Uniform computability of real functions

Dimiter Skordev
Sofia University "St. Kliment Ohridski"
Faculty of Mathematics and Informatics
skordev@fmi.uni-sofia.bg

Some aspects of certain notions introduced in the paper [1] are studied more systematically in the present one.

$1 \mathcal{F}$-substitutional operators

We will denote by \mathbb{T}_{m} the set of the m-ary total functions in \mathbb{N}. The mappings of \mathbb{T}_{1}^{k} into \mathbb{T}_{1} will be called k-ary operators. Let $\mathcal{F} \subseteq \cup_{m \in \mathbb{N}} \mathbb{T}_{m}$.

Definition 1 (of the notion of \mathcal{F}-substitutional k-ary operator)

1. The operator F defined by $F\left(f_{1}, \ldots, f_{k}\right)(n)=n$ is \mathcal{F}-substitutional.
2. For any $i \in\{1, \ldots, k\}$, if F_{0} is a \mathcal{F}-substitutional k-ary operator, then so is the operator F defined by $F\left(f_{1}, \ldots, f_{k}\right)(n)=f_{i}\left(F_{0}\left(f_{1}, \ldots, f_{k}\right)(n)\right)$.
3. For any $m \in \mathbb{N}$ and any $f \in \mathbb{T}_{m} \cap \mathcal{F}$, if F_{1}, \ldots, F_{m} are \mathcal{F}-substituitional k-ary operators, then so is the operator F defined by

$$
F\left(f_{1}, \ldots, f_{k}\right)(n)=f\left(F_{1}\left(f_{1}, \ldots, f_{k}\right)(n), \ldots, F_{m}\left(f_{1}, \ldots, f_{k}\right)(n)\right)
$$

The next five lemmas can be proved by induction on the construction of the operator F.

Lemma 1 (about composition of the obtained functions) If F and G are \mathcal{F}-substitutional k-ary operators, then so is the operator H, defined by

$$
H\left(f_{1}, \ldots, f_{k}\right)(n)=F\left(f_{1}, \ldots, f_{k}\right)\left(G\left(f_{1}, \ldots, f_{k}\right)(n)\right)
$$

Lemma 2 (about substitution in \mathcal{F}-substitutional operators) Let F be an \mathcal{F}-substitutional k-ary operator. If $l \in \mathbb{N}$ and G_{1}, \ldots, G_{k} are \mathcal{F}-substitutional l-ary operators, then so is the operator H, defined by

$$
H\left(g_{1}, \ldots, g_{l}\right)=F\left(G_{1}\left(g_{1}, \ldots, g_{l}\right), \ldots, G_{k}\left(g_{1}, \ldots, g_{l}\right)\right)
$$

Lemma 3 (about application to functions from \mathcal{F}) Let the class \mathcal{F} contain the projection functions in \mathbb{N} and be closed under substitution, and F be an \mathcal{F}-substitutional k-ary operator. If $m \in \mathbb{N}$ and $f_{1}, \ldots, f_{k} \in \mathbb{T}_{m+1} \cap \mathcal{F}$, then

$$
\lambda s_{1} \ldots s_{m} n \cdot F\left(\lambda t \cdot f_{1}\left(s_{1}, \ldots, s_{m}, t\right), \ldots, \lambda t \cdot f_{k}\left(s_{1}, \ldots, s_{m}, t\right)\right)(n) \in \mathcal{F}
$$ In particular, if $f_{1}, \ldots, f_{k} \in \mathbb{T}_{1} \cap \mathcal{F}$, then $F\left(f_{1}, \ldots, f_{k}\right) \in \mathcal{F}$.

Lemma 4 (Domination Lemma) Let the following conditions be satisfied:

1. The class \mathcal{F} contains the projection functions in \mathbb{N} and is closed under substitution.
2. For any $m \in \mathbb{N}$ and any function $f \in \mathbb{T}_{m} \cap \mathcal{F}$ there exists a function from $\mathbb{T}_{m} \cap \mathcal{F}$, which dominates f and is monotonically increasing with respect to any of its arguments.
Let F be an \mathcal{F}-substitutional k-ary operator and a function $g \in \mathbb{T}_{2} \cap \mathcal{F}$ be given. Then there exists a function $h \in \mathbb{T}_{2} \cap \mathcal{F}$ such that $F\left(f_{1}, \ldots, f_{k}\right)$ is dominated by $\lambda n . h(a, n)$, whenever $a \in \mathbb{N}$ and $f_{1}, \ldots, f_{k} \in \mathbb{T}_{1}$ are dominated by $\lambda n . g(a, n)$.

