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Abstract. The paper is devoted to the study of Marker’s extensions of se-

quences of countable structures. In the first part of the paper definability
properties of the Marker’s extension are investigated. The results demonstrate

that for any sequence of structures the Marker’s extension codes the elements

of the sequence so that the n-th structure of the sequence appears positively
at the n-th level of the definability hierarchy. In the second part we study

the spectra of the Marker’s extensions. The results provide a general method

given a sequence of structures, to construct a structure with n-th jump spec-
trum contained in the spectrum of the n-th member of the sequence. As an

application a structure with spectrum consisting of the Turing degrees which

are non-lown for all n < ω is obtained.

1. Introduction

There is a close parallel between notions of classical computability theory and of
the theory of effective definability in abstract structures. For example, the notion of
“c.e. in” corresponds to the notion of Σ1 definability, where a set is Σ1 definable in
a structure A if it is definable by means of some computable Σ1 infinitary formula
with finitely many parameters. More generally, for all n the Σ0

n+1 sets correspond
to the sets definable by means of computable Σn+1 formulae. This correspondence
is made explicit by the external characterization of the Σn+1 definable sets obtained
independently in [2] and [4] which states that a set R is Σn+1 definable in a structure
A if for every copy B of A on the natural numbers the respective image of R is
Σ0
n+1 in the diagram of B. The last result provides a way to study other classical

computability notions in an abstract setting. A natural choice is the notion of
enumeration reducibility which can be considered as a generalization of the relation
“c.e. in”. Say that a set R is enumeration reducible to a structure A if for each copy
B of A on the natural numbers the respective image of R is enumeration reducible
to the positive diagram of B. Using the same methods as in [2] and [4] one can
show that R is enumeration reducible to A if and only if R is definable in A by
means of some positive computable Σ1 formula with finitely many parameters.

The introduction of the new notion of enumeration reducibility of a set to a
structure, gives rise to the question about the novelty of this notion. More precisely
it is natural to ask the following:

Question 1. Given a structure A, does there exist a structure M such that the
enumeration reducible to A sets coincide with the Σ1 definable in M sets?
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In the classical case the answer of the respective question is negative. There
exist sets A such that for no set M the sets enumeration reducible to A coincide
with the sets c.e. in M .

Next step is to consider sequences of sets. The guiding idea in the following
definitions is to think of a sequence of sets as enumerated so that each member of
the sequence appears at a level in the arithmetical hierarchy strictly higher than
the levels of its predecessors. From this point of view the simplest sequences are
generated by a single set and are of the form {B(n)}, where B ⊆ N. Such sequences
are identified with the set which generates them.

1.1. Definition. A sequence of X = {Xn}n<ω of sets of natural numbers is c.e.
in the set B if (∀n)(Xn is c.e. in B(n) uniformly in n).

Given a sequence R = {Rn} of subsets of the domain of a structure A, say that
R is c.e. in A if for each copy B of A on the natural numbers the respective image
of the sequence R is c.e. in the diagram of B. Using again the methods from [2, 4]
one can show that R is c.e.in A if and only if there exist a computable sequence
{Fn} of computable Σn+1 formulae and parameters t1, . . . , tm such that for all n,
Rn is definable in A by means of the formula Fn with parameters t1, . . . , tm.

Enumeration reducibility is further generalized in [17, 3, 1] to a notion of enu-
meration reducibility of sets to sequences of sets and to a notion of enumeration
reducibility of sequences of sets to sequences of sets. The starting point of these
generalizations is Selman’s Theorem [17] which states that the set X is enumeration
reducible to the set Y if for all sets B, Y is c.e. in B implies X is c.e. in B. The
following definition in a different notation is given by Ash in [1]:

1.2. Definition.

(i) Given a set X of natural numbers and a sequence Y of sets of natural
numbers, let X ≤n Y if for all sets B, Y is c.e. in B implies X is Σ0

n+1 in
B;

(ii) Given sequences X and Y of sets of natural numbers, say that X is ω-
enumeration reducible to Y (X ≤ω Y) if for all sets B, Y is c.e. in B
implies X is c.e. in B.

In [1] Ash presents a characterization of “≤n” and “≤ω” using computable in-
finitary propositional formulae. Another characterization in terms of enumeration
reducibility is obtained in [19] and [23].

To transfer the above reducibilities to the abstract case consider a sequence of

countable structures ~A = {An}n<ω, where An = (An;Pn1 , . . . , P
n
mn

). We shall
consider here only sequences of structures of first order languages Ln which are
computable uniformly in n.

Set A =
⋃
nAn.

1.3. Definition. An enumeration of A is a bijective mapping f of the set of the
natural numbers N onto A. Given R ⊆ Am and enumeration f of A, set

f−1(R) = {〈x1, . . . , xm〉|(f(x1), . . . , f(xm)) ∈ R}
For every enumeration f of A, let

f−1(An) = f−1(An)⊕ f−1(Pn1 )⊕ · · · ⊕ f−1(Pnmn
).

The set f−1(An) is actually the positive diagram of the copy of An under the
isomorphism f−1. Notice that if D is the diagram of this copy then D ≡T f−1(An).
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Thus every enumeration f of A determines a sequence f−1(~A) = {f−1(An)} of
sets of natural numbers.

Given a subset R of A, say that R ≤n ~A if for every enumeration f of A,

f−1(R) ≤n f−1(~A). This reducibility has been studied in [22] where it is shown

that a set R ≤n ~A if and only if R is definable by means of a positive computable
Σn+1 formula built up from the predicates of the structures A0, . . . ,An and such
that the predicates of the structure Ak appear for the first time at k + 1-th level.
Such formulae are called Σ+

n+1. Again it is natural to ask the following:

Question 2. Given a sequence of countable structures ~A, does there exist a

structure M such that the Σn+1 definable in M sets coincide with sets R ≤n ~A?
The respective question about the reducibility ≤n on the natural numbers has

obviously a negative answer.
Finally say that a sequence R = {Rn} of subsets of A is ω-enumeration reducible

to the sequence of structures ~A if for every enumeration f of A, f−1(R) ≤ω f−1(~A).

Using the methods from [22] one can show that R ≤ω ~A if and only if for all n, Rn
is Σ+

n+1 definable uniformly in n. Now we can state our third question:

Question 3. Given a sequence ~A of structures, does there exist a structure M

such that the sequences which are ω-enumeration reducible to ~A coincide with the
c.e.in M sequences?

In the case of computability on the natural numbers the third question could be
stated as follows. Given a sequence of sets of natural numbers A, does there exist
a set M such that for all sequences Y, Y ≤ω A ⇐⇒ Y ≤r.e. M? Again the answer
of the last question is negative in the general case.

Contrary to the situation in the case of computability on the natural numbers
all the three questions have positive answers. Actually there is a relatively simple
model-theoretic construction that does the job in all the three cases. The construc-
tion is based on the so called Marker’s extensions defined by D. Marker in [14]. In
the context of effective model theory Marker’s extensions are introduced by Gon-
charov and Khoussainov in [10] and recently used in the proofs of jump inversion
theorems for degree spectra of structures in [26, 27] and in the study of the degrees
of categoricity in [7].

In the first part of the paper we define the Marker’s extension corresponding to

a sequence ~A and show that it gives a positive answer to the three questions.
The second part of the paper is devoted to the study of the spectra of Marker’s

extensions. Here we shall adopt the following definition of spectrum of a structure,
which is equivalent to the usual one in the non-trivial cases but has the advantage
that the spectra are always upwards closed sets of degrees.

1.4. Definition. Let A be a countable structure. The spectrum of A is the set of
Turing degrees Sp(A) = {a|a computes the diagram of an isomorphic copy of A}.

One may generalize the notion of spectrum of a structure to the more general
case of sequences of structures in at least two ways:

1.5. Definition. Given a sequence ~A of countable structures,

(i) setA =
⋃
|An| and let the relative spectrum of ~A to be the set of sequences of

sets of natural numbers Rsp(~A) = {{f−1(An)}|f is an enumeration of A};
(ii) let the joint spectrum of ~A to be the set of sequences of sets of natural

numbers Jsp(~A) = {{f−1n (An)}|(∀n)(fn is an enumeration of |An|)}.
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Our main result states that for every sequence ~A of structures one can define

structures MR and MJ such that Sp(MR) = {dT (B)|(∃Y ∈ Rsp(~A))(Y is c.e. in B)}
and Sp(MJ) = {dT (B)|(∃Y ∈ Jsp(~A))(Y is c.e. in B)}

We present several applications of the last result including an example of a
structure M such that Sp(M) = {a|(∀n)(0(n) 6= a(n))}.

2. Preliminaries

We shall assume fixed a Gödel enumeration W0, . . . ,Wa, . . . of the computably
enumerable sets. By Dv we shall denote the finite set with canonical code v. Each
c.e. set Wa determines an enumeration operator Wa : P(N) −→ P(N) defined as
follows.

2.1. Definition. Given two sets X and Y of natural numbers, let

X = Wa(Y ) ⇐⇒ (∀x)(x ∈ X ⇐⇒ (∃v)(〈x, v〉 ∈Wa ∧Dv ⊆ Y )).

The enumeration operators are closed with respect to composition. Moreover
there exists a computable function λ(a, b) such that for all Y ⊆ N, Wa(Wb(Y )) =
Wλ(a,b)(Y ).

For A,B ⊆ N, A ≤e B (A is enumeration reducible to B) if there exists a c.e.
set W such that A = W (B). Let A ≡e B ⇐⇒ A ≤e B & B ≤e A. The
relation ≡e is an equivalence relation and the respective equivalence classes are
called enumeration degrees. For an introduction to the enumeration degrees the
reader might consult [6].

For every set A of natural numbers let A+ = A⊕ (N \A). Clearly a set B is c.e.
in A if and only if B ≤e A+. Moreover there exist computable functions λ and µ
such that for all a ∈ N and A ⊆ N, WA

a = Wλ(a)(A
+) and Wa(A+) = WA

µ(a). A set

A is total if A ≡e A+. Clearly for total sets A, the sets enumeration reducible to
A coincide with the c.e. in A sets.

The enumeration jump operator is defined in [5] and further studied in [15]. Here
we shall use the following definition of the enumeration jump which is m-equivalent
to the original one, see [15].

2.2. Definition. Given a set A of natural numbers, set LA = {〈a, x〉 : x ∈Wa(A)}
and let the enumeration jump of A be the set L+

A.

Here we shall prove some simple properties of the enumeration jump which will
be used in the rest of the paper. To avoid any misunderstanding from now on we
shall use the notation A′ only to denote the enumeration jump of A.

For every set A let 〈χA〉 = {〈x, 1〉 : x ∈ A} ∪ {〈x, 0〉 : x ∈ N \A}.
It is easy to see that A+ is uniformly enumeration equivalent to 〈χA〉, i.e. there

exists enumeration operators Φ1 and Φ2 such that A+ = Φ1(〈χA〉) and 〈χA〉 =
Φ2(A+).

The next proposition shows that 〈χA〉 and A+ are uniformly e-reducible to A′.

2.3. Proposition. There exists an enumeration operator Wa such that 〈χA〉 =
Wa(A′) for all A ⊆ N.

Proof. Let a0 be an index of the c.e. set {〈x, {x}〉 : x ∈ N}. Clearly Wa0(A) = A
for every A ⊆ N. Then

2〈a0, x〉 ∈ A′ ⇐⇒ x ∈Wa0(A) ⇐⇒ x ∈ A and

2〈a0, x〉+ 1 ∈ A′ ⇐⇒ x 6∈Wa0(A) ⇐⇒ x 6∈ A.
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Let a be an index of the r.e set

{〈〈x, 1〉, {2〈a0, x〉}〉 : x ∈ N} ∪ {〈〈x, 0〉, {2〈a0, x〉+ 1}〉 : x ∈ N}.

Clearly Wa(A′) = 〈χA〉. �

Given a set A of natural numbers, denote by JT (A) = KA the Turing jump of
A. Recall that

KA = {〈e, x〉 : {e}A(x) is defined}.

2.4. Proposition. There exists an enumeration operator Φ such that KA = Φ(A′)
for all A ⊆ N.

Proof. Rewriting the definition of KA we get

KA = {〈e, x〉 : (∃ finite function θ)({e}θ(x) is defined and θ ⊆ χA)}.

From here we get immediately that there exists an enumeration operator Φ0 such
that for all A ⊆ N, KA = Φ0(〈χA〉). By Proposition 2.3 there exists an enumeration
operator Φ1 such that for all A ⊆ N, 〈χA〉 = Φ1(A′). So we may define Φ(A) =
Φ0(Φ1(A)). �

The following Proposition shows that the jump is preserved under the stan-
dard embedding ι of the Turing degrees into the enumeration degrees defined by
ι(dT (A)) = de(A

+).

