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Abstract. Given a countable structure A, we define the degree spectrum
DS(A) of A to be the set of all enumeration degrees generated by the pre-
sentations of A on the natural numbers. The co-spectrum of A is the set
of all lower bounds of DS(A). We prove some general properties of the de-
gree spectra which show that they behave with respect to their co-spectra very
much like the cones of enumeration degrees. Among the results are the analogs
of Selman’s Theorem [14], the Minimal Pair Theorem and the existence of a
quasi-minimal enumeration degree.

1. Introduction

Given a countable abstract structure A, we define the degree spectrum DS(A)
of A to be the set of all enumeration degrees generated by the presentations of A on
the natural numbers. The co-spectrum of A is the set of all lower bounds of DS(A).
As a typical example of a spectrum one may consider the cone of the total degrees
greater then or equal to some a and the respective co-spectrum which is equal to
the set all degrees less than or equal to a. There are examples of structures with
more complicated degree spectra e.g. [11, 8, 2, 7, 15]. In any case the co-spectrum
of a structure is a countable ideal and as we shall see every countable ideal can be
represented as co-spectrum of some structure.

Here we shall prove some general properties of the degree spectra which show
that the degree spectra behave with respect to their co-spectra very much like the
cones of enumeration degrees. Among the results we would like to mention the
analogs of Selman’s Theorem [14], the Minimal Pair Theorem and the existence of
a quasi-minimal enumeration degree. These results are known in two versions in the
theory of the enumeration degrees – above one fixed degree and above a sequence
of degrees, while our approach gives a unified treatment of both cases. Another
possible benefit is that the objects constructed in the proofs are elements of the
degree spectra or closely related to them which gives an additional information
about their complexity.

Finally our results pose some restrictions on the sets of degrees which can be
represented as degree spectra. For example, using the existence of quasi-minimal
degrees, we obtain that if a degree spectrum possess a countable base of total
degrees, then it has a least element. As a consequence of this we get that for every
two incomparable Turing degrees a and b there does not exist a structure A such
that DS(A) is equal to the union of the cones above a and b, answering negatively
a question apparently posed by Goncharov.
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2. Preliminaries

2.1. Ordinal notations. In what follows we shall consider only recursive ordinals
α which are below a fixed recursive ordinal η. We shall suppose that a notation
e ∈ O for η is fixed and the notations for the ordinals α < η are elements a of O such
that a <o e. For the definitions of the set O and the relation ”<o” the reader may
consult [12] or [13]. We shall identify every ordinal with its notation and denote
the ordinals by the letters α, β, γ and δ. In particular we shall write α < β instead
of α <o β. If α is a limit ordinal then by {α(p)}p∈N we shall denote the unique
strongly increasing sequence of ordinals with limit α, determined by the notation
of α, and write α = limα(p).

2.2. Enumeration Degrees. Let A and B be sets of natural numbers. Then A is
enumeration reducible to B, A ≤e B, if A = Γz(B) for some enumeration operator
Γz. In other words, using the notation Dv for the finite set having canonical code
v and W0, . . . ,Wz , . . . for the Gödel enumeration of the r.e. sets, we have

A ≤e B ⇐⇒ ∃z∀x(x ∈ A ⇐⇒ ∃v(〈v, x〉 ∈ Wz & Dv ⊆ B)).

The relation ≤e is reflexive and transitive and induces an equivalence relation
≡e on all subsets of N. The respective equivalence classes are called enumeration
degrees. We shall denote by de(A) the enumeration degree containing A and by
De = (De,≤,0e) the structure of the enumeration degrees, where ” ≤ ” is the
partial ordering on De, induced by ” ≤e ” and 0e is the least enumeration degree
consisting of all recursively enumerable sets. For an introduction to the enumeration
degrees the reader might consult Cooper [6].

Given a set A of natural numbers, denote by A+ the set A ⊕ (N \ A). The set
A is called total iff A ≡e A

+. An enumeration degree is total if it contains a total
set. The substructure DT of De consisting of all total degrees is isomorphic to the
structure of the Turing degrees. Therefore we may identify the Turing degrees with
the total enumeration degrees.

The enumeration jump operator is defined in Cooper [5] and further studied
by McEvoy [10]. Here we shall use the following definition of the e-jump which is
m-equivalent to the original one, see [10]:

2.1. Definition. Given a set A, let K0
A = {〈x, z〉 : x ∈ Γz(A)}. Define the e-jump

A′ of A to be the set (K0
A)+.

The following properties of the enumeration jump are proved in [10]:
Let A and B be sets of natural numbers. Set B(0) = B and B(n+1) = (B(n))′.

(J1) If A ≤e B, then A′ ≤e B
′.

(J2) A is Σ0
n+1 relatively to B iff A ≤e (B+)(n).

Given an enumeration degree a = de(A), let for every natural number n, a(n) =
de(A

(n)). Notice that the jump is well defined on all enumeration degrees and that
it is consistent with the Turing jump on the total enumeration degrees.

For every recursive ordinal α the α-th iteration of the enumeration jump a(α) is
defined in a way similar to that one used in the definition the α-th iteration of the
Turing jump, see [17]. Again it turns out that both definitions are consistent on
the total enumeration degrees.

2.3. Degree Spectra. We shall consider structures of the kind A = (N;R1, . . . , Rk),
where ” = ” and ” 6= ” are among R1, . . . , Rk.
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Enumeration of A is every total surjective mapping of N onto N.
Given an enumeration f of A and a subset of A of N

a, let

f−1(A) = {〈x1, . . . , xa〉 : (f(x1), . . . , f(xa)) ∈ A}.

By f−1(A) we shall denote the set f−1(R1) ⊕ · · · ⊕ f−1(Rk). In particular, if
f = λx.x, then f−1(A) will be denoted by D(A).

2.2. Definition. The Degree Spectrum of A is the set

DS(A) = {de(f
−1(A)) : f is an enumeration of A)}.

If a is the least element of DS(A), then a is called the degree of A

The notion of degree spectrum is introduced in [11], where the first results about
degrees of structures are obtained. In [8] Knight defines the so called jump degrees
of structures:

2.3. Definition. Let α < ωCK
1 . Then the α-th jump spectrum of A is the set

DSα = {de(f
−1(A)(α)) : f is an enumeration of A}.

If a is the least element of DSα, then a is called the α-th jump degree of A

There are two main differences between the standard definition of the notion of
degree spectrum of a structure considered in [11] and [8] and that one introduced
here.

First of all in the cited papers the pullback f−1(A) of a structure is defined by
taking into account not only the positive part of the predicates but also the negative
one. So the degree spectrum in the sense of [11] and [8] is equal to DS(A+), where

A
+ = (N, R1, . . . , Rk,¬R1, . . . ,¬Rk).

It can be easily seen that DS(A+) consists only of total enumeration degrees. We
shall call structures of that kind total. More precisely,

2.4. Definition. A structure A is total if all elements of DS(A) are total.

The second difference is connected to the enumerations. In [11] and [8] the degree
spectra are defined by taking into account only the bijective enumerations, while
we allow arbitrary surjective enumerations. The choice of the class of enumerations
reflects on the notion of degree spectrum of a given structure. For example, let
A = (N; =, 6=). Clearly if we define the degree spectrum of A by taking into ac-
count only the bijective enumerations, then it will be equal to {0e}, while if we take
all surjective enumerations, then DS(A) will consist of all total enumeration de-
grees. Fortunately this difference does not affect the notion of degree of a structure.
Namely the following Proposition is true:

2.5. Proposition. Let f be an arbitrary enumeration of A. There exists a bijective
enumeration g of A such that g−1(A) ≤e f

−1(A).

Proof. Let Ef = {〈x, y〉 : f(x) = f(y)}. Clearly E+
f ≤e f−1(A). Define the

function h by means of primitive recursion as follows:

h(0) ' 0
h(n+ 1) ' µz[(∀k ≤ n)(〈h(k), z〉 6∈ Ef )].