Lemma 5 (Uniformity Lemma) Let the conditions 1 and 2 of the Domination Lemma be satisfied, and let there exists a function $j \in \mathbb{T}_{2} \cap \mathcal{F}$ such that $j(x, y) \geq x$ and $j(x, y) \geq y$ for all $x, y \in \mathbb{N}$. Let F be an \mathcal{F}-substitutional k ary operator, and a function $g \in \mathbb{T}_{2} \cap \mathcal{F}$ be given. Then there exists a function $u \in \mathbb{T}_{2} \cap \mathcal{F}$ such that

$$
F\left(f_{1}, \ldots, f_{k}\right)(e)=F\left(f_{1}^{\prime}, \ldots, f_{k}^{\prime}\right)(e),
$$

whenever $f_{1}, \ldots, f_{k}, f_{1}^{\prime}, \ldots, f_{k}^{\prime} \in \mathbb{T}_{1}, e \in \mathbb{N}$ and for some $a \in \mathbb{N}$ any of the functions f_{i} and $f_{i}^{\prime}, i=1, \ldots, k$, is dominated by the function $\lambda n . g(a, n)$, and $f_{1}(n)=f_{1}^{\prime}(n), \ldots, f_{k}(n)=f_{k}^{\prime}(n)$ for any natural number $n \leq u(a, e)$.

Obviously if $\mathcal{F} \subseteq \mathcal{F}^{\prime} \subseteq \bigcup_{m \in \mathbb{N}} \mathbb{T}_{m}$, then all \mathcal{F}-substitutional operators are \mathcal{F}^{\prime} substitutional. The next lemma indicates an important case when both classes of operators coincide.
Lemma 6 (about the saturation of \mathcal{F}) Let \mathcal{F}^{\prime} be the least class of total functions in \mathbb{N} which is closed under substitution and contains the functions from \mathcal{F} and the projection functions in \mathbb{N}. Then any \mathcal{F}^{\prime}-substitutional operator is \mathcal{F}-substitutional.

The proof of this lemma is based on the fact that the replacement of $\mathbb{T}_{m} \cap \mathcal{F}$ with $\mathbb{T}_{m} \cap \mathcal{F}^{\prime}$ in the third clause of Definition 1 produces a correct statement. The lemma shows that no essential loss of generality would arise if the class \mathcal{F} was required from the very beginning to contain the projection functions in \mathbb{N} and to be closed under substitution.

2 Uniform \mathcal{F}-computability of real functions

Definition 2 (of naming of a real number) For any $f, g, h \in \mathbb{T}_{1}$, we define a function $\langle f, g, h\rangle: \mathbb{N} \rightarrow \mathbb{Q}$ by setting

$$
\langle f, g, h\rangle(n)=\frac{f(n)-g(n)}{h(n)+1}
$$

A triple $(f, g, h) \in \mathbb{T}_{1}^{3}$ will be called to name a real number ξ if

$$
|\langle f, g, h\rangle(n)-\xi|<\frac{1}{n+1}
$$

for any $n \in \mathbb{N}$.

Remark. Let the ternary operator K be defined as follows:

$$
K(f, g, h)(n)=\left\lfloor(n+1) \frac{f(2 n+1)-g(2 n+1)}{h(2 n+1)+1}+\frac{1}{2}\right\rfloor .
$$

Then, for any $f, g, h \in \mathbb{T}_{1}$ and $n \in \mathbb{N}$ some of the numbers $K(f, g, h)(n)$ and $K(g, f, h)(n)$ is 0 and the inequality

$$
\left|\left\langle K(f, g, h), K(g, f, h), \operatorname{id}_{\mathbb{N}}\right\rangle(n)-\langle f, g, h\rangle(2 n+1)\right| \leq \frac{1}{2(n+1)}
$$

holds. Thanks to this inequality, if the triple (f, g, h) names a real number then this number is named also by the triple $\left(K(f, g, h), K(g, f, h), \mathrm{id}_{\mathbb{N}}\right)$.

Definition 3 (of the notion of computing system for a real function) Let $N \in \mathbb{N}$ and $\theta: D \rightarrow \mathbb{R}$, where $D \subseteq \mathbb{R}^{N}$. We will call a computing system for θ any triple (F, G, H) of $3 N$-ary operators such that, whenever $\left(\xi_{1}, \ldots, \xi_{N}\right) \in D$ and the triples $\left(f_{1}, g_{1}, h_{1}\right), \ldots,\left(f_{N}, g_{N}, h_{N}\right) \in \mathbb{T}_{1}^{3}$ name ξ_{1}, \ldots, ξ_{N}, respectively, the operators F, G, H transform the $3 N$-tuple $\left(f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N}\right)$ into the components of a triple, which names $\theta\left(\xi_{1}, \ldots, \xi_{N}\right)$.

