
INTRINSICALLY HYPERARITHMETICAL SETSIVAN N. SOSKOVAbstract. The main result proved in the paper is that on every recursivestructure the intrinsically hyperarithmetical sets coincide with the rela-tively intrinsically hyperarithmetical sets. As a side e�ect of the proofan e�ective version of the Kueker's theorem on de�nability by means ofin�nitary formulas is obtained.1. IntroductionOne of the main achievements of the classical recursion theory is the classi�cationof certain sets based on the complexity of their de�nitions. So, we have complexityclasses of sets organized in hierarchies, as the arithmetical hierarchy, the hyper-arithmetical hierarchy, the analytical hierarchy, etc. All these hierarchies classifysets of natural numbers or sets of reals (usually considered as subsets of the Bairespace). A natural problem is to obtain generalized versions of the classical hierar-chies, which will work for subsets of the domains of arbitrary abstract structures.There are two approaches to this problem. The �rst one, called internal, is basedon a direct development of recursion theory on abstract structures, as is done byMoschovakis [11, 12]. The second approach, called external, uses enumerations ofthe abstract structures. Let A be a denumerable abstract structure. Assume thata subset A of the domain of A is �xed and suppose that for every enumeration fof A the set f�1(A) belongs to the same classical complexity class C relative tothe atomic diagram of f�1(A). Then we have evidence to think that A belongs tothe complexity class C on A and say that A is relatively intrinsically C on A. Theexternal approach originates in [8] and is further extended in [6, 1, 5, 17, 18, 16].All results in those papers con�rm that both approaches are equivalent, i.e. theexternal and the respective internal complexity classes coincide.Motivated by problems of recursive model theory Ash and Nerode initiated in [3]the study of an e�ective version of the external approach. They consider recursive(recursively presentable) abstract structures and instead of all enumerations of a1991 Mathematics Subject Classi�cation. 03D70, 03D75.Key words and phrases. abstract computability, external de�nability, formal de�nability,enumerations, forcing.This work was partially supported by the Ministry of education, science and technologies,Contract I 412/94. 1



2 IVAN N. SOSKOVstructure A they take into account only the e�ective enumerations of A, i.e. theenumerations f for which the structure f�1(A) is recursive. The respective notionsof external de�nability here are called intrinsically C instead of relatively intrinsi-cally C. Obviously each relatively intrinsically C set on a recursive structure is alsointrinsically C. The reverse inclusion is not always true. Examples of sets which areintrinsically r. e. but not relatively intrinsically r. e. can be found in [9] and [4]. Itis quite probable that similar examples exist for all levels of the hyperarithmeticalhierarchy.In the present paper we prove that if we consider instead of �xed levels of thehyperarithmetical hierarchy all hyperarithmetical sets as a complexity class, thenboth versions of the external approach become equivalent. So, a set is intrinsicallyhyperarithmetical on a recursive structure A i� it is relatively intrinsically hyper-arithmetical on A. As a side e�ect of the proof we obtain an e�ective version of theKueker's theorem [7] on de�nability by means of in�nitary formulas.The paper is organized as follows. After the preliminaries we introduce in section3 the so called relatively intrinsically � sets. It is shown that those sets coincide withthe sets which have inductive de�nitions with closure ordinals less than !CK1 . Fromhere, we derive that on recursive structures the relatively intrinsically hyperarith-metical sets are relatively intrinsically �. In section 4, using a forcing argument, weobtain a normal form of the relatively intrinsically � sets and show that they arede�nable by means of