CONSTRUCTING MINIMAL PAIRS OF DEGREES

IVAN N. SOSKOV

ABSTRACT. We prove that there exist sets of natural numbers A and B
such that A and B form a minimal pair with respect to Turing reducibility,
enumeration reducibility, hyperarithmetical reducibility and hyperenumer-
ation reducibility. Relativized versions of this result are presented as well.

Hean H. Cocroe.llocTposiBaie Ha MUHUMAJHA ABOWKKA OT CTEIEHMU.

B paborarTa ce nmocTpoAsaT MHOkecTBa A 1 B oT ecTecTBeHr umciia, KOUTO (pOpMU-
paT MUHUMAaJHA JABOWKa Mo oTHOINMeHWe Ha TIOpUHATOBA CBOAMMOCT, CBOAWMOCT TIO HO-
MePYEMOCT, XUTIepapUTMETUYHA CBOIUMOCT Y XUIIePHOMEpaIlMOHHa cBoauMOcCT. [Ipen-
CTaBEHM Ca CbIIO U pejlaTUBU3MPaHN BEPCUU Ha TO3W Pe3yJiTaT.

1. INTRODUCTION

In the present paper we consider four kinds of reducibilities among sets of natural
numbers: Turing reducibility (<r), enumeration reducibility (<.), hyperarithmeti-
cal reducibility (<,) and hyperenumeration reducibility (<,.). The first three of
those reducibilities are well known. The hyperenumeration reducibility is introduced
by SaNcHIs in [5] and further studied in [6]. It is a kind of positive reducibility
which relates to hyperarithmetical reducibility as enumeration reducibility relates
to Turing reducibility.

Let 0 € {T, e, h, he}. By 0, we shall denote the class

{AJACN& A<, 0}.

So, 07 consists of all recursive sets, 0, — of all recursively enumerable sets, 0y, is
equal to the class of all hyperarithmetical sets and 0, consists of all TI] sets.

Two sets A and B are a minimal pair with respect to the o-reducibility if for all
sets X of natural numbers X <, A & X <, B= X €0,.

It follows from the results of McEvoy anD CooPER [3] that there exist sets
of natural numbers A and B such that the pair (A, B) is minimal with respect to
Turing reducibility and in the same time with respect to enumeration reducibility.
Up to our knowledge minimal pairs for the higher order reducibilities <, and <.
are not well studied and an analog of the result of McEvoy and Cooper is not known.
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The aim of the present paper is to present a uniform construction of minimal
pairs. This way we shall obtain two sets A and B such that the pair (A4, B) is
minimal with respect to each of the reducibilities <7, <., <, and <;.. Namely we
are going to prove the following theorem:

1.1. Theorem. For every A C N, such that (N\ A) <, A, there exists a B C N
which is not T} and such that if o € {T,e,h,he}, X <, A and X <, B, then
X €0,.

In particular if we pick up a sufficiently complex set A, i.e. if A is not II}, then
we can find a set B such that for every o € {T, e, h, he} the o-degrees determined
by the sets A and B form a minimal pair.

The proof of the theorem is based on a forcing technique introduced in [8] and
used there for the purposes of abstract recursion theory.

The paper is organized as follows. In the next section we summarize the ba-
sic definitions and results used in the sequel. In section 3 we describe our forcing
construction. The last section 4 contains the proof of the theorem and some gener-
alizations.

2. PRELIMINARIES

Throughout the paper we shall assume fixed a standard Goédel enumeration
Wo, ..., W,, ... of the recursively enumerable sets. We shall assume also that an
effective coding of the finite sets of natural numbers is given. By D, we shall denote
the finite set having code v.

By capital letters A, B, X etc., we shall denote sets of natural numbers.

We shall use the following definition of enumeration reducibility given in [4].

2.1. Definition. Let A and B be sets of natural numbers. Then A is enumeration
reducible to B (A <, B) if for some a € N and for all z € N,

reA <= Fv((v,z)e W, & D, CB).

Turing reducibility can be described in terms of enumeration reducibility. Given

a set A denote by At the set A& (N\ A). Then we have
A<p B < A* <_B*.
Here & is the usual join operation. So,
t€AGB = In((z=2n&kneA)V(z=2n+1& ne B)).