Definition 4 (of uniform \mathcal{F}-computability of a real function) A triple of operators will be called \mathcal{F}-substitutional if its components are \mathcal{F}-substitutional. A function $\theta: D \rightarrow \mathbb{R}$, where $D \subseteq \mathbb{R}^{N}$, will be called uniformly \mathcal{F}-computable if there exists an \mathcal{F}-substitutional computing system for θ.
Example 1. The projection functions in \mathbb{R} and the function $\lambda \xi .-\xi$ are uniformly \varnothing-computable. For any $N \in \mathbb{N}$, the constant 0 , regarded as a function from \mathbb{R}^{N} to \mathbb{R}, is also uniformly \varnothing-computable.
Example 2. Let the class \mathcal{F} be closed under substitution and contain the successor and the addition functions in \mathbb{N}. Let $k \in \mathbb{Q}$. Then the function $\lambda \xi . k \xi$ in \mathbb{R} is uniformly \mathcal{F}-computable.

Example 3. Let the class \mathcal{F} satisfy the assumptions of Example 2, and let \mathcal{F} contain also the multiplication function in \mathbb{N}. Then the functions $\lambda \xi_{1} \xi_{2} \cdot \xi_{1}+\xi_{2}$, $\lambda \xi_{1} \xi_{2} \cdot \xi_{1}-\xi_{2}$ and $\lambda \xi_{1} \xi_{2} \cdot \xi_{1} \xi_{2}$ in \mathbb{R} are uniformly \mathcal{F}-computable.

Example 4. As seen from [1], if a class \mathcal{F} satisfying the assumptions of Example 3 contains also the function $\lambda x y \cdot x \dot{-y}$ and is closed under the bounded least number operation, then the functions $\lambda \xi \cdot \arctan \xi, \lambda \xi \cdot \arcsin \xi, \lambda \xi \cdot \arccos \xi$, $\lambda \xi \cdot \sin \xi$ and $\lambda \xi \cdot \cos \xi$ are uniformly \mathcal{F}-computable.

Clearly the restriction of functions preserves uniform \mathcal{F}-computability.
Theorem 1 (about substitution in \mathcal{F}-computable functions) Let the partial N-ary function θ in \mathbb{R} be defined by an equality of the form

$$
\theta\left(\xi_{1}, \ldots, \xi_{N}\right)=\theta_{0}\left(\theta_{1}\left(\xi_{1}, \ldots, \xi_{N}\right), \ldots, \theta_{M}\left(\xi_{1}, \ldots, \xi_{N}\right)\right)
$$

where $\theta_{0}, \theta_{1}, \ldots, \theta_{M}$ are uniformly \mathcal{F}-computable partial functions in \mathbb{R} with the appropriate number of arguments. Then θ is also uniformly \mathcal{F}-computable.

The proof of this theorem is by applying the lemma about substitution in \mathcal{F}-substitutional operators.

Theorem 2 (Local Boundedness Theorem) Let the class \mathcal{F} satisfy the conditions 1 and 2 of the Domination Lemma and contain the successor and the multiplication functions in \mathbb{N}. Let $\theta: D \rightarrow \mathbb{R}$, where $D \subseteq \mathbb{R}^{N}$, be uniformly \mathcal{F} computable. Then there exists a function $b \in \mathbb{T}_{1} \cap \mathcal{F}$ such that, whenever $a \in \mathbb{N}$, $\left(\xi_{1}, \ldots, \xi_{N}\right) \in D$ and $\max \left(\left|\xi_{1}\right|, \ldots,\left|\xi_{N}\right|\right) \leq a$, the inequality $\left|\theta\left(\xi_{1}, \ldots, \xi_{N}\right)\right| \leq b(a)$ holds.
Proof. Let (F, G, H) be an \mathcal{F}-substitutional computing system for θ. By applying the Domination Lemma, we can find a function $h \in \mathbb{T}_{2} \cap \mathcal{F}$ such that the functions $F\left(f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N}\right)$ and $G\left(f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N}\right)$ are dominated by $\lambda n . h(a, n)$, whenever $a \in \mathbb{N}$ and $f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N} \in \mathbb{T}_{1}$ are dominated by $\lambda n \cdot a(n+1)+1$. We set $b(s)=h(s, s)+1$. Let $a \in \mathbb{N},\left(\xi_{1}, \ldots, \xi_{N}\right) \in D$ and $\max \left(\left|\xi_{1}\right|, \ldots,\left|\xi_{N}\right|\right) \leq a$. Then there exist $f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N} \in \mathbb{T}_{1}$ dominated by $\lambda n . a(n+1)+1$ such that $\left(f_{i}, g_{i}, h_{i}\right)$ names ξ_{i} for $i=1, \ldots, N$, and therefore $\left|\theta\left(\xi_{1}, \ldots, \xi_{N}\right)\right|$ is less than