recursive in�nitary formulas. In the last section we combinethe so far obtained results and prove the main theorem.The present paper may be considered as a continuation of [16] and several resultsfrom [16] are used here. So, a preliminary knowledge of this paper would be veryhelpful for the understanding of the arguments.2. PreliminariesLet A = (B;R1; R2; : : : ; Rk) be a countable abstract structure, where each Rj isan aj-ary predicate on B.An one to one mapping f of the set of the natural numbers N onto B is calledenumeration of A.Every enumeration f of A determines a unique structureBf = (N ;RBf1 ; RBf2 ; : : : ; RBfk );where for all x1; : : : ; xaj 2 N;RBfj (x1; : : : ; xaj) = Rj(f(x1); : : : ; f(xaj)).By D(Bf) we shall denote the set of all G�odel numbers of the elements of thediagram of Bf .2.1. De�nition. Let A � Bn. Then A is relatively intrinsically HYP (recursivelyenumerable) on A if for each enumeration f of A, there exists a hyperarithmetical(r. e.) relative to D(Bf) subset X of Nn, such that for all x1; : : : ; xn 2 N ,(x1; : : : ; xn) 2 X () (f(x1); : : : ; f(xn)) 2 A:



INTRINSICALLY HYPERARITHMETICAL SETS 3The complexity of an enumeration f of A is mesured by the complexity of therespective set D(Bf). So an enumeration is e�ective (hyperarithmetical) i� D(Bf)is a recursive (hyperarithemtical) set. If A admits an e�ective enumeration, thenthe structure A is called recursive (recursively presentable).2.2. De�nition. Let A be a recursive structure with domain B. A subset A of Bnis intrinsically HYP (r. e.) on A if for every e�ective enumeration f of A, f�1(A)is hyperarithmetical (r. e.).The least acceptable extension A� of A is de�ned as follows.Let 0 be an object which does not belong to B and hh:; :ii be a pairing operationchosen so that neither 0 nor any element of B is an ordered pair. Let B� be the leastset containing all elements of B0 = B [ f0g and closed under the operation hh:; :ii.We associate an element n� of B� with each integer n by the inductive de�nition:0� = 0(n+ 1)� = hhn�; 0iiand put N� = f0�; 1�; 2�; : : :g.Let A� be the structure (B�;B0; R1; R2; : : : ; Rk; N�; Ghh;ii), where Ghh;ii is thegraph of the pairing function and all predicates Ri are assumed false on B� nB.The following proposition, proved in [16], shows that if A � Bn is relativelyintrinsically hyperarithmetical on A�, then A is relatively hyperarithmetical on A.2.3. Proposition. Let f be an enumeration of A. There exists an enumerationf� of A� such that D(Bf�) �T D(Bf ) and such that for every subset A of Bn,f�1(A) �m f��1(A).We shall use also the following result from [16], which gives an internal charac-terization of the relatively intrisically hyperarithmetical sets.2.4. Proposition. Let A � Bn. Then A is relatively intrinsically hyperarithmeticalon A i� A is hyperelementary, i.e. inductive and coinductive in the sense of [13],on A�. 3. The relatively intrinsically � setsLet A be an abstract structure and f be a �xed enumeration of A. Set D =D(Bf).Roughly speaking, the �D sets are the elements of the smallest e�ective ��ringof sets containing all r. e. in D sets. The precise de�nition is a partial relativisationof the respective de�nition of the smallest e�ective ��ring given in [15].First we need an inductive de�nition of the set Ind of the indices of the hyper-arithmetical sets.Let W0;W1; : : : be a �xed G�odel enumeration of the r. e. sets.3.1. De�nition.(1) For all e 2 N; h0; ei 2 Ind;(2) If e 2 Ind, then h1; ei 2 Ind;