2.5. Proposition. For all A ⊆ N, (A+)′ ≡e K+
A uniformly in A.

Proof. Let us fix computable functions λ, µ such that for all a ∈ N and A ⊆ N,
WA
a = Wλ(a)(A

+) and Wa(A+) = WA
µ(a). Now we have

〈a, x〉 ∈ LA+ ⇐⇒ x ∈Wa(A+) ⇐⇒ x ∈WA
µ(a) ⇐⇒ 〈µ(a), x〉 ∈ KA.

From here one can easily construct an enumeration operator ΦT such that (A+)′ =
L+
A+ = ΦT (K+

A ) for all A ⊆ N.
Similarly, we have that for all a ∈ N and for all A ⊆ N,

〈a, x〉 ∈ KA ⇐⇒ x ∈WA
a ⇐⇒ x ∈Wλ(a)(A

+) ⇐⇒ 〈λ(a), x〉 ∈ LA+ .

and hence there exists an enumeration operator ΦE such that K+
A = ΦE((A+)′) for

all A ⊆ N. �

2.6. Proposition. There exists a computable function g such that for all e ∈ N
and B ⊆ N, We(B)′ = Wg(e)(B

′).

Proof. Consider a computable function λ such that for every a and e, Wa(We(B)) =
Wλ(a,e)(B). Then

2〈a, x〉 ∈We(B)′ ⇐⇒ 2〈λ(a, e), x〉 ∈ B′ and

2〈a, x〉+ 1 ∈We(B)′ ⇐⇒ 2〈λ(a, e), x〉+ 1 ∈ B′.

Let g be a computable function yielding for every e an index of the r.e set

{〈2〈a, x〉, {2〈λ(a, e), x〉}〉 : a, x ∈ N} ∪ {〈2〈a, x〉+ 1, {2〈λ(a, e), x〉+ 1}〉 : a, x ∈ N}.

Then for all e, We(B)′ = Wg(e)(B
′). �
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2.7. Definition. Let Y = {Yn}n<ω and Z = {Zn}n<ω be sequences of sets of
natural numbers. Then Y is enumeration reducible to Z (Y ≤e Z) if for all n,
Yn ≤e Zn uniformly in n i.e. there exists a computable function γ such that
(∀n)(Yn = Wγ(n)(Zn)).

Notice that if Y ≤e Z then we may assume that there is a primitive recursive
function γ such that for all n, Yn = Wγ(n)(Zn).

Clearly ”≤e” is a reflexive and transitive relation on the sequences of sets of
natural numbers. Set Y ≡e Z ⇐⇒ Y ≤e Z ∧ Z ≤e Y.

Let J0
T (A) = A and Jn+1

T (A) = JT (JnT (A)).

2.8. Proposition. For every A ⊆ N, {JnT (A)+} ≡e {(A+)(n)}.

Proof. Let g be the computable function defined in Proposition 2.6 and fix two
enumeration operators WT and WE such that for all sets X, WT (JT (X)+) = (A+)′

and WE((X+)′) = JT (X)+. Let λ be a computable function such that for a and b
and X ⊆ N, Wa(Wb(X)) = Wλ(a,b)(X).

We have that J0
T (A)+ = A+ = (A+)(0). Suppose that JnT (A)+ = Wa((A+)(n))

and (A+)(n) = Wb(J
T
n (A)+). Then

Jn+1
T (A)+ =JT (JnT (A))+ = WE((JnT (A)+)′) = WE(Wa((A+)(n))′) =

WE(Wg(a)((A
+)(n+1))) = Wλ(E,g(a))((A

+)(n+1)) and

(A+)(n+1) =[(A+)(n)]′ = [Wb(J
n
T (A)+)]′ =

Wg(b)([J
n
T (A)+]′) = Wg(b)(WT (JT (JnT (A))+) = Wλ(g(b),T )(J

n+1
T (A)+).

�

For every set A define the ω enumeration jump of A to be the set A(ω) =
{〈n, x〉|x ∈ A(n)}. Let JωT (A) to be the ω Turing jump of A.

2.9. Corollary. For every set A, A(ω) ≡e (A+)(ω) ≡e JωT (A)+.

Proof. The equivalence (A+)(ω) ≡e JωT (A)+ follows directly from the proposition

above. Since A ≤ A+, we have also that A(ω) ≤e (A+)(ω). Finally, notice that
A+ ≤e A′ and hence (A+)(ω) ≤e A(ω). �

Since the set A(ω) is total, we have also that A(ω) ≡T JωT (A).

2.10. Corollary. For every sequence X = {Xn} of sets of natural numbers and
B ⊆ N, X is c.e. in B if and only if X ≤e {(B+)(n)}.

Proof. Let λ and µ be computable functions such that for all A ⊆ N, WA
a =

Wλ(a)(A
+) and Wa(A+) = WA

µ(a).

Suppose that X is c.e. inB. Let γ be a computable function such that (∀n)(Xn =

W
Jn
T (B)

γ(n) ). Then (∀n)(Xn = Wλ(γ(n))(J
n
T (B)+)). Hence X ≤e {JnT (B)+} ≤e

{(B+)(n)}. Suppose now that X ≤e {(B+)(n)}. Then X ≤e {JnT (B)+}. Hence
there exists a computable function δ such that (∀n)(Xn = Wδ(n)(J

T
n (B)+)). Then

(∀n)(Xn = W
Jn
T (B)

µ(δ(n))). Therefore X is c.e. in B. �

2.11. Definition. Let Y = {Yn} be a sequence of sets of natural numbers. The
jump sequence P(Y) = {Pn(Y)} of Y is defined by induction:

(i) P0(Y) = Y0;
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(ii) Pn+1(Y) = Pn(Y)′ ⊕ Yn+1.

By Pω(Y) we shall denote the set
⊕

n Pn(Y). Notice that this set is always total.
Recall that we have defined the ω-enumeration reducibility of sequences of sets

to sequences of sets by setting

X ≤ω Y ⇐⇒ (∀B ⊆ N)(Y is c.e. in B ⇒ X is c.e. in B).

Next theorem proved in [23] gives a characterization of “≤ω” in terms of enu-
meration reducibility:

2.12. Theorem. For every two sequences X and Y of sets of natural numbers

X ≤ω Y ⇐⇒ X ≤e P(Y).

2.13. Corollary. Let X ⊆ N and let Y be a sequence of sets of natural numbers.
Then X ≤n Y ⇐⇒ X ≤e Pn(Y).

Proof. Let X = {Xn} be a sequence of natural numbers such that Xk = ∅ if k 6= n
and Xn = X. We have that X ≤e Pn(Y) ⇐⇒ X ≤e P(Y) ⇐⇒ X ≤ω Y.
Therefore

X ≤e Pn(Y) ⇐⇒ (∀B ⊆ N)(Y is c.e. in B ⇒ X is c.e. in B).

Finally notice that X is c.e.in a set B if and only if X = Xn is Σ0
n+1 in B. �

One can easily check that the following assertions hold for all sequences Y and
Z of sets of natural numbers:

(1) Y ≤e P(Y).
(2) P(P(Y)) ≤e P(Y).
(3) Y ≡ω P(Y).
(4) Y ≤e Z ⇒ Y ≤ω Z.

We conclude this section by adopting the following notation:
Notation. Given a function h, by Gh we shall denote the graph of h, i.e. the

set {(x, y) : h(x) ' y}, by dom(h) we shall denote the domain of h and by ran(h)
we shall denote the range of h.

3. Marker’s extensions of sequences of structures

Let us fix a sequence ~A = {An} of countable structures. We shall assume that

An = (An;Pn1 , . . . , P
n
mn

), where each Pnk is an infinite subset of A
rnk
n , 1 ≤ k ≤

mn, and that there exists a computable function ρ such that for all n, ρ(n) =
〈rn1 , . . . , rnmn

〉.
Set A =

⋃
nAn. Fix a subset R of Ar. For every n ≥ 0 we define the n-th

Marker’s extension Mn(R) of R as follows. Fix n + 1 new countable and disjoint
sets XR

0 , . . . , X
R
n and define the functions hR0 , . . . , h

R
n so that

• hR0 is a bijective mapping of R onto XR
0 .

• hR1 is a bijective mapping of (Ar ×XR
0 ) \GhR

0
onto XR

1 .
. . .
• hRn is a bijective mapping of (Ar ×XR

0 × · · · ×XR
n−1) \GhR

n−1
onto XR

n .

Set MR
k = GhR

k
, k ≤ n, and let

Mn(R) = (A ∪
⋃
k≤n

XR
k ;MR

n , X
R
0 , . . . , X

R
n ).
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The sets XR
0 , . . . , X

R
n are called companions of the extension Mn(R).

Notice that R is Σn+1 definable in Mn(R) in a uniform way. Indeed, clearly for
all ā ∈ Ar,

R(ā) ⇐⇒ (∃x0 ∈ XR
0 )(MR

0 (ā, x0))

and for all k < n, x0 ∈ XR
0 , . . . , xk ∈ XR

k ,

MR
k (ā, x0, . . . , xk) ⇐⇒ (∀xk+1 ∈ XR

k+1)(¬MR
k+1(ā, x0, . . . , xk, xk+1)).

To define the n-th Marker’ s extension of the structure An construct the struc-
tures Mn(An),Mn(Pn1 ), . . . ,Mn(Pnmn

) with disjoint companions and let

Mn(An) = (|Mn(An)|∪
⋃

1≤k≤mn

|Mn(Pnk )|;MAn
n ,MP1

n , . . . ,M
Pn

mn
n , XAn

0 , . . . , X
Pn

mn
n ).

Finally, construct for each n ≥ 0 the n-th Marker’s extension Mn(An) of An so

that all companions are disjoint and let M = M(~A) be the structure with domain
equal to the union of the domains of the structures Mn(An), n < ω, and with a set
of predicates consisting of A and all predicates of the structures Mn(An), n < ω.

Despite the fact that M has infinitely many predicates it is a structure of a
computable first order language. Notice also that for each n the domain An and
the predicates Pn1 , . . . , P

n
mn

of the structure An are Σn+1 definable in M uniformly
in n.

We intend to show that M(~A) is a structure which answers positively the ques-

tions from the introduction. For we need to study the copies of M(~A) on the natural
numbers.

Let f be a one to one mapping of N onto |M(~A)|. Set

f−1(M(~A)) =f−1(A)⊕
⊕
n

[f−1(MAn
n )⊕ f−1(M

Pn
1

n )⊕ · · · ⊕ f−1(M
Pn

mn
n )]⊕⊕

n

[f−1(XAn
0 )⊕ · · · ⊕ f−1(X

Pn
mn

n )].

Clearly f−1(M(~A)) is Turing equivalent to the diagram of the copy of M(~A)
under the isomorphism f−1.

The following theorem provides the main tool for proving definability properties

of M(~A).

3.1. Theorem. Let ~A = {An} be a sequence of structures and A =
⋃
n |An|. Let

g be an enumeration of A and Y = {Yn} be a sequence of sets of natural numbers
such that Y 6≤ω {g−1(An)}.

Then there exists an enumeration f of |M(~A)| satisfying the following conditions:

(1) The set {〈i, j〉|f(i) = g(j)} is computable.

(2) f−1(M(~A))(ω) ≡e Pω(g−1(~A)).

(3) Y is not c.e. in f−1(M(~A)).

4. Proof of Theorem 3.1

Let An = (An, P
n
1 , . . . , P

n
mn

). Let A =
⋃
nAn. Recall that given an enumeration

g of A, by g−1(An) we denote the set g−1(An) ⊕ g−1(Pn1 ) ⊕ g−1(Pnmn
). Thus the

domain An and the predicates Pn1 , . . . , P
n
mn

of An are equally treated as subsets of A.
To simplify the notation we shall assume that for all n, mn = 0, i.e. the structure
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An has no predicates. Denote by A the sequence {An}. Then (∀n)(g−1(An) =

g−1(An)) and hence g−1(~A) = g−1(A).

For n < ω, set Mn = MAn
n and for i ≤ n set Xn,i = XAn

i and hn,i = hAn
i . Set

M = M(~A). Then M = (|M|;A, {Mn, Xn,0, . . . , Xn,n}n<ω).
Let f0(2j) = g(j). Notice that if f ⊇ f0 is an enumeration of |M| then f satisfies

the condition (1).
We continue with the definition of f on the odd numbers. To achieve the satis-

faction of (2) and (3), we shall use forcing.
Denote by B the set of all even numbers. Fix a sequence Zn,i, n < ω, i ≤ n, of

sets of odd numbers so that Zn,i are infinite, disjoint, computable uniformly in n
and i and

⋃
n,i≤n Zn,i is equal to the set of all odd numbers.

Call an enumeration f of |M| regular if f0 ⊆ f and for all n and i ≤ n,
f−1(Xn,i) = Zn,i.

Clearly if f is a regular enumeration then f−1(A) = B and
⊕

i≤n,n<ω f
−1(Xn,i)

are computable and hence

f−1(M) ≡e
⊕
n

f−1(Mn) and f−1(M)+ ≡e
⊕
n

f−1(Mn)+.