Set g(n) = f(h(n)). Now one can easily check that g is bijective and g−1(A) ⊕
E+

f ≡e f
−1(A). �
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The main benefit of defining DS(A) by taking all surjective enumerations is that
it is always closed upwards with respect to the total enumeration degrees:

2.6. Proposition. Let g be an enumeration of A. Suppose that F is a total set
and g−1(A) ≤e F . There exists an enumeration f of A such that f−1(A) ≡e F .

Proof. Fix two distinct elements s and t of N. Define the mapping f(x) as follows:

f(x) '











g(x/2) if x is even,

s if x = 2z + 1 and z ∈ F ,

t if x = 2z + 1 and z 6∈ F .

Since ”=” and ”6=” are among the underlined predicates of A, we have that
F ≤e f

−1(A).
To prove that f−1(A) ≤e F consider the predicate Ri of A. Let us fix two natural

numbers xs and xt such that g(xs) ' s and g(xt) ' t. Let x1, . . . , xri
be arbitrary

natural numbers. Define the natural numbers y1, . . . , yri
by means of the following

recursive in F procedure. Let 1 ≤ j ≤ ri. If xj is even then let yj = xj/2. If
xj = 2z+1 and z ∈ F , then let yj = xs. If xj = 2z+1 and z 6∈ F , then let yj = xt.
Clearly

〈x1, . . . , xri
〉 ∈ f−1(Ri) ⇐⇒ 〈y1, . . . , yri

〉 ∈ g−1(Ri).

Since g−1(A) ≤e F , from the last equivalence it follows that f−1(Ri) ≤e F . So we
obtain that f−1(A) ≤e F . �

Remark. The requirement that the set F is total is necessary for the truth of
the Proposition. Indeed, if the structure A were total, then for all enumerations f
of A the set f−1(A) would be total.

The results in [11] show that there exist structures, e.g. linear orderings, which do
not posses degrees. Further investigations in [8, 2, 7] show that for every recursive

ordinal α there exist linear orderings with α-th jump degree 0(α) which do not
posses β-th jump degree for β < α.

3. Co-Spectra of Structures

3.1. Definition. Let A be a set of enumeration degrees the co-set of A is the set
co(A) of all lower bounds of A. Namely

co(A) = {b : b ∈ De & (∀a ∈ A)(b ≤e a)}.

The co-set of the α-th jump spectrum of a structure A will be called α-th jump
co-spectrum of A and will be denoted by CSα(A). In particular, if α = 0 the set
CSα(A) will be denoted by CS(A) and called co-spectrum of A.

Evidently for every A ⊆ De the set co(A) is a countable ideal. As we shall see
later every countable ideal can be represented as co-spectrum of some structure A.

3.2. Definition. Let A ⊆ N, α < ωCK
1 and let f be an enumeration of A. The set

A is called α-admissible in the enumeration f if A ≤e f
−1(A)(α).

The set A is α-admissible in A if A is admissible in all enumerations of A

Clearly an enumeration degree a belongs to CSα(A) iff a contains an α-admissible
set. Our close goal is to show that the α-admissible sets admit a characterization
in terms of the structure A. Thus we shall obtain some information about the
elements of CSα(A). Our characterization is a generalization of that one presented
in [3] where only total structures are considered. Another reason for presenting this
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characterization here is that we want to obtain an upper bound of the degrees in
DSα(A) which determine the elements of CSα(A).

Let us fix a structure A = (N;R1, . . . , Rk).

3.1. Generic enumerations. In what follows we shall use the term ”finite part”
to denote arbitrary finite mappings of N into N. The finite parts will be denoted
by δ, τ, ρ, etc.

3.3. Definition. Let α < ωCK
1 . An enumeration f of A is α-generic if for every

β < α and for every set S of finite parts such that S ≤e D(A)(β) the following
condition holds:

(∃τ ⊆ f)(τ ∈ S ∨ (∀ρ ⊇ τ)(ρ 6∈ S)).

3.4. Proposition. Suppose that α < ωCK
1 and let f be an α-generic enumeration.

Then for every β < α, f−1(A) 6≤e D(A)(β) and hence f−1(A)(β) 6≤e D(A)(β).

Proof. Let β < α. Consider the set Ē = {〈x, y〉 : f(x) 6= f(y)}. Clearly Ē ≤e

f−1(A)(β). Assume that f−1(A) ≤e D(A)(β). Then the set

S = {τ : (∃x, y ∈ Dom(τ))(〈x, y〉 ∈ Ē & τ(x) ' τ(y))}

is enumeration reducible to D(A)(β) and hence there exists a τ ⊆ f such that τ ∈ S
or (∀ρ ⊇ τ)(ρ 6∈ S). Evidently both conditions are impossible. �

3.5. Corollary. If f is an α-generic enumeration, then de(f
−1(A)(β)) does not

belong to CSβ(A) for any β < α.

For every α, e and x in N we define the relations f |=α Fe(x) and f |=α ¬Fe(x)
as follows:

(i) f |=0 Fe(x) iff there exists a v such that 〈v, x〉 ∈We and for all u ∈ Dv

(∃i)(1 ≤ i ≤ k & u = 〈i, xu
1 , . . . , x

u
ri
〉 & (f(xu

1 ), . . . , f(xu
ri

)) ∈ Ri).

(ii) Let α = β + 1. Then

f |=α Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈ We & (∀u ∈ Dv)(

(u = 〈0, eu, xu〉 & f |=β Feu
(xu))∨

(u = 〈1, eu, xu〉 & f |=β ¬Feu
(xu))));

(iii) Let α = limα(p). Then

f |=α Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈ We & (∀u ∈ Dv)(

u = 〈pu, eu, xu〉 & f |=α(pu) Feu
(xu)));

(iv) f |=α ¬Fe(x) ⇐⇒ f 6|=α Fe(x).

An immediate corollary of the definitions above is the following:

3.6. Lemma. Let A ⊆ N and let α < ωCK
1 . Then A ≤e f

−1(A)(α) iff there exists
an e such that A = {x : f |=α Fe(x)}.

For every α < ωCK
1 , e and x in N and every finite part τ we define the forcing

relations τ 
α Fe(x) and τ 
α ¬Fe(x) following the definition of ”|=”:

(i) τ 
0 Fe(x) iff there exists a v such that
〈v, x〉 ∈ We and for all u ∈ Dv, u = 〈i, xu

1 , . . . , x
u
ri
〉, 1 ≤ i ≤ k,

xu
1 , . . . , x

u
ri

∈ dom(τ) & (τ(xu
1 ), . . . , τ(xu

ri
)) ∈ Ri;
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(ii) Let α = β + 1. Then

τ 
α Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈ We & (∀u ∈ Dv)(

(u = 〈0, eu, xu〉 & τ 
β Feu
(xu))∨

(u = 〈1, eu, xu〉 & τ 
β ¬Feu
(xu))));

(iii) Let α = limα(p). Then

τ 
α Fe(x) ⇐⇒ (∃v)(〈v, x〉 ∈ We & (∀u ∈ Dv)(

u = 〈pu, eu, xu〉 & τ 
α(pu) Feu
(xu)));

(iv) τ 
α ¬Fe(x) ⇐⇒ (∀ρ ⊇ τ)(ρ 1α Fe(x)).

For every recursive ordinal α, e, x ∈ N set Xα
〈e,x〉 = {ρ : ρ 
α Fe(x)}.

Given a sequence {Xn} of sets of natural numbers, say that {Xn} is e-reducible
to the set P if there exists a recursive function g such that for all n we have
that Xn = Γg(n)(P ). The sequence {Xn} is T -reducible to P , if the function
λn, x.χXn

(x) is recursive in P .
From the definition of the enumeration jump it follows immediately that if {Xn}

is e-reducible to P , then {Xn} is T -reducible to P ′.