4 IVAN N. SOSKOV(3) If We � Ind, then h2; ei 2 Ind.Given an index u 2 Ind, we de�ne the norm juj of u to be equal to the leastordinal at which u appears in the de�nition of Ind:3.2. De�nition.(1) jh0; eij= 0;(2) jh1; eij= jej+ 1;(3) jh2; eij= sup(jzj+ 1 : z 2 We).Since Ind is inductively de�ned on the structure of the Arithmetic, we have thatfor all u 2 Ind; juj < !CK1 , where !CK1 is the least non constructive ordinal.For each e 2 N denote by �e the e-th enumeration operator [14]. Let WDe =�e(D). Since N nD is enumeration reducible to D, the sets WDe coincide with ther. e. in D sets.Let n � 1. For each u 2 Ind the subset JD;nu of Nn is de�ned by means ofinduction on juj:3.3. De�nition.(1) JD;nh0;ei = f(x1; : : : ; xn) : hx1; : : : ; xni 2 WDe g;(2) JD;nh1;ei = Nn n JD;ne ;(3) JD;nh2;ei = Sz2We JD;nz .Let S be a subset of Nn. The set S is called � in D (�D for short), if S = JD;nufor some u 2 Ind.Although the �D sets are in general a proper subclass of the hyperarithmetical inD sets, many of the properties of the hyperarithmetical sets remain true for the �Dsets. In particular, the assertionsH1{H4 from chapter 7 of [15], which show that thehyperarithmetical sets are uniformly closed with respect to recursive substitutions,boolean operations and quanti�cation over the integers, can be proved for the �Dsets with almost the same arguments. We shall refer to those properties as standardproperties of the �D sets.Next we shall show that if a subset A of B has an inductive de�nition on theleast acceptable extension A� of A with closure ordinal less than !CK1 , then f�1(A)is �D. We start by recalling some de�nitions from [13].Let '(p1; : : :pr ; pr+1; S) be a �rst order formula in the language of A� with thenew relational symbol S which is r+1-ary. We shall suppose that S occurs positivelyin ' and call ' S-positive.Using trans�nite recursion on � we de�ne for each ordinal � the set I�' � (B�)r+1by I�' = f(p1; : : : ; pr+1) : A� j= '(p1; : : : ; pr+1; [�<� I�')g:Set I<�' = S�<� I�' and let �0 be the least ordinal such that I�0' = I<�0' . We call �0the closure ordinal of the de�nition '. Clearly I�0' is equal to the least �xed pointI' of '.



INTRINSICALLY HYPERARITHMETICAL SETS 5We shall denote the closure ordinal of a S-positive formula ' by �'. The closureordinal �A� of the structure A� is de�ned by�A� = sup(�' : ' is a S-positive �rst order formula in the language of A�):3.4. De�nition. Let A � B�. Then A is inductive on A� if there exist a S-positive�rst order formula ' and �nite list t1; : : : ; tr of elements of B� such that for alls 2 B�, s 2 A() (t1; : : : ; tr; s) 2 I':3.5. De�nition. A set A � B� is low inductive on A� if there exist a S-positive�rst order formula ', �nite list t1; : : : ; tr of elements of B� and ordinal �0 < !CK1such that for all s 2 B�, s 2 A() (t1; : : : ; tr; s) 2 I�0' :3.6. Lemma. Let A � Bn be low inductive on A�. Then f�1(A) is �D.Proof. For the sake of simplicity assume that n = 1.Let A = fs : (t1; : : : ; tr; s) 2 I�0' g, where '(p1; : : : ; pr; pr+1; S) is a S-positiveformula on A� and �0 < !CK1 . According to Proposition 2.3, there exists an enumer-ation f� of A� such that if D� = D(Bf�), then D� �T D and f�1(A) �m f��1(A).Since every �D� set is �D and the �D sets are closed with respect to recursivesubstitutions, it is su�cient to show tat f��1(A) is �D� .Replace every constant c in the formula ' by f��1(c). Call the resulting formula'�. Clearly for every sequence p1; : : : ; pr+1 in B� and every subset P of (B�)r+1A� j= '(p1; : : : ; pr+1; P ) () Bf� j= '�(f��1(p1); : : : ; f��1(pr+1); f��1(P ))and for every ordinal � f��1(I�') = I�'� :(3.1)Let O be the set of the Curch-Kleene ordinal notations and <o be the respectivewellfounded relation, see [14]. Using e�ective trans�nite recursion on <o, we shallconstruct a recursive function g such that if a 2 O and a is a notation of the ordinal�, then g(a) 2 Ind and JD�;r+1g(a) = I�'� .By the standard properties of the �D� sets, there exists a recursive function msuch that if u 2 Ind, then m(u) 2 Ind andJD�;r+1m(u) = f(z1; : : : ; zr+1) :Bf� j= '�(z1; : : : ; zr+1; JD�;r+1u )g:Let h(v; a) be a recursive function such that if a 2 O, then h(v; a) equals to the r. e.index of the set ffvg(b) : b <o ag and let � be de�ned by the equality�(v; a) = m(h2; h(v; a)i):Finally, let g be a partial recursive function having index e such that for all z,�(e; z) = feg(z). Obviously g is total. A simple trans�nite induction on <o showsthat g has the needed properties.