For regular enumerations f the sequence f−1(A) = f−10 (A) is enumeration equiv-
alent to the sequence g−1(A). Hence the sequences P(f−1(A)) and P(g−1(A)) are
enumeration equivalent. Therefore Pω(f−1(A)) ≡e Pω(g−1(A)). We shall assume
fixed a computable in Pω(g−1(A)) function σ(n, k) such that for each n the function
λk.σ(n, k) enumerates the set f−10 (An) without repetitions.

Notice also that for every regular f , f−1(An) is uniformly Σ0
n+1 in f−1(M).

Hence g−1(A) ≡e f−1(A) ≤e {(f−1(M)+)(n)}.
Therefore Pω(g−1(A)) ≤e (f−1(M)+)(ω) ≡e f−1(M)(ω).
Let f be a regular enumeration of |M|. Next we define for all natural num-

bers e, x and n the modeling relation f |=n Fe(x) whose intended meaning is
x ∈We((f

−1(M)+)(n)).

4.1. Definition. Let f be a regular enumeration of |M|. Define for all natural
numbers e and x the relation f |=n Fe(x) by induction on n:

(i) Let u ∈ N. Then f |=0 u if
a) u = 〈1, n, b, z0, . . . , zn〉, b is even, z0 ∈ Zn,0,. . . , zn ∈ Zn,n and

Mn(f(b), f(z1), . . . , f(zn));
b) u = 〈0, n, b, z0, . . . , zn〉, b is even, z0 ∈ Zn,0,. . . , zn ∈ Zn,n and
¬Mn(f(b), f(z1), . . . , f(zn));

(ii) f |=0 Dv ⇐⇒ (∀u ∈ Dv)(f |=0 u);
(iii) f |=0 Fe(x) ⇐⇒ (∃v)(〈x, v〉 ∈We ∧ f |=0 Dv);
(iv) f |=n+1 Dv ⇐⇒ (∀u ∈ Dv)(u = 〈1, e, x〉∧f |=n Fe(x)∨u = 〈0, e, x〉∧f 6|=n

Fe(x));
(v) f |=n+1 Fe(x) ⇐⇒ (∃v)(〈x, v〉 ∈We ∧ f |=n+1 Dv);

Set f |=n ¬Fe(x) ⇐⇒ f 6|=n Fe(x).

4.2. Lemma. There exists a computable function γ(n, e) such that for all n, e ∈ N,
We((f

−1(M)+)(n)) = {x|f |=n Fγ(n,e)(x)}.

Let n < ω. Call the functions κn,0, . . . , κn,n a n-consistent system if

κn0
is a bijective mapping of f−10 (An) onto Zn,0;
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κn1 is a bijective mapping of (B × Zn,0) \Gκn,0 onto Zn,1;
. . .
κn,n is a bijective mapping of (B×Zn,0×· · ·×Zn,n−1)\Gκn,n−1

onto Zn,n.

Given a regular enumeration f , we obtain for each n a n-consistent system by
setting for i ≤ n, κn,i = f−1(hn,i), i.e.

κn,i(b, z0, . . . , zi−1) ' f−1(hn,i(f(b), f(z0), . . . , f(zi−1))).

On the other hand, given n-consistent systems κn,0, . . . , κn,n for all n < ω,
there is a unique regular enumeration f such that for all n and i ≤ n, κn,i =
f−1(hn,i). Clearly for even numbers z, f(z) = f0(z). Fix n and define the f

on Zn,i by induction on i. If i = 0 and z ∈ Zn,0 find the unique b ∈ f−10 (An)
such that κn,0(b) ' z and set f(z) = hn,0(f(b)). Suppose that i < n and f is
defined on Zn,j , j ≤ i. Given a z ∈ Zn,i+1 find the unique (b, z0, . . . , zi) such that
κn,i+1(b, z0, . . . , zi) ' z. Set f(z) = hn,i+1(f(b), f(z0), . . . , f(zi)). One can easily
check that for all n and i ≤ n, f−1(Xn,i) = Zn,i and κn,i = f−1(hn,i).

From the construction it follows that f is unique.
So to construct a regular enumeration f of A is the same as to construct for all n,

n-consistent systems of functions κn,0, . . . , κn,n. This idea can be combined with an
appropriately defined forcing with conditions which are finite parts of n-consistent
systems.

4.1. Conditions. Let k ≤ n. A prime n-condition of type k is of the form:

E = (BE , ZEn,0, . . . , Z
E
n,n, κ

E
n,n−k, . . . , κ

E
n,n),

where BE ⊆ B, ZEn,i ⊆ Zn,i and all sets BE , ZEn,i are finite.

Each of κEn,n−j , j ≤ k, is a partial injective mapping of BE×ZEn,0×· · ·×ZEn,n−j−1
onto ZEn,n−j satisfying also the following:

(i) If n = k then dom(κEn,0) ⊆ f−10 (An).

(ii) If j < k then dom(κEn,n−j) ∩GκE
n,n−j−1

= ∅.
By ∅nk , k ≤ n, we shall denote the prime n-condition E of type k, such that

BE = ZEn,0 = · · · = ZEn,n = ∅ and all functions κEn,n−j , j ≤ k, are totally undefined.

4.3. Definition. Let E be a prime n-condition of type k and j ≤ k. Then

(i) E Mn,n−j(b, z0, . . . , zn−j) if κEn,n−j(b, z0, . . . , zn−j−1) ' zn−j .
(ii) E  ¬Mn,n−j(b, z0, . . . , zn−j) if κEn,n−j(b

′, z′0, . . . , z
′
n−j−1) ' zn−j for some

(b′, z′0, . . . , z
′
n−j−1) 6= (b, z0, . . . , zn−j−1)

Notice that if E is a prime n-condition of type k and j < k then

E Mn,n−j(b, z0, . . . , zn−j−1, zn−j)⇒ E  ¬Mn,n−j−1(b, z0, . . . , zn−j−1).

Indeed, assume that κEn,n−j(b, z0, . . . , zn−j−1) ' zn−j . Since the range of κEn,n−j−1
is equal to ZEn−j−1, there exist b′, z′0, . . . , z

′
n−j−2 such that κEn,n−j−1(b′, z′0, . . . , z

′
n−j−2) '

zn−j−1. Since b, z0, . . . , zn−j−2, zn−j−1 ∈ dom(κEn,n−j),

b′, z′0, . . . , z
′
n−j−2 6= b, z0, . . . , zn−j−2.

4.4. Definition. A condition of type k is a finite sequence E = (E0, . . . , En),
where k ≤ n, for i ≤ k, Ei is a prime i-condition of type i and if k ≤ i ≤ n, then
Ei is a prime i-condition of type k.
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Given a condition E of length n and type k, by BE we shall denote
⋃n
i=0B

Ei ,

for i ≤ j ≤ n, by ZEj,i we shall denote the set Z
Ej

j,i , by |E| we shall denote the length

n of the condition and by type(E) we shall denote the type k of the condition.

4.2. Extensions of prime conditions.

4.5. Definition. Let kC , kD ≤ n and C and D be prime n-conditions of type kC
and kD, respectively. Then D extends C(C ⊆ D) if BC ⊆ BD, (∀i ≤ n)(ZCn,i ⊆
ZDn,i) and

a) kC ≤ kD and (∀j ≤ kC)(κCn,n−j ⊆ κDn,n−j) or

b) kD < kC , (∀j ≤ kD)(κCn,n−j ⊆ κDn,n−j) and dom(κDn,n−kD )∩GκC
n,n−kD−1

= ∅.

4.6. Lemma. Let C ⊆ D be prime n-conditions of type kC and kD respectively.
Let j ≤ min(kC , kD). Then

C  (¬)Mn,n−j(b, z0, . . . , zn−j)⇒ D  (¬)Mn,n−j(b, z0, . . . , zn−j).

The extension relation is reflexive but not always transitive. Below we formulate
some conditions under which the transitivity holds:

4.7. Lemma. Let C,D,E be prime n-conditions of types kC , kD and kE respec-
tively. Let C ⊆ D and D ⊆ E. Then

(1) If kC ≤ kD, then C ⊆ E;
(2) If kE < kD then C ⊆ E.

Proof. For the proof of (1) notice that if kC ≤ kE then for all j ≤ kC , κCn,nj
⊆

κDn,n−j ⊆ κEn,n−j . If kE < kC then C ⊆ E follows from D ⊆ E and κCn,n−kE−1 ⊆
κDn,n−kE−1.

Let us turn to the proof of (2). Consider first the case kC ≤ kE . Then kC ≤ kD.
Hence (∀j ≤ kC)(κCn,n−j ⊆ κDn,n−j ⊆ κEn,n−j).

Assume that kE < kC . Clearly if j ≤ kE then κCn,n−j ⊆ κDn,n−j ⊆ κEn,n−j .

Moreover κCn,n−kE−1 ⊆ κ
D
n,n−kE−1 and hence dom(κEn,n−kE ) ∩GκC

n,n−kE−1
= ∅. �

4.8. Definition. Given a prime n-condition of type k and r ≤ k, by (C)r we shall
denote the condition (BC , ZCn,0, . . . , Z

C
n,n, κ

C
n,n−r, . . . , κ

C
n,n)

Clearly (C)r is well defined prime n-condition of type r, C ⊆ (C)r and (C)r ⊆ C.
As a direct consequence of Lemma 4.7 we get the following:

4.9. Lemma. Let C and D be prime n-conditions of type k and r respectively and
r < k. Then C ⊆ D ⇐⇒ (C)r+1 ⊆ D.

4.10. Lemma. Let C ⊆ D be prime n-conditions of type k1 and k2 respectively.
Then for all r ≤ k1, (C)r ⊆ D.

4.11. Lemma. Let C ⊆ D be prime n-conditions of type k and r, respectively,
and r < k. There exists a prime n-condition E of type r + 1 such that C ⊆ E and
D ⊆ (E)r.

Proof. Set E0 = (BD, ZDn,0, . . . , Z
D
n,n, κ

C
n,n−r−1, κ

D
n,n−r, . . . , κ

D
n,n). We have that

C ⊆ E0 and D = (E0)r. The only problem is that the mapping κCn,n−r−1 could be

not onto ZDn,n−r−1.
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For each element zn−r−1 ∈ ZDn,n−r−1 which does not belong to the range of

κCn,n−r−1 get new elements z0, . . . , zn−r−2 of Zn,0, . . . , Zn,n−r−2, respectively and

a new element b of f−10 (An) if n − r − 1 = 0, or an arbitrary new even number b
otherwise, and extend κCn,n−r−1 to κEn,n−r−1 so that

κEn,n−r−1(b, z0, . . . , zn−r−2) ' zn−r−1.

This way we obtain finite extensions BE , ZEn,0, . . . , Z
E
n,n−r−2 of BD, ZDn,0,. . . ,

ZDn,n−r−2 respectively and a finite extension κEn,n−r−1 of κCn,n−r−1. Set

E = (BE , ZEn,0, . . . , Z
E
n,n−r−2, Z

D
n,n−r−1, . . . , Z

D
n,n, κ

E
n,n−r−1, κ

D
n,n−r, . . . , κ

D
n,n).

�

4.12. Corollary. Let C ⊆ D be prime n-conditions of type k and r respectively
and r ≤ k. There exists a prime n-condition E of type k such that C ⊆ E and
D ⊆ (E)r.

4.13. Corollary. Let D be a prime n-condition of type r. There exists a prime
n-condition E of type n such that D ⊆ (E)r.

Proof. Apply the previous corollary with C = ∅nn. �

4.14. Lemma. Let C = (BC , ZCn,0, . . . , Z
C
n,n, κ

C
n,n−k, . . . , κ

C
n,n) be a prime n-

condition of type k. Let D0, . . . , Dn be finite subsets of Zn,0, . . . , Zn,n respectively.
There exist a prime n-condition E of type k such that C ⊆ E and for all i ≤ n,
Di ⊆ ZEn,i.

Proof. Extend the function κCn,n to κ∗n,n by adding new elements to BC × ZCn,0 ×
· · ·×ZCn,n−1 so that the range of κ∗n,n becomes equal to ZCn,n∪Dn. Let the respective

extension of the set ZCn,i be Z∗n,i, i ≤ n−1, and the extension of BC be B∗. Consider
the condition

D = (B∗, Z∗n,0 ∪D0, . . . , Z
∗
n,n−1 ∪Dn−1, Z

C
n,n ∪Dn, κ

∗
n,n).

Clearly C ⊆ D. Using Corollary 4.12 find a condition E of type k such that C ⊆ E
and D ⊆ E. �

4.15. Lemma. Let C be a prime n condition of type n. Let k ≤ n and b, z0, . . . , zk−1
be elements of B,Zn,0, . . . , Zn,k−1 respectively and such that if k = 0 then b ∈
f−10 (An) and if 0 < k then (b, z0, . . . , zk−1) 6∈ GκC

n,k−1
. Then there exists an exten-

sion D of C of type n such that (b, z0, . . . , zk−1) ∈ dom(κDn,k).