3.7. Lemma. For every α the sequence {Xα
n} is uniformly in α e-reducible to

f−1(A)(α) and hence it is uniformly in α T -reducible to f−1(A)(α+1).

Proof. Using effective transfinite recursion and following the definition of the forc-
ing, one can define a recursive function g(α, n) such that for every α, Xα

n =
Γg(α,n)(f

−1(A)(α)). �

The following properties of the forcing relation follow easily from the definitions
and the previous Lemma:

3.8. Lemma.

(1) Let α be a recursive ordinal, e, x ∈ N and let τ ⊆ ρ be finite parts. Then

τ 
α (¬)Fe(x) ⇒ ρ 
α (¬)Fe(x).

(2) Let f be an α-generic enumeration. Then

f |=α Fe(x) ⇐⇒ (∃τ ⊆ f)(τ 
α Fe(x)).

(3) Let f be an α+ 1-generic enumeration. Then

f |=α ¬Fe(x) ⇐⇒ (∃τ ⊆ f)(τ 
α ¬Fe(x)).

3.9. Definition. Let A ⊆ N and let α be a recursive ordinal. The set A is forcing
α-definable on A if there exist a finite part δ and e, x ∈ N such that

A = {x : (∃τ ⊇ δ)(τ 
α Fe(x))}.

Clearly if A is forcing α-definable on A, then A ≤e f
−1(A)(α). The vice versa is

not always true. As we shall see later the forcing α-definable sets coincide with the
sets which are α-admissible in A.

The following proposition follows easily from the definitions:

3.10. Proposition. Let B = (N, R′
1, . . . , R

′
k) be a structure isomorphic to A and

α be a recursive ordinal. Then every forcing α-definable on B set is forcing α-
definable on A.
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3.11. Proposition. Let α be a recursive ordinal, β < α and let A ⊆ N be not
forcing β-definable on A. There exists an α-generic enumeration f of A satisfying
the following conditions:

(1) f ≤e A
+ ⊕D(A)(α).

(2) If γ ≤ α, then f−1(A)(γ) ≤e f ⊕D(A)(γ).
(3) A 6≤e f

−1(A)(β).

Proof. We shall construct the enumeration f by steps. At each step q we shall
define a finite part δq so that δq ⊆ δq+1 and take f =

⋃

q δq. We shall consider
three kinds of steps. At steps q = 3r we shall ensure that the mapping f is total
and surjective. At steps q = 3r + 1 we shall ensure that f is α + 1-generic and at
steps q = 3r + 2 we shall ensure that f satisfies (3).

Let S denote the set of all finite parts. If α = ξ + 1, then for every natural
number n set Yn = Γn(D(A)(ξ)) ∩ S. If α = limα(p) is a limit ordinal, then set
Yn = Γ(n)0(D(A)(α((n)1))) ∩ S.

In both cases we have that the sequence {Yn} is T -reducible to D(A)(α) and
consists of all sets S of finite parts which are enumeration reducible to D(A)(γ) for
some γ < α.

Let δ0 be the empty finite part and suppose that δq is defined.
a) Case q = 3r. Let x0 be the least natural number which does not belong to

dom(δq) and let s0 be the least natural number which does not belong to the range
of δq . Set δq+1(x0) ' s0 and δq+1(x) ' δq(x) for x 6= x0.

b) Case q = 3r + 1. Consider the set Yr.
Check whether there exists an element ρ of Yr such that δq ⊆ ρ. If the answer is

positive, then let δq+1 be the least extension of δq belonging to Yr. If the answer is
negative then let δq+1 = δq .

c) Case q = 3r + 2. Consider the set

Cr = {x : (∃τ ⊇ δq)(τ 
β Fr(x))}

Clearly Cr is forcing β-definable on A and hence Cr 6= A. Notice that Cr ≤e

D(A)β uniformly in r and δq. Therefore the set Cr is recursive in D(A)(α) uniformly
in r and δq . Let xr be the least natural number such that

xr ∈ Cr & xr 6∈ A ∨ xr 6∈ Cr & xr ∈ A.

Suppose that xr ∈ Cr . Then there exists a τ such that

(1) δq ⊆ τ & τ 
β Fr(xr).

Let δq+1 be the least τ satisfying (1). If xr 6∈ Cr, then set δq+1 = δq . Notice
that in this case we have that δq+1 
β ¬Fr(xr).

From the construction above it follows immediately that f =
⋃

q δq is e-reducible

to A+ ⊕D(A)(α) and hence it satisfies (1).
Let γ ≤ α. Then there exists an e such that f−1(A)(γ) = {x : f |=γ Fe(x)}.

Since f is α-generic, we can rewrite the last equality as f−1(A)(γ) = {x : (∃τ ⊆
f)(τ 
γ Fe(x))}. Therefore f−1(A)(γ) ≤e f ⊕D(A)(γ).

It remains to show that A 6≤e f
−1(A)(β). Towards a contradiction assume that

A ≤e f
−1(A)(β). Then there exists an r such that

A = {x : f |=β Fr(x)}.
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Consider the step q = 3r + 2. By the construction we have that

xr 6∈ A & δq+1 
β Fr(xr) ∨ xr ∈ A & δq+1 
β ¬Fr(xr).

Hence by the genericity of f

xr 6∈ A & f |=β Fr(xr) ∨ xr ∈ A & f |=β ¬Fr(xr).

A contradiction. �

Repeating the proof above without bothering about the set A we get and the
following:

3.12. Proposition. Let α be a recursive ordinal. Then there exists an α-generic
enumeration f such that f and f−1(A)(α) are enumeration reducible to D(A)(α).

3.13. Theorem. Let α be a recursive ordinal, β < α and let A ⊆ N be not forcing
β-definable on A. Let Q be a total set such that A+ ⊕D(A)(α) ≤e Q. Then there
exists an enumeration f satisfying the following conditions:

(1) The enumeration degree of f−1(A) is total.
(2) A 6≤e f

−1(A)(β).
(3) f−1(A)(α) ≡e Q.

Proof. According Proposition 3.11 there exists an enumeration g of A such that
g ≤e Q, g−1(A)(α) ≤e Q and A 6≤e g

−1(A)(β).
From Jump Inversion Theorem [17] it follows that there exists a total set F such

that the following assertions are true:

(i) g−1(A) ≤e F .
(ii) A 6≤e F

(β).
(iv) F (α) ≡e Q.

By Proposition 2.6 there exists an enumeration f such that f−1(A) ≡e F . �

3.14. Definition. Let Q be a total subset of N and α < ωCK
1 . An enumeration f

of A is α,Q-acceptable if f satisfies the following conditions:

(i) The enumeration degree of f−1(A) is total.
(ii) f−1(A)(α) ≡e Q.

3.15. Theorem. Let α be a recursive ordinal, β < α and let A ⊆ N be not forcing
definable on A. Consider an enumeration g and a total set Q ≥e g

−1(A)(α) ⊕ A+.
There exists an α,Q-acceptable enumeration f of A such that A 6≤e f

−1(A)(β).

Proof. According Proposition 2.5 there exists a bijective enumeration h such that
h−1(A) ≤e g

−1(A). Denote by B the structure (N;h−1(R1), . . . , h
−1(Rk)). Clearly

A is not β-forcing definable on B and D(B) ≡e h
−1(A). Hence D(B)(α) ≤e Q.

Let i be an enumeration such that the enumeration degree of i−1(B) is total,
i−1(B)(α) ≡e Q and A 6≤e i

−1(B)(β). Set f = λx.h(i(x)). Then f−1(A) ≡e i
−1(B).

Thus f is α,Q-acceptable and A 6≤e f
−1(A)(β). �

3.16. Corollary. For every total Q ≥e g
−1(A)(α). There exists an α,Q-acceptable

enumeration of A.