The notion of hyperenumeration reducibility is introduced in [5]. Let f, g denote
arbitrary total functions in N. By f(n) we shall denote (the code of) the sequence

(f(0),..., f(n=1)).

2.2. Definition. Given sets A and B of natural numbers, say that A is hyperenu-
meration reducible to B (A <,. B) if for some a € N and for all z € N,

v €A < VfInFv((v,, f(n)) € W, & D, C B).
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From the definition it follows immediately that A is I} in B iff A <,. Bt and
hence we can express hyperarithmetical reducibility in terms of hyperenumeration
reducibility:

A<, B < A" <,. B™T.

A set A of natural numbers is called total if (N\ A) <. A or, equivalently, if
AT <. A. The following obvious lemma shows that if two total sets form a minimal
pair with respect to enumeration reducibility and hyperenumeration reducibility,
then they form a minimal pair with respect to Turing reducibility and with respect
to hyperarithmetical reducibility.

2.3. Lemma. Let A and B be total sets of natural numbers. Then
i) VX( X<, A& X< B=Xe€0,)=2VX(X<r A& X< B= X €0p).
(i) VX(X <pe A& X< e B2 X€0,) =2V XX <A X<, B= X €
0,).

We shall identify the partial predicates on N with the partial functions, taking
values in {0, 1}, assuming that 0 stands for true and 1 for false.

By 2y we shall denote the structure (N; G, X)), where (' is a total binary predicate
which is equal to the graph of the successor function, in other words,

0 ify=a+1,

1 otherwise,

G(z,y) :{

and X is a unary partial predicate on the natural numbers.
Enumeration of Uy, is a total surjective mapping f of N onto N. Clearly every
enumeration determines a unique structure B; = (N; G®/ X%7) where for all ,y,

G (2, y) = G(f(2), f(y)) and %7 (2) = S(f(2)).

Given an enumeration f of s, denote by D(B;) the set of all Gédel numbers of
the elements of the diagram of B;. In other words,

D(B,) = {(1,n,m, )| G® (n,m) ~ e} U {(2,n, )| 5% (n) ~ }.

Notice that, if the predicate X is total, then D(%B;) is a total set.
The main property of the structure 2y is that it is relatively stable. This means
that for every enumeration f of %y, the function f is partial recursive relatively

D(B;), i.e. graph(f) <. D(B;).

2.4. Proposition. Let f be an enumeration of {Us. Then f is partial recursive in
D(By).
Proof. Let us fix a natural number 0; such that f(0;) = 0. First we are going to
show that

f(n) =0 = Fy(G® (0;,y) & G® (n,y)).
Indeed, suppose that f(n) = 0. Take a y such that f(y) = 1. Then we have
G(f(0;), f(y))and G(f(n), f(y)) and hence G®7(0;,y) and G®7 (n,y). Now suppose
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that for some y, G®7(0;,y) and G®#(n,y). Then f(y) =1 and since G(f(n),1), we
get that f(n) =0.

In the same way one can show for k& > 0 that
fn)=k < Foi,.. 21 (GP(05,2)) & ... & GBI (24 9, 70_1) & G (2)_1,m)).

So, the graph of f is enumeration reducible to D(B;) and hence f is partial
recursive in D(B;). O

2.5. Corollary. For every enumeration f of Us, ¥ <. D(B;).

2.6. Definition. Let A C Njo € {T,e,h,he} and f be an enumeration of Us.
Then A is o-admissible in fif f~'(A) <, D(By).

Now we are ready to describe the plan of the proof of Theorem 1.1. Let X be a
total recursive predicate, for example let > = Az.0.

Given a total set A, denote by Q,,0 € {e, he}, the class of all sets which are
o-reducible to A. In what follows we shall show that there exists an enumeration f
of Us having the following properties:

(1) f and hence D(By) is not II};
(2) If o € {e,he}, X € Q, and X is o-admissible in f, then X € 0,.
Denote the set D(B;) by B. Now suppose that ¢ € {e,he} and X <, A and
X <, B. Using the stability of 2y, we obtain from here that X is oc-admissible in
f and hence, by (2), X € 0,.
From here by Lemma 2.3 we obtain for all o € {T', e, h, he},

X<, A& X<,B=Xco,.