$$
\max \left(F\left(f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N}\right)(a), G\left(f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N}\right)(a)\right)+1
$$

hence $\left|\theta\left(\xi_{1}, \ldots, \xi_{N}\right)\right|<b(a)$.
The next theorem gives a characterization of the uniformly \mathcal{F}-computable functions which is in the spirit of the definition in [2] of the notion of a real function uniformly in \mathcal{F}. It follows from the theorem that the uniformly \mathcal{F} computable functions coincide with the ones uniformly in \mathcal{F} in the case considered in [2].
Theorem 3 (Characterization Theorem) Let \mathcal{F} satisfy the assumptions of the Local Boundedness Theorem and contain also the functions $\lambda x y \cdot x \dot{-} y$ and $\lambda x y .\left\lfloor\frac{x}{y+1}\right\rfloor$. Let $\theta: D \rightarrow \mathbb{R}$, where $D \subseteq \mathbb{R}^{N}$. The function θ is uniformly \mathcal{F} computable if and only if there exist $d \in \mathbb{T}_{1} \cap \mathcal{F}$ and $f, g, h \in \mathbb{T}_{3 N+1} \cap \mathcal{F}$ such that, whenever $\left(\xi_{1}, \ldots, \xi_{N}\right) \in D, p_{1}, q_{1}, r_{1}, \ldots, p_{N}, q_{N}, r_{N}, e \in \mathbb{N}$ and

$$
\begin{equation*}
\left|\xi_{i}\right| \leq e+1, \quad\left|\frac{p_{i}-q_{i}}{r_{i}+1}-\xi_{i}\right|<\frac{1}{d(e)+1} \quad(i=1, \ldots, N) \tag{1}
\end{equation*}
$$

the numbers

$$
\begin{gather*}
p=f\left(p_{1}, q_{1}, r_{1}, \ldots, p_{N}, q_{N}, r_{N}, e\right), \quad q=g\left(p_{1}, q_{1}, r_{1}, \ldots, p_{N}, q_{N}, r_{N}, e\right) \tag{2}\\
r=h\left(p_{1}, q_{1}, r_{1}, \ldots, p_{N}, q_{N}, r_{N}, e\right) \tag{3}
\end{gather*}
$$

satisfy the inequality

$$
\begin{equation*}
\left|\frac{p-q}{r+1}-\theta\left(\xi_{1}, \ldots, \xi_{N}\right)\right|<\frac{1}{e+1} . \tag{4}
\end{equation*}
$$

Proof. For the "if"-part, let us suppose that d, f, g, h are functions satisfying the above condition. We define $3 N$-ary operators F, G, H by setting

$$
\begin{gathered}
F\left(f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N}\right)(n)=p, \quad G\left(f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N}\right)(n)=q \\
H\left(f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N}\right)(n)=r
\end{gathered}
$$

where the numbers p, q, r are defined by means of the equalities $(2-3)$ with

$$
\begin{gathered}
e=\max \left(f_{1}(0), g_{1}(0), \ldots, f_{N}(0), g_{N}(0), n\right), \\
p_{i}=f_{i}(d(e)), \quad q_{i}=g_{i}(d(e)), \quad r_{i}=h_{i}(d(e)) \text { for } i=1, \ldots, N .
\end{gathered}
$$

These operators are \mathcal{F}-substitutional, and if an element $\left(\xi_{1}, \ldots, \xi_{N}\right)$ of D and functions $f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N} \in \mathbb{T}_{1}$ are given such that $\left(f_{i}, g_{i}, h_{i}\right)$ names ξ_{i} for $i=1, \ldots, N$, then, for any $n \in \mathbb{N}$, the above numbers $p_{1}, q_{1}, r_{1}, \ldots$, p_{N}, q_{N}, r_{N}, e will satisfy the inequalities (1) and the inequality $e \geq n$, hence the corresponding numbers p, q, r will satisfy the inequality

$$
\left|\frac{p-q}{r+1}-\theta\left(\xi_{1}, \ldots, \xi_{N}\right)\right|<\frac{1}{n+1} .
$$