3.17. Theorem. Let α be a constructive ordinal and A ⊆ N. Let β < α. Consider
an enumeration g of A. Suppose that Q ≥e g

−1(A)(α), Q is a total set and for
all α,Q-acceptable enumerations f of A we have that A ≤e f

−1(A)(β). Then A is
forcing β-definable on A.
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Proof. First we shall show that A+ ≤e Q. Clearly there exists an enumeration h of
A such that h is α,Q-acceptable. Then A ≤e h

−1(A)(β). By the monotonicity of
the enumeration jump we can conclude that

A′ ≤e h
−1(A)(α) ≤e Q.

Since A+ ≤e A
′, we get that A+ ≤e Q.

Assume that A is not forcing α-definable on A. Applying Theorem 3.15 we obtain
an α,Q-acceptable enumeration f such that A 6≤e f

−1(A)(α). A contradiction. �

3.2. Normal form of the forcing definable sets. In this subsection we shall
show that the forcing definable sets on the structure A coincide with the sets which
are definable on A by means of a certain kind of positive recursive Σ0

α formulae.
This formulae can be considered as a modification of the formulae introduced in
[1], which is appropriate for their use on abstract structures.

Let L = {T1, . . . , Tk} be the first order language corresponding to the structure
A. So every Ti is an ri-ary predicate symbol. We shall suppose also fixed a sequence
X0, . . . ,Xn, . . . of variables. The variables will be denoted by the letters X,Y,W
possibly indexed.

Next we define for α < ωCK
1 the Σ+

α formulae. The definition is by transfinite re-
cursion on α and goes along with the definition of indices (codes) for every formula.
We shall leave to the reader the explicit definition of the indices of our formulae
which can be done in a natural way.

3.18. Definition.

(i) Let α = 0. The elementary Σ+
α formulae are formulae in prenex normal

form with a finite umber of existential quantifiers and a matrix which is a
finite conjunction of atomic predicates built up from the variables and the
predicate symbols T1, . . . , Tk.

(ii) Let α = β + 1. An elementary Σ+
α formula is in the form

∃Y1 . . .∃YmM(X1, . . . , Xl, Y1, . . . , Ym),

where M is a finite conjunction of atoms of Σ+
β formulae and negations of

Σ+
β formulae with free variables among X1, . . . , Xl, Y1, . . . , Ym.

(iii) Let α = limα(p) be a limit ordinal and α. The elementary Σ+
α formulae

are in the form

∃Y1 . . . ∃YlM(X1, . . . , Xl, Y1, . . . , Ym),

where M is a finite conjunction of Σ+
α(p) formulae with free variables among

X1, . . . , Xl, Y1, . . . , Ym.
(iv) A Σ+

α formula with free variables among X1, . . . , Xl is an r.e. infinitary dis-
junction of elementary Σ+

α formulae with free variables among X1, . . . , Xl.

Notice that the Σ+
α formulae are effectively closed under existential quantification

and infinitary r.e. disjunctions.
Let Φ be a Σ+

α formula with free variables among W1, . . . ,Wn and let t1, . . . , tn
be elements of N. Then by A |= Φ(W1/t1, . . . ,Wn/tn) we shall denote that Φ is
true on A under the variable assignment v such that v(W1) = t1, . . . , v(Wn) = tn.

3.19. Definition. Let A ⊆ N and let α be a constructive ordinal. The set A
is formally α-definable on A if there exists a recursive function g(x) taking values
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indeces of Σ+
α formulae Φg(x) with free variables among W1, . . . ,Wr and elements

t1, . . . , tr of N such that for every element x of N the following equivalence holds:

x ∈ A ⇐⇒ A |= Φg(x)(W1/t1, . . . ,Wr/tr).

We shall show that every forcing α-definable set is formally α-definable.
Let var be an effective mapping of the natural numbers onto the variables. Given

a natural number x, by X we shall denote the variable var(x).
Let y1 < y2 < . . . < yk be the elements of a finite set D, let Q be one of the

quantifiers ∃ or ∀ an let Φ be an arbitrary formula. Then by Q(y : y ∈ D)Φ we
shall denote the formula QY1 . . . QYkΦ.

3.20. Lemma. Let D = {w1, . . . , wr} be a finite and not empty set of natural
numbers and x, e be elements of N. Let α < ωCK

1 . There exists an uniform effective
way to construct a Σ+

α formula Φα
D,e,x with free variables among W1, . . . ,Wr such

that for every finite part δ such that dom(δ) = D the following equivalence is true:

A |= Φα
D,e,x(W1/δ(w1), . . . ,Wr/δ(wr)) ⇐⇒ δ 
α Fe(x).

Proof. We shall construct the formula Φα
D,e,x by means of effective transfinite re-

cursion on α following the definition of the forcing relation ”
”.
1) Let α = 0. Let V = {v : 〈v, x〉 ∈We}. Consider an element v of V . For every

u ∈ Dv define the atom Πu as follows

a) If u = 〈i, xu
1 , . . . , x

u
ri
〉, where 1 ≤ i ≤ k and all xu

1 , . . . , x
u
ri

are elements of
D, then let Πu = Ti(X

u
1 , . . . , X

u
ri

).
b) Let Πu = W1 6= W1 in the other cases.

Set Πv =
∧

u∈Dv
Πu and Φα

D,e,x =
∨

v∈V Πv.

2) Let α = β + 1 Let again V = {v : 〈v, x〉 ∈ We} and v ∈ V . For every u ∈ Dv

define the formula Πu as follows:

a) If u = 〈0, eu, xu〉, then let Πu = Φβ
D,eu,xu

.

b) If u = 〈1, eu, xu〉, then let

Πu = ¬[
∨

D∗⊇D

(∃y ∈ D∗ \D)Φβ
D∗,eu,xu

].

c) Let Πu = Φβ

{0},0,0 ∧ ¬Φβ

{0},0,0 in the other cases.

Now let Πv =
∧

u∈Dv
Πu and set Φα

D,e,x =
∨

v∈V Πv .

3) Let α = limα(p) be a limit ordinal. Let V = {v : 〈v, x〉 ∈ We}. Consider a

v ∈ V . For every element u = 〈pu, eu, xu〉 of Dv set Πu = Φ
α(pu)
D,eu,xu

.

Set Πv =
∧

u∈Dv
Πu and Φα

D,e,x =
∨

v∈V Πv.

An easy transfinite induction on α shows that for every α the Σ+
α formula Φα

D,e,x

satisfies the requirements of the Lemma. �

3.21. Theorem. Let α < ωCK
1 and let A ⊆ N be forcing α-definable on A. Then

A is formally α-definable on A.

Proof. Suppose that for all x ∈ N we have that

x ∈ A ⇐⇒ (∃τ ⊇ δ)(τ 
α Fe(x)).

Let D = dom(δ) = {w1, . . . , wr} and let δ(wi) = ti, i = 1, . . . , r. Consider a
finite set D∗ ⊇ D. By the previous Lemma

A |= ∃(y ∈ D∗ \D)Φα
D∗,e,x(W1/t1, . . . ,Wr/tr)
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if and only if there exists a finite part τ such that dom(τ) = D∗, τ ⊇ δ and
τ 
α Fe(x).

Hence we have that for all x ∈ N the following equivalence is true:

x ∈ A ⇐⇒ A |=
∨

D∗⊇D

∃(y ∈ D∗ \D)Φα
D∗,e,x(W1/t1, . . . ,Wr/tr).

Set

Φg(x) =
∨

D∗⊇D

∃(y ∈ D∗ \D)Φα
D∗,e,x(W1, . . . ,Wr).

Clearly for all x ∈ N we have

x ∈ A ⇐⇒ A |= Φg(x).

Hence A is formally α-definable on A. �

Clearly every formally α-definable set is α-admissible in all enumerations f of
A. So we have the following theorem:

3.22. Theorem. Let A ⊆ N and a = de(A). Let α be a recursive ordinal. Then
the following are equivalent:

(1) a ∈ CSα(A).
(2) A is forcing α-definable.
(3) A is formally α-definable.
(4) A is α-admissible in all enumerations of A.