In the same way, using appropriate definitions of the predicate X, we shall obtain
also relativized versions of the theorem.

3. GENERIC ENUMERATIONS

Every finite mapping of N into N is called finite part. By A we shall denote
the set of all finite parts. Elements of A will be denoted by lowercase Greek let-
ters 8,7, p,.... We shall use ”C” to denote the usual inclusion relation on partial
functions. Clearly ”C” induces a partial ordering on A.

3.1. Definition. Let ¥ C A and f be an enumeration of 2g. Then

(1) £ is dense if for every § € A there exists a 7 € IV such that § C 7.

(2) F'is dense in the enumeration f if for every finite part 6 C f there exists a
T € F such that § C 7.

(3) f meets F if there exists a finite part § € F such that § C f.

Notice that a dense set F is automatically dense in every enumeration of Uy.
Let & be a countable family of subsets of A.

3.2. Definition. An enumeration f is F-generic if

(VE € F)(F is dense in f = f meets F).
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Let D(X) ={(n,e)|X(n) ~c}. Let 0 € {e, he}. Given a set A, say that A <, ¥
if A<, D(Y). For a function f, let f <, ¥ if graph(f) <, D(¥).

3.3. Proposition. Let é € A. There exists a F-generic enumeration f of Us which
extends & and such that f €. 3.

Proof. An usual finite end-extension construction of the mapping f. Start with
do = 4. Consider three kinds of steps. On steps ¢ = 3r ensure that f is total and
surjective. On steps ¢ = 3r 4+ 1 ensure the genericity. Finally, on steps ¢ = 3r + 2
consider the r-th he-reducible to ¥ partial function ¥, and ensure that f Z .. O

Denote by £ the class of all enumerations of Uy.

3.4. Definition. Let S C N x £. The set S is called complete relative to F if for
every n € N, & € A there exists a 7 D § such that if f is F-generic and 7 C f, then
the pair (n, f) belongs to S.

The following proposition is a generalized version of Proposition 3.7, [8]. The
simple proof presented here is based on a suggestion of Mr. VI. Soskov.

3.5. Proposition. Let S C N x £ be complete relative to F. Then there exists a
countable family Fs of subsets of A such that if f is Fg-generic, thenVn((n, f) € 5).

Proof. Given a natural number n, let
E, ={r|Vf(f is F-generic & 7 C f = (n, f) € 5)}.

It follows from the completeness of S that the set F,, is dense.

Denote by Fs the family {F,|n € N} UJF. Suppose that f is Fs-generic. Fix a
n € N. Since F, is dense, f meets it. Let 7 € F,, be such that 7 C f. Clearly f is
F-generic. Hence, by the definition of F,, (n, f) € S. O

Let o € {e,he} and let PJ,..., P7,... be a sequence of unary predicate letters.
Assume that a satisfaction relation 7 f =, P?(x)” is defined so that for every
enumeration f of 2y,

A<, D(B) = Ja(A = {2]f =, P (2)).

a

Suppose also that 7§ IF, P?(z)” is a forcing relation satisfying the following forcing
conditions:
(F1) 6 Cr & bk, PI(z) = 7 Ik, PI(2);
(F2) There exists a countable family J, of subsets of A such that for every J,-
generic enumeration f, f =, P/ (z) < (36 C f)(0 Ik, PJ(z)).

a

3.6. Definition. Let A C N. The set A has a o-normal form if for some a € N, § €
A and for all n ¢ dom(é),z € N,

(3.1) te€A = IO CT1)(t(n) 2z & 7k, P (n)).
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Given a set A call P a f-associate of A if for all n € N
f(n) e A = fE, P/ (n).

Assume that the recursive pairing function (.,.) is chosen so that every natural
number is a code of an ordered pair.

3.7. Proposition. Let Q = {Ag, Ay,..., A, ...} be a countable family of subsets
of N. Let the subset S of N x € be defined by

((a,ry, f) €S < A, has a o-normal form or P? is not a f-associate of A,.