For the proof of the "only if"-part, suppose (F, G, H) is an \mathcal{F}-substitutional computing system for θ. By applying the Uniformity Lemma, we can find a function $u \in \mathbb{T}_{2} \cap \mathcal{F}$ such that, whenever $a \in \mathbb{N}$, the functions

$$
f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N}, f_{1}^{\prime}, g_{1}^{\prime}, h_{1}^{\prime}, \ldots, f_{N}^{\prime}, g_{N}^{\prime}, h_{N}^{\prime} \in \mathbb{T}_{1}
$$

are dominated by $\lambda n .(a+2)(n+1)$ and for a certain $e \in \mathbb{N}$ the functions $f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N}$ coincide, respectively, with the functions $f_{1}^{\prime}, g_{1}^{\prime}, h_{1}^{\prime}, \ldots$, $f_{N}^{\prime}, g_{N}^{\prime}, h_{N}^{\prime}$ at the numbers not exceeding $u(a, e)$, each of the operators F, G, H transforms $\left(f_{1}, g_{1}, h_{1}, \ldots, f_{N}, g_{N}, h_{N}\right)$ and $\left(f_{1}^{\prime}, g_{1}^{\prime}, h_{1}^{\prime}, \ldots, f_{N}^{\prime}, g_{N}^{\prime}, h_{N}^{\prime}\right)$ into two functions coinciding at the number e. To define the functions d, f, g, h, we set $d(e)=2 u(e, e)+1$, and we take as values of the functions f, g, h at $\left(p_{1}, q_{1}, r_{1}, \ldots\right.$, $\left.p_{N}, q_{N}, r_{N}, e\right)$ the values at e, respectively, of the results of applying the operators F, G, H to the $3 N$-tuple ($f_{1}, g_{1}, \mathrm{id}_{\mathbb{N}}, \ldots, f_{N}, g_{N}, \mathrm{id}_{\mathbb{N}}$), where

$$
\begin{equation*}
f_{i}=\lambda n \cdot\left\lfloor(n+1) \frac{p_{i} \dot{-} q_{i}}{r_{i}+1}+\frac{1}{2}\right\rfloor, \quad g_{i}=\lambda n \cdot\left\lfloor(n+1) \frac{q_{i} \dot{-} p_{i}}{r_{i}+1}+\frac{1}{2}\right\rfloor \tag{5}
\end{equation*}
$$

for $i=1, \ldots, N$. Suppose now $\left(\xi_{1}, \ldots, \xi_{N}\right) \in D, p_{1}, q_{1}, r_{1}, \ldots, p_{N}, q_{N}, r_{N}, e \in \mathbb{N}$, and the inequalities (1) hold. Let the numbers p, q, r be defined by the equalities $(2-3)$. Besides the functions $f_{1}, g_{1}, \ldots, f_{N}, g_{N}$ defined by (5), we consider functions $f_{1}^{\prime}, g_{1}^{\prime}, \ldots, f_{N}^{\prime}, g_{N}^{\prime} \in \mathbb{T}_{1}$ coinciding, respectively, with them at the numbers not exceeding $u(e, e)$ and such that, for all $x>u(e, e)$,

$$
\begin{equation*}
\left|\frac{f_{i}^{\prime}(x)-g_{i}^{\prime}(x)}{x+1}-\xi_{i}\right|<\frac{1}{x+1}, \quad f_{i}^{\prime}(x)=0 \vee g_{i}^{\prime}(x)=0 . \tag{6}
\end{equation*}
$$

Making use of (1) and (5), one sees that the conditions (6) will be satisfied also in the case of $x \leq u(e, e)$, hence the triple $\left(f_{i}^{\prime}, g_{i}^{\prime}, \mathrm{id}_{\mathbb{N}}\right)$ names ξ_{i} for $i=1, \ldots, N$. Since the functions $f_{i}, g_{i}, f_{i}^{\prime}, g_{i}^{\prime}$, id $\mathbb{N}_{\mathbb{N}}$ are dominated by $\lambda n .(e+2)(n+1)$, the values at e of the results of applying the operators F, G, H to the $3 N$-tuple $\left(f_{1}^{\prime}, g_{1}^{\prime}, \operatorname{id}_{\mathbb{N}}, \ldots, f_{N}^{\prime}, g_{N}^{\prime}, \operatorname{id}_{\mathbb{N}}\right)$ are equal, respectively, to the numbers p, q, r, and therefore these numbers satisfy the inequality (4).

References

[1] Skordev, D., Weiermann, A., Georgiev, I., \mathcal{M}^{2}-computable real numbers, J. Logic and Computation (to appear).
[2] Tent, K., Ziegler, M., Computable functions of reals, arXiv:0903. 1384v4 [math.LO], March 2009 (Last updated: July 24, 2009)
http://arxiv.org/abs/0903.1384