3.3. Representing the countable ideals as co-spectra of structures. In this
subsection we are going to prove that every countable ideal of enumeration degrees
can be represented as a co-spectrum of some structure.

3.23. Definition. Let A be a countable structure. The enumeration degree d is
called co-degree of A if d is the greatest element of CS(A). If α < ωCK

1 and d is
the greatest element of CSα, then d is called α-th jump co-degree of A.

Clearly if d is the α-th jump degree of a structure A, then d is also the α-th jump
co-degree of A. The vice-versa is not always true. For example, let A = (N;<,=, 6=)
be a linear ordering. It is easy to see by a direct analysis of the formally 0-definable
on A sets that the co-degree of A is 0. On the other hand there exist linear
orderings without a degree, see [11]. From the results in [8] it follows that the first
jump degree of A is 0′ and again there are examples of linear orderings without
first jump degree.

Obviously if a structure A has a co-degree, then CS(A) is a main ideal. Building
on results of Coles, Downey and Slaman [4] we shall show that every main ideal of
enumeration degrees can be represented as CS(G) from some subgroup G of the
additive group of the rational numbers Q = (Q; +,=, 6=).

Let us fix a non-trivial group G ⊆ Q. Let a 6= 0 be an element of G. For every
prime number p set

hp(a) =

{

k if k is the greatest number such that pk|a in G,

∞ if pk|a in G for all k.

Let p0, p1, . . . be the standard enumeration of the prime numbers and set

Sa(G) = {〈i, j〉 : j ≤ hpi
(a)}.
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It can be easily seen that if a and b are non-zero elements of G, then Sa(G) ≡e

Sb(G). Let dG = de(Sa(G)), where a is some non-zero element of G.
In [4] it is proved that for every total enumeration degree a, there exist a bijective

enumeration f of G such that f−1(A) ∈ a if and only if dG ≤ a. Since for every
enumeration f we have that f−1(G) is a total set and dG ≤ de(f

−1(G)), we have
the following proposition:

3.24. Proposition. DS(G) = {a : a is total & a ≥ dG}.

3.25. Corollary. CS(G) = {b : b ≤ dG}.

Proof. Clearly b ∈ CS(G) if and only if for all total a ≥ dG, a ≥ b. According
Selman’s Theorem [14] the last is equivalent to dG ≥ b. �

3.26. Corollary. The group G has a degree if and only if dG is total.

3.27. Corollary.([4]) Every group G ⊆ Q has first jump degree.

Proof. It is sufficient to show that d′
G ∈ DS1(G). Indeed, by the Jump Inversion

Theorem [16], there exists a total degree a ≥ dG such that a′ = d′
G. Clearly

a′ ∈ DS1(G). �

It remains to see that for every enumeration degree d there exists a subgroup G
of Q such that dG = d. Indeed, let D ⊆ N. Consider the set

S = {〈i, j〉 : j = 0 ∨ j = 1 & i ∈ D}.

Clearly S ≡e D. Consider the lest subgroup G of Q containing the set {1/pj
i :

〈i, j〉 ∈ S}. Then 1 ∈ G and S1(G) = S. So, dG = de(D).
Now let us turn to the representation of an arbitrary countable ideal I of enu-

meration degrees. Without loss of generality we may assume that there exists a
sequence b0 ≤ b1 ≤ · · · ≤ bk . . . of elements of I such that

a ∈ I ⇐⇒ (∃k)(a ≤ bk).

For every k fix a set Bk ∈ bk.
Consider the structure A = (N;Gϕ, σ,=, 6=), where Gϕ is the graph of the total

recursive function ϕ such that ϕ(〈x, y〉) ' 〈x+ 1, y〉 and

σ = {〈x, y〉 : (∃k)(y = 2k ∨ y = 2k + 1 & x ∈ Bk)}.

3.28. Proposition. CS(A) = I.

Proof. To show that I ⊆ CS(A) it is sufficient to see that (∀k)(bk ∈ CS(A)).
Indeed, let us fix a k and let f be an enumeration. Let f−1(Gϕ) = Gf , f−1(σ) = σf

and fix a natural number xk such that f(xk) = 〈0, 2k + 1〉. Then for every x ∈ N

we have that

x ∈ Bk ⇐⇒ (∃y1 . . . ∃yx)(Gf (xk , y1) & Gf (y1, y2) & Gf (yx−1, yx) & σf (yx)).

Thus Bk ≤e f
−1(A).

To prove the inverse inclusion we shall show that if A is a formally definable on
A set of natural numbers, then A ≤ Bk for some k. Let us suppose that g is a
recursive function taking values indeces of Σ+

0 formulae Φg(x) with free variables
among W1, . . . ,Wr and t1, . . . tk are natural numbers such that:

x ∈ A ⇐⇒ A |= Φg(x)(W1/t1, . . . ,Wr/tr).

Without loss of generality we may assume that every ti = 〈0, li〉, where l1, . . . , lr
are distinct natural numbers. Assume that l1, . . . , ls are the odd numbers among
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l1, . . . , lr and let li = 2ki + 1, i = 1, . . . , s. Set k = max(k1, . . . , ks). We shall show
that A ≤e Bk. Indeed, let us consider an elementary Σ+

0 formula

S = ∃Y1 . . .∃YmM(Y1, . . . , Ym,W1, . . . ,Wr),

where M is a finite conjunction of the atoms L1, . . . , Lp. We shall show that there
exists a uniform recursive procedure which either decides that A 6|= S(W1/t1, . . . ,Wr/tr)
or constructs finite sets of natural numbers E1, . . . , Es such that

A |= S(W1/t1, . . . ,Wr/tr) ⇐⇒ E1 ⊆ Bk1
& . . . & Es ⊆ Bks

.

By substituting all atomic predicates of the form Gϕ(Z, T ) by T = ϕ(Z), we may
assume that the predicate Gϕ does not occur in S.

1. Check if all Li are of the form Z 6= T or σ(ϕni(Z)). If there is an L of
the form Z 6= Z, then yeld A 6|= S(W1/t1, . . . ,Wr/tr) and go to 6. Otherwise for
j = 1, . . . s set

Ej = {ni : σ(ϕni(Wj)) ∈ {L1, . . . , Lp}}

and go to 6. If not all Li are of the form Z 6= T or σ(ϕni(Z)), then go to 2.
2. Remove all atomic predicates ϕn(Wi) = ϕn(Wi). If there exists a predicate

of the form ϕn1(Wi) = ϕn2(Wj), where i 6= j, then yeld A 6|= S(W1/t1, . . . ,Wr/tr)
and go to 6. Otherwise go to 3.

3. Suppose that among L1, . . . , Lp there exists an atomic predicate L of the form
ϕn1(Wj) = ϕn2(Z), where n1 < n2. Then A 6|= S(W1/t1, . . . ,Wr/tr). Go to 6. If
no such L exists goto 4.

4. Suppose that there exists a L which is of the form ϕn1(Z) = ϕn2(T ), where
Z 6∈ {W1, . . . ,Wr} and n1 ≥ n2. Remove L from the list and replace in the
remaining atomic predicates all occurences of Z by ϕ(n2−n1)(T ). Go to 1. Otherwise
check if there exists a L of the form ϕn1(T ) = ϕn2(Z), replace it by ϕn1(Z) =
ϕn2(T ) and go to 3. Otherwise go to 5.

5. Consider the first L of the form ϕn1(Z) 6= ϕn2(T ), where max(n1, n2) > 0.
If the variables Z and T are distinct, then replace it by Z 6= T . If Z = T , then
if n1 = n2 decide that A 6|= S(W1/t1, . . . ,Wr/tr) and go to 6. If n1 6= n2, then
remove L from the list and go to 1. If no such L exists go to 1.