Proof. Suppose that k = 0. Let z be an element of Zn,0 \ ZCn,0 and let

D = (BC ∪ {b}, ZCn,0 ∪ {z}, . . . , ZCn,n, κDn,0, κCn,1, . . . , κCn,n),

where κDn,0 is the least extension of κCn,0 such that κDn,0(b) ' z. Clearly D is a well
defined condition of type n and C ⊆ D.

Suppose that k > 0. Let z ∈ Zn,k \ ZCn,k and let

E = (BC ∪ {b},ZCn,0 ∪ {z0}, . . . , ZCn,k−1 ∪ {zk−1}, ZCn,k ∪ {z},
ZCn,k+1 . . . , Z

C
n,n, κ

E
n,k, κ

C
n,k+1, . . . , κ

C
n,n),

where κEn,k is the least extension of κCn,k such that κEn,k(b, z0, . . . , zk−1) ' z. Clearly
E is a well defined condition of type k and C ⊆ E. Using Corollary 4.12 extend E
to a condition D of type n such that C ⊆ D. �
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4.3. Extensions of conditions.

4.16. Definition. Given conditions E = (E0, . . . , En) and D = (D0, . . . , Dm), say
that D extends E (E ⊆ D) if n ≤ m and (∀i ≤ n)(Ei ⊆ Di).

4.17. Definition. Let E = (E0, . . . , Er, . . . , En) be a condition of type k and
r ≤ k. Then by (E)r we shall denote the condition (E0, . . . , Er, (Er+1)r, . . . , (En)r),

Notice that E ⊆ (E)r and in the same time (E)r ⊆ E.
The following lemma is a direct consequence of Lemma 4.9:

4.18. Lemma. Let C and D be conditions of types k and r respectively and r < k.
Then C ⊆ D ⇐⇒ (C)r+1 ⊆ D.

The following properties of the extension relation on conditions follow directly
from Lemma 4.11

4.19. Lemma. Let C ⊆ D be conditions of types k and r respectively and r < k.
There exists a condition E of type k such that C ⊆ E and D ⊆ (E)r.

4.20. Lemma. Let D be a condition of type r and r ≤ k. There exists a condition
E of type k such that D ⊆ (E)r.

4.4. The forcing.

4.21. Definition. Given two conditions C and D, say that C ≤ D if C ⊆ D and
type(C) ≤ type(D).

Obviously ” ≤ ” is a partial order on the set of all conditions.

4.22. Definition. Suppose that C = (C0, . . . , Cm) is a condition an i, e, x ∈ N.
The forcing relation C i (¬)Fe(x) is defined by induction on i:

(i) Let u ∈ N. Then C 0 u if
a) u = 〈1, n, b, z0, . . . , zn〉, b is even, z0 ∈ Zn,0,. . . , zn ∈ Zn,n, n ≤ |C|

and Cn Mn,n(b, z0, . . . , zn).
b) u = 〈0, n, b, z0, . . . , zn〉, b is even, z0 ∈ Zn,0,. . . , zn ∈ Zn,n, n ≤ |C|

and Cn  ¬Mn,n(b, z0, . . . , zn)
(ii) C 0 Dv ⇐⇒ (∀u ∈ Dv)(C 0 u).
(iii) C 0 Fe(x) ⇐⇒ (∃v)(〈x, v〉 ∈We ∧ C 0 Dv).
(iv) Suppose that C i Fe(x) is defined. Then let

C i ¬Fe(x) ⇐⇒ (∀D ≥ C)(D 1i Fe(x)).

C i+1 Dv ⇐⇒ (∀u ∈ Dv)(u = 〈1, e, x〉∧C i Fe(x)∨u = 〈0, e, x〉∧C i ¬Fe(x)).

C i+1 Fe(x) ⇐⇒ (∃v)(〈x, v〉 ∈We ∧ C i+1 Dv).

4.23. Lemma. For all conditions C and D and for all i < ω,

C i (¬)Fe(x) ∧ C ≤ D ⇒ D i (¬)Fe(x).

4.5. Genericity.

4.24. Definition. Let f be a regular enumeration of |M| and C be a prime n-
condition of type k. Then C ⊆ f if for all j ≤ k, κCn,n−j ⊆ f−1(hn,n−j), i.e.

(∀b, z0, . . . , zn−j−1 ∈ dom(κCn,n−j))(f(κCn,n−j(b, z0, . . . zn−j−1)) =

hn,n−j(f(b), f(z0), . . . , f(zn−j−1)).
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4.25. Lemma. Let f be a regular enumeration of |M|. Let κn,0, . . . , κn,n be finite
functions and κn,i ⊆ f−1(hn,i), i = 0, . . . , n. Then there exists a prime n-condition
C ⊆ f of type n such that κn,i ⊆ κCn,i.

Proof. Set ZCn,n = ran(κn,n) and κCn,n = κn,n. Suppose that i < n and for all j ≤ i
the sets ZCn,n−j and the functions κCn,n−j are defined so that the following conditions
hold:

(1) ran(κCn,n−j) = ZCn,n−j ,

(2) κn,n−j ⊆ κCn,n−j ⊆ f−1(hn,n−j).

(3) If j < i and (b, z0, . . . , zn−j−1) ∈ dom(κCn,n−j) then zn−i ∈ ZCn,n−i,. . . ,

zn−j−1 ∈ ZCn,n−j−1.

Let ZCn,n−i−1 be the set of all z which either belong to ran(κn,n−i−1) or for some

j ≤ i, z occurs at n− i− 1-th position in some tuple belonging to dom(κCn,n−j).

Let κCn,n−i−1 be the least finite function such that

κn,n−i−1 ⊆ κCn,n−i−1 ⊆ f−1(hn,n−i−1) ∧ ran(κCn,n−i−1) = ZCn,n−i−1.

Finally set BC = {b|(∃i ≤ n)(∃z̄)((b, z̄) ∈ dom(κCn,i))}.
Set C = (BC , ZCn,0, . . . , Z

C
n,n, κ

C
n,0, . . . , κ

C
n,n). �

4.26. Corollary. Let f be a regular enumeration. Then

(1) For every n ≥ 0 there exists a prime n-condition C ⊆ f of type n.
(2) If C1 ⊆ f and C2 ⊆ f are prime n-conditions then here exists a prime

n-condition C ⊆ f of type n such that C1 ⊆ C and C2 ⊆ C.

4.27. Definition. Let f be a regular enumeration of |M| and C = (C0, . . . , Cm)
be a condition. Then C ⊆ f if for all i ≤ m, Ci ⊆ f .

The following lemma is immediate:

4.28. Lemma. Let f be a regular enumeration and C ⊆ f and D ⊆ f be condi-
tions. Then

(1) For each m ≥ max(|C|, |D|) there exists a condition E ⊆ f of type m such
that C ⊆ E and D ⊆ E.

(2) There exists a condition E ⊆ f such that C ≤ E and D ≤ E.

4.29. Definition. A regular enumeration f is generic if for all natural numbers
i, e, x, there is a condition C ⊆ f such that C i Fe(x) ∨ C i ¬Fe(x).

The proof of the following lemma is standard.

4.30. Lemma. Let f be a generic enumeration of |M|. Then f |=i (¬)Fe(x) ⇐⇒
(∃C ⊆ f)(C i (¬)Fe(x)).

In the next subsection we show that while checking whether C i Fe(x) we may
restrict ourselves to extensions of C which are of type i. To express formally this
idea we introduce a modification of the forcing relation.

4.6. The starred forcing.

4.31. Definition. Let C be a condition. The relation C ∗i Fe(x) is defined by
induction on i:

(1) C ∗0 Fe(x) ⇐⇒ C 0 Fe(x).
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(2) Let C ∗i Fe(x) be defined. Then

C ∗i ¬Fe(x) ⇐⇒ (∀D)(C ⊆ D ∧ type(D) = i⇒ D 1∗i Fe(x)).

C ∗i+1 Dv ⇐⇒ (∀u ∈ Dv)(u = 〈1, e, x〉∧C ∗i Fe(x)∨u = 〈0, e, x〉∧C ∗i ¬Fe(x)).

C ∗i+1 Fe(x) ⇐⇒ (∃v)(〈x, v〉 ∈We ∧ C ∗i+1 Dv).

4.32. Lemma. C ∗i (¬)Fe(x) ∧ C ≤ D ⇒ D ∗i (¬)Fe(x).

Proof. Induction on i. Let C ≤ D. Obviously C ∗0 Fe(x)⇒ D ∗0 Fe(x). Suppose
that C ∗i Fe(x) ⇒ D ∗i Fe(x). Assume that C ∗i ¬Fe(x) and for some E
of type i, D ⊆ E and E ∗i Fe(x). Since type(C) ≤ type(D), it follows that
C ⊆ E. A contradiction. Hence D ∗i ¬Fe(x). From here it follows directly that
C ∗i+1 Dv ⇒ D ∗i+1 Dv and hence C ∗i+1 Fe(x)⇒ D ∗i+1 Fe(x). �

4.33. Lemma. For all i ∈ N and for all conditions C of type k,

(1) If i ≤ k then C ∗i Fe(x) ⇐⇒ (C)i ∗i Fe(x).
(2) If i < k, then C ∗i ¬Fe(x) ⇐⇒ (C)i+1 ∗i ¬Fe(x).

Proof. Induction on i. The assertion (1) is obviously true for i = 0. Assume that
(1) is true for some i.

Let C be a condition of type k ≥ i+ 1.
Now suppose that C ∗i ¬Fe(x). Assume that there exists a condition D of type

i such that (C)i+1 ⊆ D and D ∗i Fe(x). Then C ⊆ D. A contradiction.
Assume that (C)i+1 ∗i ¬Fe(x). Since (C)i+1 ≤ C, C ∗i ¬Fe(x) by the previous

lemma. By this (2) is proven for i.
Notice that since ((C)i+1)i = (C)i,

C ∗i Fe(x) ⇐⇒ (C)i 
∗
i Fe(x) ⇐⇒ (C)i+1 ∗i Fe(x).

Hence for all Dv, C ∗i+1 Dv ⇐⇒ (C)i+1 ∗i+1 Dv. Therefore C ∗i+1

Fe(x) ⇐⇒ (C)i+1 ∗i+1 Fe(x). �

4.34. Lemma. For all conditions C and all i, e, x ∈ N,

C i (¬)Fe(x) ⇐⇒ C ∗i (¬)Fe(x).

Proof. Induction on i. Clearly C 0 Fe(x) ⇐⇒ C ∗0 Fe(x). Assume that for
some i and for all conditions C, C i Fe(x) ⇐⇒ C ∗i Fe(x).

First we shall show that C i ¬Fe(x) ⇐⇒ C ∗i ¬Fe(x).
Indeed, assume that C i ¬Fe(x). Suppose that there exists a D of type i such

that C ⊆ D and D ∗i Fe(x). If type(C) ≤ i then C ≤ D and D i Fe(x). A
contradiction. If i < type(C), then there exists an E, C ≤ E and such that D ⊆
(E)i Then D ≤ E and hence E ∗i Fe(x). Therefore E i Fe(x), a contradiction
again.

Suppose that C ∗i ¬Fe(x) and for some D ≥ C, D i Fe(x). Then D ∗i Fe(x).
Without lost of generality we may assume that type(D) ≥ i. Hence C ⊆ (D)i and
(D)i ∗i Fe(x). A contradiction.

The equivalence C i+1 Fe(x) ⇐⇒ C ∗i+1 Fe(x) follows directly. �
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4.7. Computations. We shall assume fixed a coding of all prime conditions and
of all conditions. Set Pn = Pn(f−10 (A)). By P we shall denote the sequence {Pn}
and by Pω we shall denote the set Pω(f−10 (A)).

4.35. Lemma. The sets Ci of all conditions of type i are uniformly in i enumera-
tion reducible to

⊕
j≤i f

−1
0 (Aj) and hence to Pi.

4.36. Lemma. The sets Fi = {(C, e, x)|C ∈ Ci ∧ C ∗i Fe(x)} are enumeration
reducible to Pi uniformly in i.

Proof. The e-reducibility of F0 to P0 is obvious.
Suppose that Fi ≤ Pi. Then for every condition C ∈ Ci+1 the set {(e, x)|(∃D ⊇

C)(D ∈ Ci ∧D ∗i Fe(x))} is enumeration reducible to Pi uniformly in C. Hence
its compliment {(e, x)|C ∗i ¬Fe(x)} is enumeration reducible to P ′i uniformly in
C. On the other hand for C ∈ Ci+1,

{(e, x)|C ∗i Fe(x)} = {(e, x)|(C)i 
∗
i Fe(x)}.

Therefore for all C ∈ Ci+1, {(e, x)|C ∗i Fe(x)} is enumeration reducible to Pi and
hence to P ′i uniformly in C. Finally since Ci+1 ≤e Pi+1, we get that

{(C, e, x)|C ∈ Ci+1 ∧ (∃v)(〈x, v〉 ∈We ∧ C ∗i Dv)} ≤e Pi+1.

and hence Fi+1 ≤e Pi+1. �

4.8. The construction of the enumeration f . Fix a sequence Y = {Yn} of sets
of natural numbers such that Y 6≤ω g−1(A). We are going to construct an enu-
meration f satisfying the conditions (1) - (3) of Theorem 3.1 under the additional
assumption that

⊕
n Y

+
n ≤T Pω.

