
CONSTRUCTING MINIMAL PAIRS OF DEGREESIVAN N. SOSKOVAbstract. We prove that there exist sets of natural numbers A and Bsuch that A and B form a minimal pair with respect to Turing reducibility,enumeration reducibility, hyperarithmetical reducibility and hyperenumer-ation reducibility. Relativized versions of this result are presented as well.Ivan N. Soskov.Postro�vane na minimalni dvo�ki ot stepeni.V rabotata se postro�vat mno�estvaA i B ot estestveni qisla, koito formi-rat minimalna dvo�ka po otnoxenie na T�ringova svodimost, svodimost po no-meruemost, hiperaritmetiqna svodimost i hipernomeracionna svodimost. Pred-staveni sa s�wo i relativizirani versii na tozi rezultat.1. IntroductionIn the present paper we consider four kinds of reducibilities among sets of naturalnumbers: Turing reducibility (�T ), enumeration reducibility (�e), hyperarithmeti-cal reducibility (�h) and hyperenumeration reducibility (�he). The �rst three ofthose reducibilities are well known. The hyperenumeration reducibility is introducedby Sanchis in [5] and further studied in [6]. It is a kind of positive reducibilitywhich relates to hyperarithmetical reducibility as enumeration reducibility relatesto Turing reducibility.Let � 2 fT; e; h; heg. By 0� we shall denote the classfAjA � N & A �� ;g:So, 0T consists of all recursive sets, 0e { of all recursively enumerable sets, 0h isequal to the class of all hyperarithmetical sets and 0he consists of all �11 sets.Two sets A and B are a minimal pair with respect to the �-reducibility if for allsets X of natural numbers X �� A & X �� B ) X 2 0� .It follows from the results of McEvoy and Cooper [3] that there exist setsof natural numbers A and B such that the pair (A;B) is minimal with respect toTuring reducibility and in the same time with respect to enumeration reducibility.Up to our knowledge minimal pairs for the higher order reducibilities �h and �heare not well studied and an analog of the result of McEvoy and Cooper is not known.Key words and phrases. Degrees, minimal pairs, forcing, enumerations.This work was partially supported by the Ministry of education, science and technologies,Contract I 412/95. 1



2 IVAN N. SOSKOVThe aim of the present paper is to present a uniform construction of minimalpairs. This way we shall obtain two sets A and B such that the pair (A;B) isminimal with respect to each of the reducibilities �T ;�e;�h and �he. Namely weare going to prove the following theorem:1.1. Theorem. For every A � N, such that (N n A) �e A, there exists a B � Nwhich is not �11 and such that if � 2 fT; e; h; heg, X �� A and X �� B, thenX 2 0�.In particular if we pick up a su�ciently complex set A, i.e. if A is not �11, thenwe can �nd a set B such that for every � 2 fT; e; h; heg the �-degrees determinedby the sets A and B form a minimal pair.The proof of the theorem is based on a forcing technique introduced in [8] andused there for the purposes of abstract recursion theory.The paper is organized as follows. In the next section we summarize the ba-sic de�nitions and results used in the sequel. In section 3 we describe our forcingconstruction. The last section 4 contains the proof of the theorem and some gener-alizations. 