6. End of the procedure.
Using the above procedure we may construct an enumeration operator Γ such

that for all x
A |= Φg(x)(W1/t1, . . . ,Wr/tr) ⇐⇒ x ∈ Γ(Bk).

Thus A ≤e Bk. �

4. Properties of the degree spectra

4.1. General properties of upwards closed sets.

4.1. Definition. Consider a subset A of De. Say that A is upwards closed if for
every a ∈ A all total degrees greater than a are contained in A.

By Proposition 2.6 every degree spectrum is an upwards closed set of degrees.
In this sub-section we shall prove some properties of the upwards closed sets of
degrees. The next sub-section contains specific properties of the degree spectra, i.e.
properties which are not true for all upwards closed sets of degrees.

Let A be an upwards closed set of degrees.
Notice first that if B ⊆ A, then co(A) ⊆ co(B).

4.2. Proposition. Let At = {a : a ∈ A & a is total}. Then co(A) = co(At).
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Proof. A simple application of Selman’s Theorem [14]. Suppose that b ∈ co(At).
Towards a contradiction assume that b 6∈ co(A). Then there exists an element
c ∈ A such that b 6≤ c. By Selman’s Theorem there exists a total a ≥ c such that
b 6≤ a. Clearly a ∈ At. A contradiction. �

The next property can be obtained as an application of the Jump Inversion
Theorem (JIT) from [17].

4.3. Proposition. Let b be an arbitrary enumeration degree. Let α be a recursive
ordinal greater than 0. Set

Ab,α = {a : a ∈ A & b ≤ a(α)}.

Then co(A) = co(Ab,α).

Proof. Clearly co(A) ⊆ co(Ab,α). Assume that there exists a degree c ∈ co(Ab,α) \
co(A). Then there exists an a ∈ A such that c 6≤ a. By the JIT there exists
a total degree f such that a ≤ f , b ≤ f (α) and c 6≤ f . Clearly f ∈ Ab,α. A
contradiction. �

4.2. Specific properties of degree spectra. Let us fix an abstract structure A.
From Proposition 4.3 it follows that the elements of an upwards closed set A

with arbitrary high jumps determine completely the co-set of A. The following
Theorem shows that the elements of the degree spectrum DS(A) with low jumps
also determine it’s co-set CS(A).

Let α > 0 be a constructive ordinal and b ∈ DSα(A). Denote by A the set
{a : a ∈ DS(A) & a(α) = b}.

4.4. Theorem. CS(A) = co(A).

Proof. It is sufficient to show that co(A) ⊆ CS(A). Let c ∈ co(A) and let C be a
set in c. We shall show that C is 0-forcing definable on A. Clearly there exists an
enumeration g of A such that g−1(A)(α) ∈ b. Since α > 0, Q = g−1(A)(α) is a total
set. Let f be an α,Q-acceptable enumeration. Then de(f

−1(A)) ∈ A and hence
C ≤e f

−1(A). So C is 0-admissible in all α,Q-acceptable enumerations of A. By
Theorem 3.17, C is 0-forcing definable on A and hence c ∈ DS(A). �

There exist upwards closed set of enumeration degrees for which Theorem 4.4
is not true. Indeed, consider two sets of A and B of natural numbers such that
B 6≤e A and A 6≤e B

′. On may take an arbitrary B 6≤e ∅ and construct the set A
as a B′-generic set such that B 6≤ A. Let D = {a : a ≥ de(A)} ∪ {a : a ≥ de(B)}
Let A = {a : a ∈ D & a′ = de(B)′}. Clearly if a ≥ de(A), then a 6∈ A. Therefore
de(B) is the least element of A and hence de(B) ∈ co(A). On the other hand
de(B) 6≤ de(A) and hence de(B) 6∈ co(D).

Now we turn to an analog of the Minimal pair theorem for the enumeration
degrees.

Given a partial mapping f of N into N, let f0 = λx.f(2x) and f1 = λx.f(2x+1).

4.5. Definition. An enumeration f is splitting if the functions f0 and f1 are
enumerations, i.e. f0 and f1 are surjective mappings of N onto N.

Obviously if f is a splitting enumeration then both f−1
0 (A) and f−1

1 (A) are
enumeration reducible to f−1(A).

4.6. Lemma. Let f be an α-generic splitting enumeration of A. Then both f0 and
f1 are α-generic enumerations.
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Proof. We shall show that f0 is α-generic. The proof of the genericity of f1 is
similar. Let β < α and let S0 be an enumeration reducible to D(A)(β) set of finite
parts. Denote by S the set {τ : τ0 ∈ S0}. Clearly S ≤e S0 and hence there exists a
τ ⊆ f such that τ ∈ S ∨ (∀ρ ⊇ τ)(ρ 6∈ S).

Clearly τ0 ⊆ f0 and if τ ∈ S, then τ0 ∈ S0. Suppose that (∀ρ ⊇ τ)(ρ 6∈ S).
Assume that there exist a µ ⊇ τ0 such that µ ∈ S0. Notice that since µ ⊇ τ0, we
have that for all x if τ(2x) ' y, then µ(x) ' y. Let

ρ(x) '

{

µ(x/2) if x is even,

τ(x) if x is odd.

Clearly τ ⊆ ρ and ρ0 = µ ∈ S0. So, ρ ∈ S. A contradiction. �

4.7. Corollary. If f is an α-generic splitting enumeration, then de(f
−1
0 (A))(β)

and de(f
−1
1 (A))(β) do not belong to CSβ(A) for any β < α.

4.8. Proposition. Let f be an α-generic splitting enumeration of A. Set f0 =
de(f

−1
0 (A)) and f1 = de(f

−1
1 (A)). Then for every β such that β + 1 < α,

co({f0
(β), f1

(β)}) = CSβ(A).

Proof. Let β + 1 < α. It is sufficient to show that if A ≤e f
−1
0 (A)(β) and A ≤e

f−1
1 (A)(β), then A is β-forcing definable on A. Indeed, suppose that there exist e0

and e1 such that

(∀x)((x ∈ A ⇐⇒ f0 |=β Fe0
(x)) & (x ∈ A ⇐⇒ f1 |=β Fe1

(x))).

Consider the set

S = {τ : (∃x)(τ0 
β Fe0
(x) & τ1 
β ¬Fe1

(x) ∨ τ0 
β ¬Fe0
(x) & τ1 
β Fe1

(x))}.

Clearly the S is enumeration reducible to D(A)(β+1) and hence there exists a τ ⊆ f
such that τ ∈ S or τ has no extensions in S. Assume that τ ∈ S. Then for some
x we have that f0 |=β Fe0

(x) & f1 |=β ¬Fe1
(x) or f0 |=β ¬Fe0

(x) & f1 |=β Fe1
(x)

which is impossible. So there exists a τ ⊆ f such that τ has no extensions in S.
We shall show that

A = {x : (∃ρ ⊇ τ0)(ρ 
β Fe0
(x))}.

Let x ∈ A. Then f0 |= Fe0
(x) and hence there exists a ρ ⊆ f0 such that

ρ 
β Fe0
(x). Clearly τ0 ⊆ f0 and hence we may assume that τ0 ⊆ ρ. Assume now

that for some x 6∈ A there exists a ρ ⊇ τ0 such that ρ 
β Fe0
(x). Then f1 6|= Fe1

(x)
and hence there exists a µ ⊆ f1 such that µ 
 ¬Fe1

. Again we may assume that
τ1 ⊆ µ. Now let

σ(x) '

{

ρ(x/2) if x is even,

µ([x/2]) if x is odd.

It is easy to see that σ0 = ρ and σ1 = µ. Therefore τ ⊆ σ and σ ∈ S. A
contradiction. �

4.9. Theorem. Let α < ωCK
1 and let b ∈ DSα(A). There exist elements f0 and

f1 of DS(A) such that

(1) f0
(α) ≤ b and f1

(α) ≤ b.