Then S is complete relative to F,.

Proof. Let us fix a natural number m = (a,r) and a finite part §. Assume that A,
has a o-normal form. Clearly for every enumeration f, the pair (m, f) belongs to
S.

Now suppose that A, does not have a og-normal form. Then there exist natural
numbers z and n € dom(§) for which the equivalence (3.1) fails. We have two
possibilities. First suppose that

r €AL&V CT)(r(n) ~a=T1lf, PI(n)).

a

Take a 7 such that § C 7 & 7(n) ~ z. Let f be an J,-generic enumeration which
extends 7. Clearly f(n) =2 € A,. Assume that f =, P7(n). Then, by (F2), there

a

exists a p C f such that p I, P7(n). By (F1), we may assume that 7 C p. A

contradiction. So, P? is not a f-associate of A, and hence (m, f) € S.

Now suppose that
r g A &ITBCT)(r(n) 2z & 7lk, P](n)).

Let f be J,-generic and 7 C f. Then, by (F2), f E, PZ(n) but f(n) =2 ¢ A,.
Hence (m, f) € S. O

Combining the last proposition and Proposition 3.5, we get the following

3.8. Corollary. Let ) be a countable family of sets of natural numbers. There
exists a countable family F of subsets of A such that if [ is F-generic, A € () and
A is o-admissible in f, then A has a o-normal form.

4. PROOF OF THE THEOREM

We start by defining appropriate =, and Ik, relations for o € {e, he}. Consider
first o = e.

4.1. Definition. Given natural number ¢ € N and enumeration f of Uy, let

[ Ee Pi(n) <= Jo({v,n) € W, & D, C D(%By)).



CONSTRUCTING MINIMAL PAIRS OF DEGREES 7

From the definition above it follows immediately that for every enumeration f
and A C N,
(4.1) A< . D(B;) < Ja(A=A{n|f = FP;(n)}).

The definition of the forcing relation Ik, is a little bit more complicated. Let &
be finite part. Given a natural number u, let § Ik, w if w = (1,n,m,<) for some
n,m in dom(d) and G(6(n),6(m)) ~ ¢ or u = (2,n,¢) for some n € dom(d) and
Y(0(n)) ~e.

For a finite set D let § Ik, D <= (Yu € D)(6 IF. u).

Finally, given a € N, let

Sl Pi(n) < Jo({v,n) e W, & 5. D,).

It is obvious that the forcing conditions (F1) and (F2) hold for =, and IF., where
the family &, is empty.
4.2. Proposition. Let A C N have a e-normal form. Then A <, 3.

Proof. Let § and a be such that (3.1) holds for all n ¢ dom(d) and z € N. Fix a
no & dom(§). Then

r€A <= T CT1)(t(ng) @z & 7k Py (ng)).

Assume that an effective coding of the finite parts is fixed. From the definition of I,
using the recursiveness of ¢, we obtain that the set {7|7 IF, P¢(ny)} is e-reducible
to X. Therefore A <, X. O

Now let us turn to the hyperenumeration case. Consider two sequences
R07...7Ra7...;F07...7Fa7...
of new binary predicate letters. Given an enumeration f, let
f Ene Ro(z,s) <= Fv((v,2,s) € W, & D, C D(B;)).

Let s denote (codes of) arbitrary finite strings of natural numbers. If s =
(#1,...,%,), then by s % z we shall denote the string (z1,..., z,, 2). By () we shall
denote the empty string.

Given finite string s and natural number x, define f 4. F,(z,s) by means of
the following inductive definition.

4.3. Definition.

If flEn Ra(z,s), then f = Fu(z,s);
IfVa(f Epe Fulz,s* 2)), then f E=pe Fu(z, ).