2. PreliminariesThroughout the paper we shall assume �xed a standard G�odel enumerationW0; : : : ;Wa; : : : of the recursively enumerable sets. We shall assume also that ane�ective coding of the �nite sets of natural numbers is given. By Dv we shall denotethe �nite set having code v.By capital letters A;B;X etc., we shall denote sets of natural numbers.We shall use the following de�nition of enumeration reducibility given in [4].2.1. De�nition. Let A and B be sets of natural numbers. Then A is enumerationreducible to B (A �e B) if for some a 2 N and for all x 2 N,x 2 A () 9v(hv; xi 2 Wa & Dv � B):Turing reducibility can be described in terms of enumeration reducibility. Givena set A denote by A+ the set A� (N nA). Then we haveA �T B () A+ �e B+:Here � is the usual join operation. So,x 2 A� B () 9n((x = 2n & n 2 A) _ (x = 2n+ 1 & n 2 B)):The notion of hyperenumeration reducibility is introduced in [5]. Let f; g denotearbitrary total functions in N. By �f(n) we shall denote (the code of) the sequencehf(0); : : : ; f(n� 1)i.2.2. De�nition. Given sets A and B of natural numbers, say that A is hyperenu-meration reducible to B (A �he B) if for some a 2 N and for all x 2 N,x 2 A () 8f9n9v(hv; x; �f(n)i 2 Wa & Dv � B):



CONSTRUCTING MINIMAL PAIRS OF DEGREES 3From the de�nition it follows immediately that A is �11 in B i� A �he B+ andhence we can express hyperarithmetical reducibility in terms of hyperenumerationreducibility: A �h B () A+ �he B+:A set A of natural numbers is called total if (N n A) �e A or, equivalently, ifA+ �e A. The following obvious lemma shows that if two total sets form a minimalpair with respect to enumeration reducibility and hyperenumeration reducibility,then they form a minimal pair with respect to Turing reducibility and with respectto hyperarithmetical reducibility.2.3. Lemma. Let A and B be total sets of natural numbers. Then(i) 8X(X �e A & X �e B ) X 2 0e)) 8X(X �T A & X �T B ) X 2 0T ).(ii) 8X(X �he A & X �he B ) X 2 0he) ) 8X(X �h A & X �h B ) X 20h).We shall identify the partial predicates on N with the partial functions, takingvalues in f0; 1g, assuming that 0 stands for true and 1 for false.By A� we shall denote the structure (N;G;�), where G is a total binary predicatewhich is equal to the graph of the successor function, in other words,G(x; y) ' (0 if y = x+ 1;1 otherwise;and � is a unary partial predicate on the natural numbers.Enumeration of A� is a total surjective mapping f of N onto N. Clearly everyenumeration determines a unique structure Bf = (N;GBf ;�Bf ), where for all x; y,GBf (x; y) ' G(f(x); f(y)) and �Bf (x) ' �(f(x)):Given an enumeration f of A�, denote by D(Bf) the set of all G�odel numbers ofthe elements of the diagram of Bf . In other words,D(Bf) = fh1; n;m; "ijGBf(n;m) ' "g [ fh2; n; "ij�Bf(n) ' "g:Notice that, if the predicate � is total, then D(Bf) is a total set.The main property of the structure A� is that it is relatively stable. This meansthat for every enumeration f of A�, the function f is partial recursive relativelyD(Bf), i.e. graph(f) �e D(Bf).2.4. Proposition. Let f be an enumeration of A�. Then f is partial recursive inD(Bf).Proof. Let us �x a natural number 0f such that f(0f) = 0. First we are going toshow that f(n) = 0 () 9y(GBf (0f ; y) & GBf (n; y)):Indeed, suppose that f(n) = 0. Take a y such that f(y) = 1. Then we haveG(f(0f); f(y)) and G(f(n); f(y)) and hence GBf (0f ; y) andGBf (n; y). Now suppose



4 IVAN N. SOSKOVthat for some y;GBf (0f ; y) and GBf (n; y). Then f(y) = 1 and since G(f(n); 1), weget that f(n) = 0.In the same way one can show for k > 0 thatf(n) = k () 9x1; : : : ; xk�1(GBf (0f ; x1) & : : :& GBf (xk�2; xk�1) & GBf (xk�1; n)):So, the graph of f is enumeration reducible to D(Bf) and hence f is partialrecursive in D(Bf).2.5. Corollary. For every enumeration f of A�, � �e D(Bf).2.6. De�nition. Let A � N; � 2 fT; e; h; heg and f be an enumeration of A�.Then A is �-admissible in f if f�1(A) �� D(Bf).Now we are ready to describe the plan of the proof of Theorem 1.1. Let � be atotal recursive predicate, for example let � = �x:0.Given a total set A, denote by Q�; � 2 fe; heg, the class of all sets which are�-reducible