(2) If β < α, then f0
(β) and f1

(β) do not belong to CSβ(A).

(3) If β + 1 < α, then co({f0
(β), f1

(β)}) = CSβ(A).
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Proof. Let g be an bijective enumeration of A such that de(g
−1(A)(α)) ≤ b. Denote

by B the structure (N; g−1(R1), . . . , g
−1(Rk)). Clearly D(B) ≡e g

−1(B) and for all
β we have that DSβ(A) = DSβ(B) and CSβ(A) = CSβ(B). Let f be an α-generic

splitting enumeration of B such that f−1(B)(α) ≤e D(B)
(α)

. Set f0 = de(f
−1
0 (B))

and f1 = de(f
−1
1 (B)). Obviously f0 and f1 satisfy the conditions (1) – (3). �

Again we have that Theorem 4.9 is not true for arbitrary upwards closed sets of
degrees. Indeed consider the finite lattice L consisting of the elements a, b, c, a ∧ b,
a ∧ c, b ∧ c, >, ⊥ such that > and ⊥ are the greatest and the least element of L,
respectively, a > a ∧ b, a > a ∧ c, b > a ∧ b, b > b ∧ c, c > a ∧ c and c > b ∧ c.
Since every finite lattice can be embedded in the semilatice of the Turing degrees,
see p. 156 of [9], the lattice L can be embedded in (DT ,≤) and hence it can be
embedded in (De,≤). So we may assume that L is a substructure of (De,≤). Let

A = {d ∈ De : d ≥ a ∨ d ≥ b ∨ d ≥ c}.

Clearly A is an upwards closed set of enumeration degrees. Assume that there
exist f0, f1 ∈ A such that co({f0, f1}) = co(A). Let x0,x1 ∈ {a,b, c} be such
that f0 ≥ x0 and f1 ≥ x1. Let x2 = min{x0,x1}. Clearly x2 ∈ co({f0, f1}) but
x2 6∈ co(A). A contradiction.

Now we turn to the third property of DS(A) which shows the existence of enu-
meration degrees which are quasi minimal with respect to CS(A).

Let ⊥ 6∈ N.

4.10. Definition. A partial finite part is a finite mapping of N into N ∪ {⊥}. A
partial enumeration is a partial surjective mapping of N onto N.

From now on by δ,ρ,τ we shall denote partial finite parts. Given a partial finite
part τ and a partial enumeration f , by τ ⊆ f we shall denote that for all x in
dom(τ) either τ(x) ' ⊥ and f(x) is not defined or τ(x) ∈ N and f(x) ' τ(x).

Let A = (N;R1, . . . , Rk) be a structure and f be a partial enumeration. Given
a subset A of N

a, let

f−1(A) = {〈x1, . . . , xa〉 : x1, . . . , xa ∈ dom(f) & (f(x1), . . . , f(xa)) ∈ A}.

Let f−1(A) = f−1(R1) ⊕ · · · ⊕ f−1(Rk). As we shall see later, it could happen
that de(f

−1(A)) 6∈ DS(A). On the other hand next Lemma shows that for every
partial enumeration f the enumeration degree of f−1(A) is ”almost” in DS(A).

4.11. Lemma. Let X be a total set, let f be a partial enumeration and f−1(A) ≤e

X. Then de(X) ∈ DS(A).

Proof. It is sufficient to show that there exists a total surjective mapping g of N

onto N such that g−1(A) ≤e X . Let Ef = f−1(” = ”). Clearly Ef ≤e X . Since
dom(f) = {x : 〈x, x〉 ∈ Ef}, we get that dom(f) ≤e X and hence, since X is a
total set, dom(f) is r.e. in X . Let h be a recursive in X enumeration of dom(f).
Set g = λn.f(h(n)). Then for every i, 1 ≤ i ≤ k, we have that

g−1(Ri) = {〈n1, . . . , nri
〉 : 〈h(n1), . . . , h(nri

)〉 ∈ f−1(Ri)}.

Thus g−1(A) ≤e X . �

4.12. Corollary. For every partial enumeration f the enumeration degree of
f−1(A)′ belongs to DS1(A).
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Proof. By the Jump Inversion Theorem from [16] there exists a total set F such
that f−1(A) ≤e F and F ′ ≡e f

−1(A)′. Then de(F ) ∈ DS(A) and, hence, de(F
′) ∈

DS1(A). �

4.13. Corollary. Let f be a partial enumeration. Then de(f
−1(A)) is an upper

bound of CS(A).

Proof. Let a ∈ CS(A) and let A ∈ a. Consider a total set X such that f−1(A) ≤e

X . Then de(X) ∈ DS(A) and hence A ≤e X . By Selman’s Theorem [14], A ≤e

f−1(A). �

4.14. Definition. Let f be a partial enumeration of A and e, x ∈ N. Then

(i) f |=0 Fe(x) iff there exists a v such that 〈v, x〉 ∈We and for all u ∈ Dv

(∃i)(1 ≤ i ≤ k & u = 〈i, xu
1 , . . . , x

u
ri
〉 & {xu

1 , . . . , x
u
ri
} ⊆ dom(f) &

(f(xu
1 ), . . . , f(xu

ri
))) ∈ Ri.

(ii) f |=0 ¬Fe(x) ⇐⇒ f 6|=0 Fe(x)

Clearly A ≤e f
−1(A) iff there exist an e such that

(∀x ∈ N)(x ∈ A ⇐⇒ f |= Fe(x)).

4.15. Definition. Let τ be a partial finite part and e, x ∈ N. Then

(i) τ 
0 Fe(x) iff there exists a v such that 〈v, x〉 ∈ We and for all u ∈ Dv,
u = 〈i, xu

1 , . . . , x
u
ri
〉, 1 ≤ i ≤ k,

xu
1 , . . . , x

u
ri

∈ dom(τ) & (τ(xu
1 ), . . . , τ(xu

ri
)) ∈ Ri;

(ii) τ 
0 ¬Fe(x) ⇐⇒ (∀ρ ⊇ τ)(ρ 10 Fe(x)).

4.16. Definition. A subset A of N is partially forcing definable on A if there exist
an e ∈ N and a partial finite part δ such that for all natural numbers x,

x ∈ A ⇐⇒ (∃τ ⊇ δ)(τ 
 Fe(x)).

Clearly if A is partially forcing definable on A, then A ≤e D(A).

4.17. Lemma. Let A ⊆ N be partially forcing definable on A. Then de(A) ∈
CS(A).

Proof. Let g be an arbitrary (total) enumeration of A. Consider a structure B

which is isomorphic to A and such that D(B) ≤e g−1(A). Then A is partially
forcing definable on B and hence A ≤e D(B) ≤e g

−1(A). �

4.18. Definition. A partial enumeration f is generic if for every enumeration
reducible to D(A) set S of partial finite parts the following condition holds:

(∃τ ⊆ f)(τ ∈ S ∨ (∀ρ ⊇ τ)(ρ 6∈ S)).

We shall list some properties of the partial generic enumerations omitting the
proofs since they are similar to the proofs of the respective properties of the total
generic enumerations.

4.19. Proposition.

(1) For every partial generic f , f−1(A) 6≤e D(A). Hence de(f
−1(A)) 6∈ CS(A).

(2) If f is a partial generic enumeration, then

(∀e, x)(f |=0 (¬)Fe(x) ⇐⇒ (∃τ ⊆ f)(τ 
0 (¬)Fe(x))).
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(3) There exists a partial generic enumeration f ≤e D(A)′ such that f−1(A) ≤e

D(A)′.
(4) If A ≤e f

−1(A) for all partial generic enumerations f , then A is partially
forcing definable on A.