6 IVAN N. SOSKOVNow let a 2 O be a notation of �0. Using (3:1) we get thatf��1(A) = fz : (f��1(t1); : : : ; f��1(tr); z) 2 JD�;r+1g(a) g:From the last equality, using once more the standard properties, we obtain thatf��1(A) is �D� .3.7. De�nition. A subset A of Bn is relatively intrinsically � on A if f�1(A) is� in D(Bf) for every enumeration f of A.From Lemma 3.6 we obtain directly the following:3.8. Proposition. Let A � Bn be low inductive on A�. Then A is relativelyintrinsically � on A.3.9. Corollary. Suppose that the closure ordinal �A� of the structure A� is equalto !CK1 . Then every hyperelementary on A� subset of Bn is relatively intrinsically� on A.Proof. Let A � Bn be hyperelementary on A�. Then A and the complement of Aare inductive on A�. Let ' be an S-positive formula and t1; : : : ; tr be a �nite list ofelements of B� such that s 2 A () (t1; : : : ; tr; s) 2 I':Let � be an inductive norm on I', de�ned by �(p; s) = least �((p; s) 2 I�'):Since A is coinductive, by the Covering theorem [13], there exists a �0 < !CK1such that s 2 A) �(t1; : : : ; tr; s) � �0: Hence, s 2 A () (t1; : : : ; tr; s) 2 I�0' :So, A is low inductive on A� and therefore A is relatively intrinsically � on A.Given a subset D of N , denote by !D1 the least ordinal which is not constructiverelative to D. The following external characterization of �A� is proved in [16]:3.10. Proposition. �A� = min(!D(Bf )1 : f is an enumeration of A).So, for structures A which admit recursive and even hyperarithmetical enumer-ations �A� = !CK1 . Therefore on such structures all hyperelementary sets are rel-atively intrinsically �. Combining this observation and Proposition 2.4 we obtainthe following:3.11. Proposition. Let A be a structure which admits a hyperarithmetical enumer-ation. Then every relatively intrinsically HYP on A set is relatively intrinsically �on A.



INTRINSICALLY HYPERARITHMETICAL SETS 74. Normal form of the relatively intrinsically � setsLet us �x a countable abstract structure A = (B;R1; R2; : : : ; Rk). The normalform theorem for the ralatively intrinsically � sets on A will be deduced as a conse-quence of the general normal form theorem for the relatively intrinsically de�nablesets proved in [16]. To apply this general theorem we need to de�ne appropriatesatisfaction and forcing relations.To simplify the notation from now on we shall consider only subsets of the domainB of A. However all results can be easily generalized for subsets of Bn; n � 1.Suppose that for each element u of Ind a unary predicate letter Ju is �xed. Givenan enumeration f of A and natural number x, letf j= Ju(x) () x 2 JD(Bf )u :The conditions of the forcing are the �nite injective mappings of N into B whichwe call �nite parts. We shall use �; �; � to denote �nite parts. The forcing relation�  Ju(x) is de�ned as follows.Assume �xed an e�ective coding of all �nite sets of natural numbers. By Evwe shall denote the �nite set having code v. Recall that, by de�nition, for everyenumeration f of A the set D(Bf ) consists of codes of literals which are true onBf . Let � be a �nite part. Given a c 2 N , let �  c if c is a code of a literalL(x1; : : : ; xa), all x1; : : : ; xa 2 dom(�) and A j= L(�(x1); : : : ; �(xa)). Further, ifE = fc1; : : : ; crg is a �nite set, then let�  E () �  c1& : : :&�  cr:Finally, note that by the de�nition of the enumeration operators in [14], we havefor every enumeration f of A:x 2 WD(Bf )e () x 2 �e(D(Bf)) () 9v(hv; xi 2We&Ev � D(Bf )):Now we are ready to de�ne the forcing �  Ju(x) for all u 2 Ind by induction onjuj:4.1. De�nition.