to A. In what follows we shall show that there exists an enumeration fof A� having the following properties:(1) f and hence D(Bf) is not �11;(2) If � 2 fe; heg, X 2 Q� and X is �-admissible in f , then X 2 0� .Denote the set D(Bf) by B. Now suppose that � 2 fe; heg and X �� A andX �� B. Using the stability of A�, we obtain from here that X is �-admissible inf and hence, by (2), X 2 0�.From here by Lemma 2.3 we obtain for all � 2 fT; e; h; heg,X �� A & X �� B ) X 2 0�:In the same way, using appropriate de�nitions of the predicate �, we shall obtainalso relativized versions of the theorem.3. Generic enumerationsEvery �nite mapping of N into N is called �nite part. By � we shall denotethe set of all �nite parts. Elements of � will be denoted by lowercase Greek let-ters �; �; �; : : : . We shall use "�" to denote the usual inclusion relation on partialfunctions. Clearly "�" induces a partial ordering on �.3.1. De�nition. Let E � � and f be an enumeration of A�. Then(1) E is dense if for every � 2 � there exists a � 2 E such that � � � .(2) E is dense in the enumeration f if for every �nite part � � f there exists a� 2 E such that � � � .(3) f meets E if there exists a �nite part � 2 E such that � � f .Notice that a dense set E is automatically dense in every enumeration of A�.Let F be a countable family of subsets of �.3.2. De�nition. An enumeration f is F-generic if(8E 2 F)(E is dense in f ) f meets E):



CONSTRUCTING MINIMAL PAIRS OF DEGREES 5Let D(�) = fhn; "ij�(n) ' "g. Let � 2 fe; heg. Given a set A, say that A �� �if A �� D(�). For a function f , let f �� � if graph(f) �� D(�).3.3. Proposition. Let � 2 �. There exists a F-generic enumeration f of A� whichextends � and such that f 6�he �.Proof. An usual �nite end-extension construction of the mapping f . Start with�0 = �. Consider three kinds of steps. On steps q = 3r ensure that f is total andsurjective. On steps q = 3r + 1 ensure the genericity. Finally, on steps q = 3r + 2consider the r-th he-reducible to � partial function  r and ensure that f 6�  r.Denote by E the class of all enumerations of A�.3.4. De�nition. Let S � N� E. The set S is called complete relative to F if forevery n 2 N; � 2 � there exists a � � � such that if f is F-generic and � � f , thenthe pair (n; f) belongs to S.The following proposition is a generalized version of Proposition 3.7, [8]. Thesimple proof presented here is based on a suggestion of Mr. Vl. Soskov.3.5. Proposition. Let S � N� E be complete relative to F. Then there exists acountable family FS of subsets of � such that if f is FS-generic, then 8n((n; f) 2 S).Proof. Given a natural number n, letEn = f� j8f(f is F-generic & � � f ) (n; f) 2 S)g:It follows from the completeness of S that the set En is dense.Denote by FS the family fEnjn 2 Ng [ F. Suppose that f is FS-generic. Fix an 2 N. Since En is dense, f meets it. Let � 2 En be such that � � f . Clearly f isF-generic. Hence, by the de�nition of En, (n; f) 2 S.Let � 2 fe; heg and let P �0 ; : : : ; P �a ; : : : be a sequence of unary predicate letters.Assume that a satisfaction relation "f j=� P �a (x)" is de�ned so that for everyenumeration f of A�,A �� D(Bf ) () 9a(A = fxjf j=� P �a (x)g):Suppose also that "� 
� P �a (x)" is a forcing relation satisfying the following forcingconditions :(F1) � � � & � 
� P �a (x)) � 
� P �a (x);(F2) There exists a countable family F� of subsets of � such that for every F�-generic enumeration f , f j=� P �a (x) () (9� � f)(� 
� P �a (x)).3.6. De�nition. Let A � N. The set A has a �-normal form if for some a 2 N; � 2� and for all n 62 dom(�); x 2 N,x 2 A () 9�(� � �)(�(n) ' x & � 
� P �a (n)):(3.1)