4.20. Definition. Given a set A of enumeration degrees, say that the degree q is
quasi-minimal with respect to A if the following conditions hold:

(i) q 6∈ co(A).
(ii) If a is a total degree and a ≥ q, then a ∈ A.
(iii) If a is a total degree and a ≤ q, then a ∈ co(A).

Notice that from (ii) it follows by Selman’s Theorem that every quasi-minimal
degree is an upper bound of co(A).

Clearly if for some d ∈ De, A = {a : a ≥ d}, then a degree is quasi-minimal
with respect to A iff it is quasi-minimal over d.

4.21. Theorem. Let f be a partial generic enumeration of A. Then de(f
−1(A))

is quasi-minimal with respect to DS(A).

Proof. It is sufficient to show that if ψ is a total function and ψ ≤e f
−1(A), then

de(ψ) ∈ CS(A). Suppose that ψ is a total function and

(∀x, y ∈ N)(ψ(x) ' y ⇐⇒ f |=0 Fe(〈x, y〉)).

Consider the set

S0 = {ρ : (∃x, y1 6= y2)(ρ 
0 Fe(〈x, y1〉) & ρ 
0 Fe(〈x, y2〉))}.

Since S0 ≤e D(A), we have that there exists a partial finite part τ0 ⊆ f such that
either τ0 ∈ S or (∀ρ ⊇ τ0)(ρ 6∈ S). Assume that τ0 ∈ S0. Then there exist x, y1 6= y2
such that f |=0 Fe(〈x, y1〉) and f |=0 Fe(〈x, y2〉). Then ψ(x) ' y1 and ψ(x) ' y2
which is impossible. So, (∀ρ ⊇ τ0)(ρ 6∈ S0).

Let

S1 = {ρ :(∃τ ⊇ τ0)(∃δ1 ⊇ τ)(∃δ2 ⊇ τ)(∃x, y1 6= y2)(τ ⊆ ρ & δ1 
 Fe(〈x, y1〉) &

δ2 
 Fe(〈x, y2〉) & dom(ρ) = dom(δ1) ∪ dom(δ2) &

(∀x ∈ dom(ρ) \ dom(τ))(ρ(x) ' ⊥))}.

Again we have that S1 ≤e D(A) and hence there exists a τ1 ⊆ f such either
τ1 ∈ S1 or (∀ρ ⊇ τ1)(ρ 6∈ S1).

Assume that τ1 ∈ S1. Then there exists a τ such that τ0 ⊆ τ ⊆ τ1 and for some
δ1 ⊇ τ , δ ⊇ τ and x, y1 6= y2 ∈ N we have

δ1 
0 Fe(〈x, y1〉) & δ2 
0 Fe(〈x, y2〉) & dom(τ1) = dom(δ1) ∪ dom(δ2) &

(∀x ∈ dom(τ1) \ dom(τ))(τ1(x) ' ⊥).

Let ψ(x) ' y. Then f |=0 Fe(〈x, y〉). Hence there exists a ρ ⊇ τ1 such that
ρ 
0 Fe(〈x, y〉). Let y 6= y1. Define the partial finite part ρ0 as follows:

ρ0(x) '

{

δ1(x) if x ∈ dom(δ1),

ρ(x) if x ∈ dom(ρ) \ dom(δ1).

Then τ0 ⊆ ρ0, δ1 ⊆ ρ0 and for all x ∈ dom(ρ) if ρ(x) 6' ⊥, then ρ(x) ' ρ0(x).
Hence ρ0 
0 Fe(〈x, y1〉) and ρ0 
0 Fe(〈x, y〉). So, ρ0 ∈ S0. A contradiction.

Thus, if ρ ⊇ τ1, then ρ 6∈ S1.
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Let τ = τ1 ∪ τ0. Notice that τ ⊆ f . We shall show that

ψ(x) ' y ⇐⇒ (∃δ ⊇ τ)(δ 
0 Fe(〈x, y〉)).

The left to right implication is trivial. Assume that δ1 ⊇ τ , δ1 
0 Fe(〈x, y1〉),
ψ(x) ' y2 and y1 6= y2. Then there exists a δ2 ⊇ τ such that δ2 
0 Fe(〈x, y2〉). Set

ρ(x) '

{

τ(x) if x ∈ dom(τ),

⊥ if x ∈ (dom(δ1) ∪ dom(δ2)) \ dom(τ).

Clearly ρ ⊇ τ1 and ρ ∈ S1. A contradiction.
Thus ψ is partially forcing definable and hence de(ψ) ∈ CS(A). �

As we have already pointed out not every structure has a degree i.e. it is not
generally true that the set DS(A) has a least element. The following Theorem
shows that if A has no degree, then for every countable subset B ⊆ DS(A) of total
enumeration degrees, there exist an element a ofDS(A) such that (∀b ∈ B)(b 6≤ a).

4.22. Definition. Let A be a set of enumeration degree. The subset B of A is
called base of A if for every element a of A there exists an element b ∈ B such that
b ≤ a.

We need the following Lemma which can be proved by a minor modification of
the proof of Selman’s Theorem presented in [16]:

4.23. Lemma. Let Q ⊆ N and let {Bn}n∈ω be a sequence of sets of natural
numbers such that (∀n)(Bn 6≤e Q). Then there exists a total set F such that Q ≤e F
and (∀n)(Bn 6≤e F ).

4.24. Theorem. Let A be a set of enumeration degrees possessing a quasi-minimal
degree q. Suppose that there exists a countable base B of A consisting of total
degrees. Then A has a least element.

Proof. Towards a contradiction assume that for every b ∈ B we have that b 6≤ q.
Let Q ∈ q and {Bn : n ∈ ω} be a sequence of sets such that B = {de(Bn) : n ∈ ω}.
Clearly for all n, Bn 6≤e Q. Let F be a total set such that Q ≤e F and (∀n)(Bn 6≤e

F ). Set f = de(F ). Then f is in A and for every b ∈ B we have that b 6≤ f . A
contradiction. So there exists a b ∈ B such that b ≤ q. Since b is a total degree
b ∈ co(A). Therefore b is the least element of A. �

4.25. Corollary. If DS(A) has a countable base of total enumeration degrees, then
DS(A) has a least element.

Now it is easy to construct an upwards closed set A of degrees which does not
possess a quasi-minimal degree. Indeed let a and b be two incomparable total
degrees. Let A = {c : c ≥ a ∨ c ≥ b}. Clearly A has a countable base of total
degrees, but it has not a least element. So, A has no quasi-minimal degree.

Corollary 4.25 remains true if we consider the more restrictive definition of
DS(A) which takes into account only the bijective enumerations of A. Let

DS(A) = {de(f
−1(A)) : f is a bijective enumeration of A}.

4.26. Corollary. Let DS(A) have a countable base B. Then DS(A) has a least
element.

Proof. According Proposition 2.5, if DS(A) has a least element b, then b will be
the least element of DS(A). So, it is sufficient to show that DS(A) has a least
element. For we shall show that B is a base of DS(A). Indeed, consider an element
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a of DS(A). By Proposition 2.5, there exists a d ∈ DS(A) such that d ≤ a. Clearly
there exists a b ∈ B such that b ≤ d ≤ a. �

Finally we would like to point out and the following application of the existence
of a quasi-minimal with respect to DS(A) degree.

4.27. Definition. The structure B is called quasi-minimal with respect to A if
the following are true:

(i) DS(B) ⊆ DS(A).
(ii) CS(A) 6= CS(B)
(iii) If a is a total degree in CS(B), then a ∈ CS(A).

4.28. Theorem. There exists a quasi-minimal with respect to A structure.

Proof. Let q be a quasi-minimal with respect to DS(A) degree. Consider a sub-
group G of the group of the rational numbers such that

DS(G) = {a : a is total and q ≤ a}.

Now (i) is obvious, (ii) follows from the fact that q ∈ CS(G) but q 6∈ CS(A)
and (iii) follows from the quasi-minimality of q. �
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