(1) If 9v(hv; xi 2 We & �  Ev), then �  Jh0;ei(x);(2) If 8�(� � � =) � 6 Je(x)), then �  Jh1;ei(x);(3) If 9z(z 2 We & �  Jz(x)), then �  Jh2;ei(x).From the de�nition above it follows immediately the monotonicity of the forcing,i.e. if �  Ju(x) and � � � , then �  Ju(x).Denote by F the family of sets of �nite parts containing for all u 2 Ind and x 2 Nthe set Xu;x = f� : �  Ju(x)g:An enumeration f of A is F-generic if whenever X 2 F and X is dense in f , i.e.(8� � f)(9� 2 X)(� � �), then f meets X , i.e. (9� � f)(� 2 X).Next follows the Truth Lemma:



8 IVAN N. SOSKOV4.2. Lemma. Let f be an F-generic enumeration, u 2 Ind and x 2 N . Thenf j= Ju(x) () (9� � f)(�  Ju(x)):(4.1)Proof. Induction on juj. Let u 2 Ind. We have three cases.1) u = h0; ei. In this case (4:1) follows directly from the de�nitions of j= and .2) u = h1; ei. Let f j= Ju(x). Assume that for all � � f; � 6 Ju(x): Then, byDe�nition 4.1, the set Xe;x = f� : �  Je(x)g is dense in f . By genericity, f meetsXe;x. Hence, by induction, f j= Je(x). A contradiction.Suppose now that for some � � f , �  Ju(x). Assume that f 6j= Ju(x). Thenf j= Je(x). By induction, there exists a � � f such that �  Je(x). By themonotonicity of , we may assume that � � �. A contradiction.3) u = h2; ei. By induction,f j= Ju(x) () (9z 2 We)(f j= Jz(x)) () (9z 2 We)(9� � f)(�  Jz(x))() (9� � f)(�  Ju(x)):Now we are ready to apply the Normal form theorem from [16]. Given a �nitepart � and x 2 N , denote by R(�; x), the set fs : s 2 B & 9� � �(�(x) = s)g:4.3. Theorem. Let A � B be relatively intrinsically � on A. There exist �nitepart � and u 2 Ind such that if x 2 N , then for every s 2 R(�; x)s 2 A () (9� � �)(�(x) = s & �  Ju(x)):4.4. Corollary. Every relatively intrinsically � set A has an inductive de�nitionon A� with closure ordinal less than !CK1 .Proof. Suppose that A is relatively intrinsically �. Then there exist �nite part �and u 2 Ind such that for all s 2 B,s 2 A () (9x 2 N)(9� � �)(�(x) = s & �  Ju(x))Using this equivalence we can get easily an inductive de�nition of A. For we rep-resent each �nite part � mapping w1; : : : ; wr onto t1; : : : ; tr, respectively, by theelement hhhhw1; t1ii; : : : ; hhwr; trii; 0�ii of B� and translate the inductive de�nitionof the forcing in terms of A�. Clearly the obtained this way inductive de�nition ofA has a closure ordinal which is less than !CK1 .As a second application of Theorem 4.3 we shall get a formal representation ofthe relatively intrinsically � sets in the spirit of [1] and [5].Let L = fT1; : : : ; Tkg be the language of the structure A. The recursive ��(��);� < !CK1 ; formulas in the language L!CK1 ! are de�ned as in [2]. Roughly speaking,the �0 and the �0 formulas are the quanti�er free formulas in L. The ��+1 formulasare of the form Wi 9Yi'h(i), where f'h(i)g is a recursive sequence of �� formulasand Yi are �nite sequences of variables; the ��+1 formulas are negations of ��+1formulas. If � is a limit ordinal, then the �� formulas are Wi 'h(i), where f'h(i)g isa recursive sequence of ��, � < �, formulas; the �� formulas are again negationsof �� formulas. The precise de�nition is by e�ective trans�nite recursion on <o,