6 IVAN N. SOSKOVGiven a set A call P �a a f -associate of A if for all n 2 N,f(n) 2 A () f j=� P �a (n):Assume that the recursive pairing function h:; :i is chosen so that every naturalnumber is a code of an ordered pair.3.7. Proposition. Let Q = fA0; A1; : : : ; Ar; : : :g be a countable family of subsetsof N. Let the subset S of N� E be de�ned by(ha; ri; f) 2 S () Ar has a �-normal form or P �a is not a f -associate of Ar:Then S is complete relative to F�.Proof. Let us �x a natural number m = ha; ri and a �nite part �. Assume that Arhas a �-normal form. Clearly for every enumeration f , the pair (m; f) belongs toS.Now suppose that Ar does not have a �-normal form. Then there exist naturalnumbers x and n 62 dom(�) for which the equivalence (3:1) fails. We have twopossibilities. First suppose thatx 2 A & 8�(� � �)(�(n) ' x) � 6
� P �a (n)):Take a � such that � � � & �(n) ' x. Let f be an F�-generic enumeration whichextends � . Clearly f(n) = x 2 Ar . Assume that f j=� P �a (n). Then, by (F2), thereexists a � � f such that � 
� P �a (n). By (F1), we may assume that � � �. Acontradiction. So, P �a is not a f -associate of Ar and hence (m; f) 2 S.Now suppose thatx 62 Ar & 9�(� � �)(�(n) ' x & � 
� P �a (n)):Let f be F�-generic and � � f . Then, by (F2), f j=� P �a (n) but f(n) = x 62 Ar.Hence (m; f) 2 S.Combining the last proposition and Proposition 3.5, we get the following3.8. Corollary. Let Q be a countable family of sets of natural numbers. Thereexists a countable family F of subsets of � such that if f is F-generic, A 2 Q andA is �-admissible in f , then A has a �-normal form.4. Proof of the theoremWe start by de�ning appropriate j=� and 
� relations for � 2 fe; heg. Consider�rst � = e.4.1. De�nition. Given natural number a 2 N and enumeration f of A�, letf j=e P ea (n) () 9v(hv; ni 2 Wa & Dv � D(Bf)):



CONSTRUCTING MINIMAL PAIRS OF DEGREES 7From the de�nition above it follows immediately that for every enumeration fand A � N, A �e D(Bf ) () 9a(A = fnjf j= P ea (n)g):(4.1)The de�nition of the forcing relation 
e is a little bit more complicated. Let �be �nite part. Given a natural number u, let � 
e u if u = h1; n;m; "i for somen;m in dom(�) and G(�(n); �(m)) ' " or u = h2; n; "i for some n 2 dom(�) and�(�(n)) ' ".For a �nite set D let � 
e D () (8u 2 D)(� 
e u).Finally, given a 2 N, let� 
e P ea (n) () 9v(hv; ni 2 Wa & � 
e Dv):It is obvious that the forcing conditions (F1) and (F2) hold for j=e and 
e, wherethe family Fe is empty.4.2. Proposition. Let A � N have a e-normal form. Then A �e �.Proof. Let � and a be such that (3:1) holds for all n 62 dom(�) and x 2 N. Fix an0 62 dom(�). Thenx 2 A () 9�(� � �)(�(n0) ' x & � 
e P ea (n0)):Assume that an e�ective coding of the �nite parts is �xed. From the de�nition of 
e,using the recursiveness of G, we obtain that the set f� j� 
e P ea (n0)g is e-reducibleto �. Therefore A �e �.Now let us turn to the hyperenumeration case. Consider two sequencesR0; : : : ; Ra; : : : ;F0; : : : ; Fa; : : :of new binary predicate letters. Given an enumeration f , letf j=he Ra(x; s) () 9v(hv; x; si 2 Wa & Dv � D(Bf )):Let s denote (codes of) arbitrary �nite strings of natural numbers. If s =hz1; : : : ; zni, then by s � z we shall denote the string hz1; : : : ; zn; zi. By hi we shalldenote the empty string.Given �nite string s and natural number x, de�ne f j=he Fa(x; s) by means ofthe following inductive de�nition.4.3. De�nition.If f j=he Ra(x; s), then f j=he Fa(x; s);If 8z(f j=he Fa(x; s � z)), then f j=he Fa(x; s).Suppose that f j= Fa(x; s). By jx; sj we shall denote the �rst ordinal at whichthe pair (x; s) appears in the inductive de�nition. In other words,jx; sj = (0 if f j=he Ra(x; s);sup(jx; s � zj+ 1 : z 2 N) otherwise.