Suppose that f E F,(z,s). By |z, s| we shall denote the first ordinal at which
the pair (z, s) appears in the inductive definition. In other words,

2, 5] = 0 if fEn Ra(z,s);
" \sup(|z, sk 2|4+ 1:2 € N)  otherwise.
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4.4. Lemma. Let A C N and [ be an enumeration of %Us,. Then
A <ne D(By) = Fa(A=A{z|f e Fale,())})-
Proof. By definition, A <,. D(B;) if and only if for some ¢ € N
r €A < Vgandv((v,z,g9(n)) € W, & D, C D(B;)).
Hence A <. D(B;) iff there exists ¢ € N such that
v €A = VgIn(f B Rl g(n)).
We shall show that

(12) Yg3n(f e Rale,9(0)) <= f e Fale, ().
Suppose that the left hand part of (4.2) holds. Towards a contradiction assume

that f (ene Fu(x,()). Then there exists a sequence zgy, z1,...,2,,... of natural

numbers such that if s, = (2q,...,2,_1), then

(4.3) f¥ne Ra(2,8,) & f FEne Fulsn * 24, ).

The construction of zg, 21, ..., 2z,,... is by induction on n. Since f W, Fu(z, (),

[ Fne Ra(z, () and for some z, f {=pe Fo(z,(2)). Set z5 = z.
Suppose that zo, ..., z, are chosen so that (4.3) holds. Let s,.; = (z0,...,2n).
By (4.3), f Fne Ra(2,5n41) and for some z, f ¥ep. Fu(, Spqp1 % 2). Take 2,41 = 2.
Now, let g(n) = z,. Clearly Vn(f e Ra(z,g(n))).

Given a finite string s = (2o, ..., 2,_1) and a function g, let
sCg < (Vk<n)(g(k)=2z).

To prove (4.2) in the right to left direction we shall show by means of transfinite
induction on |z, s| that

(4.4) [ e Falw,5) = Vg 2 s3n(f | Ra(x,9(n)))

and use that everey function extends the empty string ().

Indeed, if f F=p. Ro(2,s), then (4.4) is obvious. Suppose that f &, R.(z,s). By
induction, (Vz)(Vg O s+* 2)3In(f f=pe Ra(z,g(n))). Suppose that ¢ O s. Then for
some z, g O s+ z and hence In(f Eue Ra(z,g(n))). O

Letf):he P;Le($) <~ f):he Fa($7<>)‘

Our next task is to define an appropriate forcing relation § Iy, P (z). First let
dlFhe Ri(z,s) < Fv((v,z,s) e W, &Ik, D,).

Clearly we have as for enumeration reducibility
(R1) dlhpe Ro(z,5) & 6 C7 = 7 Ik Ro(2,s) and
(R2) For every enumeration f, f E=u. R,(z,5) <= 36 C f(0 e Ra(z,9)).

Now we are ready to define § I, F,(z,s) by means of the following inductive
definition.
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4.5. Definition.

If § IFpe Ro(x,s), then & IFy, Fy(z,s);
If V2 € NV7 2 63p D 1(plrpe Fa(z,s*z)), then 6 Ik, Fy(z,s).

We associate ordinals with the tuples (4, 2, s) such that § Ik, F,(2,s) as usual:

B | if 0 IFpe Ra(z,s);
T, 8| =
T sup(min(|p,z,s*z|+1:pD7):7 D4,z € N) otherwise.

The following lemma follows immediately from Definition 4.5.
4.6. Lemma. Let §, 7 be finite parts, § C 7 and 0 IFy, Fy(x,s), then 7 lby, Fy(x,s).
Let &, be the family of all subsets
Esvs.=Aplplrne Folz,sx2) & |p,x,s% 2| <8, 2, 5|} of A,

4.7. Lemma. Let f be a F,-generic enumeration, § C f and 6 Ik, Fy(x,s). Then
[ Ene Fulw,s).

Proof. Transfinite induction on |4, z, s|. Skipping the obvious case f 4. R.(z,s),
assume f (=, Ry(2,s). Fix a z € N and consider the element

E=A{plplrn Fa(z,sx2) & |p,z,s* z| < |0, 2,s|}

of F;. We shall show that F is dense in f. Let u C f. Take a 7 C f such that
pw C 7and & C 7. Since f . Ri(z,s), by (R2), § IF4. R.(x,s) and hence, by
Definition 4.5, there exists a p O 7 which belongs to F.

