∣ ≤ 1
2(n + 1)

holds. Thanks to this inequality, if the triple (f, g, h) names a real number then
this number is named also by the triple (K(f, g, h),K(g, f, h), idN).
Definition 3 (of the notion of computing system for a real function)
Let N ∈ N and θ ∶ D → R, where D ⊆ RN . We will call a computing system for
θ any triple (F,G,H) of 3N -ary operators such that, whenever (ξ1, . . . , ξN)∈D
and the triples (f1, g1, h1), . . . , (fN , gN , hN) ∈ T3

1 name ξ1, . . . , ξN , respectively,
the operators F,G,H transform the 3N -tuple (f1, g1, h1, . . . , fN , gN , hN) into
the components of a triple, which names θ(ξ1, . . . , ξN).
Definition 4 (of uniform F-computability of a real function) A triple of
operators will be called F-substitutional if its components are F-substitutional.
A function θ ∶ D → R, where D ⊆ RN , will be called uniformly F-computable if
there exists an F-substitutional computing system for θ.

Example 1. The projection functions in R and the function λξ.−ξ are uniformly
∅-computable. For any N ∈ N, the constant 0, regarded as a function from RN

to R, is also uniformly ∅-computable.

Example 2. Let the class F be closed under substitution and contain the
successor and the addition functions in N. Let k ∈ Q. Then the function λξ.kξ
in R is uniformly F-computable.

Example 3. Let the class F satisfy the assumptions of Example 2, and let F
contain also the multiplication function in N. Then the functions λξ1ξ2.ξ1 + ξ2,
λξ1ξ2.ξ1 − ξ2 and λξ1ξ2.ξ1ξ2 in R are uniformly F-computable.

Example 4. As seen from [1], if a class F satisfying the assumptions of Ex-
ample 3 contains also the function λxy.x � y and is closed under the bounded
least number operation, then the functions λξ.arctan ξ, λξ.arcsin ξ, λξ.arccos ξ,
λξ. sin ξ and λξ. cos ξ are uniformly F-computable.

Clearly the restriction of functions preserves uniform F-computability.

Theorem 1 (about substitution in F-computable functions) Let the par-
tial N -ary function θ in R be defined by an equality of the form

θ(ξ1, . . . , ξN) = θ0(θ1(ξ1, . . . , ξN), . . . , θM(ξ1, . . . , ξN)),
where θ0, θ1, . . . , θM are uniformly F-computable partial functions in R with the
appropriate number of arguments. Then θ is also uniformly F-computable.

The proof of this theorem is by applying the lemma about substitution in
F-substitutional operators.
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Theorem 2 (Local Boundedness Theorem) Let the class F satisfy the con-
ditions 1 and 2 of the Domination Lemma and contain the successor and the
multiplication functions in N. Let θ ∶ D → R, where D ⊆ RN , be uniformly F-
computable. Then there exists a function b ∈ T1 ∩F such that, whenever a ∈ N,
(ξ1, . . . , ξN) ∈ D and max(∣ξ1∣, . . . , ∣ξN ∣) ≤ a, the inequality ∣θ(ξ1, . . . , ξN)∣ ≤ b(a)
holds.
Proof. Let (F,G,H) be an F-substitutional computing system for θ. By ap-
plying the Domination Lemma, we can find a function h ∈ T2 ∩ F such that
the functions F (f1, g1, h1, . . . , fN , gN , hN) and G(f1, g1, h1, . . . , fN , gN , hN) are
dominated by λn.h(a,n), whenever a ∈ N and f1, g1, h1, . . . , fN , gN , hN ∈ T1 are
dominated by λn.a(n+1)+1. We set b(s) = h(s, s)+1. Let a ∈ N, (ξ1, . . . , ξN) ∈D
and max(∣ξ1∣, . . . , ∣ξN ∣) ≤ a. Then there exist f1, g1, h1, . . . , fN , gN , hN ∈ T1 dom-
inated by λn.a(n + 1) + 1 such that (fi, gi, hi) names ξi for i = 1, . . . ,N , and
therefore ∣θ(ξ1, . . . , ξN)∣ is less than

max(F (f1, g1, h1, . . . , fN , gN , hN)(a),G(f1, g1, h1, . . . , fN , gN , hN)(a)) + 1,

hence ∣θ(ξ1, . . . , ξN)∣ < b(a). ◻
The next theorem gives a characterization of the uniformly F-computable

functions which is in the spirit of the definition in [2] of the notion of a real
function uniformly in F . It follows from the theorem that the uniformly F-
computable functions coincide with the ones uniformly in F in the case consid-
ered in [2].