8 IVAN N. SOSKOV4.4. Lemma. Let A � N and f be an enumeration of A�. ThenA �he D(Bf) () 9a(A = fxjf j=he Fa(x; hi)g):Proof. By de�nition, A �he D(Bf ) if and only if for some a 2 Nx 2 A () 8g9n9v(hv; x; �g(n)i 2 Wa & Dv � D(Bf)):Hence A �he D(Bf) i� there exists a 2 N such thatx 2 A () 8g9n(f j=he Ra(x; �g(n))):We shall show that8g9n(f j=he Ra(x; �g(n))) () f j=he Fa(x; hi):(4.2)Suppose that the left hand part of (4:2) holds. Towards a contradiction assumethat f 6j=he Fa(x; hi). Then there exists a sequence z0; z1; : : : ; zn; : : : of naturalnumbers such that if sn = hz0; : : : ; zn�1i, thenf 6j=he Ra(x; sn) & f 6j=he Fa(sn � zn; x):(4.3)The construction of z0; z1; : : : ; zn; : : : is by induction on n. Since f 6j=he Fa(x; hi),f 6j=he Ra(x; hi) and for some z, f 6j=he Fe(x; hzi). Set z0 = z.Suppose that z0; : : : ; zn are chosen so that (4:3) holds. Let sn+1 = hz0; : : : ; zni.By (4:3), f 6j=he Ra(x; sn+1) and for some z, f 6j=he Fa(x; sn+1 � z). Take zn+1 = z.Now, let g(n) = zn. Clearly 8n(f 6j=he Ra(x; �g(n))).Given a �nite string s = hz0; : : : ; zn�1i and a function g, lets � g () (8k < n)(g(k) = zk):To prove (4:2) in the right to left direction we shall show by means of trans�niteinduction on jx; sj thatf j=he Fa(x; s)) 8g � s9n(f j= Ra(x; �g(n)))(4.4)and use that everey function extends the empty string hi.Indeed, if f j=he Ra(x; s), then (4:4) is obvious. Suppose that f 6j=he Ra(x; s). Byinduction, (8z)(8g � s � z)9n(f j=he Ra(x; �g(n))). Suppose that g � s. Then forsome z, g � s � z and hence 9n(f j=he Ra(x; �g(n))).Let f j=he P hea (x) () f j=he Fa(x; hi).Our next task is to de�ne an appropriate forcing relation � 
he P hea (x). First let� 
he Ra(x; s) () 9v(hv; x; si 2 Wa & � 
e Dv):Clearly we have as for enumeration reducibility(R1) � 
he Ra(x; s) & � � � ) � 
he Ra(x; s) and(R2) For every enumeration f , f j=he Ra(x; s) () 9� � f(� 
he Ra(x; s)).Now we are ready to de�ne � 
he Fa(x; s) by means of the following inductivede�nition.



CONSTRUCTING MINIMAL PAIRS OF DEGREES 94.5. De�nition.If � 
he Ra(x; s), then � 
he Fa(x; s);If 8z 2 N8� � �9� � �(� 
he Fa(x; s � z)), then � 
he Fa(x; s).We associate ordinals with the tuples (�; x; s) such that � 
he Fa(x; s) as usual:j�; x; sj = (0 if � 
he Ra(x; s);sup(min(j�; x; s � zj+ 1 : � � �) : � � �; z 2 N) otherwise.The following lemma follows immediately from De�nition 4.5.4.6. Lemma. Let �; � be �nite parts, � � � and � 
he Fa(x; s), then � 
he Fa(x; s).Let F1 be the family of all subsetsE�;x;s;z = f�j� 
he Fa(x; s � z) & j�; x; s � zj < j�; x; sjg of �:4.7. Lemma. Let f be a F1-generic enumeration, � � f and � 
he Fa(x; s). Thenf j=he Fa(x; s).Proof. Trans�nite induction on j�; x; sj. Skipping the obvious case f j=he Ra(x; s),assume f 6j=he Ra(x; s). Fix a z 2 N and consider the elementE = f�j� 
he Fa(x; s � z) & j�; x; s � zj < j�; x; sjgof F1. We shall show that E is dense in f . Let � � f . Take a � � f such that� � � and � � � . Since f 6j=he Ra(x; s), by (R2), � 6
he Ra(x; s) and hence, byDe�nition 4.5, there exists a � � � which belongs to E.From here, by genericity, there exists a � � f which belongs to E.Now, we have that j�; x; s � zj < j�; x; sj and � 
he Fa(x; s � z). Hence, by theinduction hypothesis, f j= Fa(x; s � z).So we have proved that 8z(f j= Fa(x; s � z)), and hence, f j=he Fa(x; s).Denote by F2 the family containing all sets f� : 9z8� � �(� 6
he Fa(x; s � z))g.4.8. Lemma. Let f be F2-generic and f j=he Fa(x; s). Then there exists a � � fsuch that � 
he Fa(x; s).Proof. Trans�nite induction on jx; sj.Assume that 8� � f(� 6
he Fa(x; s)). Then the set E = f� : 9z8� � �(� 6
heFa(x; s � z))g is dense in f . By genericity, there exist a � � f and z 2 N, such that8� � �(� 6
he Fa(x; s � z)).On the other hand, f j=he Fa(x; s) and f 6j=he Ra(x; s). (Otherwise we could�nd a � � f such that � 
he Ra(x; s)). Therefore f j= Fa(x; s � z), and hence, byinduction, there exists a � � f such that � 
 Fa(x; s � z). By Lemma 4.6 we mayassume that � � �. A contradiction.De�ne � 
he P hea (x) () � 
he Fa(x; hi).Let Fhe = F1[F2. Combining the last three lemmas we obtain that j=he and 
hesatisfy the forcing conditions (F1) and (F2).