INTRINSICALLY HYPERARITHMETICAL SETS 9where for each a 2 O the �jaj and �jaj formulas are de�ned simultaneously withtheir G�odel numbers.Note that the recursive �� formulas are closed with respect to existential quan-ti�cation, �nite conjunctions and r. e. in�nite disjunctions, while the recursive ��formulas are closed with respect to universal quanti�cation, �nite disjunctions andr. e. in�nite conjunctions.A formula F is called recursive � if it is a recursive �� formula for some � < !CK1 .Next we are going to show that the relatively intrinsically � sets on A are de�nableon A by means of recursive � formulas.Let us �x a recursive bijective mapping var of the natural numbers onto the set ofall variables of the language L. Let F be a formula and D be a �nite set of naturalnumbers. Let y1 < y2 < : : : < yk be the elements ofD andQ be one of the quanti�ers9 or 8. Then by Q(y : y 2 D)F we shall denote the formulaQvar(y1) : : :Qvar(yk)F .By Neq(D) we shall denote the conjunction Vi;j2D & i<j var(yi) 6= var(yj).4.5. Lemma. There exists a uniform e�ective way given natural numbers x; v and�nite set fz1; : : : ; zrg to de�ne an existential �rst order formula C with free variablesamong var(z1); : : : ; var(zr); var(x) such that if Zi = var(Zi); X = var(x) and � isa �nite part with domain fz1; : : : ; zrg, then for all s 2 R(�; x)A j= C(Z1=�(z1); : : : ; Zr=�(zr); X=s) () (9� � �)(�(x) = s & �  Ev):(4.2)Proof. Set C = X 6= X if some of the elements of Ev is not a code of a literal.Otherwise, let Ev = fc1; : : : ; cmg, where ci is the code of the literal Li(xi1; : : : ; ximi).Denote by � the conjunction Vmi=1Li(var(xi1); : : : ; var(ximi)), let D be the �nite setfz1; : : : ; zr; xg [Smi=1fxi1; : : : ; ximig and D0 = D n fz1; : : : ; zr; xg. SetC = 9(y : y 2 D0)(Neq(D)^ �):Now following the de�nition of the forcing �  Ev one can easily check the validityof (4:2).4.6. Lemma. There exists an uniform e�ective way given x 2 N; u 2 Ind and�nite set D = fz1; : : : ; zrg to de�ne a recursive � formula FDx;u with free variablesamong var(z1); : : : ; var(zr); var(x) such that if Zi = var(zi); X = var(x) and � isa �nite part with domain fz1; : : : ; zrg, then for all s 2 R(�; x)A j= FDx;u(Z1=�(z1); : : : ; Zr=�(zr); X=s) () (9� � �)(�(x) = s & �  Ju(x)):Proof. We shall de�ne the formula FDx;u by means of e�ective trans�nite recursionon juj. Let us �x D = fz1; : : : ; zrg; x 2 N and u 2 Ind. Then we have three cases:1) u = h0; ei. According De�nition 4.1 for any �nite part � and s 2 R(�; x),(9� � �)(�(x) = s & �  Ju(x)) () (9hv; xi 2 We)(9� � �)(�(x) = s & �  Ev):For each v 2 N denote by Cv the existential formula satisfying (4:2) with respect tox; v and D. Let h be a recursive function with range equal to the set fv : hv; xi 2Weg. Set FDx;u = Wn Ch(n).