Since Y 6≤ω g−1(A), Y 6≤e P(g−1(A)). Hence Y 6≤e P.
We shall define a sequence {Cs} of conditions so that the following properties

are satisfied.

(1) Cs ≤ Cs+1 and s ≤ type(Cs).
(2) For all n the functions κn,i =

⋃
s κ

Cs
n,i, i ≤ n, are a n-consistent system.

(3) For all i, e, x ∈ N, there exists a s such that Cs i Fe(x) ∨ Cs i ¬Fe(x).
(4) For every regular enumeration f , (∀s)(Cs ⊆ f)⇒ Y 6≤e {(f−1(M)+)(n)}.

We shall assume that the extension procedures described before could be done
deterministically and effectively relative Pω. For one can use the enumerations
λk.σ(n, k) of the sets f−10 (An) fixed in the beginning of the section.

Let λe, e = 0, 1, . . . be an effective enumeration of all primitive computable
functions.

The sequence {Cs} will be defined by recursion on s and effectively relative Pω.
We shall consider three kinds of stages s. On stages s = 3q we shall ensure that
{Cs} satisfies (2). On stages s = 3q + 1 we shall ensure the satisfaction of (3) and
on stages s = 3q + 2 the satisfaction of (4).

Set C0 = ∅00. Suppose that Cs is defined. Consider the following cases:
a) s = 3q. Let type(Cs) = k and Cs = (C0, . . . , Ck, . . . , Cm) using the extension

procedures, we can add finitely many new elements of Zl,i to ZCs

l,i , l ≤ m, i ≤
min(k, l). By this we shall ensure that for all n and i ≤ n, the functions κn,i are
onto Zn,i.

To achieve that κn,0 is defined on all elements of f−10 (An) and for all i, 1 ≤ i ≤ n,
κn,i is defined on all elements of (B × Zn,0 × · · · × Zn,i−1) \ Gκn,n−i−1

we use the
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extension procedure described in Lemma 4.15 to add for each l ≤ k consecutively
from i = 0 to i = l the first available b ∈ f−10 (Al) to the domain of κCs

l,0 if i = 0, or

the first available (b, z0, . . . , zi−1) ∈ (B×Zl,0×· · ·×Zl,i−1) \GκCs
l,i−1

to the domain

of κCs

l,i , if 0 < i.
After all extension are done we extend the resulting condition to a condition

Cs+1 of type k + 1.
b) s = 3〈i, e, x〉 + 1. Let type(Cs) = k. Check whether there exists a condition

D ⊇ Cs of type max(i, k) + 1 such that (D)i ∗i Fe(x). If the answer is positive
let Cs+1 be the least such D. Clearly Cs ≤ Cs+1 and Cs+1 i Fe(x). In case
of negative answer let Cs+1 be the least extension of Cs of type k + 1 . Clearly
Cs+1 i ¬Fe(x).

d) s = 3e + 2. Let λe be the e-th primitive computable function and γ be the
computable function defined in Lemma 4.2. Set

Ln = {x|(∃D ⊇ Cs)(type(D) = n ∧D ∗n Fγ(n,λe(n))(x))}.

Clearly {Ln} ≤e P and hence {Ln} 6= Y. Find a n such that Yn 6= Ln and a x such
that ¬(x ∈ Ln ⇐⇒ x ∈ Yn). Notice that since

⊕
n Y

+
n ≤T Pω, we can find n and

x effectively in Pω.
If x 6∈ Ln, then let Cs+1 be the least extension of Cs of type equal to type(Cs) +

1. Otherwise, find the least D such that type(D) = n, Cs ⊆ D and D ∗n
Fe(x). Extend D to a condition Cs+1 such that Cs ⊆ Cs+1 and type(Cs+1) =
max(n, type(Cs)) + 1.

4.9. Verification of the construction. Let f be the unique enumeration such
that for all s, Cs ⊆ f . From the construction of f it follows directly that it is
generic and hence if Y ⊆ N and Y = We((f

−1(M)+)(n)) then Y = {y|((∃s)(Cs n
Fγ(n,e)(y)}.

First we shall show that Y 6≤e {(f−1(M)+)(n)} i.e. that Y is not c.e.in f−1(M).
Assume otherwise. Then there exists an e such that for all n,

Yn = Wλe(n)((f
−1(M)+)(n)).

Consider the stage s = 3e+ 2.
According to the construction let n and x be the natural numbers such that

Yn 6= Ln and ¬(x ∈ Ln ⇐⇒ x ∈ Yn).
Suppose that x 6∈ Ln and x ∈ Yn. We shall show that Cs n ¬Fγ(n,λe(n))(x).

Indeed, assume that there exists D ≥ Cs such that D n Fγ(n,λe(n))(x). We may as-
sume that type(D) ≥ n. Then (D)n ⊇ Cs, D ∗n Fγ(n,λe(n))(x) and hence (D)n ∗n
Fγ(n,λe(n))(x). Therefore x ∈ Ln. A contradiction. Since Cs n ¬Fγ(n,λe(n))(x),

x 6∈Wλe(n)((f
−1(M)+)(n)) which contradicts the assumption x ∈ Yn.

Suppose now that x in Ln and x 6∈ Yn. Then there exists a D ≤ Cs+1 such
that D ∗n Fγ(n,λe(n))(x). Therefore Cs+1 ∗n Fγ(n,λe(n))(x) and hence Cs+1 n
Fγ(n,λe(n))(x). Therefore x ∈Wλe(n)(f

−1(M)(n)) which contradicts the assumption
x 6∈ Yn.

It remains to see that f−1(M)(ω) ≡e Pω(g−1(A)). From the construction it
follows that the sequence {Cs} is computable in Pω. Let us fix an index a such
that for all sets Y , Wa(Y ) = Y . Then

(f−1(M)+)(n) = Wa((f−1(M)+)(n)) = {y|(∃s)(type(Cs) = n ∧ Cs ∗n Fγ(n,a)(y))}.
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Hence (f−1(M)+)(n) is enumeration reducible to Pω uniformly in n. Therefore
(f−1(M)+)(ω) ≤e Pω ≡e Pω(g−1(A)). On the other hand, as mentioned in the
beginning, Pω(g−1(A)) ≤e (f−1(M)+)(ω). Hence

f−1(M)(ω) ≡e (f−1(M)+)(ω) ≡e Pω(g−1(A)).

The last step in the proof of Theorem 3.1 is to remove the additional assumption⊕
n Yn ≤T P.
Suppose that Y = {Yn} is a sequence of sets of natural numbers and

⊕
n Yn 6≤T

Pω. Following the proof above we can construct a regular enumeration f of |M|
so that (f−1(M)+)(ω) ≡e Pω(g−1(A)). Assume that Y ≤e {(f−1(M)+)(n)}. Then
{Y +

n } ≤e {(f−1(M)+)(n+1)} and hence⊕
n

Y +
n ≤T (f−1(M)+)(ω).

Therefore
⊕

n Y
+
n ≤T Pω(g−1(A)) ≡T Pω. A contradiction.

5. Definability in the Marker’s extension

Let ~A = {An} be a sequence of structures. Set A =
⋃
n |An|, denote by M =

M(~A) the Marker’s extension of ~A and by M the domain of M. Recall that for
each n < ω the domain and the predicates of the structure An are Σn+1 definable
in M uniformly in n. Hence for each enumeration f of M , the sequence {f−1(An)}
is enumeration reducible to the sequence {(f−1(M)+)(n)}.

5.1. Definition. Let R = {Rn} be a sequence of subsets of A.

(i) The sequence R is ω-enumeration reducible to ~A (R ≤ω ~A) if for each

enumeration g of A, g−1(R) ≤ω g−1(~A).
(ii) The sequence R is computablely enumerable in M (R ≤r.e. M) if for for

each enumeration f of M , f−1(R) is c.e.in f−1(M), i.e. (∀n)(f−1(Rn) ≤r.e.
JnT (f−1(M))) uniformly in n.

From Corollary 2.10 it follows that R ≤r.e. M if and only if for each enumeration
f of M , f−1(R) ≤e {(f−1(M)+)(n)}.

Next theorem gives a positive answer to Question 3 from the introduction:

5.2. Theorem. Let R be a sequence of subsets of A. Then R ≤ω ~A ⇐⇒ R ≤r.e.
M.

5.3. Lemma. Let f be an enumeration of M. There exists an enumeration g of
A such that that following assertions hold:

(1) The set E = {〈i, j〉|f(i) = g(j)} is computable in f−1(M)+.

(2) Pn(g−1(~A)) ≤e (f−1(M)+)(n) uniformly in n.

(3) Pω(g−1(~A)) ≤T (f−1(M)+)(ω).

Proof. Set B = f−1(A). Clearly B is computable in f−1(M)+. Let λ be a com-
putable in f−1(M)+ one to one enumeration of B.

Set g(k) = f(λ(k)). Then {〈i, j〉|f(i) = g(j)} = {〈λ(k), k〉|k ∈ N} is computable
in f−1(M)+.

Notice that if P ⊆ A, then g−1(P ) = {k|λ(k) ∈ f−1(P )}. From here and
from the fact that the sets f−1(An) are enumeration reducible to (f−1(M)+)(n)

uniformly in n we get (2). Finally, (3) is a direct consequence of (2). �
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Proof of Theorem 5.2. Let R = {Rn} be a sequence of subsets of A. Suppose that

R ≤ω ~A. Let f be an enumeration of M and g be an enumeration of A satisfying

the conditions (1) - (3) from the lemma above. Since R ≤ω ~A, g−1(R) ≤ω g−1(~A).

Hence g−1(R) ≤e P(g−1(~A)) ≤e {(f−1(M)+)(n)}.
Let R ⊆ A. Then f−1(R) = {i|(∃j)(〈i, j〉 ∈ E ∧ j ∈ g−1(R)}. Hence f−1(R) ≤e

g−1(R)⊕ f−1(M)+.
Since f−1(M)+ ≤e (f−1(M)+)(n) uniformly in n, we get that

f−1(R) ≤e {(f−1(M)+)(n)}.

Thus R ≤r.e. M.
Suppose now that R ≤r.e. M. Assume that R 6≤ω ~A. Then there exists an

enumeration g of A such that g−1(R) 6≤ω g−1(~A). By Theorem 3.1 there exists
an enumeration f of M such that E = {〈i, j〉|f(i) = g(j)} is computable and
g−1(R) 6≤r.e. f−1(M). Clearly g−1(R) ≤e f−1(R). Hence f−1(R) 6≤r.e. f−1(M).
A contradiction. �

5.4. Definition. Let R ⊆ A and n ≥ 0.

(i) R ≤n ~A if for each enumeration g of A, g−1(R) ≤n g−1(R), i.e. g−1(R) ≤e
Pn(g−1(R)).

(ii) ([2, 4]) R is relatively intrinsically Σn+1 in M if for each enumeration f of
M , f−1(R) ≤r.e. JnT (f−1(M)), i.e. f−1(R) ≤e (f−1(M)+)(n).

In [2, 4] it shown that a set R is relatively intrinsically Σn+1 in M if and only
if R is definable in M by means of some computable infinitary Σn+1 formula with
finitely many parameters.

Next come the answers to Question 2 and Question 1 from the introduction:

5.5. Corollary. Let R ⊆ A and n ≥ 0. Then R ≤n ~A ⇐⇒ R is relatively
intrinsically Σn+1 in M.

Proof. Set Rk = ∅ if k 6= n and Rn = R. Let R = {Rn}. Notice that R ≤ω ~A ⇐⇒
R ≤n ~A and R ≤r.e. M if and only if R is relatively intrinsically Σn+1 in M. Apply
the previous theorem. �

5.6. Definition. Let A be a structure and R ⊆ |A|. Then R ≤e A if for each
enumeration g of |A|, g−1(R) ≤e g−1(A).

5.7. Corollary. For every structure A there exists a structure M such that |A| ⊆
|M| and for all R ⊆ |A|, R ≤e A if and only if R is relatively intrinsically Σ1 in
M.

Proof. Consider a sequence of structures ~A = {An} such that A0 = A. Clearly if

R ⊆ |A| then R ≤0
~A ⇐⇒ R ≤e A. Let M = M(~A). �

6. Co-spectra of Marker’s extensions

Let ~A = {An} be a sequence of structures. Set A =
⋃
n |An|, denote by M =

M(~A) the Marker’s extension of ~A and by M the domain of M.
Recall that the spectrum of M is the set

{a|a ∈ DT ∧ a computes the diagram of an isomorphic copy of M}.



20 IVAN N. SOSKOV

In other words,

Sp(M) = {a|a ∈ DT ∧ (∃f)(f is an enumeration of M ∧ dT (f−1(M)) ≤T a)}.

We are going to study the properties of Sp(M) in the next section. Here we shall
prove some facts about the co-spectrum of M.