10 IVAN N. SOSKOV4.9. Proposition. Suppose that A has a he-normal form. Then A �he �.Proof. Let � and a be such that for all n 62 dom(�) and xx 2 A () 9� � �(�(n) ' x & � 
he Fa(n; hi)):Consider the set P = f(�; n; s)j� 
he Fa(n; s)g. We are going to show thatP �he �. For we shall give a game characterization of the forcing "
he". Our gamestarts over a triple (�; n; s) and has two players - (8) and (9). If � 
he Ra(n; s),then the game stops and (9) wins. Otherwise, the �rst player (8) chooses a naturalnumber z and a �nite part � � � . Then the second player (9) chooses a �nite part� � �. The game continues over (�; n; s�z). Now, our claim is that � 
he Fa(n; s) i�there exists a strategy for (9) for winning every game over (�; n; s). To formulate thisclaim precisely we shall represent the possible moves of (8) by two total functionsg1 and g2, where g1(�; n; s) will choose the natural number z and g2(�; n; s) will givethe �nite part �. We shall call the pair (g1; g2) correct if 8�8n8s(� � g2(�; n; s)).4.10. Claim. � 
he Fa(n; s) i� for every correct pair (g1; g2) there exists a �nitenonempty sequence h�0; �1; : : : ; �ki of �nite parts such that, ifz1 = g1(�0; n; s); z2 = g1(�1; n; s � z1); : : : ; zk = g1(�k�1; n; s � z1 � � � � � zk�1); thena) � = �0;b) (8i < k)(g2(�i; n; s � z1 � � � � � zi) � �i+1);c) �k 
he Ra(n; s � z1 � � � � � zk).Proof. The proof of the left to right direction is by induction on j�; n; sj. Supposethat � 
he Fa(n; s). Let (g1; g2) be a correct pair of functions. If � 
he Ra(n; s),then the sequence h�i satis�es the conditions a), b) and c). Suppose now that� 6
he Ra(n; s). Let z1 = g1(�; n; s) and � = g2(�; n; s). By the correctness of (g1; g2),� � �. By the de�nition of 
he, there exists a �1 � � such that �1 
he Fa(n; s � z1)and j�1; n; s � z1j < j�; n; sj. By induction, there exists a �nite nonempty sequenceh�1; : : : ; �ki of �nite parts, satisfying the conditions a), b) and c) with respect to(�1; n; s � z1). Now it is trivial to show that the sequence h�; �1; : : : ; �ki satis�es a),b) and c) with respect to (�; n; s).Suppose now that � 6
he Fa(n; s). We shall show that there exists a correct pair(g1; g2) of functions for which there is no �nite sequence of �nite parts satisfyinga), b) and c). Given �nite part � and string t, check if there exist z and � � �such that (8� � �)(� 6
he Fa(n; t � z)). In case of a positive answer let g1(�; n; t) beone of those z and g2(�; n; t) be one of those �. If the answer is negative, then letg1(�; n; t) = 0 and g2(�; n; t) = �. Clearly the pair (g1; g2) is correct.Now assume that h�0; : : : ; �ki is a sequence of �nite parts satisfying the conditionsa), b) and c). By a), �0 = � . Since �0 6
he Fa(n; s), �0 6
he Ra(n; s) and9z9� � �08� � �(� 6
he Fa(n; s � z)):By the de�nition of g1 and g2 and b), �1 6
he Fa(n; s�z1). So, proceeding as above, weget that �1 6
he Ra(n; s�z1); �2 6
he Ra(n; s�z1 �z2); : : : ; �k 6
he Ra(n; s�z1 �� � ��zk).The last contradicts c).