From here, by genericity, there exists a p C f which belongs to F.

Now, we have that |p,z,s* z| < |0, 2,s| and p Ik, F,(z,s+ z). Hence, by the
induction hypothesis, f = F,(z,s* z).

So we have proved that Vz(f | F,(z,s* z)), and hence, f Ep. Fu(z,s). O

Denote by J; the family containing all sets {7 : 32Vp D 7(p Ifn. Fa(z,s5% 2))}.

4.8. Lemma. Let f be Fy-generic and f =y, F,(x,s). Then there exists a § C f
such that 0 IFy. Fy(z,s).

Proof. Transfinite induction on |z, s|.

Assume that V6 C f(8 Ifne Fau(z,s)). Then the set £ = {7 : 32Vp D 7(p Ifhe
F,(z,s*z))} is dense in f. By genericity, there exist a 7 C f and z € N, such that
Vp D m(p Fhe Fulz,s*z)).

On the other hand, f 4. Fu(x,s) and f (=p. Ra(z,s). (Otherwise we could
find a § C f such that § I+, R,(x,s)). Therefore f = F,(z,s  z), and hence, by
induction, there exists a p C f such that p IF F,(z,s* z). By Lemma 4.6 we may
assume that 7 C p. A contradiction. [

Define & Iy Pi€(2) < b1k, Fo(z, ().

Let F. = F1 UF,. Combining the last three lemmas we obtain that =, and I,
satisfy the forcing conditions (F'1) and (F2).
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4.9. Proposition. Suppose that A has a he-normal form. Then A <, 3.
Proof. Let § and a be such that for all n ¢ dom(d) and z
r €A <= ITD60(r(n)~a & Tl Fo(n,())).

Consider the set P = {(r,n,s)|T Ikp. F,(n,s)}. We are going to show that
P <,. X. For we shall give a game characterization of the forcing ”IF,.”. Our game
starts over a triple (7,n,s) and has two players - (V) and (3). If 7 I, Ra(n,s),
then the game stops and (3) wins. Otherwise, the first player (V) chooses a natural
number z and a finite part g O 7. Then the second player (3) chooses a finite part
v D . The game continues over (v, n, sxz). Now, our claim is that 7 Ik, F,(n,s) iff
there exists a strategy for (3) for winning every game over (7, n, s). To formulate this
claim precisely we shall represent the possible moves of (V) by two total functions
g1 and ¢o, where g (7, n, s) will choose the natural number z and g»(7, n, s) will give
the finite part g. We shall call the pair (g1, g2) correct if V7VnVs(r C g2(7, 1, s)).

4.10. Claim. 7 Ik, F,(n,s) iff for every correct pair (g1, g2) there exists a finite

nonempty sequence (Vo, vy, ..., V) of finite parts such that, if
21 =g1(Vo, 0y 8), 20 = g1(Vi, 8% 21), -y 2 = G1(Veo1, 1y Sk 21 % - -k 251), then
a) T=uvp;

b) (Vi < k)(g2(vi,n,sxzy % -+ % 2) Cvig1);
) Vg lrpe Ro(m,s% 2z %% z).

Proof. The proof of the left to right direction is by induction on |7, n, s|. Suppose
that 7 Ik, Fu(n,s). Let (g1, g2) be a correct pair of functions. If 7 Ik, R.(n,s),
then the sequence (7) satisfies the conditions a), b) and ¢). Suppose now that
T Whe Ro(n,s). Let zy = ¢1(7, n,s) and u = go(7, n, s). By the correctness of (g1, ¢2),
7 C p. By the definition of I, there exists a vy O p such that vy Ik, Fy(n, s * z)
and |y, n, s % z| < |1, n,s|. By induction, there exists a finite nonempty sequence
(v1,...,v) of finite parts, satisfying the conditions a), b) and ¢) with respect to
(vi,m, s z). Now it is trivial to show that the sequence (7, vy, ..., ;) satisfies a),
b) and c¢) with respect to (1, n,s).