Given a set X of natural numbers set de(X) = {Y |Y ≡e X}. The set de(X)
is the enumeration degree of X. Set De = {de(X)|X ⊆ N} and define the partial
ordering ”≤e” on De by letting de(X) ≤e de(Y ) ⇐⇒ X ≤e Y . The ordering
”≤e” has a least element 0e = de(∅) which consists of all c.e. sets. As usual, set
de(X)′ = de(X

′).
There is a natural embedding ι of the Turing degrees into the enumeration de-

grees defined by ι(dT (X)) = de(X
+) which preserves the ordering and the jump

operation. Hence we may assume that the Turing degrees are a subset of the
enumeration degrees. Actually this subset is equal to the set TOT of all total
enumeration degrees, i.e. of all enumeration degrees which contain a total set.

Given a Turing degree x = dT (X) and n ≥ 0, by x(n) we shall denote the
n− th Turing jump of x. Clearly x(n) = de((X

+)(n)). Notice that for total sets X,
(X+)(n) ≡e X(n). In particular (∅+)(n) ≡e ∅(n).

6.1. Definition. Let n ≥ 0. The n-th jump spectrum of M is the set

Spn(M) = {x(n)|x ∈ Sp(M)}.

6.2. Definition. Let n ≥ 0. The n-th co-spectrum of M is the set of enumeration
degrees

CoSpn(M) = {a|a ∈ De ∧ (∀x ∈ Spn(M))(a ≤e x)}.

Using the pre-ordering ”≤ω” on the sequences of sets of natural numbers, one
can define an extension of the enumeration degrees which consists of the so called
ω-enumeration degrees. Given a sequence X of sets of natural numbers let dω(X ) =
{Y|Y ≡ω X} and Dω = {dω(X )|X ∈ P(N)ω} and define the partial ordering ”≤ω”
on Dω by dω(X ) ≤e dω(Y) ⇐⇒ X ≤ω Y. The ordering ”≤ω” has a least element
0ω = dω({∅(n)}). For an introduction to the ω-enumeration degrees the reader may
consult [21] and [8].

Again there is a natural embedding κ of the enumeration degrees into the ω-
enumeration degrees. Given X ⊆ N, set X ↑= X, ∅, . . . , ∅, . . . . On can easily see
that X ≤e Y ⇐⇒ X ↑≤ω Y ↑. Set κ(de(X)) = dω(X ↑).

Combining the embeddings ι and κ we obtain an embedding λ of DT into Dω,
where λ(dT (X)) = dω((X+) ↑). Notice that if X is a sequence of sets of natural
numbers and B ⊆ N then dω(X ) ≤ω λ(dT (B)) if and only if X ≤ω (B+) ↑ if and
only if X ≤e {(B+)(n)} if and only if X is c.e.in B.

6.3. Definition. The ω-enumeration co-spectrum of M is the set of ω-enumeration
degrees

Ocsp(M) = {a|a ∈ Dω ∧ (∀x ∈ Sp(M))(a ≤ω λ(x))}

6.4. Theorem.

(1) Ocsp(M) = {dω(Y)|for all enumerations g of A, Y ≤ω g−1(~A)}.
(2) CoSpn(M) = {de(Y )|for all enumerations g of A, Y ≤e Pn(g−1(~A))}.

Proof. Let Y be a sequence of sets of natural numbers.
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Suppose that dω(Y) ∈ Ocsp(M). Assume that for some enumeration g of A,

Y 6≤ω g−1(~A). Using Theorem 3.1 define an enumeration f of M such that Y is not
c.e. in f−1(M). Then dω(Y) 6≤ω λ(dT (f−1(M)). A contradiction.

Suppose that for all enumerations g of A, Y ≤ω g−1(~A). Consider an enu-
meration f of M . By Lemma 5.3 there exists an enumeration g of A such that

P(g−1(~A)) ≤e {(f−1(M)+)(n)} uniformly in n. Since Y ≤ω g−1(~A), Y ≤e P(g−1(~A)).
Therefore Y is c.e. in f−1(M).

To prove (2) fix Y ⊆ N and consider the sequence {Yk}, where Yk = ∅ if k 6= n
and Yn = Y . Then for each Turing degree x, de(Y ) ≤e x(n) ⇐⇒ dω(Y) ≤ω λ(x).
Hence dω(Y) ∈ Ocsp(M) ⇐⇒ de(Y ) ∈ CoSpn(M). Finally, notice that for each

enumeration g of A, Y ≤ω g−1(~A) ⇐⇒ Yn ≤e Pn(g−1(~A)). �

6.1. Examples. Let R = {Rn} be a sequence of sets of natural numbers. Set
A0 = (N;GS , R0) and An+1 = (N;Rn+1). Here by GS we denote the graph of the

successor function λx.x+ 1. Set ~A = {An} and M = M(~A).

6.5. Proposition. For each enumeration g of N, R ≤ω g−1(~A).

Proof. First of all notice that for each enumeration g of N the mapping g is com-
putable in g−1(GS). Indeed, we have for all n that g−1(n+ 1) = µx[〈g−1(n), x〉 ∈
g−1(GS)]. This shows that g−1 is computable in g−1(GS) and hence g is also
computable in g−1(GS). Now, consider an enumeration g of N. Then (∀n)(Rn =

{g(x)|x ∈ g−1(Rn)}). Hence R ≤ω g−1(~A). �

6.6. Corollary.

(1) Ocsp(M) = {dω(Y)|Y ≤ω R}.
(2) (∀n)(CoSpn(M) = {a|a ≤e de(Pn(R))}).

Proof. Suppose that dω(Y) ∈ Ocsp(M). Let g = λx.x. Then g−1(~A) ≤ω R. By
Theorem 6.4, Y ≤ω R. Suppose now, that for Y ≤ω R. Then for each enumeration

g of N, Y ≤ω g−1(~A). Hence dω(Y) ∈ Ocsp(M).
The proof of (2) is similar. �

6.7. Definition. Call a n-th co-degree of M if a is the greatest element of
CoSpn(M).

Clearly if a is the least element of Spn(M), i.e. a is n-th jump degree of M, then
a is also n-th co-degree of M. It is tempting to conjecture that a structure M has
n-th co-degree if and only if M has n-th jump degree. The failure of this conjecture
follows from a result of Richter [16] which states that every linear ordering has
co-degree 0 but there exist linear orderings without a degree.

Next comes an example of a simple structure M such that for all n the n-th
co-degree of M is 0(n) but M has no n-th jump degree.

Consider a sequence R of sets of natural numbers having the the following prop-
erties:

(i) (∀n)(Pn(R) ≡e ∅(n)).
(ii) R 6≤e {∅(n)}.
(iii) R ≤e {∅(n+1)}.
The existence of such sequences is shown in [8], where these sequences are called

almost zero.
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By the previous proposition there exists a structure M such that (∀n)(CoSpn(M) =
{a|a ≤e de(Pn(R))}). Clearly for all n, 0(n) is the greatest element of CoSpn(M)
and hence 0(n) is the n-th co-degree of M. Assume that for some n, Spn(M) con-
tains a least degree b. Then b = 0(n). Let f be an enumeration of |M| such that
∅(n) ≡T (f−1(M)+)(n). By Lemma 5.3, there exists an enumeration g of N such
that for all k, Rk ≤e Pk(g−1(R)) ≤e (f−1(M)+)(k) uniformly in k. Then for all
k ≥ n, Rk ≤e ∅(k) uniformly in k. From here by (i) R ≤e {∅(n)}. A contradiction.

Using (iii) we obtain the 0(ω) is the least element of {a(ω)|a ∈ Sp(M)}, i.e.
that 0(ω) is the ω jump degree of M. Indeed, by Theorem 3.1 there exists an
enumeration f of |M| such that (f−1(M)+)(ω) ≡e Pω(R). Since R ≤e {∅(n+1)},
P(R) ≤e {∅(n+1)}. Hence Pω(R) ≡e ∅(ω).

In [11] it is shown that if B is a Boolean algebra then for each n < ω, B has
n-th co-degree 0(n) and for each Turing degree d, such that 0(ω) ≤T d there exists
a Boolean algebra with ω jump degree d.

7. Spectra of Marker’s extensions

7.1. The Goncharov-Khoussainov’s lemma. The main tool used in the appli-
cations of the Marker’s extensions in [10, 26, 27] and [7] is the following lemma
from [10]:

7.1. Lemma. Let R be a co-infinite Σ0
2-set that possesses an infinite computable

subset S such that R \ S is infinite. Then there exists a computable predicate Q
satisfying the following conditions:

(1) for each n ∈ ω, (∃a)(∀b)Q(n, a, b) ⇐⇒ n ∈ R;
(2) for each n ∈ ω, (∃a)(∀b)Q(n, a, b) ⇐⇒ (∃=1a)(∀b)Q(n, a, b);
(3) for every b, there is a unique pair 〈n, a〉 such that ¬Q(n, a, b);
(4) for every pair 〈n, a〉, either (∃=1b)¬Q(n, a, b) or (∀b)Q(n, a, b);
(5) for every a, there exists a unique n such that (∀b)Q(n, a, b).

Here (∃=1x)P (x) means that there exists a unique x satisfying P .
By setting κ0(n) ' a ⇐⇒ (∀b)Q(n, a, b) and κ1(n, a) ' b ⇐⇒ ¬Q(n, a, b) we

obtain the following reformulation of the lemma above.

7.2. Lemma. Let R be a co-infinite Σ0
2 set that possesses an infinite computable

subset S such that R \S is infinite. Then there exist functions κ0 and κ1 such that
κ0 is a bijective mapping of R onto N and κ1 is a bijective mapping of N2 \ Gκ0

onto N and the graph of κ1 is computable.

The second formulation provides a clue how to generalize the lemma for all levels
of the arithmetical hierarchy.

7.3. Proposition. Let n ≥ 0 and R be a Σ0
n+1 set possessing an infinite com-

putable subset S. Then there exist functions κ0, . . . , κn such that the graph of κn is
computable and

κ0 is a bijective mapping of R onto N;
κ1 is a bijective mapping of N2 \Gκ0 onto N;
. . .
κn is a bijective mapping of Nn+1 \Gκn−1

onto N.

Notice that for n = 1 the proposition is slightly stronger than Goncharov-
Khoussainov’s lemma since we do not require the set R to be co-infinite.
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The idea of the proof of the following lemma belongs to Mariya Soskova.

7.4. Lemma. Let X ⊆ N. Let R be a Σ0
2 in X set that contains an infinite

computable subset S. There exists a one to one mapping κ of R onto N such that
Gκ is Π0

1 in X and N2 \Gκ contains an infinite computable subset T .

Proof. Let us fix a Σ0
2 approximation {Rx} of R relatively X. This means that

{Rx} is a computable in X sequence of finite sets R0 = ∅ and

a ∈ R ⇐⇒ (∃x)(∀y > x)(a ∈ Ry).

Say that x is a witness for a ∈ R if a 6∈ Rx and for all y > x, a ∈ Ry. Clearly
a ∈ R if and only if there exists a witness x for a ∈ R and this witness is unique.

Set h0(a) ' 〈a, x + 1〉 ⇐⇒ a 6∈ S and x is a witness for a ∈ R. Clearly
h0 is a one to one mapping of R \ S onto the set H0 = {〈a, x + 1〉|a 6∈ S ∧
x is a witness for a ∈ R}. Notice that both H0 and the graph Gh0 of h0 are Π0

1

in X. Let H1 = N \H0. Then H1 is an infinite Σ0
1 in X set. Let h1 be a bijective

mapping of S onto H1 such that the graph of h1 is computable in X. Set κ = h0∪h1.
Evidently κ is a bijective mapping of R onto N and the graph of κ is Π0

1 in X.
It remains to see that N2 \Gκ contains an infinite computable subset. Let s0 be

the least element of S. Since 〈0, 0〉 ∈ H1, we may assume that h1(s0) = 〈0, 0〉. Then
the set T = {(s0, u)|u 6= 〈0, 0〉} is an infinite computable subset of N2 \Gκ. �

Proof of Proposition 7.3. Induction on n. Let n = 0 and R be an infinite Σ0
1 set.

Let κ be a computable bijective mapping of N onto R. Set κ0 = κ−1. Then
(a, x) ∈ Gκ0 ⇐⇒ κ(x) ' a. Thus Gκ0 is computable.

Let R be a Σ0
n+2 set that contains an infinite computable subset S. Then R is

Σ0
2 in ∅(n). By the lemma above there exists a bijective mapping κ0 of R onto N

such that Gκ0 is Π0
1 in ∅(n) and N2 \Gκ0 contains an infinite computable set T . Set

R1 = N2 \ Gκ0
. Clearly R1 is Σ0

1 in ∅(n). Hence it is Σ0
n+1. Apply the induction

hypothesis. �

The construction of the functions κ0, . . . , κn in the proof above is uniform in R
and X. To see that let us return to Lemma 7.4. Suppose that r is a Σ0

2 index of R

relatively X, i.e. R = W
JT (X)
r , where JT (X) is the Turing jump of X. Suppose also

that σ is a program computing the characteristic function of the set S. Following
the proof of Lemma 7.4 we shall show that there exists a computable function ρ
so that ρ(r, σ) yields an ordered pair 〈r1, τ〉 such that N2 \ Gκ = WX

r1 and τ is a
program that computes the set T .