CONSTRUCTING MINIMAL PAIRS OF DEGREES 11Using the Claim and the fact that the set f(�; n; s)j� 
he Ra(n; s)g is enumerationreducible to �, we obtain immediately that P �he � and hence that A �he �.Now we are ready to prove the main results.4.11. Theorem. Let C and A be total sets. There exists a total set B such thatC �T B and B 6�he C and for all � 2 fT; e; h; heg and all X � N,X �� A & X �� B ) X �� C:Proof. Let �(x) = (0 if x 2 C;1 otherwise.Since C is total, we have for all � 2 fT; e; h; heg that C �� � and � �� C, i.~e.C �� �.Let A be a total set. Denote by Q�, � 2 fe; heg, the family of all sets which are�-reducible to A. By Corollary 3.8 there exist denumerable families FQ� of subsetsof � such that if f is FQ� -generic, X 2 Q� and X is �-admissible in f , then X hasa �-normal form. Let f be an enumeration of A� which is not he-reducible to �and generic with respect to FQe [ FQhe . Denote D(Bf ) by B. Since the predicate� is totally de�ned, the set B is total. By the stability of A�, f �he B and henceB 6�he �, and � �T B.By Lemma 2.3 it su�cient to show for � 2 fe; heg,X �� A & X �� B ) X �� C:Now suppose that X �� A and X �� B. Since f is partial recursive in B,f�1(X) �� B. So X 2 Q� and X is �-admissible in f . From here it follows thatX has a �-normal form and hence, by Proposition 4.2, Proposition 4.9 respectively,X �� �. Therefore X �� C.Notice that, since ; is total, Theorem 1.1 is a direct corollary of the above theo-rem.If we start by an arbitrary, not necessary total set C, then we can prove a similarresult but only for the positive reducibilities �e and �he.4.12. Theorem. Let C and A be subsets of N. There exists a subset B of N suchthat C �e B, B 6�he C and if � 2 fe; heg, then for all X � N,X �� A & X �� B ) X �� C:Proof. Let us de�ne the partial predicate � by�(x) = (0 if x 2 C;unde�ned otherwise.Now, we have for � 2 fe; heg that � �� C. From here, the theorem followsby an almost literal repeating of the arguments used in the proof of the previoustheorem.



12 IVAN N. SOSKOVThe method used in the proofs of the theorems above allows further general-izations and applications. We may add countable many satisfaction and forcingrelations to the so far considered j=� and 
�, � 2 fe; heg, relations. This way, con-sidering the forcing for the �� hierarchy from [1] and [2], we can prove the followinggeneralization of Theorem 4.11.If � is a constructive ordinal, X � N, then by X (�) we shall denote the �-th jumpof X , see [4].4.13. Theorem. Let C and A be total sets. There exists a total set B such thatC �T B, B 6�he C and for all X � N:(1) For every constructive ordinal �, X �T A(�) & X �T B(�) ) X �T C(�);(2) For every constructive ordinal �, if X is r.~e. in A(�) and X is r.~e. inB(�), then X is r.~e. in C(�);(3) X �h A & X �h B ) X �h C.(4) X �he A & X �he B ) X �he C.Other applications of the method will be presented in the forthcoming [7].References1. C. Ash, J. Knight, M. Manasse, and T. Slaman, Generic copies of countable structures,Ann. Pure Appl. Logic 42 (1989), 195{205.2. J.~Chisholm, E�ective model theory vs. recursive model theory, J. Symbolic Logic 55(1990), 1168{1191.3. K.~McEvoy and S.B. Cooper, On minimal pairs of enumeration degrees, J. SymbolicLogic 50 (1985), 983{1001.4. H. Rogers, Theory of recursive functions and e�ective computability, McGraw-Hill BookCompany, New York, 1967.5. L.~E. Sanchis, Hyperenumeration reducibility, Notre Dame J. Formal Logic 19 (1978),405{415.6. , Reducibilities in two models of combinatory logic, J. Symbolic Logic 44 (1979),221{233.7. I. N. Soskov, Positive reducibilities on abstract structures, In preparation.8. , Intrinsically �11relations, Mathematical Logic Quarterly 42 (1996), 109{126.Department of Mathematics and Computer Science, Sofia University, Blvd."James Bourchier" 5, 1126 Sofia, BulgariaE-mail address: soskov@fmi.uni-so�a.bg