Theorem 3 (Characterization Theorem) Let F satisfy the assumptions of
the Local Boundedness Theorem and contain also the functions λxy.x � y and
λxy. ⌊ x

y+1
⌋. Let θ ∶ D → R, where D ⊆ RN . The function θ is uniformly F-

computable if and only if there exist d ∈ T1∩F and f, g, h ∈ T3N+1∩F such that,
whenever (ξ1, . . . , ξN) ∈D, p1, q1, r1, . . . , pN , qN , rN , e ∈ N and

∣ξi∣ ≤ e + 1, ∣pi − qi

ri + 1
− ξi∣ < 1

d(e) + 1
(i = 1, . . . ,N), (1)

the numbers
p = f(p1, q1, r1, . . . , pN , qN , rN , e), q = g(p1, q1, r1, . . . , pN , qN , rN , e), (2)

r = h(p1, q1, r1, . . . , pN , qN , rN , e) (3)
satisfy the inequality

∣p − q

r + 1
− θ(ξ1, . . . , ξN)∣ < 1

e + 1
. (4)

Proof. For the “if”-part, let us suppose that d, f, g, h are functions satisfying
the above condition. We define 3N -ary operators F,G,H by setting

F (f1, g1, h1, . . . , fN , gN , hN)(n) = p, G(f1, g1, h1, . . . , fN , gN , hN)(n) = q,

H(f1, g1, h1, . . . , fN , gN , hN)(n) = r,

where the numbers p, q, r are defined by means of the equalities (2–3) with
e =max(f1(0), g1(0), . . . , fN(0), gN(0), n),

pi = fi(d(e)), qi = gi(d(e)), ri = hi(d(e)) for i = 1, . . . ,N.
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These operators are F-substitutional, and if an element (ξ1, . . . , ξN) of D and
functions f1, g1, h1, . . . , fN , gN , hN ∈ T1 are given such that (fi, gi, hi) names
ξi for i = 1, . . . ,N , then, for any n ∈ N, the above numbers p1, q1, r1, . . . ,
pN , qN , rN , e will satisfy the inequalities (1) and the inequality e ≥ n, hence
the corresponding numbers p, q, r will satisfy the inequality

∣p − q

r + 1
− θ(ξ1, . . . , ξN)∣ < 1

n + 1
.

For the proof of the “only if”-part, suppose (F,G,H) is an F-substitutional
computing system for θ. By applying the Uniformity Lemma, we can find a
function u ∈ T2 ∩F such that, whenever a ∈ N, the functions

f1, g1, h1, . . . , fN , gN , hN , f ′1, g
′

1, h
′

1, . . . , f
′

N , g′N , h′N ∈ T1

are dominated by λn.(a + 2)(n + 1) and for a certain e ∈ N the functions
f1, g1, h1, . . . , fN , gN , hN coincide, respectively, with the functions f ′1, g

′

1, h
′

1, . . .,
f ′N , g′N , h′N at the numbers not exceeding u(a, e), each of the operators F,G,H
transforms (f1, g1, h1, . . . , fN , gN , hN) and (f ′1, g′1, h′1, . . . , f ′N , g′N , h′N) into two
functions coinciding at the number e. To define the functions d, f, g, h, we set
d(e) = 2u(e, e)+1, and we take as values of the functions f, g, h at (p1, q1, r1, . . .,
pN , qN , rN , e) the values at e, respectively, of the results of applying the opera-
tors F,G,H to the 3N -tuple (f1, g1, idN, . . . , fN , gN , idN), where

fi = λn. ⌊(n + 1)pi � qi

ri + 1
+

1
2
⌋ , gi = λn. ⌊(n + 1)qi � pi

ri + 1
+

1
2
⌋ (5)

for i = 1, . . . ,N . Suppose now (ξ1, . . . , ξN) ∈ D, p1, q1, r1, . . . , pN , qN , rN , e ∈ N,
and the inequalities (1) hold. Let the numbers p, q, r be defined by the equalities
(2–3). Besides the functions f1, g1, . . . , fN , gN defined by (5), we consider func-
tions f ′1, g

′

1, . . . , f
′

N , g′N ∈ T1 coinciding, respectively, with them at the numbers
not exceeding u(e, e) and such that, for all x > u(e, e),

∣f
′

i(x) − g′i(x)
x + 1

− ξi∣ < 1
x + 1

, f ′i(x) = 0 ∨ g′i(x) = 0. (6)

Making use of (1) and (5), one sees that the conditions (6) will be satisfied also
in the case of x ≤ u(e, e), hence the triple (f ′i , g′i, idN) names ξi for i = 1, . . . ,N .
Since the functions fi, gi, f

′

i , g
′

i, idN are dominated by λn.(e + 2)(n + 1), the
values at e of the results of applying the operators F,G,H to the 3N -tuple
(f ′1, g′1, idN, . . . , f ′N , g′N , idN) are equal, respectively, to the numbers p, q, r, and
therefore these numbers satisfy the inequality (4). ◻
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