First we shall show that there is a uniform way to obtain a Σ0
2 approximation

of R relatively X. Let a be an index such that for all X, JT (X) = KX = WX
a .

Set KX
s = {n|n < s ∧ n ∈ WX

a,s}. Clearly KX
s is a c.e. approximation of JT (X)

relatively X. Following the definition of the better approximations from [13], define
the sequence of finite characteristic functions {αs} as follows. Set α0 = ∅. For s > 0
set ms = min(KX

s \KX
s−1) if KX

s \KX
s−1 is not empty and ms = s otherwise and

let

αs(n) '

{
1 if n ∈ KX

s ,

0 if n ≤ ms ∧ n 6∈ KX
s .

Using the fact that for all s, KX
s ⊆ KX and the properties of the better ap-

proximations from [13], we obtain that the sequence {αs} satisfies the following
conditions:
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(1) (∀n)(∃s)(KX � n ⊆ αs ⊆ KX);
(2) (∀n)(∃s)(∀t > s)(KX � n ⊆ αt).

Set α+
s = {〈n, 1〉|αs(n) ' 1} ⊕ {〈n, 0〉|αs(n) ' 0}. Find an index e such that

W
JT (X)
r = We(JT (X)+) and set R0 = ∅ and Rs = We,s(α

+
s ) for s > 0. It is easy

to see that {Rs} is a Σ0
2 approximation of R relatively X.

Now, having the approximation {Rs} we obtain in a uniform way c.e. indices for
N2 \ Gh0 and H1 relatively X. Using the program σ we can define a computable
strictly monotonically increasing mapping µ0 of N onto S. Then µ0(0) ' s0, where
s0 is the least element of S. Let µ1 be a bijective computable in X mapping of N
onto H1 such that µ1(0) ' 〈0, 0〉. Set h1(s) ' µ1(µ−10 (s)). Clearly h1(s0) ' 〈0, 0〉.

The graph of h1 has the following definition:

(s, n) ∈ Gh1
⇐⇒ (∃m ≤ s)(µ0(m) ' s ∧ µ1(m) ' n).

Thus Gh1
is computable in X and we can find a program which computes Gh1

relatively X and hence a c.e. index for N2 \ Gh1 relatively X. Notice that that
N2 \Gκ = N2 \Gh0 ∩N2 \Gh1 and hence we can find effectively r1 from the indices
of N2 \Gh0

and N2 \Gh1
.

Finally, let τ be a program computing the set T = {(s0, u)|u 6= 〈0, 0〉}.
Using the computable function ρ and following the proof of Proposition 7.3, we

obtain the following uniform version of Proposition 7.3:

7.5. Proposition. There exists a computable function λ(n, r, σ) such that if R =

W ∅
(n)

r and σ is a program that computes an infinite computable subset S of R
then there exist functions κ0, . . . , κn such that the graph of κn is computable by the
program λ(n, r, σ) and

κ0 is a bijective mapping of R onto N;
κ1 is a bijective mapping of N2 \Gκ0 onto N;
. . .
κn is a bijective mapping of Nn+1 \Gκn−1

onto N.

Relativizing once more we get also the following:

7.6. Proposition. There exists a computable function λ(n, r, σ) such that if X ⊆
N, R = Wr((X

+)(n)) and σ is a program that computes relatively X an infinite
subset S of R then there exist functions κ0, . . . , κn such that the graph of κn is
computable relatively X by the program λ(n, r, σ) and

κ0 is a bijective mapping of R onto N;
κ1 is a bijective mapping of N2 \Gκ0 onto N;
. . .
κn is a bijective mapping of Nn+1 \Gκn−1

onto N.

7.2. Relative spectra of sequences of structures. Let ~A = {An} be a sequence
of structures, where An = (An;Pn1 , . . . , P

n
mn

). Let A =
⋃
nAn. Recall that the the

relative spectrum of ~A is the set of sequences of sets of natural numbers Rsp(~A) =

{g−1(~A)|g is an enumeration of A}.
Fix an element > 6∈ A and set A> = A ∪ {>}. Given R ⊆ Ar, set R> =

{(ā, t)|ā ∈ R ∨ t = >}.
For each n set A>n = (A>;A>n , (P

n
1 )>, . . . , (Pnmn

)>) and let ~A> = {A>n }. Denote

by M the Marker’s extension M(~A>) of the sequence ~A>.



EFFECTIVE PROPERTIES OF MARKER’S EXTENSIONS 25

7.7. Theorem. Sp(M) = {dT (B)|(∃Y ∈ Rsp(~A))(Y is c.e. in B)}.

Proof. As in the proof of Theorem 3.1, to simplify the notation we shall assume
that for all n the structure An has no predicates other than its domain and hence
A>n = (A>;A>n ). Denote by M the domain of the structure M. Notice that

M = (M ;A>, {M
A>n
n , X

A>n
0 , . . . , X

A>n
n }n<ω).

Let dT (B) ∈ Sp(M). Then there exists an enumeration f of M such that
f−1(M) ≤T B. According Lemma 5.3, there exists an enumeration g0 of A> such
that g−10 (A>n ) ≤e {(f−1(M)+)(n)} uniformly in n. Let g−10 (>) ' x0 and g be a
one to one mapping of N \ {x0} onto A such that g(x) ' g0(x) for x 6= x0. Then
for all n, g−1(An) = {x|(∃y 6= x0)(〈x, y〉 ∈ g−10 (A>n )}. Hence g−1(An) ≤e g−10 (A>n )

uniformly in n. Thus g−1(~A) is c.e.in f−1(M) and hence g−1(~A) is c.e. in B.

Suppose now that g is an enumeration of A and g−1(~A) is c.e. in B. We shall
construct an enumeration f of |M| such that f−1(M) ≤T B.

Let g0(0) ' > and g0(x+1) ' g(x). Then g0 is an enumeration ofA> and for each
subset R of A, g−10 (R) = {x+1|x ∈ g−1(R)}. Hence for all n, g−10 (An) ≡e g−1(An)
uniformly in n. Since g−10 (A>n ) = {〈x, y〉|x ∈ g−10 (An) ∨ y = 0}, we have that the
sequence {g−10 (A>n )} is r.e in B. Let µ be a computable function such that for all n,

g−10 (A>n ) = Wµ(n)((B
+)(n)). Notice that for each n the set S = {〈x, 0〉|x ∈ N} is an

infinite computable subset of g−10 (A>n ). According Proposition 7.6 for each n there
exists a system of functions κn,0 . . . , κn,n such that the graphs of the functions κn,n
are computable in B uniformly in n and

κn,0 is a bijective mapping of g−10 (A>n ) onto N;
κn,1 is a bijective mapping of N2 \Gκn,0

onto N;
. . .
κn,n is a bijective mapping of Nn+1 \Gκn,n−1

onto N.

Now we are ready to define the enumeration f of M. Set f(2n) ' g0(n). Then
f−1(A>n ) = {〈2x, 2y〉|〈x, y〉 ∈ g−10 (A>n )}. As in the proof of Theorem 3.1 divide
the odd numbers into infinite and disjoint sets Zn,i, i ≤ n, which are computable
uniformly in n and i. Then we can transform each system κn,0, . . . , κn,n into a
system κ∗n,0, . . . , κ

∗
n,n so that the graphs of the functions κ∗n,n are computable in B

uniformly in n and

κ∗n,0 is a bijective mapping of {(x, y)|〈x, y〉 ∈ f−1(A>n )} onto Zn,0;

κ∗n,1 is a bijective mapping of ((2N)2 × Zn,0) \Gκn,0
onto Zn,1;

. . .
κ∗n,n is a bijective mapping of ((2N)2 × Zn,0 × · · · × Zn,n−1) \Gκ∗n,n−1

onto

Zn,n.

To complete the definition of f we need to define it on all sets Zn,i, i ≤ n. Fix
n and define f on Zn,i by induction on i. Given an element z of Zn,0 find the

unique 〈x, y〉 ∈ f−1(A>n ) such that κ∗n,0(x, y) ' z and let f(z) ' h
A>n
0 (f(x), f(y)).

Suppose that i < n and f is defined on the sets Zn,0, . . . , Zn,i. Let z ∈ Zn,i+1.
Then there exists a unique element (x, y, z0, . . . , zi) of (2N)2×Zn0

×· · ·×Zn,i such

that κ∗n,i+1(x, y, z0, . . . , zi) ' z. Let f(z) ' hA
>
n

i+1(f(x), f(y), f(z0), . . . , f(zi)).

Clearly for each n and i ≤ n, f−1(X
A>n
i ) = Zn,i and

(x, y, z0, . . . , zi) ∈ Gκ∗n,i
⇐⇒ (f(x), f(y), f(z0), . . . , f(zi)) ∈ G

h
A>n
i

.
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Thus f−1(M) ≡T
⊕

n f
−1(M

A>n
n ) ≡T

⊕
nGκ∗n,n

≤T B. Therefore dT (B) ∈
Sp(M). �

The last theorem can be applied to finite sequences A0, . . . ,An of structures with
domains subsets of a countable set A. Indeed, by setting Ak = (A; =), k > n, we

obtain a sequence ~A of structures such that for all enumerations g of A and B ⊆ N,

g−1(~A) is c.e.in B if and only if (∀k ≤ n)(g−1(Ak) ≤e (B+)(k))
Hence we have the following:

7.8. Theorem. Let Ak = (Ak;P k1 , . . . , P
k
mk

), k = 0, . . . , n be a finite sequence
of structures and A be a countable set such that

⋃
k≤nAk ⊆ A. There exists a

structure M such that

Sp(M) = {dT (B)|(∃g)(g is an enumeration of A ∧ (∀k ≤ n)(g−1(Ak) ≤e (B+)(k)))}.

7.3. Joint spectra of sequences of structures. Let ~A = {An} be a sequence of

structures, where An = (An;Pn1 , . . . , P
n
mn

). Recall that the the joint spectrum of ~A
is the set of sequences of sets of natural numbers

Jsp(~A) = {{g−1n (An)}|(∀n)(gn is enumeration of An)}.

Notice that the joint spectrum is invariant with respect to isomorphisms, that is if
{A∗n} is a sequence of structures and (∀n)(An ∼= A∗n) then Jsp({An}) = Jsp({A∗n}).
This property is not true for the relative spectra of a sequences of structures.

7.9. Theorem. There exists a structure M such that

Sp(M) = {dT (B)|(∃Y ∈ Jsp(Ā))(Y is c.e. in B)}.

Proof. We may assume that the domains An of the structures An are disjoint. Let
A =

⋃
nAn. By Theorem 7.7 there exists a structure M such that

Sp(M) = {dT (B)|(∃g)(g is enumeration of A and g−1(~A) is c.e. in B)}.

Let dT (B) ∈ Sp(M) and g be an enumeration of A such that g−1(~A) is c.e. in
B. We shall construct a sequence Y = {Yn} of sets of natural numbers so that Y ∈
Jsp(~A) and Yn ≤e (B+)(n) uniformly in n. Clearly for all n, g−1(An) ≤e (B+)(n)

uniformly in n. Hence there exist uniformly computable in (B+)(n) bijections ρn
of N onto An. Set gn(x) ' g(ρn(x)). Then gn is an enumeration of An and
g−1n (An) ≤e (B+)(n) uniformly in n. Set Yn = g−1n (An).

Suppose now that Y = {Yn} ∈ Jsp(~A) and Yn ≤e (B+)(n) uniformly in n. For
each n < ω let fn be an enumeration of An such that f−1n (An) = Yn. Set Nn =
{〈n, x〉|x ∈ N} and define the bijection gn of Nn onto An by gn(〈n, x〉) ' fn(x). Let
g =

⋃
n gn. Then g is an enumeration of A and for all n, g−1(An) ≤e Yn uniformly

in n. Hence (∀n)(g−1(An) ≤e (B+)(n)) uniformly in n. Thus dT (B) ∈ Sp(M). �

Using Theorem 7.9 we get the following version for Turing reducibility.

7.10. Theorem. Let ~A = {An} be a sequence of structures. There exists a struc-
ture M such that

Sp(M) = {dT (B)|(∃{Yn} ∈ Jsp(~A))((∀n)(Yn ≤T JnT (B)) uniformly in n)}.
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Proof. Let An = (An;Pn1 , . . . , P
n
mn

). For 1 ≤ i ≤ mn let P̄ni be the complement

of Pni . Denote by A+
n the structure (An;Pn1 , . . . , P

n
mn
, P̄n1 , . . . , P̄

n
mn

). Notice that

for each enumeration fn of An, f−1n (A+
n ) ≡e (f−1n (An))+ uniformly in n. Let

~A+ = {A+
n }. By Theorem 7.9 there exists a structure M such that

Sp(M) = {dT (B)|(∃{Zn} ∈ Jsp(~A+))((∀n)(Zn ≤e (B+)(n)) uniformly in n)}.