10 IVAN N. SOSKOV2) u = h1; ei. Let � be a �nite part and s 2 R(�; x). By De�nition 4.1(9� � �)(�(x) = s & �  Ju(x)) () (9� � �)(�(x) = s & (8� � �)(� 6 Je(x)))() (9� � �)(�(x) = s &:(9� � �)(�(x) = s & �  Je(x))):Notice also that if �(x) = s, then s 2 R(�; x) for all � � � .So a possible de�nition of the formula FDx;u in this case is the following, where Dvaries over all �nite sets of natural numbers:FDx;u = _D�D[fxg 9(y : y 2 D n (D [ fxg))(Neq(D)^ :FDx;e):3) u = h2; ei. Using again De�nition 4.1, we get for any � and s 2 R(�; x)(9� � �)(�(x) = s & �  Ju(x)) () (9z 2We)(9� � �)(�(x) = s & �  Jz(x)):So we may de�ne FDx;u = Wz2We FDx;z.The following theorem shows that every relatively intrinsically � set is de�nableby means of some recursive � formula on A.4.7. Theorem. Let A � B be relatively intrinsically � on A. Then there exist arecursive � formula F (W1; : : : ;Wr; X) and elements t1; : : : ; tr of B such that forall s 2 B s 2 A () A j= F (W1=t1; : : : ;Wr=tr ; X=s):Proof. Suppose thatA is relatively intrinsically � on A. From Theorem 4.3 it followsthat there exist �nite part � and u 2 Ind such that for all x 2 N and s 2 R(�; x)s 2 A () (9� � �)(�(x) = s & �  Ju(x)):Let dom(�) = fw1; : : : ; wrg and �(wi) = ti; i = 1; : : : ; r. Fix a x =2 fw1; : : : ; wrg.Clearly R(�; x) = B nft1; : : : ; trg. From here we obtain the following representationof A: s 2 A () (9� � �)(�(x) = s & �  Ju(x)) orr_i=1 s = ti & (9� � �)(�  Ju(wi)):Let var(wi) = Wi; var(x) = X and D = fw1; : : : ; wrg. LetF = [( r̂i=1Wi 6= X)^ FDx;u] _ [ r_i=1X = Wi ^ FDwi;u]:Using the previous lemma, one can easily see that for all s 2 Bs 2 A () A j= F (W1=t1; : : : ;Wr=tr; X=s):It is obvious that every de�nable by means of a recursive � formula set is relativelyintrinsically � on A. So we have the following corollary:4.8. Corollary. Let A � B. Then A is relatively intrinsically � on A i� it isde�nable by means of some recursive � formula on A.



INTRINSICALLY HYPERARITHMETICAL SETS 11In [1] and [5] the relatively intrinsically ��, � < !CK1 , sets are studied and isproved that those sets coincide with the sets de�nable by means of recursive ��formulas. Using this result we obtain also the following:4.9. Corollary. A subset A of B is relatively intrinsically � i� it is relativelyintrinsically �� for some � < !CK1 .5. ApplicationsLet us call a structure A hyperarithmetical if the domain of A is equal toN and allpredicates of A are hyperarithmetical. The following theorem is an e�ective versionof Kueker's theorem [7].5.1. Theorem. Let A = (N ;R1; : : : ; Rk) be a hyperarithmetical structure. A subsetA of N is de�nable by means of a recursive � formula on A i� A is hyperarithmeticaland the family S = fX : X � N & (A; X)�= (A; A)g has fewer than 2@0 members.Proof. In the one direction the theorem is obvious. Clearly, if A is de�nable on Aby means of some recursive in�nitary formula, then A is hyperarithmetical and thefamily S is countable.Suppose now, thatA is a hyperarithmetical set and the family S contains less than2@0 elements. First we shall show that A is relatively intrinsically hyperarithmeticalon A, i.e. for every enumeration f of A, f�1(A) is hyperarithmetical in D(Bf ). Forwe are going to use the Perfect set theorem [10]. Let f be an enumeration of A.Consider the family Sf of subsets of N de�ned by the equivalence:Y 2 Sf () 9g(g is an isomorphism from Bf to A and g�1(A) = Y ):Since A is a hyperarithmetical structure and the set A is hyperarithmetical, thefamily Sf is �11 in D(Bf ). It is not hard to see that Sf is of the same cardinalityas the family S. So, Sf has less than 2@0 elements. From here, by the Perfect settheorem, all members of Sf are hyperarithmetical in D(Bf ). Obviously f�1(A) 2Sf . Hence f�1(A) is hyperarithmetical in D(Bf).So, A is relatively intrinsically HYP on A. By Proposition 3.11, A is relativelyintrinsically � on A. Hence, by Theorem 4.7, A is de�nable by means of somerecursive � formula on A.Now we are ready to show that the relatively intrinsically hyperarithmetical setson a recursive structure A coincide with the intrinsically hyperarithmetical sets onA.5.2. Theorem. Let A be a recursive structure and A � jAj. Then the followingare equivalent:(1) A is relatively intrinsically HYP on A;(2) A is relatively intrinsically � on A;(3) A is de�nable by means of some recursive � formula on A;(4) A is intrinsically HYP on A.
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