Suppose now that 7 [, F,(n,s). We shall show that there exists a correct pair
(g1, g2) of functions for which there is no finite sequence of finite parts satisfying
a), b) and c). Given finite part ¢ and string ¢, check if there exist z and u D ¢
such that (Yv D p)(v fhe Fa(n,t* z)). In case of a positive answer let g;(d, n,t) be
one of those z and ¢5(6, n,t) be one of those u. If the answer is negative, then let
g1(0,n,t) = 0 and ¢5(8, n,t) = . Clearly the pair (g1, g2) is correct.

Now assume that (v, ..., ) is a sequence of finite parts satisfying the conditions
a), b) and ¢). By a), vy = 7. Since vy [fre Fo(n,s), vo Fre Ri(n,s) and

23p O vV O p(v fhe Fo(n,s* 2)).

By the definition of g, and g, and b), vy I F,(n, s%2). So, proceeding as above, we
get that vy Fhe Ra(n,skzy), v fpe Ra(n,sxzi%22), .o v e Ro(n, sxzypk- %2 ).
The last contradicts ¢). O
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Using the Claim and the fact that the set {(7, n, s)|7 Ik, Rq(n,s)} is enumeration
reducible to X, we obtain immediately that P <,., ¥ and hence that A <,. . O

Now we are ready to prove the main results.

4.11. Theorem. Let C' and A be total sets. There exists a total set B such that
C <7 B and B £, C and for all o € {T,e, h,he} and all X C N,

X<, A& X<, B= X<, C.
Proof. Let

E(x):{o if x € C

1 otherwise.

Since (' is total, we have for all o € {T|e, h, he} that C' <, ¥ and ¥ <, C| i.7e.
=, 2.

Let A be a total set. Denote by Q,, o € {e, he}, the family of all sets which are
o-reducible to A. By Corollary 3.8 there exist denumerable families ¢ of subsets
of A such that if fis Fg_-generic, X € (), and X is o-admissible in f, then X has
a o-normal form. Let f be an enumeration of 2y which is not he-reducible to X
and generic with respect to Jg_ U JFg,.. Denote D(B;) by B. Since the predicate
3 is totally defined, the set B is total. By the stability of Ry, f <,. B and hence
B £ ¥, and ¥ <y B.

By Lemma 2.3 it sufficient to show for o € {e, he},

X<, A& X<,B=>X<,C.

Now suppose that X <, A and X <, B. Since f is partial recursive in B,
fHX) <, B. So X € @, and X is o-admissible in f. From here it follows that
X has a o-normal form and hence, by Proposition 4.2, Proposition 4.9 respectively,
X <, 3. Therefore X <, C. O

Notice that, since () is total, Theorem 1.1 is a direct corollary of the above theo-
rem.

If we start by an arbitrary, not necessary total set C', then we can prove a similar
result but only for the positive reducibilities <, and <j,.

4.12. Theorem. Let C' and A be subsets of N. There exists a subset B of N such
that C <. B, B £;. C and if o € {e, he}, then for all X C N,

X<, A& X<, B= X<, C.
Proof. Let us define the partial predicate X by
" )
() = 0 ifz e C",
undefined otherwise.

Now, we have for o € {e, he} that ¥ =, C. From here, the theorem follows
by an almost literal repeating of the arguments used in the proof of the previous
theorem. []
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The method used in the proofs of the theorems above allows further general-
izations and applications. We may add countable many satisfaction and forcing
relations to the so far considered =, and Ik, o € {e, he}, relations. This way, con-
sidering the forcing for the 3, hierarchy from [1] and [2], we can prove the following
generalization of Theorem 4.11.

If o is a constructive ordinal, X C N, then by X (® we shall denote the a-th jump
of X, see [4].

4.13. Theorem. Let C' and A be total sets. There exists a total set B such that
C <r B, B<%;.C and for all X C N:
(1) For every constructive ordinal o, X <p A®) & X <p B(*) = X <; €@
(2) For every constructive ordinal o, if X is r.7e. in A*) and X is r.7e. in
B, then X is r. e. in C(®);
B) X<, A& X<, B=X<,C.
(4) XgheA&XShijXSheC'

Other applications of the method will be presented in the forthcoming [7].
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