Suppose that dT (B) ∈ Sp(M) and let Z be a sequence of sets of natural numbers

such that Z ∈ Jsp(~A+) and (∀n)(Zn ≤e (B+)(n)). Fix n ∈ ω. Let fn be an
enumeration ofAn such that Zn = f−1n (A+

n ). Set Yn = f−1n (An). Then (Yn)+ ≡e Zn
uniformly in n and hence (Yn)+ ≤e (B+)(n) uniformly in n. Since (B+)(n) ≡e
JnT (B)+ uniformly in n, (Yn)+ ≤e JnT (B)+ uniformly in n. Hence Yn ≤T JnT (B)
uniformly in n.

The proof in the other direction is similar. �

Again we have the respective versions for finite sequences of structures.

7.11. Theorem. Let A0, . . . ,An be a sequence of structures. Then

(1) There exists a structure M such that

Sp(M) = {dT (B)|(∃f1 . . . fn)(∀i ≤ n)(fi is an enumeration of |Ai|∧

f−1i (Ai) ≤e (B+)(i))}.

(2) There exists a structure M such that

Sp(M) = {dT (B)|(∃f1 . . . fn)(∀i ≤ n)(fi is an enumeration of |Ai|∧
f−1i (Ai) ≤T J iT (B))}.

8. Applications

8.1. Enumeration spectra. In this subsection we shall make a brief overview of
some modifications of the notion of degree spectrum of a structure which appeared
recently in the literature and show that these modifications are closely connected.

Joint spectra and relative spectra of finite sequences of structures are introduced
in [25] and [24]. A direct consequence of Theorem 7.8 is that the relative spectrum
of each finite sequence of structures is spectrum of some structure. Using Theo-
rem 7.11 we obtain that the same is true for joint spectra of finite sequences of
structures.

The enumeration spectra are first considered in [20]. In [12] Kalimullin extends
this notion in the following natural way.

Suppose that A is a countable set. A partial enumeration of A is a partial
injective mapping ϕ of N onto A. Given a subset P of Am and a partial enu-
meration ϕ of A, let ϕ−1(P ) = {〈x1, . . . , xm〉|(∀i)(1 ≤ i ≤ m ⇒ xi ∈ dom(ϕ)) ∧
(ϕ(x1), . . . , ϕ(xm)) ∈ P}

Let A = (A;P1, . . . , Pm) be a countable structure. For each partial enumeration
ϕ of A, set ϕ−1(A) = dom(ϕ)⊕ ϕ−1(P1)⊕ · · · ⊕ ϕ−1(Pm).

8.1. Definition.([12])The enumeration spectrum of A is the set of enumeration
degrees Esp(A) = {de(ϕ−1(A))|ϕ is a partial enumeration of A}.

Recall that by TOT we denote the set of all total enumeration degrees.
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8.2. Theorem. For every structure A there exists a structure M such that Sp(M) =
{a|a ∈ TOT ∧ (∃x ∈ Esp(A))(x ≤e a)}.

Proof. Let A = (A;P1, . . . , Pm). Consider a countable set C ⊇ A such that C \ A
is infinite. Set C = (C;A,P1, . . . , Pm). According Theorem 7.8 there exists a
structure M such that

Sp(M) = {dT (B)|(∃f)(f is enumeration of C ∧ f−1(C) ≤e B+)}.
Let dT (B) ∈ Sp(M). Then dT (B) = de(B

+) ∈ TOT and for some enumeration
f of C, f−1(C) ≤e B+. Set ϕ = f � f−1(A). Then ϕ is a partial enumeration of A
and ϕ−1(A) ≡e f−1(C). Hence de(f

−1(C)) ∈ Esp(A).
Suppose now that de(B

+) is a total enumeration degree bounding an element
x of Esp(A). Let ϕ be a partial enumeration of A such that ϕ−1(A) ∈ x. We
may assume that N \ dom(ϕ) is infinite. Let f be an enumeration of C such that
f � dom(ϕ) = ϕ. Clearly f−1(C) ≡e ϕ−1(A). Hence f−1(C) ≤e B+. Thus
dT (B) ∈ Sp(M). �

In [12] Kalimullin constructed a structure A with enumeration spectrum consist-
ing of all enumeration degrees x such that 0e <e x. Applying the last Theorem
to Kalimullin’s structure we obtain a structure M such that Sp(M) consists of all
Turing degrees a such that 0 <T a. Structures with such spectra are for the first
time obtained by Slaman [18] and Wehner [28]. We shall return to Wehner’s result
in Subsection 8.3.

8.3. Definition. The enumeration co-spectrum of a structure A is the set of
enumeration degrees CoEsp(A) = {y|(∀x ∈ Esp(A))(y ≤e x)}.

8.4. Corollary. For every structure A there exists a structure M such that
CoEsp(A) = CoSp(M),

Proof. Given a structure A, consider the structure M such that Sp(M) = {a|a ∈
TOT ∧ (∃x ∈ Esp(A))(x ≤e a)}. We shall show that CoSp(M) = CoEsp(A).

Indeed, let y ∈ CoEsp(A) and a ∈ Sp(M). Then for some element x of Esp(A),
y ≤e x ≤e a. Hence y ∈ CoSp(M).

Suppose now that y ∈ CoSp(M) and consider an element x of Esp(A). Then
(∀a ∈ TOT )(x ≤e a ⇒ y ≤e a). Hence by Selman’s Theorem [17] y ≤e x. Thus
y ∈ CoEsp(A). �

In [20] it is shown that every countable ideal of enumeration degrees can be
represented as an enumeration co-spectrum of some structure A. Hence we have
the following corollary:

8.5. Corollary. Every countable ideal of enumeration degrees is co-spectrum of
some structure M.

8.2. Embedding the ω-enumeration degrees into the Muchnik degrees
generated by spectra of structures. Let R = {Rn} be a sequence of sets of
natural numbers. As in subsection 6.1 set A0 = (N;GS , R0) and An+1 = (N;Rn+1),

where GS is the graph of the successor function λx.x+1. Set ~A = {An} . According
Theorem 7.7 there exists a structure MR such that

Sp(MR) = {dT (B)|(∃Y ∈ Rsp(~A))(Y is c.e. in B)}.

8.6. Proposition. Sp(MR) = {dT (B)|R is c.e. in B}.
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Proof. Suppose that dT (B) ∈ Sp(MR). Let g be an enumeration of N such that

g−1(~A) is c.e. in B. By Lemma 6.5 R ≤ω g−1(~A). Hence R is c.e. in B.
Suppose now that R is c.e.in B. Consider the enumeration g = λx.x of N.

Clearly g−1(~A) ≤e R. Hence g−1(~A) is c.e. in B. Thus dT (B) ∈ Sp(MR). �

8.7. Corollary. For any two sequences R and P of sets of natural numbers,

R ≤ω P ⇐⇒ Sp(MP) ⊆ Sp(MR).

Proof. We have that R ≤ω P if and only if for each B ⊆ N, P is c.e. in B implies
R is c.e. in B. Hence R ≤ω P if and only if Sp(MP) ⊆ Sp(MR). �

Now, we may define the embedding µ of Dω into the Muchnik degrees generated
by spectra of structures by µ(dω(R)) = Sp(MR).

8.3. A structure with spectrum consisting of the Turing degrees which
are non-lown for all n. In [28] Wehner constructed a structure with spectrum
consisting of all Turing degrees which are not equal to 0. This result was further
used in [9] in the construction for each n of a structure with spectrum consisting
of all non-lown Turing degrees, i.e. of all degrees a such that 0(n) <T a(n). Here
we shall use again Wehner’s construction in combination with Theorem 7.10 to
obtain a structure with spectrum consisting of the Turing degrees a such that
(∀n)(0(n) <T a(n)). To apply Theorem 7.10 we need to reveal the uniformity in
Wehner’s construction.

Let F be a countable family of sets of natural numbers. A subset U of N2 is an
enumeration of F if the following two conditions are satisfied:

(1) For each F ∈ F there exists an a such that F = {n|(a, n) ∈ U};
(2) For each a ∈ N the set {n|(a, n) ∈ U} belongs to F .

Given a countable family F of sets of natural numbers, Wehner defines in [28] the
structure AF = (A;S,Z, I), where A = F ×N×N, Z = {(F, x, 0)|F ∈ F ∧ x ∈ N},
S = {((F, x, n), (F, x, n + 1))|F ∈ F ∧ x, n ∈ N} and I = {(F, x, n)|F ∈ F ∧ x ∈
N ∧ n ∈ F}.

8.8. Proposition.([28])

(1) There is an uniform way, given an isomorphic copy B of AF on the natural
numbers, to compute in the diagram of B an enumeration U of F .

(2) There is an uniform way, given an enumeration U of F , to compute in U
the diagram of an isomorphic copy B of AF on the natural numbers.

Further on Wehner defines a family F of finite sets such that for every B ⊆ N,
F has an enumeration computable in B if and only if ∅ <T B. Since we want to
relativize Wehner’s construction in an uniform way we shall repeat it here. We
shall use the following form of Wehner’s family proposed by Kalimullin in [12]:

Let X ⊆ N. Set FX = {{n} ⊕ F |F is a finite set and F 6= WX
n }.

8.9. Lemma.([12]) There does not exist a c.e. in X enumeration U of FX .

8.10. Lemma. Suppose that B 6≤T X. Then one can compute uniformly in B and
X an enumeration U of FX .

Proof. Let B+ = B ⊕ B̄. Clearly B+ is not c.e. in X. Fix a computable in B one
to one enumeration x0, . . . , xn, . . . of B+ and set for s ∈ ω, νs = 〈x0, . . . , xs〉.
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Given n ∈ N, finite set F and i ∈ N, let U0
〈n,F,i〉 = {n} ⊕ F . At step s set

V s〈n,F,i〉 = {x|2x + 1 ∈ Us〈n,F,i〉} and check for each triple a = 〈n, F, i〉 < s whether

V sa = WX
n,s. If the answer is negative do nothing, otherwise add 2νs + 1 to Usa . Let

Us+1
a = Usa if s ≤ a.
Set Ua =

⋃
s U

s
a . Denote by Va the set {x|2x+1 ∈ Ua}. Notice that if a = 〈n, F, i〉

then Ua = {n} ⊕ Va.
Fix a = 〈n, F, i〉. Then Va = WX

n if and only if there exist arbitrary large s such
that V sa = WX

n,s. Indeed, since both sequences V sa and WX
n,s are monotone, from

the existence of arbitrary large s such that V sa = WX
n,s it follows that Va = WX

n .

Assume that Va = WX
n but there exists a t such that for all s > t, V sa 6= WX

n,s.

Then by the construction the set Va is finite and hence WX
n is also finite. Then

there exists a s0 such that for all s > s0, V sa = Va = WX
n = WX

n,s. A contradiction.

Assume now that Va = WX
n . Then WX

n contains the elements of F and arbitrary
large segments of B+. Hence B+ is c.e. in X which is not possible. So, Va 6= WX

n

and hence it is finite. Thus Ua ∈ FX .
Suppose that F is a finite set and F 6= WX

n . Let t be a stage such that for all
s > t, F 6= Wn,s. Fix an i such that t < a = 〈n, F, i〉. Then for all s, if a < s then
F = V sa 6= WX

n,s. So Va = F and hence Ua = {n} ⊕ F .

Thus the set U = {(a, x)|x ∈ Ua} is an enumeration of FX .
It remains to see that U is computable in B⊕X. This follows from the fact that

(〈n, F, i〉, x) ∈ U ⇐⇒ ((x = 2n) ∨ (x = 2y + 1 ∧ y ∈ F )∨
(x = 2νs + 1 ∧ 〈n, F, i〉 < s ∧ V s〈n,F,i〉 = WX

n,s)).

�

Let An be the Wehner’s structure corresponding to the family F∅(n)

, n ≥ 0. Set
~A = {An}. By Theorem 7.10 there exists a structure M such that

Sp(M) = {dT (B)|(∃{Yn} ∈ Jsp(~A))((∀n)(Yn ≤T JnT (B)) uniformly in n)}.

Suppose that dT (B) ∈ Sp(M). Let Yn = f−1n (An) be a sequence of Jsp(~A) such
that for all n, Yn ≤T JnT (B) uniformly in n. Since JnT (B) computes the diagram Yn
of an isomorphic copy of An, JnT (B) 6≤T ∅(n). Hence (∀n)(0(n) <T dT (B)(n)).

Let dT (B) be a Turing degree such that (∀n)(0(n) < dT (B)(n)). Since ∅(n) ≤T
JnT (B) uniformly in n we can compute uniformly in JnT (B) an enumeration Un of

F∅(n)

. Hence we can compute in JnT (B) the diagram Yn of an isomorphic copy of
An uniformly in n. Thus dT (B) ∈ Sp(M).
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